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Abstract
This paper investigates the convergence time of
log-linear learning to an ϵ-efficient Nash equilib-
rium (NE) in potential games. In such games, an
efficient NE is defined as the maximizer of the
potential function. Existing results are limited to
potential games with stringent structural assump-
tions and entail exponential convergence times in
1/ϵ. Unaddressed so far, we tackle general poten-
tial games and prove the first finite-time conver-
gence to an ϵ-efficient NE. In particular, by using
a problem-dependent analysis, our bound depends
polynomially on 1/ϵ. Furthermore, we provide
two extensions of our convergence result: first,
we show that a variant of log-linear learning that
requires a factor A less feedback on the utility per
round enjoys a similar convergence time; second,
we demonstrate the robustness of our convergence
guarantee if log-linear learning is subject to small
perturbations such as alterations in the learning
rule or noise-corrupted utilities.

1. Introduction
Interactions of multiple agents are at the heart of many
applications in transportation networks, auctions, telecom-
munication networks, and multi-robot systems. In game
theory, the Nash equilibrium is a popular solution concept
to describe outcomes of a multi-agent system (Nash, 1951).
Fundamental considerations in game theory are whether an
NE exists, if strategic players can learn it, and if so at which
speed they can learn it. Furthermore, for practical purposes
it is important to understand which NE is learned. This is
particularly pertinent in games that admit a social welfare
function, as it enables the definition of an efficient NE as an
NE that maximizes the social welfare. The social welfare is
typically an aggregate measure of individual utilities such
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as their sum or a measure of fairness. In distributed control
of engineering systems, for example, studying efficient NEs
is important, as the aim is to optimize some global objective
function in a distributed manner.

The class of potential games (Monderer and Shapley, 1996b)
lends itself to studying efficient NEs since every joint ac-
tion maximizing the potential corresponds to an NE. This
property follows from the fact that in potential games, the
difference in a player’s utility generated by a unilateral
change of her action equals the difference in potential. Con-
sequently, if the social welfare function is aligned with the
potential function, meaning that an increase in social wel-
fare is associated with an increase in potential (Paccagnan
et al., 2022), then any joint action maximizing the potential
is an efficient NE (Marden and Shamma, 2015). In identical
interest games, for example, maximizing the aggregated util-
ity is achieved by maximizing the potential function which
is trivially given by the common utility function. In the ex-
ample of coverage problems, the goal is to assign players to
locations to achieve maximal coverage. When each player’s
utility is designed as the marginal contribution then this goal
is achieved by maximizing the resulting potential function
(Marden and Wierman, 2013).

In this paper, we investigate the speed at which an efficient
NE can be reached in potential games.

1.1. Related work

In potential games, several learning rules exist such as iter-
ative best-response dynamics (Rosenthal, 1973; Awerbuch
et al., 2008; Chien and Sinclair, 2011), no-regret algorithms
(Krichene et al., 2015; Palaiopanos et al., 2017; Heliou et al.,
2017), and fictitious play (Monderer and Shapley, 1996a;b)
for which asymptotic convergence to an NE is guaranteed.
However, only log-linear learning (Blume, 1993; Young,
1993) and variants thereof (Arslan et al., 2007; Marden et al.,
2007; Marden and Shamma, 2012) are known to converge
to an efficient Nash equilibrium. In log-linear learning, the
players asynchronously choose an action with a probability
proportional to its exponentiated utility. To increase its ap-
plicability, existing works also studied log-linear learning
under more realistic structural assumptions. For example,
Leslie and Marden (2011) proves that log-linear learning
also handles the practical setting where the observed utilities
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are corrupted by noise. Furthermore, Arslan et al. (2007)
proposes binary log-linear learning, a slight modification of
log-linear learning that only requires two points of feedback
per round. Although the above works established asymp-
totic convergence of log-linear learning to an efficient NE, a
finite-time analysis is missing for general potential games.

Few past works provide finite-time guarantees for log-linear
learning to an ϵ-efficient NE, an action profile whose po-
tential is ϵ-close to its maximum value. For instance, for
atomic routing games with polynomial costs of degree at
most p, Asadpour and Saberi (2009) proves a convergence
time exponential in p and 1/ϵ and polynomial in N , where
N denotes the number of players. Moreover, Montanari
and Saberi (2008; 2010) study games with graph structures
between players and prove an exponential convergence time
in N and 1/ϵ in the worst case. Finally, in potential games
with interchangeable players and a Lipschitz-continuous po-
tential function, Shah and Shin (2010) shows a convergence
time exponential in A and 1/ϵ and linear in N , where A is
the number of actions per player.

For the class of games we address in this paper, namely
general potential games, an exponential dependence on N
in the convergence time is unavoidable. In fact, finding
an ϵ-efficient NE is equivalent to finding an ϵ-optimizer of
the potential function, which is NP-complete (Burer and
Letchford, 2012). However, there is no hardness result
that justifies the exponential dependence on 1/ϵ present in
previous works. In this paper, we focus on deriving the first
finite-time convergence guarantees of log-linear learning
that hold for general potential games; are polynomial in 1/ϵ;
and remain valid under relaxed structural assumptions such
as limited access to feedback and noisy utilities.

1.2. Contributions

We study the convergence time of log-linear learning to an
ϵ-efficient Nash equilibrium in general potential games. Our
contributions are summarized as follows:

• We prove a convergence time of Õ((AN/ϵ)
1

max{ϵ,∆} )

to an ϵ-efficient NE (Theorem 3.1), where ∆ is a
problem-dependent constant. If in addition, the play-
ers are interchangeable, then an ϵ-NE is reached in
Õ((N

A

ϵ
)

1
max{ϵ,∆} ) which in contrast to general poten-

tial games is polynomial in N as well (Corollary B.3).

• We consider two variants of log linear learning: binary
log-linear learning (Theorem 4.1) and perturbed log-
linear learning (Theorem 4.3) motivated by limited
feedback and noise corrupted utilities, respectively. For
these variants we show convergence guarantees that
are polynomial in 1/ϵ.

On the technical side, in their convergence analysis, most

past works leveraged that log-linear learning induces a
Markov chain. To obtain our novel finite-time results we
build on this connection and develop new Markov chain
results that can be summarized as follows:

• We derive improved mixing time bounds for a given
class of Markov chains based on log-Sobolev inequal-
ities (Lemma 2.2). In particular, this broad class of
Markov chains includes those induced by log-linear
learning and binary-log linear learning.

• We derive a tight Lipschitz constant for the known
result regarding the Lipschitz-continuity of stationary
distributions of Markov chains as a function of their
transition matrix (Lemma 4.2). We leverage this re-
sult to study the convergence of learning rules such
as perturbed log-linear learning for which the explicit
stationary distributions are unknown (Theorem 4.3).

Notations We denote by [N ] the set {1, . . . , N}. For a
finite set X , we denote by ∆(X ) the probability simplex
over X , and by 1a∈X the indicator function of X . Finally,
we use the big-O notations Õ and Ω̃ to hide logarithmic
terms.

2. Preliminaries
2.1. Problem setup

We consider a repeated potential game with N players. Ev-
ery player has an action set A of cardinality A < ∞, which
for simplicity we assume to be the same for all players. The
utility of player i is a mapping Ui : AN → [0, 1] from the
joint action space AN to [0, 1]. In a potential game, the
utility functions are characterized by a potential function
Φ : AN → R such that for all i ∈ [N ], ai, a′i ∈ A, and
a−i ∈ AN−1, it holds that:

Ui(ai, a−i)− Ui(a
′
i, a−i) = Φ(ai, a−i)− Φ(a′i, a−i).

In this paper, we assume that an initial action profile is
drawn from a distribution µ0. The potential game is then
repeated over multiple rounds. We assume a turn-based
setting, where at round t, a player i ∈ [N ] is uniformly
selected to update her action while the other players remain
with their previous action, i.e., at−i = at−1

−i .

A common assumption in game theory is that the players are
rational, i.e., that they seek to maximize their utility. Under
this assumption, a natural solution concept is the pure Nash
equilibrium (Nash Jr, 1950).
Definition 2.1 (Nash equilibrium). A pure Nash equilibrium
is an action profile (aNE

i )i∈[N ] ∈ AN such that every player
is playing a best response to the other players’ actions aNE

−i ,
i.e.,

Ui(ai, a
NE
−i ) ≤ Ui(a

NE
i , aNE

−i ), ∀i ∈ [N ],∀ai ∈ A,

2



Finite-time convergence to an ϵ-efficient Nash equilibrium in potential games

where we define a−i := (aj)j∈[N ]\{i} as the joint action of
all players except i.

In a pure NE, no player can improve her utility by unilat-
erally changing her action. Hereafter, we simply refer to a
pure Nash equilibrium as a Nash equilibrium. A stronger
solution concept specific to potential games is the efficient
Nash equilibrium. An efficient Nash equilibrium is an ac-
tion profile a∗ which maximizes the potential function, i.e.,
a∗ ∈ argmaxa∈AN Φ(a). An appealing property of finite
potential games is that a potential maximizer exists, and
thus an efficient NE exists (Monderer and Shapley, 1996b).

Practically, each player selects her actions based on some
learning rule. In this work, we are interested in learning
rules that converge, in expectation, to an ϵ-efficient NE, i.e.,
an action profile maximizing the potential up to an additive
constant:

E[Φ(a)] ≥ max
a∈AN

Φ(a)− ϵ,

where the randomness stems from the distribution of action
profiles at round t. The number of rounds needed to find an
ϵ-efficient NE denotes the convergence time.

