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Abstract

Linear Mode Connectivity (LMC) refers to the phenomenon that performance1

remains consistent for linearly interpolated models in the parameter space. For2

independently optimized model pairs from different random initializations, achiev-3

ing LMC is considered crucial for validating the stable success of the non-convex4

optimization in modern machine learning models and for facilitating practical5

parameter-based operations such as model merging. While LMC has been achieved6

for neural networks by considering the permutation invariance of neurons in each7

hidden layer, its attainment for other models remains an open question. In this8

paper, we first achieve LMC for soft tree ensembles, which are tree-based differen-9

tiable models extensively used in practice. We show the necessity of incorporating10

two invariances: subtree flip invariance and splitting order invariance, which do11

not exist in neural networks but are inherent to tree architectures, in addition to12

permutation invariance of trees. Moreover, we demonstrate that it is even possible13

to exclude such additional invariances while keeping LMC by designing decision14

list-based tree architectures, where such invariances do not exist by definition. Our15

findings indicate the significance of accounting for architecture-specific invariances16

in achieving LMC.17

1 Introduction18

A non-trivial empirical characteristic of modern machine learning models trained using gradient19

methods is that models trained from different random initializations could become functionally20

almost equivalent, even though their parameter representations differ. If the outcomes of all training21

sessions converge to the same local minima, this empirical phenomenon can be understood. However,22

considering the complex non-convex nature of the loss surface, the optimization results are unlikely to23

converge to the same local minima. In recent years, particularly within the context of neural networks,24

the transformation of model parameters while preserving functional equivalence has been explored by25

considering the permutation invariance of neurons in each hidden layer [1, 2]. Notably, only a slight26

performance degradation has been observed when using weights derived through linear interpolation27

between permuted parameters obtained from different training processes [3, 4]. This demonstrates28

that the trained models reside in different, yet functionally equivalent, local minima. This situation is29

referred to as Linear Mode Connectivity (LMC) [5]. From a theoretical perspective, LMC is crucial30

for supporting the stable and successful application of non-convex optimization. In addition, LMC31

also holds significant practical importance, enabling techniques such as model merging [6, 7] by32

weight-space parameter averaging.33

Although neural networks are most extensively studied among the models trained using gradient34

methods, other models also thrive in real-world applications. A representative is tree ensemble models,35

such as random forests [8]. While they are originally trained by not gradient but greedy algorithms,36

differentiable soft tree ensembles, which learn parameters of the entire model through gradient-based37
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optimization, have recently been actively studied. Not only empirical studies regarding accuracy38

and interpretability [9–11], but also theoretical analyses have been performed [12, 13]. Moreover,39

the differentiability of soft trees allows for integration with various deep learning methodologies,40

including fine-tuning [14], dropout [15], and various stochastic gradient descent methods [16, 17].41

Furthermore, the soft tree represents the most elementary form of a hierarchical mixture of experts [18–42

20]. Investigating soft tree models not only advances our understanding of this particular structure43

but also contributes to broader research into essential technological components critical for the44

development of large-scale language models [21].45
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Figure 1: A representative experimental result on
the MiniBooNE [22] dataset (left) and conceptual
diagram of the LMC for tree ensembles (right).

A research question that we tackle in this paper46

is: “Can LMC be achieved for soft tree ensem-47

bles?”. Our empirical results, which are high-48

lighted with a green line in the top left panel49

of Figure 1, clearly show that the answer is50

“Yes”. This plot shows the variation in test accu-51

racy when interpolating weights of soft oblivi-52

ous trees, perfect binary soft trees with shared53

parameters at each depth, trained from differ-54

ent random initializations. The green line is55

obtained by our method introduced in this pa-56

per, where there is almost zero performance57

degradation. Furthermore, as shown in the bot-58

tom left panel of Figure 1, the performance can59

even improve when interpolating between mod-60

els trained on split datasets.61

The key insight is that, when performing interpolation between two model parameters, considering62

only tree permutation invariance, which corresponds to the permutation invariance of neural networks,63

is not sufficient to achieve LMC, as shown in the orange lines in the plots. An intuitive understanding64

of this situation is also illustrated in the right panel of Figure 1. To achieve LMC, that is, the green65

lines, we show that two additional invariances beyond tree permutation, subtree flip invariance and66

splitting order invariance, which inherently exist for tree architectures, should be accounted for.67

Moreover, we demonstrate that it is possible to exclude such additional invariances while preserving68

LMC by modifying tree architectures. We realize such an architecture based on a decision list, a69

binary tree structure where branches extend in only one direction. By designating one of the terminal70

leaves as an empty node, we introduce a customized decision list that omits both subtree flip invariance71

and splitting order invariance, and empirically show that this can achieve LMC by considering only72

tree permutation invariance. Since incorporating additional invariances is computationally expensive,73

we can efficiently perform weight-space averaging in model merging on our customized decision74

lists.75

Our contributions are summarized as follows:76

• First achievement of LMC for tree ensembles with accounting for additional invariances beyond77

tree permutation.78

• Development of a decision list-based tree architecture that does not involve the additional invari-79

ances.80

• A thorough empirical investigation of LMC across various tree architectures, invariances, and81

real-world datasets.82

2 Preliminary83

We prepare the basic concepts of LMC and soft tree ensembles.84

2.1 Linear Mode Connectivity85

Let us consider two models, A and B, that have the same architecture. In the context of evaluating86

LMC, the concept of a “barrier” is frequently used [4, 23]. Let ΘA,ΘB ∈ RP be vectorized87

parameters of models A and B, respectively, for P parameters. Assume that C : RP → R measures88

the performance of the model, such as accuracy, given its parameter vector. If higher values of C(·)89
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mean better performance, the barrier between two parameter vectors ΘA and ΘB is defined as:90

B(ΘA,ΘB) = sup
λ∈[0,1]

[λC(ΘA) + (1− λ)C(ΘB)− C(λΘA + (1− λ)ΘB) ] . (1)

We can simply reverse the subtraction order if lower values of C(·) mean better performance like loss.91

Several techniques have been developed to reduce barriers by transforming parameters while pre-92

serving functional equivalence. Two main approaches are activation matching (AM) and weight93

matching (WM). AM takes the behavior of model inference into account, while WM simply com-94

pares two models using their parameters. The validity of both AM and WM has been theoretically95

supported [24]. Numerous algorithms are available for implementing AM and WM. For instance, [4]96

uses a formulation based on the Linear Assignment Problem (LAP) to find suitable permutations,97

while [23] employs a differentiable formulation that allows for the optimization of permutations using98

gradient-based methods.99

Existing research has focused exclusively on neural network architectures such as multi-layer per-100

ceptrons (MLP) and convolutional neural networks (CNN). No study has been conducted from the101

perspective of linear mode connectivity for soft tree ensembles.102

2.2 Soft Tree Ensemble103

Unlike typical hard decision trees, which explicitly determine the data flow to the right or left at each104

splitting node, soft trees represent the proportion of data flowing to the right or left as continuous105

values between 0 and 1. This approach enables a differentiable formulation.106

We use a sigmoid function, σ : R → (0, 1) to formulate a function µm,ℓ(xi,wm, bm) : RF ×107

RF×N × R1×N → (0, 1) that represents the proportion of the ith data point xi flowing to the ℓth108

leaf of the mth tree as a result of soft splittings:109

µm,ℓ(xi,wm, bm)=

N∏
n=1

σ(w⊤
m,nxi + bm,n)︸ ︷︷ ︸
flow to the left

1ℓ↙n
(1− σ(w⊤

m,nxi + bm,n))︸ ︷︷ ︸
flow to the right

1n↘ℓ
, (2)

where N denotes the number of splitting nodes in each tree. The parameters wm,n ∈ RF and110

bm,n ∈ R correspond to the feature selection mask and splitting threshold value for nth node in a111

mth tree, respectively. The expression 1ℓ↙n (resp. 1n↘ℓ) is an indicator function that returns 1 if the112

ℓth leaf is positioned to the left (resp. right) of a node n, and 0 otherwise.113

If parameters are shared across all splitting nodes at the same depth, such perfect binary trees are114

called oblivious trees. Mathematically, wm,n = wm,n′ and bm,n = bm,n′ for any nodes n and n′ at115

the same depth in an oblivious tree. Oblivious trees can significantly reduce the number of parameters116

from an exponential to a linear order of the tree depth, and they are actively used in practice [9, 11].117

To classify C categories, the output of the mth tree is computed by the function fm : RF ×118

RF×N × R1×N × RC×L → RC as sum of the leaf parameters πm,ℓ weighted by the outputs of119

µm,ℓ(xi,wm, bm):120

fm(xi,wm, bm,πm) =

L∑
ℓ=1

πm,ℓµm,ℓ(xi,wm, bm), (3)

where L is the number of leaves in a tree. By combining this function for M trees, we realize the121

function f : RF × RM×F×N × RM×1×N × RM×C×L → RC as an ensemble model consisting of122

M trees:123

f(xi,w, b,π) =

M∑
m=1

fm(xi,wm, bm,πm), (4)

with the parameters w = (w1, . . . ,wM ), b = (b1, . . . , bM ), and π = (π1, . . . ,πM ) being ran-124

domly initialized.125
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Figure 2: (a) Subtree flip invariance. (b) Splitting order invariance for an oblivious tree.