Connection to Markov chains: If all players apply a
learning rule that relies exclusively on the utility given the
most recent action profile of the other players then the con-
sidered game induces a Markov chain over the state space
AN . In particular, the state of the Markov chain at time t
corresponds to the action profile at round t and the learn-
ing rule of each player specifies the transition dynamics.
This connection between the learning dynamics in potential
games and Markov chains has been exploited in previous
works (Blume, 1993; Young, 1993; Marden and Shamma,
2012; Shah and Shin, 2010) and is crucial for our subsequent
convergence analysis. We provide the necessary background
on Markov chains in the next section.

2.2. Background on Markov chains

We briefly review concepts and properties of Markov chains
used throughout this paper. Consider a time-homogeneous
Markov chain {Xt}t∈N over the state space AN with a tran-
sition matrix P ∈ RAN×AN

. The ergodic theorem (Levin
and Peres, 2017) states that if a Markov chain {Xt}t∈N is
irreducible and aperiodic, then it has a unique stationary
distribution µ, and from any initial distribution µ0 the distri-
bution µt = µ0P t converges to µ. The convergence time to
the stationary distribution is quantified by the mixing time:

tPmix(ϵ) := min{t ∈ N | ∥µt − µ∥TV ≤ ϵ}, (1)

where the total variation distance is defined as ∥µt −
µ∥TV := 1

2

∑
a∈AN |µt(a) − µ(a)|. Based on a remark

in (Diaconis and Saloff-Coste, 1996, Section 3) we now de-
rive a bound on the mixing time of Markov chain {Xt}t∈N.

Lemma 2.2. If P is irreducible and aperiodic, then the
mixing time has the following upper bound:

tPmix(ϵ) ≤
1

ρ(PP ∗)

(
log log

1

µmin
+ 2 log

1

ϵ

)
, (2)

where ρ(PP ∗) denotes the log-Sobolev constant of PP ∗

defined in Equation (10) in Appendix A, µmin :=
mina∈AN µ(a), and P ∗ is the time-reversal of P .1

We briefly discuss the mixing time bound above and provide
a proof and a thorough discussion in Appendix A. While
classical approaches commonly bound the mixing time by
the spectral gap defined in Equation (11) in Appendix A,
bounds using log-Sobolev constants are often significantly
tighter. Indeed, the mixing time upper bound using the
log-Sobolev constant grows as O(log log(1/µmin)) whereas
bounds using the spectral gap grow as O(log(1/

√
µmin)).

However, unlike the spectral gap deriving log-Sobolev con-
stants can be extremely difficult. So constants have not been
well-explored. In the next section, we derive a novel bound
on the log-Sobolev constant of a class of Markov chains.

3. Log-linear learning
In this section, we review the well-established log-linear
learning rule (Blume, 1993) and state our main theoretical
result on the convergence time of log-linear learning to an ϵ-
efficient Nash equilibrium. Our convergence analysis relies
on the mixing time bound from Lemma 2.2 of the previous
section.

3.1. Algorithm and background

We assume that all players follow the log-linear learning
rule which is repeated over several rounds. At round t a
player denoted by i is randomly chosen among all play-
ers and allowed to alter her action while the other players
repeat their current action, i.e., at−i = at−1

−i . Given full-
information feedback, player i observes her utility for all
actions ai ∈ A given the other players’ actions at−1

−i . Then,
player i samples an action from her strategy pti ∈ ∆(A)
such that:

pti(ai) =
eβUi(ai,a

t−1
−i )∑

a′
i∈A eβUi(a′

i,a
t−1
−i )

, ∀ai ∈ A, (3)

where parameter β measures a player’s rationality: for large
β player i is more likely to select a best response ati ∈
argmaxai∈A Ui(ai, a

t−1
−i ); and for β = 0 player i samples

ati uniformly. Moreover, the strategy pti is myopic as it
depends only on the other players’ last actions at−1

−i .

1P ∗ satisfies µ(a)P ∗(a, ã) = µ(ã)P (ã, a)∀a, ã ∈ AN . The
chain is called time-reversible if P ∗ = P .
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Log-linear learning induces an irreducible and aperiodic
Markov chain {Xt}t∈Z+ with a time-reversible transition
matrix P ∈ RA×A (Marden and Shamma, 2012) given by:

Pa,ã =
1

N

eβUi(ãi,ã−i)∑
a′
i∈Ai

eβUi(a′
i,ã−i)

1ã∈N (a), (4)

where N (a) = {ã ∈ AN | ∃i ∈ [N ] : ã−i = a−i}. The
stationary distribution µ ∈ ∆(AN ) of log-linear learning is
given by (Blume, 1993):

µ(a) =
eβΦ(a)∑

ã∈AN eβΦ(ã)
∀a ∈ AN . (5)

The above can be verified by checking the detailed balance
equations given by µ(a)Pa,ã = µ(ã)Pã,a for all a, ã ∈ AN .
For β → ∞, sampling an action profile a ∈ AN from
the stationary distribution µ returns a maximizer of the
potential Φ(·) with arbitrarily high probability. Thus, when
all players adhere to log-linear learning with sufficiently
large β, the global outcome, in the long run, will correspond
to a potential maximizer, i.e., an efficient Nash equilibrium.

For sufficiently large β, it was shown that log-linear learning
converges asymptotically to a potential maximizer and thus
an efficient Nash equilibrium (Blume, 1993; Young, 1993;
Marden and Shamma, 2012). Except for a few works (Mon-
tanari and Saberi, 2010; Asadpour and Saberi, 2009; Shah
and Shin, 2010), none of the previous works, however, have
finite-time convergence guarantees to such an efficient Nash
equilibrium, and (Montanari and Saberi, 2010; Asadpour
and Saberi, 2009; Shah and Shin, 2010) have additional
assumptions on the potential game. Thus, in the following
section, we establish a bound on the convergence time of
log-linear learning in general potential games.

3.2. Convergence time of log-linear learning

We now state our main result on the convergence time of
log-linear learning to an ϵ-efficient NE. Before stating the
result we briefly introduce some notation. Denote by a∗ a
potential maximizer, i.e., a∗ ∈ argmaxa∈AN Φ(a). The set
of ϵ-optimal action profiles is defined as AN (ϵ) := {a ∈
AN |Φ(a) ≥ Φ(a∗)−ϵ} with cardinality AN (ϵ) = |AN (ϵ)|.
Furthermore, the suboptimality gap is defined as ∆ :=
mina∈AN :Φ(a)<Φ(a∗) (Φ(a

∗)− Φ(a)) and is non-negative.

Theorem 3.1. Consider a potential game with a potential
function Φ : AN → [0, 1] with A ≥ 4.2 For any ϵ ∈ (0, 1)
and any initial distribution µ0, assume that players adhere

2The assumption A ≥ 4 is needed to lower-bound the log-
Sobolev constant, see Lemma B.1.

to log-linear learning with:

β ≥ 1

max{ϵ/2,∆}
(6)

log

(
(AN −AN (ϵ/2))

(
4

ϵAN (ϵ/2)
− 1

AN (ϵ/2)

))
.

Then,

Ea∼µt [Φ(a)] ≥ max
a∈AN

Φ(a)− ϵ,

for

t ≥ 25N2A5

16π2
e4β
(
log logAN + log β + 2 log

4

ϵ

)
.

In other words, after t = Ω̃(N2A5(A
N

ϵ
)1/max{ϵ,∆}) rounds

of log-linear learning with β = Ω( 1
max{ϵ,∆} log AN

ϵ
) the ex-

pected value of the potential of the joint action at time t is
ϵ-optimal.

Then,

Ea∼µt [Φ(a)] ≥ max
a∈AN

Φ(a)− ϵ,

for

t ≥ 25N2A5

16π2
e4β
(
log logAN + log β + 2 log

2

ϵ

)
.

In other words, after t = Ω̃(N2A5(A
N

ϵ
)1/max{ϵ,∆}) rounds

of log-linear learning with β = Ω( 1
max{ϵ,∆} log AN

ϵ
) the ex-

pected value of the potential of the joint action at time t is
ϵ-optimal.

Theorem 3.1 provides the first finite-time convergence
rates to an ϵ-efficient NE in general potential games. In
order to be ϵ-close to an efficient NE β must scale as
Ω( 1

max{ϵ,∆} log AN

ϵ
). Furthermore, since the convergence

time scales as e4β it grows polynomially in A and 1/ϵ and
exponentially in N . The exponential dependence on N is
unavoidable without further assumptions on the game. How-
ever, by deriving problem-dependent bounds we are the first
to avoid the exponential dependence in 1/ϵ, see Table 1.
Note that the case ∆ = 0 is trivial as all action profiles are
efficient NEs.

Proof outline. Here, we provide an outline of the proof, the
full proof is deferred to Appendix B.1. The argument begins
with the following decomposition:

Ea∼µt [Φ(a)] ≥ Ea∼µ[Φ(a)]︸ ︷︷ ︸
First term

−2 ∥µt − µ∥TV︸ ︷︷ ︸
Second term

max
a∈AN

Φ(a)︸ ︷︷ ︸
≤1
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Table 1. Convergence time of log-linear learning to an ϵ-efficient NE.