Despite the apparent differences, there are correspondences between MLPs and soft tree ensemble126

models. The formulation of a soft tree ensemble with D = 1 is:127

f(xi,w, b,π) =

M∑
m=1

(
σ(w⊤

m,1xi + bm,1)πm,1 + (1− σ(w⊤
m,1xi + bm,1))πm,2

)
=

M∑
m=1

(
(πm,1 − πm,2)σ(w

⊤
m,1xi + bm,1) + πm,2

)
. (5)

When we consider the correspondence between πm,1 − πm,2 in tree ensembles and second layer128

weights in the two-layer perceptron, the tree ensembles model matches to the two-layer perceptron. It129

is clear from the formulation that the permutation of hidden neurons in a neural network corresponds130

to the rearrangement of trees in a tree ensemble.131

3 Invariances Inherent to Tree Ensembles132

In this section, we discuss additional invariances inherent to trees (Section 3.1) and introduce a133

matching strategy specifically for tree ensembles (Section 3.2). We also show that the presence of134

additional invariances varies depending on the tree structure, and we present tree structures where no135

additional invariances beyond tree permutation exist (Section 3.3).136

3.1 Parameter modification processes that maintains functional equivalence in tree ensembles137

First, we clarify what invariances should be considered for tree ensembles, which are expected to138

reduce the barrier significantly if taken into account. When we consider perfect binary trees, there are139

three types of invariance:140

• Tree permutation invariance. In Equation (4), the behavior of the function does not change even141

if the order of the M trees is altered. This corresponds to the permutation of internal nodes in142

neural networks, which has been a subject of active interest in previous studies on LMC.143

• Subtree flip invariance. When the left and right subtrees are swapped simultaneously with the144

inversion of the inequality sign at the split, the functional behavior remains unchanged, which we145

refer to subtree flip invariance. Figure 2(a) presents a schematic diagram of this invariance, which146

is not found in neural networks but is unique to binary tree-based models. Since σ(−c) = 1− σ(c)147

for c ∈ R due to the symmetry of sigmoid, the inversion of the inequality is achieved by inverting148

the signs of wm,n and bm,n. [25] also focused on the sign of weights, but in a different way from149

ours. They pay attention to the amount of change from the parameters at the start of fine-tuning,150

rather than discussing the sign of the parameters.151

• Splitting order invariance. Oblivious trees share parameters at the same depth, which means152

that the decision boundaries are straight lines without any bends. With this characteristic, even if153

the splitting rules at different depths are swapped, functional equivalence can be achieved if the154

positions of leaves are also swapped appropriately as shown in Figure 2(b). This invariance does155

not exist for non-oblivious perfect binary trees without parameter sharing, as the behavior of the156

decision boundary varies depending on the splitting order.157
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Note that MLPs also have an additional invariance beyond just permutation. Particularly in MLPs158

that employ ReLU as an activation function, the output of each layer changes linearly with a zero159

crossover. Therefore, it is possible to modify parameters without changing functional behavior by160

multiplying the weights in one layer by a constant and dividing the weights in the previous layer by161

the same constant. However, since the soft tree is based on the sigmoid function, this invariance does162

not apply. Previous studies [3, 4, 23] have consistently achieved significant reductions in barriers163

without accounting for this scale invariance. One potential reason is that changes in parameter scale164

are unlikely due to the nature of optimization via gradient descent. Conversely, when we consider165

additional invariances inherent to trees, the scale is equivalent to the original parameters.166

3.2 Matching Strategy167

1

8

4 4

2 2 2 2

4

3

2

Parameter Sharing Parameter Sharing

Figure 3: Weighting strategy.

Here, we propose a matching strategy for bi-168

nary trees. When considering invariances, it169

is necessary to compare multiple functionally170

equivalent trees and select the most suitable one171

for achieving LMC. Although comparing tree172

parameters is a straightforward approach, since173

the contribution of all the parameters in a tree is174

not equal, we apply weighting for each node for175

better matching. By interpreting a tree as a rule176

set with shared parameters as shown in Figure 3,177

we determine the weight of each splitting node178

by counting the number of leaves to which the node affects. For example, in the case of the left179

example in Figure 3, the root node affects eight leaves, nodes at depth 2 affect four leaves, and nodes180

at depth 3 affect two leaves. This strategy can apply to even trees other than perfect binary trees. For181

example, in the right example of Figure 3, the root node affects four leaves, a node at depth 2 affects182

three leaves, and a node at depth 3 affects two leaves.183

In this paper, we employ the LAP, which is used as a standard benchmark [4] for matching algorithms.184

The procedures for AM and WM are as follows. Detailed algorithms (Algorithms 1 and 2) are185

described in Section A in the supplementary material.186

• Activation Matching (Algorithm 1). In trees, there is nothing that directly corresponds to the187

activations in neural networks. However, by treating the output of each individual tree as an188

activation value of a neural network, it is possible to optimize the permutation of trees while189

examining their output similarities. Regarding subtree flip and splitting order invariances, it is190

possible to find the optimal pattern from all the possible patterns of flips and changes in the splitting191

order. Since the tree-wise output remains unchanged, the similarity between each tree, generated192

by considering additional invariances, and the target tree is evaluated based on the inner product of193

parameters while applying node-wise weighting.194

• Weight Matching (Algorithm 2). Similar to AM, WM also involves applying weighting while195

extracting the optimal pattern by exploring possible flipping and ordering patterns. Although it is196

necessary to solve the LAP multiple times for each layer in MLPs [4], tree ensembles require only197

a single run of the LAP since there are no layers.198

The time complexity of solving the LAP is O(M3) using a modified Jonker-Volgenant algorithm199

without initialization [26], implemented in SciPy [27], where M is the number of trees. If only200

considering tree permutation, this process needs to be performed only once in both WM and AM.201

However, when considering additional invariances, we need to solve the LAP for each pattern202

generated by considering these additional invariances. In a non-oblivious perfect binary tree with203

depth D, there are 2D − 1 splitting nodes, leading to 22
D−1 possible combinations of sign flips.204

Additionally, in the case of oblivious trees, there are D! different patterns of splitting order invariance.205

Therefore, for large values of D, conducting a brute-force search becomes impractical.206

In Section 3.3, we will discuss methods to eliminate additional invariance by adjusting the tree207

structure. This enables efficient matching even for deep models. Additionally, in Section 4.2, we208

will present numerical experiment results and discuss that the practical motivation to apply these209

algorithms is limited when targeting deep perfect binary trees.210
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3.3 Architecture-dependency of the Invariances211

6

Invariance exists Empty Node

Figure 4: Tree architecture where neither subtree
flip invariance nor splitting order invariance exists.

In previous subsections, tree architectures are212

fixed to perfect binary trees as they are most213

commonly and practically used in soft trees.214

However, tree architectures can be flexible as215

we have shown in the right example in Figure 3,216

and here we show that we can specifically de-217

sign tree architecture that has neither the subtree218

flip nor splitting order invariances. This allows219

efficient matching as considering such two in-220

variances is computationally expensive.221

Table 1: Invariances inherent to each model archi-
tecture.

Perm Flip Order

Non-Oblivious Tree ✓ ✓ ×
Oblivious Tree ✓ ✓ ✓
Decision List ✓ (✓) ×

Decision List (Modified) ✓ × ×

Our idea is to modify a decision list shown on222

the left side of Figure 4, which is a tree structure223

where branches extend in only one direction.224

Due to this asymmetric structure, the number of225

parameters does not increase exponentially with226

the depth, and the splitting order invariance does227

not exist. Moreover, subtree flip invariance also228

does not exist for any internal nodes except for229

the terminal splitting node, as shown in the left230

side of Figure 4. To completely remove this invariance, we virtually eliminate one of the terminal231

leaves by leaving the node empty, that is, a fixed prediction value of zero, as shown on the right232

side of Figure 4. Therefore only permutation invariance exists for our proposed architecture. We233

summarize invariances inherent to each model architecture in Table 1.234

4 Experiment235

We empirically evaluate barriers in soft tree ensembles to examine LMC.236

4.1 Setup237

Datasets. In our experiments, we employed Tabular-Benchmark [28], a collection of tabular238

datasets suitable for evaluating tree ensembles. Details of datasets are provided in Section B in the239

supplementary material. As proposed in [28], we randomly sampled 10, 000 instances for train and240

test data from each dataset. If the dataset contains fewer than 20, 000 instances, they are randomly241

divided into halves for train and test data. We applied quantile transformation to each feature and242

standardized it to follow a normal distribution.243

Hyperparameters. We used three different learning rates η ∈ {0.01, 0.001, 0.0001} and adopted the244

one that yields the highest training accuracy for each dataset. The batch size is set at 512. It is known245

that the optimal settings for the learning rate and batch size are interdependent [29]. Therefore, it is246

reasonable to fix the batch size while adjusting the learning rate. During AM, we set the amount of247

data used for random sampling to be the same as the batch size, thus using 512 samples to measure the248

similarity of the tree outputs. As the number of trees M and their depths D vary for each experiment,249

these details will be specified in the experimental results section. During training, we minimized250

cross-entropy using Adam [16] with its default hyperparameters1. Training is conducted for 50251

epochs. To measure the barrier using Equation (1), experiments were conducted by interpolating252

between two models with λ ∈ {0, 1/24, . . . , 23/24, 1}, which has the same granularity as in [4].253

Randomness. We conducted experiments with five different random seed pairs: rA ∈ {1, 3, 5, 7, 9}254

and rB ∈ {2, 4, 6, 8, 10}. As a result, the initial parameters and the contents of the data mini-batches255

during training are different in each training. In contrast to spawning [5] that branches off from the256

exact same model partway through, we used more challenging practical conditions. The parameters257

w, b, and π were randomly initialized using a uniform distribution, identical to the procedure for a258

fully connected layer in the MLP2.259

1https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
2https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

6

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html


Naive Perm Perm&Flip
0

5

10

15

20

Av
er

ag
ed

 A
cc

ur
ac

y 
B

ar
rie

r (
N

on
-O

bl
iv

io
us

) M=256 (Train)

Naive Perm Perm&Flip
0

5

10

15

20
D=2 (Train)

Naive Perm
Perm&Order

Perm&Flip
Perm&Flip&Order

0

5

10

15

20

Av
er

ag
ed

 A
cc

ur
ac

y 
B

ar
rie

r (
O

bl
iv

io
us

)

Naive Perm
Perm&Order

Perm&Flip
Perm&Flip&Order

0

5

10

15

20

Naive Perm Perm&Flip
0

5

10

15

20
M=256 (Test)

Naive Perm Perm&Flip
0

5

10

15

20
D=2 (Test)

Naive Perm
Perm&Order

Perm&Flip
Perm&Flip&Order

0

5

10

15

20

D=1, WM
D=2, WM
D=3, WM

D=1, AM
D=2, AM
D=3, AM

Naive Perm
Perm&Order

Perm&Flip
Perm&Flip&Order

0

5

10

15

20

M=64, WM
M=256, WM
M=1024, WM

M=64, AM
M=256, AM
M=1024, AM

Figure 5: Barriers averaged across 16 datasets with respect to considered invariances for non-
oblivious (top row) and oblivious (bottom row) trees. The error bars show the standard deviations of
5 executions.
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Figure 6: Interpolation curves of test accuracy for oblivious trees on 16 datasets from Tabular-
Benchmark [28]. Two model pairs are trained with on the same dataset. The error bars show the
standard deviations of 5 executions. We used M = 256 trees with a depth D = 2.