Works Game setting Assumptions Convergence time

(Asadpour and Saberi, 2009) Routing game Cost functions of degree Ω̃(e
N
ϵ )

with K vertices at most p

(Shah and Shin, 2010) Potential game with λ-Lipschitz continuous Ω̃(N(Aλ
ϵ )

A
ϵ )

interchangeable players potential function

Corollary B.3 Potential game with A ≥ 4 Ω̃(N(N
A

ϵ )
1

max{ϵ,∆} )
interchangeable players

Theorem 3.1 Potential game A ≥ 4 Ω̃(N2A5(A
N

ϵ )
1

max{ϵ,∆} )

First term: To control the first term above, we rely on the
novel lemma below which shows that an action profile sam-
pled from µ is in expectation ϵ/2-optimal if β is sufficiently
large.

Lemma 3.2. For any ϵ ∈ (0, 1), if all players adhere to
log-linear learning with:

β ≥ 1

max{ϵ,∆} log

(
(AN −AN (ϵ))

(
1

ϵAN (ϵ)
− 1

AN (ϵ)

))
,

then it holds that Ea∼µ[Φ(a)] ≥ maxa∈AN Φ(a)− ϵ.

The proof of this lemma is provided in Appendix B.2. We
use it to control the first term as:

Ea∼µ[Φ(a)] ≥ max
a∈AN

Φ(a)− ϵ/2

when β is defined as in Equation (6).

Second term: We can control the mixing time of log-linear
learning using the bound of Lemma 2.2:

∥µt − µ∥TV ≤ ϵ/4

for t ≥ 1
ρ(PP∗) (log log

1
µmin

+ 2 log 4
ϵ ). We then bound

ρ(PP ∗) using the novel lemma below.

Lemma 3.3. Consider a Markov chain over state space AN

with A ≥ 4. Assume that there exists pmin, pmax ∈ (0, 1],
such that the corresponding transition matrix P ∈ RAN×AN

satisfies:

1

N
pmin1ã∈N (a) ≤ Pa,ã ≤ min{1, 1

N
pmax}1ã∈N (a) (7)

where N (a) = {ã ∈ AN | ∃i ∈ [N ] : ã−i = a−i}. Then
the log-Sobolev constant ρ(PP ∗) of matrix PP ∗ is lower
bounded by:

ρ(PP ∗) ≥ 16π2AN−2µminp
3
min

25N2
,

where µ is the stationary distribution of the Markov chain
induced by P and µmin = mina∈AN µ(a).

The proof of this lemma is provided in Appendix B.3. It
provides a bound on ρ(PP ∗) for any transition matrix that
satisfies Equation (7). It is in particular applicable to the
Markov chain induced by log-linear learning since the tran-
sition matrix specified in Equation (4) satisfies Equation
(7).

Combination: Combining the two parts of the proof we
deduce that:

Ea∼µt [Φ(a)] ≥ Ea∼µ[Φ(a)]− 2∥µt − µ∥TV max
a∈AN

Φ(a)

≥ max
a∈AN

Φ(a)− ϵ

2
− 2ϵ

4
,

for t ≥ 25N2A5

16π2 e4β
(
log logAN + log β + 2 log 4

ϵ

)
. This con-

cludes the proof of the theorem.

In the following, we additionally assume that the potential
game is symmetric, i.e., players are interchangeable.3 In
this setting, we derive a bound on the convergence time of
log-linear learning that depends polynomially not only on
1/ϵ but also on N .

Corollary 3.4 (Sketch). Consider a symmetric potential
game. For any ϵ ∈ (0, 1) and initial distribution µ0,
assume that players adhere to modified log-linear learn-
ing (Shah and Shin, 2010) with β = Ω( 1

max{ϵ,∆} log(N
A

ϵ
)).

Then, Ea∼µt [Φ(a)] ≥ maxa∈AN Φ(a) − ϵ for t =

Ω̃(N(N
A

ϵ
)

1
max{ϵ,∆} ).

We provide a full statement of the corollary and its proof
in Appendix B.4. For symmetric potential games with a
λ-Lipschitz-continuous potential function, Shah and Shin
(2010) proves a convergence time of Ω̃(N(Aλ

ϵ
)
A
ϵ ). In com-

parison, relaxing the Lipschitzness assumption comes at a
small cost of polynomial dependence on N rather than a
linear one. However, our result greatly improves the depen-
dence on ϵ to a polynomial one.

3A definition of a symmetric game is given in Appendix B.4,
see Definition B.2.
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4. Relaxed structural assumption
In this section, we investigate how our convergence time
results are affected when structural assumptions are relaxed.
In particular, we analyze binary log-linear learning which
handles reduced feedback, then we study perturbations of
log-linear learning such as noisy utility observations.

4.1. Reduced feedback

Log-linear learning requires players to access their utili-
ties for all possible actions given the other players’ actions.
Having such full-information feedback when action sets are
large can be demanding. Binary log-linear learning (Arslan
et al., 2007; Marden et al., 2007) alleviates this limitation by
requiring two-point feedback, reducing the feedback needed
by a factor A per round. Now, we briefly review the binary-
log-linear learning rule. Then, we derive the first finite-time
convergence bound of binary log-linear learning to an ϵ-
efficient Nash equilibrium, showing that the deterioration in
convergence time is a constant.

Binary log-linear learning proceeds as log-linear learning
with the distinction that the player i allowed to alter her
action first samples a trial action ãi uniformly from her
action set A. She then plays according to the strategy:

pti(a) =

 e
βUi(a,a

t−1
−i

)

e
βUi(a

t−1
i

,a
t−1
−i

)
+e

βUi(ãi,a
t−1
−i

)
for a ∈ {at−1

i , ãi}

0 otherwise

Here, player i can either repeat her action at−1
i or play one

other randomly sampled action ãi rather than any action
ai ∈ A as in log-linear learning.

Theorem 4.1. Consider a potential game with potential
function Φ : AN → [0, 1] and A ≥ 4. For any ϵ ∈ (0, 1)
and initial distribution µ0, assume that players adhere to
binary log-linear learning with β = Ω( 1

max{ϵ,∆} log
AN

ϵ ).
Then, it holds that

Ea∼µt [Φ(a)] ≥ max
a∈AN

Φ(a)− ϵ,

for

t ≥ 25N2A5

2π2
e4β
(
log logAN + log β + 2 log

4

ϵ

)
︸ ︷︷ ︸

Ω̃

(
N2A5

(
AN

ϵ

) N
max{ϵ,∆}

)
.

Theorem 4.1 shows the first finite-time convergence guar-
antee for binary log-linear learning, we provide its detailed
proof in Appendix C. It is remarkable that with significantly
less feedback per round, binary log-linear achieves the same
convergence speed as log-linear learning up to a factor of

8 (Theorem 3.1). This raises the question of whether two-
point feedback is sufficient for learning ϵ-efficient Nash equi-
libria or whether the convergence time bounds we proved
for log-linear learning are loose.

4.2. Perturbed log-linear learning

Classical log-linear learning relies on two limiting assump-
tions: 1) Players have access to their exact utilities. How-
ever, in real-world applications, the presence of noise is
typical as uncertainties and hidden factors generate inexact
measurements. 2) Players are rational. However, empiri-
cal evidence suggests that players have limited rationality
and therefore may occasionally deviate from the log-linear
learning rule in practical scenarios. Our next result general-
izes Theorem 3.1 to the case where the log-linear learning
rule is subject to small perturbations. As we will show, this
generalization can address the two limitations above.

We first derive a general statement for Markov chains which
shows that the induced stationary distribution is Lipschitz-
continuous as a function of the transition matrix. We then
use this lemma to prove our main result on the convergence
time of perturbed log-linear learning to an ϵ-efficient NE.

Lemma 4.2 (Lipschitzness). Consider two irreducible and
aperiodic transition matrices P1, P2 ∈ RAN×AN

. Let µ1

and µ2 be the stationary distributions of the Markov chains
induced by P1 and P2, respectively. Then, the following
holds:

∥µ1 − µ2∥2 ≤ min{L(P1), L(P2)}∥P1 − P2∥2,

where L(Pk) := 2AN

ρ(PkP
∗
k
)
(log log 1

µk,min
+ log(8AN )) and

µk,min = mina∈AN µk(a) for k = 1, 2.

We provide a proof in Appendix D.4. Compared to the re-
sult of (Zhang et al., 2023), we considerably improve the
Lipschitz constant by using the mixing time bound based
on log-Sobolev inequalities (Lemmas 2.2 and 3.3). In par-
ticular, (Zhang et al., 2023, Lemma 24) entails a Lipschitz
constant L = Õ((e/pmin)

N ) while Lemma 4.2 implies that
L = Õ(1/(µminp

3
min)).

4 Now, we state the main result of
this section.

Theorem 4.3. Consider a potential game with a poten-
tial function Φ : AN → [0, 1] and A ≥ 4. Furthermore,
consider a learning rule with transition matrix P and as-
sume that there exists pmin, pmax ∈ (0, 1], such that for all
a, ã ∈ A it holds that:

1

N
pmin1ã∈N (a) ≤ Pa,ã ≤ min{1, 1

N
pmax}1ã∈N (a).

(8)

4This can be seen by injecting the log-Sobolev bound of lemma
3.3 into our Lemma above.
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For any ϵ ∈ (0, 1) and any initial distribution µ0, as-
sume all players adhere to this learning rule with β =

Ω
(

1
max{ϵ,∆} log 1

ϵ

)
. Then,

Ea∼µt [Φ(a)] ≥ max
a∈A

Φ(a)− ϵ− L
√
AN∥P − Pℓ∥2,

for

t ≥ 25N3/2eN

(2π)5/2ANpN+3
min

log

(
4AN

ϵ2
log

eN

pNmin

√
2πN

)
,

where Pℓ is the transition matrix of log-linear
learning and L is a Lipschitz constant of order
Õ

(
N2AN+5elog(A

N/ϵ)/max{ϵ,∆}
)

.

Theorem 4.3 shows that small perturbations of the log-linear
learning rule do not compromise the convergence to an ϵ-
efficient NE. In particular, if the players follow a learning
rule P with ∥P −Pℓ∥2 = O(ϵ/(L

√
AN )) then they converge

to an ϵ-efficient NE in time polynomial in 1/ϵ. On the
other hand, due to the unavailability of the stationary dis-
tribution of the perturbed learning rule, we suffer an extra
factor of (N/pmin)

N/N ! in the convergence time guarantee
compared to log-linear learning.

We now consider two explicit types of perturbations: Noisy
utilities and a modified learning rule.

4.2.1. CORRUPTED UTILITIES WITH ADDITIVE NOISE

In the following, we assume that players observe noise-
corrupted utilities (Ûi)i∈[N ] which satisfy:

Ûi(ai, a−i) = Ui(ai, a−i)+ξi(ai, a−i), ∀(ai, a−i) ∈ AN

(9)
where ξi(ai, a−i) ∈ [−ξ, ξ] is a bounded noise term. Al-
ternatively, the noise could be assumed to be centered i.i.d.
random variables with bounded variance (Leslie and Mar-
den, 2011).

Using Theorem 4.3, we hereafter prove that log-linear learn-
ing is robust to noisy feedback.

Corollary 4.4. Consider the setting of Theorem 4.3 with
noise-corrupted utilities as in Equation (9). If all players
adhere to log-linear learning with β = Ω

(
1

max{ϵ,∆} log
1
ϵ

)
and ξ ≤ 1/(2β), then

Ea∼µt [Φ(a)] ≥ max
a∈A

Φ(a)− ϵ− 7LA3N/2

2N
βξ,

for t = Ω
(
N3/2A3eN+β(1+2ξ)(N+3) log 1

ϵ2

)
with L =

Õ
(
N2AN+5elog(A

N/ϵ)/max{ϵ,∆}
)

.

The proof is provided in Appendix D.2. Corollary 4.4 shows
that log-linear learning with corrupted utilities converges to
an ϵ-efficient NE in time polynomial in 1/ϵ if the corrup-
tion magnitude ξ is sufficiently small. Our finite-time con-
vergence result extends previous works on robust learning
which provide asymptotic guarantees (Leslie and Marden,
2011; Lim and Shamma, 2013; Bravo and Mertikopoulos,
2017). The key to this result lies in showing that the tran-
sition matrix of the Markov chain induced by corrupted
utilities is close to its corruption-free counterpart.

4.2.2. LOG-LINEAR LEARNING MIXED WITH UNIFORM
EXPLORATION

In the following, we assume players occasionally explore
actions randomly. A modification of log-linear learning
based on the fixed-share algorithm (Herbster and Warmuth,
1998) can reflect such a random behavior. In the so-called
fixed-share log-linear learning, a player i is randomly cho-
sen and allowed to alter her action. Player i samples her
new action from the following distribution:

p̂ti(ai) =
ξ

A
+

(1− ξ)eβUi(ai,a
t−1
−i )∑

a′
i∈A eβUi(a′

i,a
t−1
−i )

, ∀ai ∈ A.

The exploration parameter ξ ∈ (0, 1) determines how likely
a player is to act randomly, where a value of ξ = 1 cor-
responds to a uniform action sampling while ξ = 0 corre-
sponds to standard log-linear learning. For simplicity, we
focus on the full-information case but fixed-share log-linear
learning can easily be adapted to the binary setting. Note
that this modification resembles the ϵ-Hedge strategy (He-
liou et al., 2017) in the expert advice literature, and under
binary feedback, this modification resembles the Epx3.P
strategy (Auer et al., 2002; Bubeck et al., 2012) in the multi-
armed bandit literature. Here, the fixed share ξ/A ensures a
lower bound on the exploration.

Without explicit knowledge of the stationary distribution of
this learning rule, we can apply Theorem 4.3 to deduce the
following result.

Corollary 4.5. Consider the setting of Theorem 4.3, where
all players adhere to fixed-share log-linear learning with
β = Ω

(
1

max{ϵ,∆} log
1
ϵ

)
. Then, for any ϵ ∈ (0, 1) and

initial distribution µ0 we have:

Ea∼µt [Φ(a)] ≥ max
a∈A

Φ(a)− ϵ− LAN

√
N

ξ,

for t = Ω
(
N3/2AN+3eβ(N+3)/(1− ξ)N+3

)
with L =

Õ
(
N2AN+5elog(A

N/ϵ)/max{ϵ,∆}
)

.

We provide a proof in Appendix D.3. Corollary 4.5 guar-
antees the convergence of fixed-share log-linear learning to

7
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an ϵ-efficient Nash equilibrium in time polynomial in 1/ϵ if
the exploration parameter ξ is sufficiently small. The key to
this result is to show that the transition matrix of fixed-share
log-linear learning is close to the transition matrix of the
unperturbed learning rule in terms of the ℓ2 distance.

5. Conclusion
We provided the first finite-time convergence guarantees to
an ϵ-efficient NE for potential games using a novel mixing-
time bound based on a log-Sobolev constant. In particu-
lar, we guarantee a polynomial dependence on 1/ϵ using a
problem-dependent analysis. Furthermore, under the addi-
tional assumption that the game is symmetric, we showed
that the exponential dependence on the number of players
N present in our bound on the convergence time can be
avoided. To deal with reduced feedback, i.e., two-point
feedback on the utility, we considered binary log-linear
learning and showed that it enjoys the same convergence
time as log-linear learning up to numerical constants. Fi-
nally, we proved that the convergence time of log-linear
is not hindered by corruptions of the observed utilities by
bounded noise or by small perturbations in the learning rule.
The relevance of this result is twofold: First, our analysis
does not rely on characterizing the stationary distribution of
this perturbed Markov chain; Second, the presence of noise
is ubiquitous in real-world applications and it is therefore
crucial that the implemented learning rule is robust to such
corruptions.

In future work, we are interested in providing lower bounds
on the convergence time of log-linear learning to an ϵ-
efficient NE. Such bounds would allow us to assess the
tightness of our results.
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A. Markov chains and mixing times
In the following, we define the log-Sobolev constant and the spectral gap of a Markov chain. We then discuss the implications
of Lemma 2.2 and provide a proof of the lemma.

Definition A.1 ((Diaconis and Saloff-Coste, 1996)). Consider a Markov chain {Xt}t∈N over state space AN with transition
matrix P and stationary distribution µ. The log-Sobolev constant ρ(P ) is defined as:

ρ(P ) := inf
Lπ(f2 )̸=0

EP (f, f)
Lπ(f2)

. (10)

The spectral gap λ(P ) is defined as:

λ(P ) := inf
Varπ(f )̸=0

EP (f, f)
Varπ(f)

. (11)

For any f : AN → R, the Dirichlet form EP (f, f) is defined by:

EP (f, f) = ⟨f, (I − P )f⟩π =
1

2

∑
a,ã∈AN

(f(a)− f(ã))2Pa,ãµ(a),

the entropy-like quantity L(f2) is defined by:

L(f2) =
∑

a∈AN

f(a)2 log
f(a)2

∥f∥22
µ(a),

and the variance Varπ(f) is defined by:

Varπ(f) =
∑

a,ã∈AN

(f(a)− f(ã))2µ(a)µ(ã).

As mentioned in Section 2.2, using the log-Sobolev constant ρ(PP ∗) can often significantly improve classical mixing time
bounds based on the spectral gap λ(PP ∗). Such classical bounds are of the form (Montenegro et al., 2006):

tPmix(ϵ) ≤
C

λ(PP ∗)

(
log

1
√
µmin

+ log
1

ϵ

)
,

where C is some constant. Diaconis and Saloff-Coste (1996) in Lemma 3.1 show that the log-Sobolev constant ρ(PP ∗) is
upper-bounded by the spectral gap λ(PP ∗) as follows: 2ρ(PP ∗) ≤ λ(PP ∗). Thus, roughly speaking if

log log
1

µmin
≤ log

1
√
µmin

(12)

then the mixing time bound based on the log-Sobolev constant is an improvement upon the mixing time bound based
on the spectral gap. To make this more concrete, consider for example a Markov chain on the d-dimensional hypercube
H = {−1, 1}d with uniform stationary distribution. Then, µmin = 2−d and clearly Equation (12) is satisfied in this example.