Resources. All experiments were conducted on a system equipped with an Intel Xeon E5-2698 CPU260

at 2.20 GHz, 252 GB of memory, and Tesla V100-DGXS-32GB GPU, running Ubuntu Linux (version261

4.15.0-117-generic). The reproducible PyTorch [30] implementation is provided in the supplementary262

material.263

4.2 Results for Perfect Binary Trees264

Figure 5 shows how the barrier between two perfect binary tree model pairs changes in each operation.265

The vertical axis of each plot in Figure 5 shows the averaged barrier over datasets for each considered266

invariance. The results for both the oblivious and non-oblivious trees are plotted separately in a267

vertical layout. The panels on the left display the results when the depth D of the tree varies, keeping268

M = 256 constant. The panels on the right show the results when the number of trees M varies, with269

D fixed at 2. For both oblivious and non-oblivious trees, we observed that the barrier significantly270

decreases as the considered invariances increase. Focusing on the test data results, after accounting for271

various invariances, the barrier is nearly zero, indicating that LMC has been achieved. In particular,272

the difference between the case of only permutation and the case where additional invariances are273

considered tends to be larger in the case of AM. This is because parameter values are not used during274

the rearrangement of the tree in AM. Additionally, it has been observed that the barrier increases as275

trees become deeper, and the barrier decreases as the number of trees increases. These behaviors276

correspond to the changes observed in neural networks when the depth varies or when the width of277

hidden layers increases [3, 4]. Figure 6 shows interpolation curves when using AM in oblivious trees278
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Figure 7: Interpolation curves of test accuracy for oblivious trees on 16 datasets from Tabular-
Benchmark [28]. Two model pairs are trained on split datasets with different class ratios. The error
bars show the standard deviations of 5 executions. We used M = 256 trees with a depth D = 2.

with D = 2 and M = 256. Other detailed results, such as performance for each dataset, are provided279

in Section C in the supplementary material.280

Furthermore, we conducted experiments with split data following the protocol in [4, 31], where281

the initial split consists of randomly sampled 80% negative and 20% positive instances, and the282

second split inverts these ratios. There is no overlap between the two split datasets. We trained two283

model pairs using these separately split datasets and observed an improvement in performance by284

interpolating their parameters. Figure 7 illustrates the interpolation curves under AM in oblivious285

trees with parameters D = 2 and M = 256. We can observe that considering additional invariances286

improves performance after interpolation. Note that the data split is configured to remain consistent287

even when the training random seeds differ. Detailed results for each dataset using WM or AM are288

provided in Section C of the supplementary material.289

Table 2: Barriers, accuracies, and model sizes for
MLP, non-oblivious trees, and oblivious trees.

MLP

BarrierDepth

Naive Perm [4]
Accuracy Size

1 8.755 ± 0.877 0.491 ± 0.062 76.286 ± 0.094 12034
2 15.341± 1.125 2.997 ± 0.709 75.981 ± 0.139 77826
3 15.915 ± 2.479 5.940 ± 2.153 75.935 ± 0.117 143618

Non-Oblivious Tree

BarrierDepth

Naive Perm Ours
Accuracy Size

1 8.965 ± 0.963 0.449 ± 0.235 0.181 ± 0.078 76.464 ± 0.167 12544
2 6.801 ± 0.464 0.811 ± 0.333 0.455 ± 0.105 76.631 ± 0.052 36608
3 5.602 ± 0.926 1.635 ± 0.334 0.740 ± 0.158 76.339 ± 0.115 84736

Oblivious Tree

BarrierDepth

Naive Perm Ours
Accuracy Size

1 8.965 ± 0.963 0.449 ± 0.235 0.181 ± 0.078 76.464 ± 0.167 12544
2 7.881 ± 0.866 0.918 ± 0.092 0.348 ± 0.172 76.623 ± 0.042 25088
3 7.096 ± 0.856 1.283 ± 0.139 0.484 ± 0.049 76.535 ± 0.063 38656

Table 2 compares the average test barriers of an290

MLP with a ReLU activation function, whose291

width is equal to the number of trees, M = 256.292

The procedure for MLPs follows that described293

in Section 4.1. The permutation for MLPs is294

optimized using the method described in [4].295

Since [4] indicated that WM outperforms AM296

in neural networks, WM was used for the com-297

parison. Overall, tree models exhibit smaller298

barriers compared to MLPs while keeping sim-299

ilar accuracy levels. It is important to note that300

MLPs with D > 1 tend to have more parameters301

at the same depth compared to trees, leading to302

more complex optimization landscapes. Nev-303

ertheless, the barrier for the non-oblivious tree304

at D = 3 is smaller than that for the MLP at305

D = 2, even with more parameters. Further-306

more, at the same depth of D = 1, tree models307

have a smaller barrier. Here, the model size is308

evaluated using F = 44, the average input fea-309

ture size of 16 datasets used in the experiments.310

In Section 3.2, we have shown that considering additional invariances for deep perfect binary trees311

is computationally challenging, which may suggest developing heuristic algorithms for deep trees.312

However, we consider it is rather a low priority, supported by our observations that the barrier tends313

to increase as trees deepen even if we consider invariances. This trend indicates that deep models are314

fundamentally less important for model merging considerations. Furthermore, deep perfect binary315

trees are rarely used in practical scenarios. [12] have demonstrated that generalization performance316

degrades with increasing depth in perfect binary trees due to the degeneracy of the Neural Tangent317

Kernel (NTK) [32]. This evidence further supports the preference for shallow perfect binary trees,318

and increasing the number of trees can enhance the expressive power while reducing barriers.319
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Table 3: Barriers averaged for 16 datasets under WM with D = 2 and M = 256.
Train Test

Barrier BarrierArchitecture

Naive Perm Ours
Accuracy

Naive Perm Ours
Accuracy

Non-Oblivious Tree 13.079 ± 0.755 4.707 ± 0.332 3.303 ± 0.104 85.646 ± 0.090 6.801 ± 0.464 0.811 ± 0.333 0.455 ± 0.105 76.631 ± 0.052
Oblivious Tree 14.580 ± 1.108 4.834 ± 0.176 2.874 ± 0.108 85.808 ± 0.146 7.881 ± 0.866 0.919 ± 0.093 0.348 ± 0.172 76.623 ± 0.042
Decision List 13.835 ± 0.788 3.687 ± 0.230 — 85.337 ± 0.134 7.513 ± 0.944 0.436 ± 0.120 — 76.629 ± 0.119

Decision List (Modified) 12.922 ± 1.131 3.328 ± 0.204 — 85.563 ± 0.141 6.734 ± 1.096 0.468 ± 0.150 — 76.773 ± 0.051

Table 4: Barriers averaged for 16 datasets under AM with D = 2 and M = 256.
Train Test

Barrier BarrierArchitecture

Naive Perm Ours
Accuracy

Naive Perm Ours
Accuracy

Non-Oblivious Tree 13.079 ± 0.755 14.963 ± 1.520 4.500 ± 0.527 85.646 ± 0.090 6.801 ± 0.464 8.631 ± 1.444 0.943 ± 0.435 76.631 ± 0.052
Oblivious Tree 14.580 ± 1.108 17.380 ± 0.509 3.557 ± 0.201 85.808 ± 0.146 7.881 ± 0.866 10.349 ± 0.476 0.395 ± 0.185 76.623 ± 0.042
Decision List 13.835 ± 0.788 12.785 ± 1.924 — 85.337 ± 0.134 7.513 ± 0.944 7.452 ± 1.840 — 76.629 ± 0.119

Decision List (Modified) 12.922 ± 1.131 6.364 ± 0.194 — 85.563 ± 0.141 6.734 ± 1.096 2.114 ± 0.243 — 76.773 ± 0.051

4.3 Results for Decision Lists320
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Figure 8: Averaged barrier for 16 datasets as a
function of tree depth. The error bars show the
standard deviations of 5 executions. The solid line
represents the barrier in train accuracy, while the
dashed line represents the barrier in test accuracy.

We present empirical results of the original de-321

cision lists and our modified decision lists, as322

shown in Figure 4. As we have shown in Table 1,323

they have fewer invariances.324

Figure 8 illustrates barriers as a function of325

depth, considering only permutation invariance,326

with M fixed at 256. In this experiment, we327

have excluded non-oblivious trees from compar-328

ison as the number of their parameters exponen-329

tially increases as trees deepen, making them330

infeasible computation. Our proposed modified331

decision lists reduce the barrier more effectively332

than both oblivious trees and the original de-333

cision lists. However, barriers of the modified334

decision lists are still larger than those obtained by considering additional invariances with perfect335

binary trees. Tables 3 and 4 show the averaged barriers for 16 datasets, with D = 2 and M = 256.336

Although barriers of modified decision lists are small when considering only permutations (Perm),337

perfect binary trees such as oblivious trees with additional invariances (Ours) exhibit smaller barriers,338

which supports the validity of using oblivious trees as in [9, 11]. To summarize, when considering339

the practical use of model merging, if the goal is to prioritize efficient computation, we recommend340

using our proposed decision list. Conversely, if the goal is to prioritize barriers, it would be preferable341

to use perfect binary trees, which have a greater number of invariant operations that maintain the342

functional behavior.343

5 Conclusion344

We have presented the first investigation of LMC for soft tree ensembles. We have identified additional345

invariances inherent in tree architectures and empirically demonstrated the importance of considering346

these factors. Achieving LMC is crucial not only for understanding the behavior of non-convex347

optimization from a learning theory perspective but also for implementing practical techniques such as348

model merging. By arithmetically combining parameters of differently trained models, a wide range349

of applications such as task-arithmetic [33], including unlearning [34] and continual-learning [35],350

have been explored. Our research extends these techniques to soft tree ensembles that began training351

from entirely different initial conditions. We will leave these empirical investigations for future work.352

This study provides a fundamental analysis of ensemble learning, and we believe that our discussion353

will not have any negative societal impacts.354

9



References355

[1] Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In356

Advanced Neural Computers. 1990.357

[2] An Mei Chen, Haw-minn Lu, and Robert Hecht-Nielsen. On the Geometry of Feedforward358

Neural Network Error Surfaces. Neural Computation, 1993.359

[3] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The Role of Permutation360

Invariance in Linear Mode Connectivity of Neural Networks. In International Conference on361

Learning Representations, 2022.362

[4] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git Re-Basin: Merging Models363

modulo Permutation Symmetries. In The Eleventh International Conference on Learning364

Representations, 2023.365

[5] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear Mode366

Connectivity and the Lottery Ticket Hypothesis. In Proceedings of the 37th International367