Proof of Lemma 2.2. Let the relative entropy be defined as D(µt : µ) :=
∑

a∈AN µt(a) log µt(a)
µ(a) . Then, for a Markov

chain {Xt}t∈N with irreducible transition matrix P the relative entropy D(µt : µ) decays at the following rate (Miclo,
1997):

D(µt : µ) ≤ (1− ρ(PP ∗))tD(µ0 : µ). (13)

10
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Using Pinsker’s inequality we have that:

∥µt − µ∥TV ≤
√

D(µt : µ)

2
≤
√
(1− ρ(PP ∗))tD(µ0 : µ). (14)

Note that ρ(PP ∗) < 1 since 2ρ(PP ∗) ≤ λ(PP ∗) by Lemma 3.1 in (Diaconis and Saloff-Coste, 1996) and for the spectral
gap λ(PP ∗) it is known that λ(PP ∗) < 1 (Levin and Peres, 2017). To ensure that ∥µt−µ∥TV ≤ ϵ, we derive the following
lower bound on t: √

(1− ρ(PP ∗))tD(µ0 : µ) ≤ ϵ

⇔ t log(1− ρ(PP ∗))︸ ︷︷ ︸
<0

≤ log

(
ϵ2

D(µ0 : µ)

)

⇔ t ≥ 1

log(1− ρ(PP ∗))
log

(
ϵ2

D(µ0 : µ)

)
⇔ t ≥ − 1

ρ(PP ∗)
log

(
ϵ2

D(µ0 : µ)

)
⇔ t ≥ 1

ρ(PP ∗)

(
log(D(µ0 : µ) + 2 log

(
1

ϵ

))
⇔ t ≥ 1

ρ(PP ∗)

(
log log

(
1

µmin

)
+ 2 log

(
1

ϵ

))
,

where in line 4 we used that log(1 + x) ≤ x for x > −1 and then in line 6 we used that for any µ0, D(µ0 : µ) ≤ log 1
µmin

for µmin := mina∈AN µ(a). Thus, we conclude that the mixing time is upper-bounded as follows:

tPmix(ϵ) ≤
1

ρ(PP ∗)

(
log log

1

µmin
+ 2 log

1

ϵ

)
. (15)

B. Convergence of log-linear learning
We first prove Lemma 3.2 and then state a novel lemma which we will use to prove Lemma 3.3. Lastly, we provide a formal
proof of the convergence time of log-linear learning in Theorem 3.1.

B.1. Proof of Theorem 3.1

We are now ready to proceed with the proof of Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.3, the log-Sobolev constant ρ(PP ∗) can be lower-bounded as:

ρ(PP ∗) ≥ 16π2ANµminp
3
min

25N2A2
≥ 16π2e−4β

25N2A5
, (16)

where we used that by definition of P in (4) and µ in (5) µmin and pmin can be lower-bounded as follows:

µmin = min
a∈AN

µ(a) ≥ e−β

AN

Pa,ã ≥ e−β

NA
, ∀ã ∈ AN (a) ⇒ pmin =

e−β

A
.

Equation (2) in Lemma 2.2 provides an upper bound on the mixing time:

tPmix(ϵ/4) ≤
1

ρ(PP ∗)

(
log log

1

µ∗
+ 2 log

4

ϵ

)
.
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Plugging the bound on the log-Sobolev constant from Equation (16) into the equation above we obtain:

tPmix(ϵ/2) ≤
25N2A5

16π2
e4β
(
log log

1

µmin
+ 2 log

4

ϵ

)
≤ 25N2A5

16π2
e4β
(
log log

AN

e−β
+ 2 log

4

ϵ

)
≤ 25N2A5

16π2
e4β
(
log logAN + log β + 2 log

4

ϵ

)
.

By setting t ≥ 25N2A5

16π2 e4β
(
log logAN + log β + 2 log 4

ϵ

)
and β as in Equation (6) we obtain:

Ea∼µt [Φ(a)] ≥ Ea∼µ[Φ(a)]− 2∥µt − µ∥TV max
a∈AN

Φ(a)

≥ max
a∈AN

Φ(a)− ϵ

2
− 2ϵ

4

= max
a∈AN

Φ(a)− ϵ,

where the third line follows from Lemma 3.2, the fact that ∥µt−µ∥TV ≤ ϵ/2, and the fact that Φ(·) ∈ [0, 1]. This concludes
the proof of Theorem 3.1.

B.2. Proof of Lemma 3.2

Proof of Lemma 3.2. Define the set AN
∗ = {a∗ ∈ AN | a∗ ∈ argmaxa∈ANΦ(a)} as the set of potential maximizers with

cardinalityAN
∗ = |AN

∗ |. Then, the expected value of the potential function Φ(·) over the stationary distribution µ of log-linear
learning in (5) can be bounded as follows:

Ea∼µ[Φ(a)] =
∑

a∈AN

eβΦ(a)∑
ã∈AN eβΦ(ã)

Φ(a)

≥
∑

a∈AN
∗

eβΦ(a)∑
ã∈AN eβΦ(ã)

Φ(a)

=
∑

a∈AN
∗

Φ(a)∑
ã∈AN (ϵ) e

β(Φ(ã)−Φ(a)) +
∑

ã∈AN\AN (ϵ) e
β(Φ(ã)−Φ(a))

≥
∑

a∈AN
∗

Φ(a)∑
ã∈AN (ϵ) e

0 +
∑

ã∈AN\AN (ϵ) e
−βmin{ϵ,∆}

≥ AN
∗

AN (ϵ) + (AN −AN (ϵ))e−βmin{ϵ,∆}Φ(a
∗), (17)

where the suboptimality gap ∆ is given by ∆ := mina∈AN :Φ(a)<Φ(a∗) (Φ(a
∗)− Φ(a)) with a∗ ∈ AN

∗ . Then, we have that:

β ≥ 1

max{ϵ,∆}
log

(
(AN −AN (ϵ))

(
1

ϵAN (ϵ)
− 1

AN (ϵ)

))
=⇒ eβmax{ϵ,∆} ≥ (AN −AN (ϵ))

1− ϵ

ϵAN (ϵ)

=⇒ AN
∗ −AN (ϵ) + ϵAN (ϵ)

1− ϵ
≥ (AN −AN (ϵ))e−βmin{ϵ,∆}

=⇒ AN
∗ − (1− ϵ)AN (ϵ)

1− ϵ
≥ (AN −AN (ϵ))e−βmin{ϵ,∆}

=⇒ AN
∗

AN (ϵ) + (AN −AN (ϵ))e−βmin{ϵ,∆} ≥ 1− ϵ.
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By injecting the last inequality into Equation (17) we deduce that for β ≥ 1
max{ϵ,∆} log(AN −AN (ϵ))( 1

ϵAN (ϵ)
− 1

AN (ϵ)
)), it

holds that:

Ea∼µ[Φ(a)] ≥ (1− ϵ) max
a∈AN

Φ(a) ≥ max
a∈AN

Φ(a)− ϵ,

where we used that Φ(a) ≤ 1 for all a ∈ AN .

B.3. Proof of Lemma 3.3

We first state the following lemma which will be used to prove Lemma 3.3.

Lemma B.1. Consider the Markov chain {X̂t}t∈N over a finite state space AN with transition matrix P̂ ∈ RAN×AN

given
by:

P̂a,ã =
1

NA
1ã∈N (a) (18)

where N (a) = {ã ∈ AN | ∃i ∈ [N ] : ã−i = a−i}. Assuming A ≥ 4, the log-Soblev constant of P̂ is lower-bounded by:

ρ(P̂ ) ≥ 4π2

25NA
.

Proof. We will lower bound the log-Soblev constant of P̂ in terms of the log-Soblev constant of another Markov chain for
which a lower bound on the log-Soblev constant is known.

First, note that the Markov chain {X̂t}t∈N is aperiodic and irreducible with stationary distribution µ̂(a) = 1/AN . This can
be verified by checking the detailed balance equations given by µ̂(a)P̂a,ã = µ̂(ã)P̂ã,a for all a, ã ∈ AN . Next, we make use
of Corollary 2.15 in (Montenegro et al., 2006) to lower-bound ρ(P̂ ) in terms of the log-Soblev constant of another Markov
chain X̄t with transition matrix P̄ and stationary distribution µ̄. Namely,

ρ(P̂ ) ≥ 1

MC
ρ(P̄ ),

where

M = max
a∈AN

µ̂(a)

µ̄(a)
,

C = max
a ̸=ã:P̂a,ã ̸=0

µ̄(a)P̄a,ã

µ̂(a)P̂a,ã

.

As the comparison Markov chain, we consider the product chain {X̄t}t∈N with X̄t =
∏N

i=1 X̄i,t on the state space
ZKN =

∏N
i=1 ZK . Here, each {X̄it}t∈N is a simple random walk on the finite circle ZK = {1, . . . ,K} with K ≥ 4. The

transition matrix and the stationary distribution of the simple random walk X̄it are given by P̄ik,k±1
= 1

2 and µ̄i(k) = 1/K,
respectively. Furthermore, the log-Soblev constant ρ(P̄i) is lower bounded by ρ(P̄i) ≥ 8π2

25K2 (?)Example 4.2]diaco-
nis1996logarithmic. Thus, by definition the product chain X̄t (?)Sec. 2.5]diaconis1996logarithmic has the following
transition matrix:

P̄k,k̃ =
1

2N
1k̃=(ki±1,k−i)

,

and stationary distribution:

µ̄(k) =
N∏
i=1

µ̄i(ki) =

N∏
i=1

1

K
=

1

KN
.

Furthermore, by Lemma 3.2 in (Diaconis and Saloff-Coste, 1996) the log-Soblev constant ρ(P̄ ) of the product chain
{X̄t}t∈N is lower bounded by:

ρ(P̄ ) =
1

N
min

i∈{1,...,N}
ρ(P̄i) ≥

8π2

25NK2
. (19)
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Next, note that there is a one-to-one mapping between the set AN and the set ZK with |A| = A = K and thus a one-to-one
mapping between the set AN and the set ZKN with with |AN | = AN = KN . Therefore, we can assume that the Markov
chains X̂t and X̄t operate on the same state space. By Equation (19) and with the following upper bounds on M and C:

M = max
a∈AN

µ̂(a)

µ̄(a)
=

AN

AN
= 1

C = max
a ̸=ã:P̂a,ã ̸=0

µ̄(a)P̄a,ã

µ̂(a)P̂a,ã

=
A

2
.

the log-Soblev constant ρ(P̂ ) can be lower-bounded by:

ρ(P̂ ) ≥ 1

MC
ρ(P̄ ) ≥ 16π2

25NA3
,

which concludes the proof.

Next, we proceed to prove Lemma 3.3.

Proof of Lemma 3.3. The Markov chain Xt with transition matrix P defined in (7) is aperiodic and irreducible and thus a
unique stationary distribution µ exists with µt = µ0P t → µ for t → ∞ from any initial distribution µ0. We define µmax

and µmin as maxa∈A µ(a) ≤ µmax ≤ 1 and mina∈A µ(a) ≥ µmin > 0, where µmin > 0 follows from the irreducibility of
Xt.

Next, we consider the modified Markov chain {X∗
t }t∈N with transition matrix PP ∗ which is aperiodic and irreducible

since Xt is aperiodic and irreducible. Concretely, since P contains self-loops, i.e., Pa,a > 0, it follows that PP ∗ contains
self-loops, i.e.,

PP ∗
a,a =

∑
a′∈A

Pa,a′P ∗
a′,a =

∑
a′∈A

Pa,a′
µ(a)Pa,a′

µ(a′)
≥ Pa,aPa,a > 0,

and thus X∗
t is aperiodic. Furthermore, for any a, ã ∈ AN :

(PP ∗)Na,ã =
∑

al∈AN

l=1,...,N−1

(PP ∗)a,a1 . . . (PP ∗)aN−1,ã

=
∑

al∈AN

l=1,...,N−1

∑
a′∈AN

Pa,a′P ∗
a′,a1

. . .
∑

a′∈AN

PaN−1,a′P ∗
a′,ã

≥
∑

al∈AN

l=1,...,N−1

Pa,a1
Pa1,a1

. . . PaN−1,ãPã,ã > 0,

where we used that PN
a,ã > 0 and Pa,a > 0 for all a, ã ∈ AN as well as the identity µ(a)P ∗

a,ã = µ(ã)Pã,a. It follows
that X∗

t is irreducible. Thus, for X∗
t a unique stationary distribution µ∗ exists. By Proposition 1.23 in (Levin and Peres,

2017) the stationary distribution of P ∗ is given by µ and thus the stationary distribution of PP ∗ is given by µ since
µPP ∗ = µP ∗ = µ. Furthermore, the following holds for the transition matrix PP ∗ :

1

N
p2min1ã∈AN (a) ≤ (PP ∗)a,ã ≤ 1ã∈AN (a)

where

(PP ∗)a,ã =
∑
a′∈A

Pa,a′P ∗
a′,ã ≥ Pa,ãP

∗
ã,ã ≥ Pa,ãP

∗
ã,ã ≥ p2min

N
.
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Finite-time convergence to an ϵ-efficient Nash equilibrium in potential games

Next, we compute M and C, defined bellow, of the Markov chains X∗
t and Xt:

M = max
a∈AN

µ(a)

µ(a)
= 1

C = max
a ̸=ã:(PP∗)a,ã ̸=0

µ(a)Pa,ã

µ(a)(PP ∗)a,ã
≤ N

p2min

.

From Corollary 2.15 in (Diaconis and Saloff-Coste, 1996), it follows that the log-Soblev constant ρ(PP ∗) is lower-bounded
by:

ρ(PP ∗) ≥ 1

MC
ρ(P ) ≥ p2min

N
ρ(P ). (20)

Next, we compare the Markov chain Xt to the Markov chain X̂t with transition matrix P̂ specified in Equation (18) of
Lemma B.1. To this end, we compute M and C of the Markov chains Xt and X̂t:

M = max
a∈AN

µ(a)

µ̂(a)
≤ AN

C = max
a ̸=ã:Pa,ã ̸=0

µ̂(a)P̂a,ã

µ(a)Pa,ã
≤ N

ANNAµminpmin
,

Thus, by Corollary 2.15 in (Diaconis and Saloff-Coste, 1996) and by Lemma B.1 the log-Soblev constant ρ(P ) can be
lower-bounded by:

ρ(P ) ≥ 1

MC
ρ(P̂ ) ≥ ANAµminpminρ(P̂ ) ≥ 16π2ANµminpmin

25NA2
. (21)

Combining Equation (20) and (21), we conclude that the log-Soblev constant ρ(PP ∗) is lower-bounded by:

ρ(PP ∗) ≥ 16π2ANµminp
3
min

25N2A2
.

B.4. Modified log-linear learning in symmetric potential games

In the following, we consider a symmetric potential game and show that in this setting, we obtain convergence time
guarantees to an ϵ-efficient NE that depend polynomially on the number of players N and on 1/ϵ. This improves the
convergence time result provided in (Shah and Shin, 2010) which shows an exponential dependence on 1/ϵ.

A game is said to be symmetric if it satisfies the following definition.

Definition B.2. A game is symmetric if for any permutation π of {1, . . . , N} the following holds:

Ui(a1, . . . , aN ) = Uπ(i)(aπ(1), . . . , aπ(N)).

In other words, the utility of player i depends only on how many players are playing each action a ∈ A and not on
players’ identities. Thus, in a symmetric potential game, if A < N , the potential function Φ can be redefined in terms of a
lower-dimensional function Φ : ΨA → [0, 1], where

ΨA :=

{(
v1
N

, . . . ,
vA
N

)
| vj ∈ Z+ ∀j ∈ [A],

A∑
j=1

vj = N

}

with cardinality Y = |ΨA| ≤ (N + 1)A−1. Then, for any a = (a1, . . . , aN ) ∈ AN we have Φ(a) = Φ(x(a)) with
x(a) = (x1(a), . . . , xN (a)). Here xj(a) denotes the fraction of players that selected action j ∈ AN , i.e., xj(a) =
1/N |{i ∈ [N ] | ai = j}|.
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Finite-time convergence to an ϵ-efficient Nash equilibrium in potential games

To obtain their results for symmetric potential games, Shah and Shin (2010) propose modified log-linear learning, a variant
of log-linear learning. In modified log-linear learning every player i has an independent exponential clock of rate α/zti ,
where α > 0 is a parameter and zti := 1/N |{j ∈ [N ] | atj = ati}|.5 This means that the times between two consecutive
clock-ticks are independent and distributed as the exponential distribution of mean α/zti . When the clock of player i ticks,
she is allowed to alter her current action. Player i samples an action from her strategy pti ∈ ∆(A) defined as in Equation (3).
Modified log-linear learning induces an aperiodic and irreducible Markov chain on the lower-dimensional state space ΨA

with stationary distribution µm ∈ ∆(ΨA) given by (?)Lemma 2]shah2010dynamics:

µm(x) =
eβΦ(x)∑

x̃∈ΨA
N
eβΦ(x̃)

∀x ∈ ΨA.

In the following, we show that in a symmetric potential game, if all players adhere to modified log-linear learning an
ϵ-efficient NE is reached in time polynomial in N and 1/ϵ.

Corollary B.3. Consider a symmetric potential game with potential function Φ : ΨAN → [0, 1]. For any ϵ ∈ (0, 1) and any
initial distribution µ0

m, assume that players adhere to modified log-linear learning with:

β = Ω

(
1

max{ϵ,∆}
log

(
NA

ϵ

))
.

Then,

Ex∼µt
m
[Φ(x)] ≥ max

x∈ΨA
Φ(x)− ϵ,

for

t ≥ N

αc
e3β
(
log((A− 1) log(N + 1)) + log β + 2 log

4

ϵ

)
= Ω̃

(
N

(
NA

ϵ

) 1
max{ϵ,∆}

)
,

where c is a constant that depends on A.

Proof. Define the set ΨA
∗ = {x∗ ∈ ΨA | x∗ ∈ argmaxx∈ΨAΦ(x)} as the set of potential maximizers with cardinality

Y∗= |ΨA
∗ | and define the set ΨA(ϵ) = {x ∈ ΨA | Φ(x) ≥ Φ(x∗)} as the set of ϵ-approximate potential maximizers with

cardinalityY (ϵ)= |ΨA(ϵ)|. Then, the expected value of the potential function Φ(·) over the stationary distribution µm of
modified log-linear learning in (5) can be bounded as follows:

Ex∼µm
[Φ(x)] =

∑
a∈ΨA

eβΦ(x)∑
x̃∈ΨA eβΦ(x̃)

Φ(x)

=
∑

a∈ΨA
∗

1∑
x̃∈ΨA(ϵ) e

β(Φ(x̃)−Φ(x)) +
∑

x̃∈ΨA\ΨA(ϵ) e
β(Φ(x̃)−Φ(x))

Φ(x)

≥
∑

a∈ΨA
∗

1∑
x̃∈ΨA(ϵ) e

0 +
∑

x̃∈ΨA\ΨA(ϵ) e
−βmin{ϵ,∆}Φ(x)

≥ Y∗

Y (ϵ) + (Y − Y (ϵ))e−βmin{ϵ,∆}Φ(x
∗),

where the suboptimality gap ∆ is given by ∆ := minx∈ΨA:Φ(x)<Φ(x∗) (Φ(x
∗)− Φ(x)) with x∗ ∈ ΨA

∗ . Then, for

β ≥ 1

max{ϵ,∆}
log

(
(N + 1)A−1

(
1

ϵAN (ϵ)
− 1

AN (ϵ)

))
, (22)

it holds that

Y∗

Y (ϵ) + (Y − Y (ϵ))e−βmin{ϵ,∆} ≥ 1− ϵ,

5The only change compared to log-linear learning is that in log-linear learning players have a fixed exponential clock rate of 1.
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where we used that Y ≤ (N + 1)A−1. We deduce that for β = Ω( 1
max{ϵ,∆} log(N

A

ϵ
)), it holds that:

Ex∼µm [Φ(x)] ≥ (1− ϵ) max
x∈ΨA

Φ(x) ≥ max
x∈ΨA

Φ(x)− ϵ.