Conference on Machine Learning, 2020.368

[6] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,369

Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig370

Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy371

without increasing inference time. In Proceedings of the 39th International Conference on372

Machine Learning, 2022.373

[7] Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task Arithmetic in the374

Tangent Space: Improved Editing of Pre-Trained Models. In Thirty-seventh Conference on375

Neural Information Processing Systems, 2023.376

[8] Leo Breiman. Random Forests. In Machine Learning, 2001.377

[9] Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural Oblivious Decision Ensembles378

for Deep Learning on Tabular Data. In International Conference on Learning Representations,379

2020.380

[10] Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, and Rahul Mazumder. The381

Tree Ensemble Layer: Differentiability meets Conditional Computation. In Proceedings of the382

37th International Conference on Machine Learning, 2020.383

[11] Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. NODE-GAM: Neural generalized384

additive model for interpretable deep learning. In International Conference on Learning385

Representations, 2022.386

[12] Ryuichi Kanoh and Mahito Sugiyama. A Neural Tangent Kernel Perspective of Infinite Tree387

Ensembles. In International Conference on Learning Representations, 2022.388

[13] Ryuichi Kanoh and Mahito Sugiyama. Analyzing Tree Architectures in Ensembles via Neural389

Tangent Kernel. In International Conference on Learning Representations, 2023.390

[14] Guolin Ke, Zhenhui Xu, Jia Zhang, Jiang Bian, and Tie-Yan Liu. DeepGBM: A Deep Learning391

Framework Distilled by GBDT for Online Prediction Tasks. In Proceedings of the 25th ACM392

SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019.393

[15] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.394

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine395

Learning Research, 2014.396

[16] Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International397

Conference on Learning Representations, 2015.398

[17] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware Mini-399

mization for Efficiently Improving Generalization. In International Conference on Learning400

Representations, 2021.401

10



[18] M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. In402

Proceedings of International Conference on Neural Networks, 1993.403

[19] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E.404

Hinton, and Jeff Dean. Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-405

Experts Layer. In International Conference on Learning Representations, 2017.406

[20] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,407

Maxim Krikun, Noam Shazeer, and Zhifeng Chen. GShard: Scaling Giant Models with408

Conditional Computation and Automatic Sharding. In International Conference on Learning409

Representations, 2021.410

[21] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh411

Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile412

Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut413

Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7B, 2023.414

[22] Byron Roe. MiniBooNE particle identification. UCI Machine Learning Repository, 2010.415

[23] Fidel A. Guerrero Peña, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti, Eric416

Granger, and Marco Pedersoli. Re-basin via implicit Sinkhorn differentiation. In IEEE/CVF417

Conference on Computer Vision and Pattern Recognition, 2023.418

[24] Zhanpeng Zhou, Yongyi Yang, Xiaojiang Yang, Junchi Yan, and Wei Hu. Going Beyond Linear419

Mode Connectivity: The Layerwise Linear Feature Connectivity. In Thirty-seventh Conference420

on Neural Information Processing Systems, 2023.421

[25] Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging:422

Resolving interference when merging models. In Thirty-seventh Conference on Neural Informa-423

tion Processing Systems, 2023.424

[26] David F. Crouse. On implementing 2D rectangular assignment algorithms. IEEE Transactions425

on Aerospace and Electronic Systems, 2016.426

[27] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David427

Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.428

van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew429

R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.430
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A Detailed Algorithms461

We present pseudo-code of algorithms for activation matching (Algorithm 1) and weight matching462

(Algorithm 2). In these algorithms, if there is only one possible pattern for U ∈ N, which represents463

the number of possible operations, and the corresponding operation does nothing in particular, it464

becomes equivalent to simply considering tree permutations.

Algorithm 1: Activation matching for soft trees

1 ACTIVATIONMATCHING(ΘA ∈ RM×PTree , ΘB ∈ RM×PTree , xsampled ∈ RF×Nsampled )
2 Initialize OA ∈ RM×Nsampled×C and OB ∈ RM×Nsampled×C to store outputs
3 for m = 1 to M do
4 for i = 1 to Nsampled do
5 Set the output of the mth tree with ΘA[m] using xsampled[:, i] to OA[m, i].
6 Set the output of the mth tree with ΘB [m] using xsampled[:, i] to OB [m, i].

7 Initialize similarity matrix S ∈ RM×M

8 for mA = 1 to M do
9 for mB = 1 to M do

10 S[mA,mB ]← FLATTEN(OA[mA]) · FLATTEN(OB [mB ])

11 p← LINEARSUMASSIGNMENT(S) // p ∈ NM : Optimal assignments
12 ΘA,ΘB ←WEIGHTING(ΘA,ΘB)
13 Initialize operation indices q ∈ NM

14 for m = 1 to M do
15 for u = 1 to U do // U ∈ N: Number of possible operations
16 u′ ← UPDATEBESTOPERATION(ADJUSTTREE(ΘA[m], u) ·ΘB [m], u)

17 Append u′ to q // q ∈ NM : Optimal operations
18 return p, q

Algorithm 2: Weight matching for soft trees

1 WEIGHTMATCHING(ΘA ∈ RM×PTree , ΘB ∈ RM×PTree )
2 ΘA,ΘB ←WEIGHTING(ΘA,ΘB)
3 Initialize similarity matrix for each operation S ∈ RU×M×M

4 for u = 1 to U do
5 for mA = 1 to M do
6 θ ← ADJUSTTREE(ΘA[mA], u) // θ ∈ RPTree : Adjusted tree-wise parameters
7 for mB = 1 to M do
8 S[u,mA,mB ]← θ ·ΘB [mB ]

9 S′ ← max(S, axis=0) // S′ ∈ RM×M : Similarity matrix between trees
10 p← LINEARSUMASSIGNMENT(S′) // p ∈ NM : Optimal assignments
11 q ← argmax(S, axis=0)[p] // q ∈ NM : Optimal operations
12 return p, q

465

Here, we describe the specifications of the notations and functions used in Algorithms 1 and 2. In466

Section 2.1, ΘA and ΘB are initially defined as vectors. However, for ease of use, in Algorithms 1467

and 2, ΘA and ΘB are represented as matrices of size RM×PTree , where PTree denotes the number of468

parameters in a single tree. Multidimensional array elements are accessed using square brackets [·].469

For example, for G ∈ RI×J , G[i] refers to the ith slice along the first dimension, and G[:, j] refers470

to the jth slice along the second dimension, with sizes RJ and RI , respectively. Furthermore, it can471

also accept a vector v ∈ Nl as an input. In this case, G[v] ∈ Rl×J . The FLATTEN function converts472

multidimensional input into a one-dimensional vector format. As the LINEARSUMASSIGNMENT473

13



function, scipy. optimize. linear_sum_assignment3 is used to solve the LAP. In the ADJUSTTREE474

function, the parameters of a tree are modified according to the uth pattern among the enumerated U475

patterns. Additionally, in the WEIGHTING function, parameters are multiplied by the square root476

of their weights defined in Section 3.2 to simulate the process of assessing a rule set. If the first477

argument for the UPDATEBESTOPERATION function, the input inner product, is larger than any478

previously input inner product values, then u′ is updated with u, the second argument. If not, u′479

remains unchanged.480

B Dataset481

Table 5: Summary of the datasets used in the experiments.
Dataset N F Link

Bioresponse 3434 419 https://www.openml.org/d/45019
Diabetes130US 71090 7 https://www.openml.org/d/45022

Higgs 940160 24 https://www.openml.org/d/44129
MagicTelescope 13376 10 https://www.openml.org/d/44125

MiniBooNE 72998 50 https://www.openml.org/d/44128
bank-marketing 10578 7 https://www.openml.org/d/44126

california 20634 8 https://www.openml.org/d/45028
covertype 566602 10 https://www.openml.org/d/44121

credit 16714 10 https://www.openml.org/d/44089
default-of-credit-card-clients 13272 20 https://www.openml.org/d/45020

electricity 38474 7 https://www.openml.org/d/44120
eye_movements 7608 20 https://www.openml.org/d/44130

heloc 10000 22 https://www.openml.org/d/45026
house_16H 13488 16 https://www.openml.org/d/44123

jannis 57580 54 https://www.openml.org/d/45021
pol 10082 26 https://www.openml.org/d/44122

C Additional Empirical Results482

Tables 6, 7, 8 and 9 present the barrier for each dataset with D = 2 and M = 256. By incorporating483

additional invariances, it has been possible to consistently reduce the barriers.484

Tables 10 and 11 detail the characteristics of the barriers in the decision lists for each dataset with485

D = 2 and M = 256. The barriers in the modified decision lists tend to be smaller.486

Tables 12 and 13 show the barrier for each model when only considering permutations with D = 2487

and M = 256. It is evident that focusing solely on permutations leads to smaller barriers in the488

modified decision lists compared to other architectures.489

Figures 9, 10, 11, 12, 13, 14, 15 and 16 show the interpolation curves of oblivious trees with D = 2490

and M = 256 across various datasets and configurations. Significant improvements are particularly491

noticeable in AM, but improvements are also observed in WM. These characteristics are also apparent492

in the non-oblivious trees, as shown in Figures 17, 18, 19, 20, 21, 22, 23 and 24. Regarding split data493

training, the dataset for each of the two classes is initially complete (100%). It is then divided into494

splits of 80% and 20%, and 20% and 80%, respectively. Each model is trained using these splits.495

Figures 13, 15, 21, and 23 show the training accuracy evaluated using the full dataset (100% for each496

class).497

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_
assignment.html
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Table 6: Accuracy barrier for non-oblivious trees with WM.
Train Test

Dataset
Naive Perm Perm&Flip Naive Perm Perm&Flip

Bioresponse 18.944 ± 10.076 5.876 ± 1.477 4.132 ± 0.893 8.235 ± 6.456 1.285 ± 0.635 0.314 ± 0.432
Diabetes130US 2.148 ± 0.601 1.388 ± 1.159 0.947 ± 0.888 1.014 ± 0.959 0.540 ± 0.999 0.784 ± 0.840

Higgs 27.578 ± 1.742 18.470 ± 0.769 14.772 ± 1.419 4.055 ± 1.089 0.662 ± 0.590 0.292 ± 0.421
MagicTelescope 2.995 ± 1.198 0.576 ± 0.556 0.307 ± 0.346 2.096 ± 1.055 0.361 ± 0.618 0.229 ± 0.348

MiniBooNE 18.238 ± 4.570 2.272 ± 0.215 1.506 ± 0.211 12.592 ± 4.190 0.231 ± 0.314 0.000 ± 0.000
bank-marketing 13.999 ± 4.110 2.711 ± 1.183 1.521 ± 0.463 13.593 ± 4.567 1.843 ± 1.001 0.953 ± 0.688

california 6.396 ± 2.472 0.873 ± 0.551 0.520 ± 0.327 5.226 ± 2.377 0.224 ± 0.248 0.206 ± 0.131
covertype 16.823 ± 4.159 1.839 ± 0.336 0.914 ± 0.546 14.900 ± 4.016 1.035 ± 0.106 0.376 ± 0.333

credit 7.317 ± 2.425 3.172 ± 2.636 2.615 ± 0.831 5.861 ± 2.064 2.202 ± 3.103 1.830 ± 0.588
default-of-credit-card-clients 14.318 ± 4.509 5.419 ± 1.318 3.273 ± 0.793 6.227 ± 4.205 0.937 ± 1.036 0.243 ± 0.172

electricity 10.090 ± 2.930 1.035 ± 0.543 0.221 ± 0.192 9.422 ± 2.795 0.771 ± 0.478 0.130 ± 0.071
eye_movements 18.743 ± 1.994 11.605 ± 1.927 7.866 ± 1.301 1.495 ± 0.467 0.463 ± 0.183 0.180 ± 0.206

heloc 4.434 ± 1.611 1.652 ± 0.475 1.012 ± 0.481 0.830 ± 0.727 0.475 ± 0.447 0.322 ± 0.338
house_16H 8.935 ± 2.504 3.362 ± 0.482 2.660 ± 1.208 4.230 ± 2.189 0.219 ± 0.224 0.404 ± 0.782

jannis 17.756 ± 3.322 10.442 ± 1.404 7.362 ± 0.219 3.205 ± 2.849 0.029 ± 0.064 0.007 ± 0.016
pol 20.542 ± 2.873 4.612 ± 0.912 3.225 ± 1.080 15.830 ± 2.562 1.708 ± 0.599 1.012 ± 0.859

Table 7: Accuracy barrier for non-oblivious trees with AM.
Train Test

Dataset
Naive Perm Perm&Flip Naive Perm Perm&Flip

Bioresponse 18.944 ± 10.076 14.066 ± 7.045 5.710 ± 0.915 8.235 ± 6.456 5.037 ± 3.141 0.966 ± 0.316
Diabetes130US 2.148 ± 0.601 3.086 ± 2.566 0.574 ± 0.365 1.014 ± 0.959 1.936 ± 2.878 0.105 ± 0.152

Higgs 27.578 ± 1.742 30.704 ± 2.899 18.435 ± 1.599 4.055 ± 1.089 7.272 ± 1.089 1.044 ± 0.483
MagicTelescope 2.995 ± 1.198 3.309 ± 1.486 0.778 ± 0.515 2.096 ± 1.055 2.693 ± 1.190 0.428 ± 0.327

MiniBooNE 18.238 ± 4.570 34.934 ± 8.157 2.332 ± 0.383 12.592 ± 4.190 28.721 ± 7.869 0.074 ± 0.081
bank-marketing 13.999 ± 4.110 13.598 ± 7.638 3.098 ± 0.539 13.593 ± 4.567 12.810 ± 7.605 2.643 ± 0.704

california 6.396 ± 2.472 5.800 ± 2.036 0.697 ± 0.535 5.226 ± 2.377 4.858 ± 2.017 0.261 ± 0.285
covertype 16.823 ± 4.159 19.708 ± 6.392 1.420 ± 0.619 14.900 ± 4.016 17.765 ± 6.400 0.758 ± 0.540

credit 7.317 ± 2.425 10.556 ± 8.753 3.640 ± 1.624 5.861 ± 2.064 9.378 ± 9.083 2.551 ± 1.987
default-of-credit-card-clients 14.318 ± 4.509 14.166 ± 2.297 4.247 ± 1.678 6.227 ± 4.205 6.514 ± 2.049 0.885 ± 1.852

electricity 10.090 ± 2.930 12.955 ± 4.558 0.762 ± 0.332 9.422 ± 2.795 12.261 ± 4.554 0.499 ± 0.260
eye_movements 18.743 ± 1.994 18.757 ± 1.273 10.957 ± 1.019 1.495 ± 0.467 1.583 ± 1.011 0.146 ± 0.167

heloc 4.434 ± 1.611 6.564 ± 2.404 1.774 ± 0.672 0.830 ± 0.727 2.179 ± 2.100 0.385 ± 0.370
house_16H 8.935 ± 2.504 10.184 ± 2.667 3.908 ± 0.863 4.230 ± 2.189 5.664 ± 2.461 1.056 ± 0.693

jannis 17.756 ± 3.322 19.004 ± 1.246 9.890 ± 1.036 3.205 ± 2.849 4.047 ± 1.415 0.346 ± 0.443
pol 20.542 ± 2.873 16.267 ± 3.914 7.967 ± 3.208 15.830 ± 2.562 12.863 ± 3.983 4.539 ± 2.727

Table 8: Accuracy barrier for oblivious trees with WM.
Train Test

Dataset
Naive Perm Perm&Order&Flip Naive Perm Perm&Order&Flip

Bioresponse 16.642 ± 4.362 4.800 ± 0.895 3.289 ± 0.680 7.165 ± 2.547 1.069 ± 1.020 0.299 ± 0.247
Diabetes130US 3.170 ± 3.304 1.120 ± 1.123 0.246 ± 0.177 2.831 ± 3.476 0.882 ± 1.309 0.181 ± 0.155

Higgs 28.640 ± 0.914 19.754 ± 1.023 13.689 ± 0.814 4.648 ± 0.966 1.270 ± 0.808 0.266 ± 0.232
MagicTelescope 2.659 ± 1.637 0.473 ± 0.632 0.077 ± 0.110 2.012 ± 1.343 0.534 ± 0.565 0.093 ± 0.144

MiniBooNE 22.344 ± 7.001 2.388 ± 0.194 1.628 ± 0.208 16.454 ± 6.706 0.075 ± 0.086 0.012 ± 0.019
bank-marketing 13.512 ± 6.416 2.998 ± 1.582 0.925 ± 0.688 12.856 ± 6.609 2.324 ± 1.618 0.634 ± 0.433

california 8.281 ± 4.253 0.874 ± 0.524 0.351 ± 0.267 6.578 ± 4.264 0.342 ± 0.209 0.034 ± 0.024
covertype 23.977 ± 2.565 2.073 ± 0.657 0.976 ± 0.523 21.790 ± 2.253 0.992 ± 0.496 0.422 ± 0.319

credit 6.912 ± 4.083 2.369 ± 0.887 0.662 ± 0.606 5.739 ± 4.502 1.324 ± 0.674 0.350 ± 0.522
default-of-credit-card-clients 16.301 ± 4.462 4.512 ± 1.033 2.902 ± 0.620 7.618 ± 3.873 0.728 ± 0.331 0.531 ± 0.557

electricity 8.835 ± 1.824 1.060 ± 0.684 0.279 ± 0.266 7.952 ± 1.995 0.731 ± 0.383 0.285 ± 0.200
eye_movements 22.604 ± 1.486 12.687 ± 1.645 7.826 ± 1.822 2.884 ± 1.646 0.825 ± 0.711 0.607 ± 0.259

heloc 6.282 ± 2.351 2.517 ± 1.156 1.507 ± 0.498 1.625 ± 1.480 0.869 ± 0.957 0.727 ± 0.785
house_16H 13.600 ± 5.135 3.302 ± 0.376 1.950 ± 0.346 8.055 ± 4.429 0.330 ± 0.441 0.158 ± 0.098

jannis 19.390 ± 1.013 11.358 ± 0.377 7.140 ± 0.538 1.999 ± 1.237 0.305 ± 0.409 0.214 ± 0.235
pol 20.125 ± 2.902 5.059 ± 1.482 2.544 ± 1.005 15.887 ± 3.061 2.100 ± 1.358 0.751 ± 0.892

Table 9: Accuracy barrier for oblivious trees with AM.
Train Test

Dataset
Naive Perm Perm&Order&Flip Naive Perm Perm&Order&Flip

Bioresponse 16.642 ± 4.362 19.033 ± 8.533 6.358 ± 1.915 7.165 ± 2.547 6.904 ± 5.380 1.038 ± 0.591
Diabetes130US 3.170 ± 3.304 5.473 ± 3.260 0.703 ± 0.517 2.831 ± 3.476 5.290 ± 3.486 0.390 ± 0.291

Higgs 28.640 ± 0.914 33.234 ± 3.164 15.678 ± 0.713 4.648 ± 0.966 8.113 ± 2.614 0.415 ± 0.454
MagicTelescope 2.659 ± 1.637 3.902 ± 1.931 0.224 ± 0.256 2.012 ± 1.343 3.687 ± 1.876 0.334 ± 0.434

MiniBooNE 22.344 ± 7.001 41.022 ± 3.398 2.184 ± 0.425 16.454 ± 6.706 34.452 ± 3.161 0.033 ± 0.056
bank-marketing 13.512 ± 6.416 12.248 ± 6.748 1.330 ± 0.806 12.856 ± 6.609 11.356 ± 7.168 0.695 ± 0.464

california 8.281 ± 4.253 9.539 ± 4.798 0.371 ± 0.365 6.578 ± 4.264 8.354 ± 4.648 0.112 ± 0.181
covertype 23.977 ± 2.565 27.590 ± 2.172 1.051 ± 0.407 21.790 ± 2.253 25.289 ± 1.787 0.403 ± 0.236

credit 6.912 ± 4.083 9.839 ± 6.698 1.169 ± 0.839 5.739 ± 4.502 8.291 ± 7.268 0.549 ± 0.751
default-of-credit-card-clients 16.301 ± 4.462 21.746 ± 7.075 3.646 ± 0.520 7.618 ± 3.873 12.183 ± 5.954 0.285 ± 0.372

electricity 8.835 ± 1.824 18.177 ± 5.979 0.472 ± 0.507 7.952 ± 1.995 17.396 ± 5.809 0.405 ± 0.356
eye_movements 22.604 ± 1.486 23.221 ± 3.024 8.588 ± 2.248 2.884 ± 1.646 2.761 ± 1.628 0.398 ± 0.435

heloc 6.282 ± 2.351 9.074 ± 3.894 2.541 ± 0.471 1.625 ± 1.480 3.891 ± 2.655 0.485 ± 0.397
house_16H 13.600 ± 5.135 17.963 ± 5.099 2.841 ± 0.543 8.055 ± 4.429 12.192 ± 4.635 0.292 ± 0.157

jannis 19.390 ± 1.013 22.482 ± 3.113 9.570 ± 0.316 1.999 ± 1.237 4.292 ± 2.509 0.069 ± 0.154
pol 20.125 ± 2.902 19.558 ± 5.785 3.056 ± 0.510 15.887 ± 3.061 14.858 ± 5.523 0.961 ± 0.722
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Table 10: Accuracy barrier for decision lists with WM.
Train Test