The proof now follows from the same analysis as in the proof of Theorem 3 in (Shah and Shin, 2010) with the exception that
we do not make use of Lemma 6 in (Shah and Shin, 2010) but replace it with our analysis above. Concretely, we set β as
specified in Equation (22) rather than as in (?)Eq. (8)]shah2010dynamics.

C. Binary log-linear learning
Binary log-linear learning induces an irreducible and aperiodic Markov chain {Xt}t∈Z+

with a time-reversible transition
matrix P ∈ RA×A given by:

Pa,ã =
1

N

1

A

eβUi(ãi,ã−i)

eβUi(ai,ã−i) + eβUi(ãi,ã−i)
1ã∈N (a) (23)

where N (a) = {ã ∈ AN | ∃i ∈ [N ] : ã−i = a−i}. The additional term 1/A stems from the fact that player i first randomly
samples an action ãi and then decides between this action and her previous action. Arslan et al. (2007) show that its
stationary distribution µ ∈ ∆(AN ) is given by :

µ(a) =
eβΦ(a)∑

ã∈AN eβΦ(ã)
∀a ∈ AN . (24)

The stationary distribution of binary log-linear learning is the same as that of log-linear learning (Equation (5)). Thus,
log-linear- and binary log-linear learning converge to an approximately efficient Nash equilibrium in the long run. We
briefly outline the proof of Theorem 4.1 and then provide a detailed proof.

Proof outline. The proof follows from the same line of arguments as the proof of Theorem 3.1. In particular, the first step in
the proof of Theorem 3.1 remains the same since binary log-linear learning has the same stationary distribution as log-linear
learning. In the second step in the proof of Theorem 3.1, the main difference is that the transition matrix in (23) of binary
log-linear learning differs from the transition matrix in (4) of log-linear learning. Thus, the log-Sobolev constant of binary
log-linear can be lower-bounded as follows:

ρ(PP ∗) ≥ 16π2ANµminp
3
min

25N2A2
≥ 2π2e−4β

25N2A5
, (25)

while the log-Sobolev constant of log-linear can be lower-bounded as follows:

ρ(PP ∗) ≥ 16π2ANµminp
3
min

25N2A2
≥ 16π2e−4β

25N2A5
.

Then, we use Lemma 2.2 to show that
∥µt − µ∥TV ≤ ϵ/4

for t ≥ 1
ρ(PP∗) (log log

1
µmin

+ 2 log 4
ϵ ) with ρ(PP ∗) lower-bounded as in Equation (25).

Proof of Theorem 4.1. By Lemma 3.3, the log-Sobolev constant ρ(PP ∗) can be lower-bounded as:

ρ(PP ∗) ≥ 16π2ANµminp
3
min

25N2A2
≥ 2π2e−4β

25N2A5
,

where we used that by definition of P in (23) and µ in (24) µmin and pmin can be lower-bounded as follows:

µmin = min
a∈AN

µ(a) ≥ e−β

AN

Pa,ã ≥ e−β

N2A
, ∀ã ∈ AN (a) ⇒ pmin =

e−β

2A
.
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Equation (2) in Lemma 2.2 provides the following upper bound on the mixing time:

tPmix(ϵ/4) ≤
1

ρ(PP ∗)

(
log log

1

µ∗
+ 2 log

4

ϵ

)
.

Plugging the bound on the log-Sobolev constant into this equation we obtain:

tPmix(ϵ/4) ≤
25N2A5

2π2
e4β
(
log log

1

µmin
+ 2 log

4

ϵ

)
≤ 25N2A5

2π2
e4β
(
log log

AN

e−β
+ 2 log

4

ϵ

)
≤ 25N2A5

2π2
e4β
(
log logAN + log β + 2 log

4

ϵ

)
.

Set t as:

t ≥ 25N2A5

2π2
e4β
(
log logAN + log β + 2 log

4

ϵ

)
(26)

and set β as:

β ≥ 1

max{ϵ/2,∆}
log

(
(AN −AN (ϵ/2))

(
4

ϵAN (ϵ/2)
− 1

AN (ϵ/2)

))
. (27)

Then, we obtain the following upper bound:

E[Φ(at)] = Ea∼µt [Φ(a)]

≥ Ea∼µ[Φ(a)]− 2∥µt − µ∥TV max
a∈AN

Φ(a)

≥ max
a∈AN

Φ(a)− ϵ

2
− 2ϵ

4

= max
a∈AN

Φ(a)− ϵ,

where the third line follows from Lemma 3.2, the fact that ∥µt − µ∥TV ≤ ϵ/4 for t set as in Equation (26), and the fact that
Φ(·) ∈ [0, 1]. Lemma 3.2 is applicable when all players adhere to binary-based log-linear learning rather than log-linear
learning since the proof of Lemma 3.2 depends only on the stationary distribution µ of the corresponding learning rule
which is the same for log-linear learning and binary log-linear learning. This concludes the proof of Theorem 4.1.

D. Robustness of log-linear learning
In this section, we prove Theorem 4.3 and apply it to the corrupted-utility case to prove Corollary 4.4.

D.1. Proof of Theorem 4.3

Proof of Theorem 4.3. Consider a learning rule P , to prove Theorem 4.3, we first provide a decomposition that relates the
expected value of the potential when the agents follow P defined in Equation (8) to the same quantity when the agents
follow Pℓ defined in Equation (4) instead.

We have for all t, t′ ∈ N that:

Eµ0P t [Φ] = Eµ0P t′
ℓ
[Φ] + Eµ0P t [Φ]− Eµ0P t′

ℓ
[Φ]

≥ Eµ0P t′
ℓ
[Φ]−

√
AN∥P t − P t′

ℓ ∥2 (28)

where the last line follows because |Φ(a)| ≤ 1 for all a ∈ AN and because ∥.∥1 ≤
√
AN∥ · ∥2.

The rest of the proof is based on controlling ∥P t − P t′

ℓ ∥2 using our mixing time results.

18
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Decomposition: Using Lemma 4.2 we obtain:

∥P t − P t′

ℓ ∥2 ≤ ∥P t − µ∥2 + ∥P t′

ℓ − µℓ∥2 + ∥µ− µℓ∥2
≤ ∥P t − µ∥2 + ∥P t′

ℓ − µℓ∥2 + L(Pℓ)∥P − Pℓ∥2
≤ 2∥P t − µ∥TV + ∥P t′

ℓ − µℓ∥2 + L(Pℓ)∥P − Pℓ∥2,

where L(Pℓ) =
2AN

ρ(PℓP∗
ℓ ) (log log

1
µℓ,min

+ log(8AN )) follows from Lemma 4.2. In Theorem 3.1, we showed that µℓ,min ≥
e−β

AN and ρ(PℓP
∗
ℓ ) ≥ 16π2e−4β

25N2A5 , therefore

L(Pℓ) ≤
25N2AN+5e4β

8π2
(log logANeβ + log(8AN )).

Thus, for 
t ≥ tPmix(ϵ/(4

√
AN )))

t′ → ∞

β = log

(
(AN −AN (ϵ/2))

(
4

ϵ/2AN (ϵ/2)
− 1

AN (ϵ/2)

))
/max{ϵ/2,∆}

we have 
∥P t − P t

ℓ ∥2 ≤ ϵ/
(
2
√
AN
)
+ L(Pℓ)∥P − Pℓ∥2

Ea∼µ0P t′
ℓ
[Φ(a)] ≥ maxa∈AN Φ(a)− ϵ/2,

L(Pℓ) = O

(
N2AN+5e

log(AN/ϵ)
max{ϵ,∆}

(
log logANe

log(AN/ϵ)
max{ϵ,∆} + log(AN )

))
,

where the second line follows from Lemma 3.2. Plugging the above inequalities with the bound on L from Lemma 4.2 into
the decomposition (28) proves the desired result.

We now bound the mixing time tPmix(ϵ/(4
√
AN )) of the Markov chain induced by P .

Mixing time bound: To bound the mixing time of the Markov chain induced by P , we use inequality (2) and Lemma
3.3. Assuming a lower bound of pmin/N on the probabilities of all feasible transitions implies a bound on the stationary
distribution as we will show next.

Lower bound (µP )min: Since P has a positive probability of transitioning from a ∈ AN to any ã ∈ N (a), it follows that
the corresponding N -step transition PN has a positive probability of transitioning from any a ∈ AN to any a′ ∈ AN , i.e.,

∀a, a′ ∈ AN : PN
a,a′ ≥ N ! (pmin/N)N .

Note that the least probable transitions are when a and a′ are such that ∀i ∈ [N ] : ai ̸= a′i. For all such transitions, the
possible paths using PN are the permutations of {1, . . . , N} (each of the N steps is a new player updating their action).
There are N ! such permutations and each player i ∈ [N ] can update ai to a′i with probability larger than pmin/N .