Dataset
Naive Perm Naive (Modified) Perm (Modified) Naive Perm Naive (Modified) Perm (Modified)

Bioresponse 21.323 ± 6.563 4.259 ± 0.698 14.578 ± 3.930 4.641 ± 0.918 9.325 ± 3.988 0.346 ± 0.277 7.346 ± 4.261 1.309 ± 0.827
Diabetes130US 5.182 ± 3.745 1.483 ± 1.006 2.754 ± 1.098 1.088 ± 0.608 4.910 ± 4.244 1.293 ± 1.332 1.476 ± 1.308 0.849 ± 0.885

Higgs 27.778 ± 1.036 16.110 ± 0.518 28.915 ± 1.314 14.071 ± 0.395 4.777 ± 0.803 0.106 ± 0.203 5.136 ± 0.946 0.039 ± 0.083
MagicTelescope 4.855 ± 3.388 0.355 ± 0.682 5.138 ± 2.655 0.182 ± 0.141 4.137 ± 3.763 0.280 ± 0.519 4.534 ± 2.588 0.157 ± 0.162

MiniBooNE 23.059 ± 1.479 1.911 ± 0.138 14.916 ± 3.616 1.580 ± 0.178 17.248 ± 1.683 0.025 ± 0.036 9.340 ± 3.585 0.035 ± 0.042
bank-marketing 11.952 ± 3.794 0.979 ± 0.478 11.589 ± 2.167 0.373 ± 0.448 11.387 ± 4.113 0.536 ± 0.472 10.540 ± 2.067 0.349 ± 0.348

california 6.522 ± 3.195 0.621 ± 0.363 8.435 ± 3.273 0.538 ± 0.214 5.167 ± 2.962 0.236 ± 0.146 6.844 ± 3.087 0.151 ± 0.147
covertype 13.408 ± 3.839 1.341 ± 0.433 11.114 ± 2.689 1.257 ± 0.904 11.162 ± 3.620 0.472 ± 0.340 8.826 ± 2.729 0.477 ± 0.889

credit 11.238 ± 8.115 1.968 ± 0.990 14.626 ± 5.448 1.390 ± 0.423 10.880 ± 9.040 1.421 ± 1.046 13.667 ± 5.951 0.940 ± 0.612
default-of-credit-card-clients 12.513 ± 5.116 3.107 ± 1.123 11.378 ± 2.123 3.793 ± 0.881 5.161 ± 4.304 0.328 ± 0.512 3.197 ± 1.916 0.666 ± 0.651

electricity 6.524 ± 1.863 0.725 ± 0.451 9.101 ± 2.685 0.944 ± 0.557 5.834 ± 1.838 0.420 ± 0.354 8.487 ± 2.460 0.543 ± 0.511
eye_movements 19.125 ± 1.791 9.433 ± 1.385 19.738 ± 1.490 8.755 ± 1.391 1.990 ± 1.623 0.329 ± 0.102 1.916 ± 1.492 0.277 ± 0.302

heloc 4.513 ± 1.826 1.564 ± 0.617 5.116 ± 0.793 1.574 ± 0.154 0.725 ± 0.598 0.155 ± 0.190 1.263 ± 0.711 0.359 ± 0.346
house_16H 9.195 ± 2.408 2.520 ± 0.446 8.693 ± 1.302 2.222 ± 0.730 4.629 ± 2.314 0.063 ± 0.129 4.192 ± 1.517 0.185 ± 0.296

jannis 20.766 ± 2.097 9.484 ± 0.371 20.520 ± 1.017 7.400 ± 0.324 3.947 ± 2.605 0.006 ± 0.013 4.451 ± 1.300 0.004 ± 0.009
pol 23.401 ± 5.448 3.137 ± 1.038 20.137 ± 4.200 3.435 ± 0.675 18.933 ± 5.249 0.952 ± 0.925 16.522 ± 3.502 1.143 ± 0.565

Table 11: Accuracy barrier for decision lists with AM.
Train Test

Dataset
Naive Perm Naive (Modified) Perm (Modified) Naive Perm Naive (Modified) Perm (Modified)

Bioresponse 21.323 ± 6.563 13.349 ± 5.943 14.578 ± 3.930 10.363 ± 7.256 9.325 ± 3.988 4.817 ± 2.825 7.346 ± 4.261 3.871 ± 4.608
Diabetes130US 5.182 ± 3.745 5.590 ± 3.328 2.754 ± 1.098 1.371 ± 0.507 4.910 ± 4.244 4.926 ± 3.796 1.476 ± 1.308 0.694 ± 0.649

Higgs 27.778 ± 1.036 28.910 ± 2.132 28.915 ± 1.314 20.131 ± 1.693 4.777 ± 0.803 6.722 ± 1.231 5.136 ± 0.946 1.755 ± 1.403
MagicTelescope 4.855 ± 3.388 3.349 ± 3.273 5.138 ± 2.655 1.451 ± 0.705 4.137 ± 3.763 3.001 ± 3.478 4.534 ± 2.588 1.090 ± 0.437

MiniBooNE 23.059 ± 1.479 18.149 ± 7.500 14.916 ± 3.616 3.870 ± 1.168 17.248 ± 1.683 13.868 ± 7.222 9.340 ± 3.585 0.797 ± 0.860
bank-marketing 11.952 ± 3.794 9.782 ± 6.722 11.589 ± 2.167 2.815 ± 0.957 11.387 ± 4.113 9.151 ± 7.204 10.540 ± 2.067 2.521 ± 1.055

california 6.522 ± 3.195 5.812 ± 2.365 8.435 ± 3.273 2.254 ± 0.813 5.167 ± 2.962 4.899 ± 2.018 6.844 ± 3.087 1.186 ± 0.643
covertype 13.408 ± 3.839 14.727 ± 7.029 11.114 ± 2.689 4.036 ± 1.450 11.162 ± 3.620 13.352 ± 7.056 8.826 ± 2.729 2.656 ± 1.302

credit 11.238 ± 8.115 18.620 ± 9.806 14.626 ± 5.448 8.979 ± 6.919 10.880 ± 9.040 18.606 ± 10.015 13.667 ± 5.951 8.113 ± 6.633
default-of-credit-card-clients 12.513 ± 5.116 12.880 ± 5.070 11.378 ± 2.123 6.055 ± 1.178 5.161 ± 4.304 6.465 ± 5.062 3.197 ± 1.916 0.533 ± 0.239

electricity 6.524 ± 1.863 4.988 ± 2.732 9.101 ± 2.685 3.041 ± 0.676 5.834 ± 1.838 4.361 ± 2.532 8.487 ± 2.460 2.637 ± 0.730
eye_movements 19.125 ± 1.791 18.694 ± 1.774 19.738 ± 1.490 13.408 ± 1.196 1.990 ± 1.623 3.046 ± 1.625 1.916 ± 1.492 1.807 ± 1.312

heloc 4.513 ± 1.826 5.504 ± 1.650 5.116 ± 0.793 3.287 ± 0.758 0.725 ± 0.598 1.711 ± 1.278 1.263 ± 0.711 0.528 ± 0.147
house_16H 9.195 ± 2.408 8.591 ± 3.370 8.693 ± 1.302 3.937 ± 0.816 4.629 ± 2.314 4.547 ± 2.726 4.192 ± 1.517 0.751 ± 0.508

jannis 20.766 ± 2.097 20.768 ± 2.200 20.520 ± 1.017 12.008 ± 0.892 3.947 ± 2.605 6.472 ± 2.342 4.451 ± 1.300 0.106 ± 0.162
pol 23.401 ± 5.448 17.384 ± 6.441 20.137 ± 4.200 10.339 ± 2.743 18.933 ± 5.249 13.285 ± 5.863 16.522 ± 3.502 6.492 ± 2.536

Table 12: Training accuracy barrier for permuted models with WM. The numbers in parentheses
represent the original accuracy.

Dataset Non-Oblivious Tree Oblivious Tree Decision List Decision List (Modified)

Bioresponse 5.876 ± 1.477 (93.005) 4.800 ± 0.895 (91.753) 4.259 ± 0.698 (91.771) 4.641 ± 0.918 (90.489)
Diabetes130US 1.388 ± 1.159 (60.686) 1.120 ± 1.123 (60.567) 1.483 ± 1.006 (60.425) 1.088 ± 0.608 (61.178)

Higgs 18.470 ± 0.769 (97.232) 19.754 ± 1.023 (97.616) 16.110 ± 0.518 (95.838) 14.071 ± 0.395 (95.831)
MagicTelescope 0.576 ± 0.556 (84.963) 0.473 ± 0.632 (84.460) 0.355 ± 0.682 (84.999) 0.182 ± 0.141 (85.411)

MiniBooNE 2.272 ± 0.215 (99.980) 2.388 ± 0.194 (99.980) 1.911 ± 0.138 (99.977) 1.580 ± 0.178 (99.976)
bank-marketing 2.711 ± 1.183 (79.490) 2.998 ± 1.582 (79.351) 0.979 ± 0.478 (79.166) 0.373 ± 0.448 (79.709)

california 0.873 ± 0.551 (87.897) 0.874 ± 0.524 (87.909) 0.621 ± 0.363 (88.012) 0.538 ± 0.214 (88.054)
covertype 1.839 ± 0.336 (79.445) 2.073 ± 0.657 (79.754) 1.341 ± 0.433 (79.618) 1.257 ± 0.904 (79.550)

credit 3.172 ± 2.636 (78.679) 2.369 ± 0.887 (78.231) 1.968 ± 0.990 (78.166) 1.390 ± 0.423 (78.905)
default-of-credit-card-clients 5.419 ± 1.318 (78.017) 4.512 ± 1.033 (78.657) 3.107 ± 1.123 (77.315) 3.793 ± 0.881 (78.308)

electricity 1.035 ± 0.543 (80.375) 1.060 ± 0.684 (80.861) 0.725 ± 0.451 (80.396) 0.944 ± 0.557 (80.651)
eye_movements 11.605 ± 1.927 (81.693) 12.687 ± 1.645 (83.730) 9.433 ± 1.385 (81.075) 8.755 ± 1.391 (81.451)

heloc 1.652 ± 0.475 (77.430) 2.517 ± 1.156 (78.370) 1.564 ± 0.617 (77.968) 1.574 ± 0.154 (78.550)
house_16H 3.362 ± 0.482 (93.093) 3.302 ± 0.376 (93.351) 2.520 ± 0.446 (92.783) 2.222 ± 0.730 (93.058)

jannis 10.442 ± 1.404 (100.000) 11.358 ± 0.377 (100.000) 9.484 ± 0.371 (100.000) 7.400 ± 0.324 (100.000)
pol 4.612 ± 0.912 (98.348) 5.059 ± 1.482 (98.340) 3.137 ± 1.038 (97.883) 3.435 ± 0.675 (97.881)

Table 13: Training accuracy barrier for permuted models with AM. The numbers in parentheses
represent the original accuracy.