Since P is an irreducible and aperiodic transition matrix, the Markov chain induced by P has a unique stationary distribution
µP . It is known that the Markov chain induced by PN has the same stationary distribution as the one induced by P .
Therefore, we have for all a ∈ AN :

µP (a) =
∑

ã∈AN

PN
ã,aµP (ã)

≥
∑

ã∈AN

N ! (pmin/N)NµP (ã) = N ! (pmin/N)N .

Therefore, (µP )min ≥ N ! (pmin/N)N .
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Deducing the mixing-time bound: We can now give an explicit bound on the mixing time of the transition P . First, we have
by Lemma 3.3:

ρ(PP ∗) ≥ 16π2AN (µP )minp
3
min

25N2

≥ 4π2ANpN+3
min N !

25NN+2
.

Then, using Stirling’s formula, we have N ! ≥
√
2πN

(
N
e

)N
, therefore

ρ(PP ∗) ≥ (2π)5/2ANpN+3
min

25N3/2eN

Then, using inequality (2), we have:

tPmix(ϵ/(4
√
AN )) ≤ 1

ρ(PP ∗)

(
log log

1

(µP )min
+ 2 log

4
√
AN

ϵ

)

≤ 25N3/2eN

(2π)5/2ANpN+3
min

(
log log

eN

pNmin

√
2πN

+ 2 log
4
√
AN

ϵ

)
.

This concludes the proof of Theorem 4.3.

D.2. Proof of Corollary 4.4

The key idea is to show that the transition matrix of the Markov chain induced by corrupted utilities is close to its
corruption-free counterpart.

Proof of Corollary 4.4. If all players adhere to log-linear learning with corrupted utilities, the induced Markov chain’s
transition matrix P̂ is given, for all a, ã ∈ AN by:

P̂a,ã =
1

N

eβÛi(ãi,ã−i)∑
a′
i∈Ai

eβÛi(a′
i,ã−i)

1ã∈N (a),

=
1

N

eβ(Ui(ãi,ã−i)+ξi(ãi,ã−i))∑
a′
i∈Ai

eβ(Ui(a′
i,ã−i)+ξi(a′

i,ã−i))
1ã∈N (a).

Since we assumed that the noise is bounded, we can deduce that

Pa,ãe
−2βξ ≤ Pa,ã ≤ Pa,ãe

2βξ,

where Pa,ã = 1
N

eβUi(ãi,ã−i)∑
a′
i
∈Ai

eβUi(a
′
i
,ã−i)

1ã∈N (a) is the transition with the noise-free utility. This entails that

Pa,ã(e
−2βξ − 1) ≤ P̂a,ã − Pa,ã ≤ Pa,ã(e

2βξ − 1),

then, since e−2βξ − 1 < 0 and Pa,ã ≤ 1/N for all a, ã ∈ AN , we deduce that

(e−2βξ − 1)/N ≤ P̂a,ã − Pa,ã ≤ (e2βξ − 1)/N,

and

|P̂a,ã − Pa,ã| ≤
1

N
max

{
e2βξ − 1, 1− e−2βξ

}
,

Finally, since 2βξ ≤ 1 and by using that: 1− e−x < x for x > 0, and that: ex − 1 < 7
4x for x ∈ [0, 1]. Then,

|P̂a,ã − Pa,ã| ≤
1

N
max

{
7

2
βξ, 2βξ

}
=

7

2N
βξ,
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and finally

∥P̂ − P∥2 ≤

√√√√ ∑
a,ã∈AN

49

4N2
β2ξ2

=
7AN

2N
βξ.

Also, since Pa,ã ≥ Pa,ãe
−2βξ and using Pa,ã ≥ e−β

NA then we deduce that Pa,ã ≥ e−β(1+2ξ)

NA . We conclude the proof with a
straightforward application of Theorem 4.3 with pmin = e−β(1+2ξ)/A and ∥P̂ − P∥2 ≤ 7AN

2N βξ.

D.3. Proof of Corollary 4.5

Similar to Corollary 4.4, we proceed by showing that the transition matrix of the Markov chain induced by fixed-share
log-linear learning is close to that of log-linear learning.

Proof of Corollary 4.5. If all players adhere to fixed-share log-linear learning, the induced Markov chain’s transition matrix
P̂ is given, for all a, ã ∈ AN by:

P̂a,ã =
1

N

(
ξ

A
+

(1− ξ)eβUi(ãi,ã−i)∑
a′
i∈A eβUi(a′

i,ã−i)

)
1ã∈N (a). (29)

Then, we have that

P̂a,ã ≥
(

ξ

NA
+

(1− ξ)e−β

NA

)
1ã∈N (a),

which entails that P̂ satisfies the condition of Theorem 4.3 with pmin ≥ ξ
A + (1−ξ)e−β

A .

Additionally, we can show that:

P̂a,ã − Pa,ã =
1

N

(
ξ

A
− ξeβUi(ãi,ã−i)∑

a′
i∈A eβUi(a′

i,ã−i)

)
1ã∈N (a)

=
ξ

N

(
1

A
− eβUi(ãi,ã−i)∑

a′
i∈A eβUi(a′

i,ã−i)

)
1ã∈N (a),

where P is the transition matrix of log-linear learning.

Therefore,

∑
a,ã∈AN

(
P̂a,ã − Pa,ã

)2
=

ξ2

N2

∑
a,ã∈AN

 1

A2
− 2eβUi(ãi,ã−i)

A
∑

a′
i∈A eβUi(a′

i,ã−i)
+

e2βUi(ãi,ã−i)(∑
a′
i∈A eβUi(a′

i,ã−i)
)2
1ã∈N (a)

≤ ξ2

N2

∑
a∈AN

(
N

A
− 2N

A
+N

)
1ã∈N (a)

≤ NAN ,

where the second line follows because from any action profile a ∈ AN , there are NA possible transitions (A
possible actions times N possible player selections). We also used

∑
ã∈AN

eβUi(ãi,ã−i)∑
a′
i
∈A eβUi(a

′
i
,ã−i)

1ã∈N (a) = 1 and

that
∑

ã∈AN
eβUi(ãi,ã−i)(∑

a′
i
∈A eβUi(a

′
i
,ã−i)

)21ã∈N (a) ≤ 1.
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Finally, since the spectral norm is smaller than the Frobenius norm, then

∥P̂ − P∥2 ≤

√√√√ ∑
a,ã∈AN

(
P̂a,ã − Pa,ã

)2

≤ ξ

√
AN

N
.

The proof is then concluded by a straightforward application of Theorem 4.3 with pmin ≥ ξ
A + (1−ξ)e−β

A and ∥P̂ − P∥2 ≤

ξ
√

AN

N .

D.4. Proof of Lemma 4.2

Proof of Lemma 4.2. Denote by M ∈ RAN×AN

the matrix, where each row corresponds to µ1. For all t ∈ N, we have that:

µ1 − µ2 = (P t
1)

⊤(µ1 − µ2) + (P t
1 − P t

2)
⊤µ2

= (P t
1 −M)⊤(µ1 − µ2) +M⊤(µ1 − µ2)

+ (P t
1 − P t

2)
⊤µ2.

This yields:

∥µ1 − µ2∥2 ≤ ∥(P t
1 −M)⊤(µ1 − µ2)∥2

+ ∥M⊤(µ1 − µ2)∥2 + ∥(P t
1 − P t

2)
⊤∥2∥µ2∥2

≤ ∥P t
1 −M∥2∥µ1 − µ2∥2

+ ∥M⊤(µ1 − µ2)∥2 + ∥P t
1 − P t

2∥2
≤ 2

√
AN∥P t

1 −M∥TV ∥µ1 − µ2∥2
+ ∥M⊤(µ1 − µ2)∥2 + ∥P t

1 − P t
2∥2

where in the last inequality we used the equivalence of ∥ · ∥2 and ∥ · ∥1 and that ∥ · ∥1 = 2∥ · ∥TV by definition of the total
variation distance. Furthermore:

M⊤(µ1 − µ2) =

(
µ1(a)

∑
a′∈AN

(µ1(a
′)− µ2(a

′))︸ ︷︷ ︸
=0

)
a∈AN

= 0.

Therefore, we obtain that:

∥µ1 − µ2∥2 ≤ 2
√
AN∥P t

1 −M∥TV ∥µ1 − µ2∥2
+ ∥P t

1 − P t
2∥2. (30)

Note that for the second term on the right-hand side in the equation above we have:

P t
1 − P t

2 = P t
1 +

t−1∑
l=1

(P t−l
1 P l

2 − P t−l
1 P l

2)− P t
2

=

t∑
l=1

(P t−l+1
1 P l−1

2 − P t−l
1 P l

2)

=

t∑
l=1

(P t−l
1 (P1 − P2)P

l−1
2 ).
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By applying the norm operator we find that:

∥P t
1 − P t

2∥2 ≤
t∑

l=1

∥P t−l
1 ∥2∥P1 − P2∥2∥P l−1

2 ∥2

≤ tAN∥P1 − P2∥2,

since ∥P∥2 ≤
√
AN holds for all transition matrices P over AN , and in particular for P t−l

1 and P l−1
2 . By plugging the

above into inequality (30) we find:

∥µ1 − µ2∥2 ≤ 2
√
AN∥P t

1 −M∥TV ∥µ1 − µ2∥2
+ tAN∥P1 − P2∥2.

Finally, by choosing t = tmix

(
1/
√
16AN

)
we find:

∥µ1 − µ2∥2 ≤ 2tmix

(
1/
√
16AN

)
AN∥P1 − P2∥2.

The proof is then concluded by using the mixing-time bound from inequality (2).
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