Dataset Non-Oblivious Oblivious Decision List Decision List (Modified)

Bioresponse 14.066 ± 7.045 (93.005) 19.033 ± 8.533 (91.753) 13.349 ± 5.943 (91.771) 10.363 ± 7.256 (90.489)
Diabetes130US 3.086 ± 2.566 (60.686) 5.473 ± 3.260 (60.567) 5.590 ± 3.328 (60.425) 1.371 ± 0.507 (61.178)

Higgs 30.704 ± 2.899 (97.232) 33.234 ± 3.164 (97.616) 28.910 ± 2.132 (95.838) 20.131 ± 1.693 (95.831)
MagicTelescope 3.309 ± 1.486 (84.963) 3.902 ± 1.931 (84.460) 3.349 ± 3.273 (84.999) 1.451 ± 0.705 (85.411)

MiniBooNE 34.934 ± 8.157 (99.980) 41.022 ± 3.398 (99.980) 18.149 ± 7.500 (99.977) 3.870 ± 1.168 (99.976)
bank-marketing 13.598 ± 7.638 (79.490) 12.248 ± 6.748 (79.351) 9.782 ± 6.722 (79.166) 2.815 ± 0.957 (79.709)

california 5.800 ± 2.036 (87.897) 9.539 ± 4.798 (87.909) 5.812 ± 2.365 (88.012) 2.254 ± 0.813 (88.054)
covertype 19.708 ± 6.392 (79.445) 27.590 ± 2.172 (79.754) 14.727 ± 7.029 (79.618) 4.036 ± 1.450 (79.550)

credit 10.556 ± 8.753 (78.679) 9.839 ± 6.698 (78.231) 18.620 ± 9.806 (78.166) 8.979 ± 6.919 (78.905)
default-of-credit-card-clients 14.166 ± 2.297 (78.017) 21.746 ± 7.075 (78.657) 12.880 ± 5.070 (77.315) 6.055 ± 1.178 (78.308)

electricity 12.955 ± 4.558 (80.375) 18.177 ± 5.979 (80.861) 4.988 ± 2.732 (80.396) 3.041 ± 0.676 (80.651)
eye_movements 18.757 ± 1.273 (81.693) 23.221 ± 3.024 (83.730) 18.694 ± 1.774 (81.075) 13.408 ± 1.196 (81.451)

heloc 6.564 ± 2.404 (77.430) 9.074 ± 3.894 (78.370) 5.504 ± 1.650 (77.968) 3.287 ± 0.758 (78.550)
house_16H 10.184 ± 2.667 (93.093) 17.963 ± 5.099 (93.351) 8.591 ± 3.370 (92.783) 3.937 ± 0.816 (93.058)

jannis 19.004 ± 1.246 (100.000) 22.482 ± 3.113 (100.000) 20.768 ± 2.200 (100.000) 12.008 ± 0.892 (100.000)
pol 16.267 ± 3.914 (98.348) 19.558 ± 5.785 (98.340) 17.384 ± 6.441 (97.883) 10.339 ± 2.743 (97.881)
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Figure 9: Interpolation curves of train accuracy for oblivious trees with AM.

Interpolation

70

75

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60

Diabetes130US

Interpolation
55

60

65

Higgs

Interpolation

80

85

MagicTelescope

Interpolation

60

80

MiniBooNE

Interpolation

60

70

bank-marketing

Interpolation
75

80

85

california

Interpolation
50

60

70

covertype

Interpolation

70

75

A
cc

ur
ac

y

credit

Interpolation

60

70
default-of-credit-card-clients

Interpolation
60

70

80
electricity

Interpolation

54

56

58

eye_movements

Interpolation

65

70

heloc

Interpolation
75

80

85

house_16H

Interpolation

65

70

jannis

Interpolation

80

90

pol

Naive Tree Permutation Ours

Figure 10: Interpolation curves of test accuracy for oblivious trees with AM.
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Figure 11: Interpolation curves of train accuracy for oblivious trees with WM.
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Figure 12: Interpolation curves of test accuracy for oblivious trees with WM.
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Figure 13: Interpolation curves of train accuracy for oblivious trees with AM by use of split dataset.
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Figure 14: Interpolation curves of test accuracy for oblivious trees with AM by use of split dataset.
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Figure 15: Interpolation curves of train accuracy for oblivious trees with WM by use of split dataset.
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Figure 16: Interpolation curves of test accuracy for oblivious trees with WM by use of split dataset.
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Figure 17: Interpolation curves of train accuracy for non-oblivious trees with AM.
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Figure 18: Interpolation curves of test accuracy for non-oblivious trees with AM.
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Figure 19: Interpolation curves of train accuracy for non-oblivious trees with WM.
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Figure 20: Interpolation curves of test accuracy for non-oblivious trees with WM.
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Figure 21: Interpolation curves of train accuracy for non-oblivious trees with AM by use of split
dataset.
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Figure 22: Interpolation curves of test accuracy for non-oblivious trees with AM by use of split
dataset.
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Figure 23: Interpolation curves of train accuracy for non-oblivious trees with WM by use of split
dataset.
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Figure 24: Interpolation curves of test accuracy for non-oblivious trees with WM by use of split
dataset.
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NeurIPS Paper Checklist498

1. Claims499

Question: Do the main claims made in the abstract and introduction accurately reflect the500

paper’s contributions and scope?501

Answer: [Yes]502

Justification: The abstract and introduction consistently present our research on tree ensem-503

bles from LMC perspectives.504

Guidelines:505

• The answer NA means that the abstract and introduction do not include the claims506

made in the paper.507

• The abstract and/or introduction should clearly state the claims made, including the508

contributions made in the paper and important assumptions and limitations. A No or509

NA answer to this question will not be perceived well by the reviewers.510

• The claims made should match theoretical and experimental results, and reflect how511

much the results can be expected to generalize to other settings.512

• It is fine to include aspirational goals as motivation as long as it is clear that these goals513

are not attained by the paper.514

2. Limitations515

Question: Does the paper discuss the limitations of the work performed by the authors?516

Answer: [Yes]517

Justification: In Section 3.2, we have discussed the limitations.518

Guidelines:519

• The answer NA means that the paper has no limitation while the answer No means that520

the paper has limitations, but those are not discussed in the paper.521

• The authors are encouraged to create a separate "Limitations" section in their paper.522

• The paper should point out any strong assumptions and how robust the results are to523

violations of these assumptions (e.g., independence assumptions, noiseless settings,524

model well-specification, asymptotic approximations only holding locally). The authors525

should reflect on how these assumptions might be violated in practice and what the526

implications would be.527

• The authors should reflect on the scope of the claims made, e.g., if the approach was528

only tested on a few datasets or with a few runs. In general, empirical results often529

depend on implicit assumptions, which should be articulated.530

• The authors should reflect on the factors that influence the performance of the approach.531

For example, a facial recognition algorithm may perform poorly when image resolution532

is low or images are taken in low lighting. Or a speech-to-text system might not be533

used reliably to provide closed captions for online lectures because it fails to handle534

technical jargon.535

• The authors should discuss the computational efficiency of the proposed algorithms536

and how they scale with dataset size.537

• If applicable, the authors should discuss possible limitations of their approach to538

address problems of privacy and fairness.539

• While the authors might fear that complete honesty about limitations might be used by540

reviewers as grounds for rejection, a worse outcome might be that reviewers discover541

limitations that aren’t acknowledged in the paper. The authors should use their best542

judgment and recognize that individual actions in favor of transparency play an impor-543

tant role in developing norms that preserve the integrity of the community. Reviewers544

will be specifically instructed to not penalize honesty concerning limitations.545

3. Theory Assumptions and Proofs546

Question: For each theoretical result, does the paper provide the full set of assumptions and547

a complete (and correct) proof?548

Answer: [NA]549
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Justification: We do not provide theoretical results in this paper.550

Guidelines:551

• The answer NA means that the paper does not include theoretical results.552

• All the theorems, formulas, and proofs in the paper should be numbered and cross-553

referenced.554

• All assumptions should be clearly stated or referenced in the statement of any theorems.555

• The proofs can either appear in the main paper or the supplemental material, but if556

they appear in the supplemental material, the authors are encouraged to provide a short557

proof sketch to provide intuition.558

• Inversely, any informal proof provided in the core of the paper should be complemented559

by formal proofs provided in appendix or supplemental material.560

• Theorems and Lemmas that the proof relies upon should be properly referenced.561

4. Experimental Result Reproducibility562

Question: Does the paper fully disclose all the information needed to reproduce the main ex-563

perimental results of the paper to the extent that it affects the main claims and/or conclusions564

of the paper (regardless of whether the code and data are provided or not)?565

Answer: [Yes]566

Justification: The experimental setup is detailed in Section 4.1.567

Guidelines:568

• The answer NA means that the paper does not include experiments.569

• If the paper includes experiments, a No answer to this question will not be perceived570

well by the reviewers: Making the paper reproducible is important, regardless of571

whether the code and data are provided or not.572

• If the contribution is a dataset and/or model, the authors should describe the steps taken573

to make their results reproducible or verifiable.574

• Depending on the contribution, reproducibility can be accomplished in various ways.575

For example, if the contribution is a novel architecture, describing the architecture fully576

might suffice, or if the contribution is a specific model and empirical evaluation, it may577

be necessary to either make it possible for others to replicate the model with the same578

dataset, or provide access to the model. In general. releasing code and data is often579

one good way to accomplish this, but reproducibility can also be provided via detailed580

instructions for how to replicate the results, access to a hosted model (e.g., in the case581

of a large language model), releasing of a model checkpoint, or other means that are582

appropriate to the research performed.583

• While NeurIPS does not require releasing code, the conference does require all submis-584

sions to provide some reasonable avenue for reproducibility, which may depend on the585

nature of the contribution. For example586

(a) If the contribution is primarily a new algorithm, the paper should make it clear how587

to reproduce that algorithm.588

(b) If the contribution is primarily a new model architecture, the paper should describe589

the architecture clearly and fully.590

(c) If the contribution is a new model (e.g., a large language model), then there should591

either be a way to access this model for reproducing the results or a way to reproduce592

the model (e.g., with an open-source dataset or instructions for how to construct593

the dataset).594

(d) We recognize that reproducibility may be tricky in some cases, in which case595

authors are welcome to describe the particular way they provide for reproducibility.596

In the case of closed-source models, it may be that access to the model is limited in597

some way (e.g., to registered users), but it should be possible for other researchers598

to have some path to reproducing or verifying the results.599

5. Open access to data and code600

Question: Does the paper provide open access to the data and code, with sufficient instruc-601

tions to faithfully reproduce the main experimental results, as described in supplemental602

material?603
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Answer: [Yes]604

Justification: Reproducible source code is provided in the supplementary material.605

Guidelines:606

• The answer NA means that paper does not include experiments requiring code.607

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/608

public/guides/CodeSubmissionPolicy) for more details.609

• While we encourage the release of code and data, we understand that this might not be610

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not611

including code, unless this is central to the contribution (e.g., for a new open-source612

benchmark).613

• The instructions should contain the exact command and environment needed to run to614

reproduce the results. See the NeurIPS code and data submission guidelines (https:615

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.616

• The authors should provide instructions on data access and preparation, including how617

to access the raw data, preprocessed data, intermediate data, and generated data, etc.618

• The authors should provide scripts to reproduce all experimental results for the new619

proposed method and baselines. If only a subset of experiments are reproducible, they620

should state which ones are omitted from the script and why.621

• At submission time, to preserve anonymity, the authors should release anonymized622

versions (if applicable).623

• Providing as much information as possible in supplemental material (appended to the624

paper) is recommended, but including URLs to data and code is permitted.625

6. Experimental Setting/Details626

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-627

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the628

results?629

Answer: [Yes]630

Justification: The experimental setup is detailed in Section 4.1.631

Guidelines:632

• The answer NA means that the paper does not include experiments.633

• The experimental setting should be presented in the core of the paper to a level of detail634

that is necessary to appreciate the results and make sense of them.635

• The full details can be provided either with the code, in appendix, or as supplemental636

material.637

7. Experiment Statistical Significance638

Question: Does the paper report error bars suitably and correctly defined or other appropriate639

information about the statistical significance of the experiments?640

Answer: [Yes]641

Justification: We conducted experiments multiple times with different random seeds and642

have reported the results, including the variability.643

Guidelines:644

• The answer NA means that the paper does not include experiments.645

• The authors should answer "Yes" if the results are accompanied by error bars, confi-646

dence intervals, or statistical significance tests, at least for the experiments that support647

the main claims of the paper.648

• The factors of variability that the error bars are capturing should be clearly stated (for649

example, train/test split, initialization, random drawing of some parameter, or overall650

run with given experimental conditions).651

• The method for calculating the error bars should be explained (closed form formula,652

call to a library function, bootstrap, etc.)653

• The assumptions made should be given (e.g., Normally distributed errors).654
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• It should be clear whether the error bar is the standard deviation or the standard error655

of the mean.656

• It is OK to report 1-sigma error bars, but one should state it. The authors should657

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis658

of Normality of errors is not verified.659

• For asymmetric distributions, the authors should be careful not to show in tables or660

figures symmetric error bars that would yield results that are out of range (e.g. negative661

error rates).662

• If error bars are reported in tables or plots, The authors should explain in the text how663

they were calculated and reference the corresponding figures or tables in the text.664

8. Experiments Compute Resources665

Question: For each experiment, does the paper provide sufficient information on the com-666

puter resources (type of compute workers, memory, time of execution) needed to reproduce667

the experiments?668

Answer: [Yes]669

Justification: The computational resources used in our experiment is described in Section 4.1.670

Guidelines:671

• The answer NA means that the paper does not include experiments.672

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,673

or cloud provider, including relevant memory and storage.674

• The paper should provide the amount of compute required for each of the individual675

experimental runs as well as estimate the total compute.676

• The paper should disclose whether the full research project required more compute677

than the experiments reported in the paper (e.g., preliminary or failed experiments that678

didn’t make it into the paper).679

9. Code Of Ethics680

Question: Does the research conducted in the paper conform, in every respect, with the681

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?682

Answer: [Yes]683

Justification: We reviewed the NeurIPS Code of Ethics and conducted our research in684

accordance with it.685

Guidelines:686

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.687

• If the authors answer No, they should explain the special circumstances that require a688

deviation from the Code of Ethics.689

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-690

eration due to laws or regulations in their jurisdiction).691

10. Broader Impacts692

Question: Does the paper discuss both potential positive societal impacts and negative693

societal impacts of the work performed?694

Answer: [Yes]695

Justification: We have addressed societal impact in Section 5.696

Guidelines:697

• The answer NA means that there is no societal impact of the work performed.698

• If the authors answer NA or No, they should explain why their work has no societal699

impact or why the paper does not address societal impact.700

• Examples of negative societal impacts include potential malicious or unintended uses701

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations702

(e.g., deployment of technologies that could make decisions that unfairly impact specific703

groups), privacy considerations, and security considerations.704
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• The conference expects that many papers will be foundational research and not tied705

to particular applications, let alone deployments. However, if there is a direct path to706

any negative applications, the authors should point it out. For example, it is legitimate707

to point out that an improvement in the quality of generative models could be used to708

generate deepfakes for disinformation. On the other hand, it is not needed to point out709

that a generic algorithm for optimizing neural networks could enable people to train710

models that generate Deepfakes faster.711

• The authors should consider possible harms that could arise when the technology is712

being used as intended and functioning correctly, harms that could arise when the713

technology is being used as intended but gives incorrect results, and harms following714

from (intentional or unintentional) misuse of the technology.715

• If there are negative societal impacts, the authors could also discuss possible mitigation716

strategies (e.g., gated release of models, providing defenses in addition to attacks,717

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from718

feedback over time, improving the efficiency and accessibility of ML).719

11. Safeguards720

Question: Does the paper describe safeguards that have been put in place for responsible721

release of data or models that have a high risk for misuse (e.g., pretrained language models,722

image generators, or scraped datasets)?723

Answer: [NA]724

Justification: We provide the source code as supplementary material; however, since the725

experiments concern the fundamental nature of machine learning models, we believe there726

are no risks involved.727

Guidelines:728

• The answer NA means that the paper poses no such risks.729

• Released models that have a high risk for misuse or dual-use should be released with730

necessary safeguards to allow for controlled use of the model, for example by requiring731

that users adhere to usage guidelines or restrictions to access the model or implementing732

safety filters.733

• Datasets that have been scraped from the Internet could pose safety risks. The authors734

should describe how they avoided releasing unsafe images.735

• We recognize that providing effective safeguards is challenging, and many papers do736

not require this, but we encourage authors to take this into account and make a best737

faith effort.738

12. Licenses for existing assets739

Question: Are the creators or original owners of assets (e.g., code, data, models), used in740

the paper, properly credited and are the license and terms of use explicitly mentioned and741

properly respected?742

Answer: [Yes]743

Justification: We have used open datasets, citing them in accordance with their license744

information.745

Guidelines:746

• The answer NA means that the paper does not use existing assets.747

• The authors should cite the original paper that produced the code package or dataset.748

• The authors should state which version of the asset is used and, if possible, include a749

URL.750

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.751

• For scraped data from a particular source (e.g., website), the copyright and terms of752

service of that source should be provided.753

• If assets are released, the license, copyright information, and terms of use in the754

package should be provided. For popular datasets, paperswithcode.com/datasets755

has curated licenses for some datasets. Their licensing guide can help determine the756

license of a dataset.757
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• For existing datasets that are re-packaged, both the original license and the license of758

the derived asset (if it has changed) should be provided.759

• If this information is not available online, the authors are encouraged to reach out to760

the asset’s creators.761

13. New Assets762

Question: Are new assets introduced in the paper well documented and is the documentation763

provided alongside the assets?764

Answer: [NA]765

Justification: We do not provide any new assets.766

Guidelines:767

• The answer NA means that the paper does not release new assets.768

• Researchers should communicate the details of the dataset/code/model as part of their769

submissions via structured templates. This includes details about training, license,770

limitations, etc.771

• The paper should discuss whether and how consent was obtained from people whose772

asset is used.773

• At submission time, remember to anonymize your assets (if applicable). You can either774

create an anonymized URL or include an anonymized zip file.775

14. Crowdsourcing and Research with Human Subjects776

Question: For crowdsourcing experiments and research with human subjects, does the paper777

include the full text of instructions given to participants and screenshots, if applicable, as778

well as details about compensation (if any)?779

Answer: [NA]780

Justification: This paper neither engages in crowdsourcing nor research involving human781

subjects.782

Guidelines:783

• The answer NA means that the paper does not involve crowdsourcing nor research with784

human subjects.785

• Including this information in the supplemental material is fine, but if the main contribu-786

tion of the paper involves human subjects, then as much detail as possible should be787

included in the main paper.788

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,789

or other labor should be paid at least the minimum wage in the country of the data790

collector.791

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human792

Subjects793

Question: Does the paper describe potential risks incurred by study participants, whether794

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)795

approvals (or an equivalent approval/review based on the requirements of your country or796

institution) were obtained?797

Answer: [NA]798

Justification: This paper neither engages in crowdsourcing nor research involving human799

subjects.800

Guidelines:801

• The answer NA means that the paper does not involve crowdsourcing nor research with802

human subjects.803

• Depending on the country in which research is conducted, IRB approval (or equivalent)804

may be required for any human subjects research. If you obtained IRB approval, you805

should clearly state this in the paper.806
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