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(MCUs). This poster presents SoundHD, a novel ESC solution us-
ing Hyperdimensional Computing (HDC), a brain-inspired and
lightweight computing paradigm. We further optimize the memory
footprint for deployment on MCUs. Our initial results show that
SoundHD can be deployed and executed effectively on memory-

constrained MCUs. cially for small platforms like MCUs [6]. Conventional ESC algo-
rithms rely on complex neural networks to achieve accurate predic-
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1 Introduction limited on-board resources.

Environmental sound classification (ESC) is essential for managing

biological and human environments, including wildlife monitoring 2 Method and Implementation

and urban sound detection [6]. ESC devices are often deployed Based on HDC, SoundHD represents sound clips in high-dimensional
in rural areas with limited connectivity and electricity, requiring and low-precision vectors, referred to as hypervectors [8]. Learn-
local execution on battery-powered devices. Therefore, developing ing is performed through simple element-wise operations on these
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Figure 1: Overview of SoundHD including training and inference.

resource-efficient and sustainable ESC solutions is crucial, espe-

eters [3]. Even the smallest, ACDNet [5] has 303kB of SRAM and
requires 2.7s to perform one inference on a high-end MCU. These
methods are impractical for resource-constrained MCUs, which

To overcome these limitations, we introduce SoundHD, the first
ESC framework based on Hyperdimensional Computing (HDC).
HDC is a brain-inspired computing paradigm that operates in a high-
dimensional vector space, offering lightweight training and minimal

further propose a compression technique to reduce the memory
footprint of SoundHD, allowing it to fit on MCUs. SoundHD enables
lightweight on-device learning for rural sound monitoring with

hypervectors. In this section, we provide a detailed explanation of
SoundHD’s HDC-based learning process, compression techniques,

deviation. This process also incorporates Mel-Frequency Cepstral
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Next, we encode the sound features into hypervectors with a
dimension of D. We use bipolar random projection to better utilize
the on-board memory. Formally, suppose x is a sound clip and f(-)
denotes the aforementioned feature extraction. The HDC encoding
can be expressed as ¢(X) = sign(M x f(x)), where M is a random
matrix of shape D X d uniformly sampled from {—1, 1}. Note, that
each dimension of ¢(X) is bipolar (either 1 or —1) after encoding.

The main training process of SoundHD is to create class hyper-
vectors that represent the common patterns for each sound class.
This is done by combining all hypervectors from the same class
via element-wise addition. For inference on an unseen sound clip,
SoundHD performs a simple similarity check (i.e., cosine similar-
ity) between the hypervector of the new clip, and all existing class
hypervectors. The class with the highest similarity score indicates
the predicted class label.

Hypervector Compression: Thanks to the bipolar representa-
tion of hypervectors, SoundHD can be efficiently compressed to fit
smaller memory capacities. We propose a compression technique
that maps matrix element 1 to a bitwise 1, and -1 to a bitwise 0.
Each dimension of hypervectors is compressed and stored as one
bit to reduce memory footprint. Since most MCUs use a byte-based
architecture, we fit eight dimensions into one byte, achieving an 8x
compression rate. We apply this compression to the projection ma-
trix, which is the most memory-intensive component of our design.
For other components, such as class hypervectors and train/test
labels that do not require high precision, we downcast their data
type from float to char, the smallest data type supported by C.
Implementation: Existing HDC frameworks such as torch-hd [4]
are Python-based and are difficult to run on low-end MCUs based
on C. Thus, we develop an embedded HDC framework specif-
ically for memory-constrained MCUs. The overall memory us-
age of SoundHD in bytes can be estimated using the equation
(C+ Tsﬁ + %) x D, where T is the total number of clip samples, P
is the proportion of train data, D is the hypervector dimension, C is
the number of classes, and d is the initial dimension of the extracted
features before encoding. By adjusting these parameters according
to the environment, developers can easily adapt our framework to
any MCUs with various memory capacities.

3 Experiments and Preliminary Results

Experimental Setup: We implement SoundHD on the Arm Cortex
M4-based Arduino Nano 33 BLE board [1] with 256KB SRAM and
1MB flash memory. We use two datasets, BDLib [2] and ESC-10 [6],
both sampled at 44.1 kHz. The raw audio is segmented into 0.5-
second clips with 50% overlap, followed by a 70%/30% train-test
split. To learn more generalized features, we augment the training
audios using pitch shift and time stretch. We implement feature
extraction using the Librosa library [7].

Metrics: We evaluate the accuracy of ESC, compare memory usage
and inference latency on MCUs across various methods and settings.
Preliminary Results: We compare SoundHD to the state-of-the-
art ESC model, ACDNet [5], on the ESC-10 [6] dataset. SoundHD
saves memory usage by 4x compared to ACDNet, reducing memory
requirement from 803KB to 184KB. SoundHD also significantly
reduces the inference latency from 2.7 seconds to 36 milliseconds,
showing a 75x improvement. This makes SoundHD ideal for real-
time ESC tasks on resource-constrained devices.
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Figure 2: Memory usage (left) and accuracy (right) comparisons
before and after compression for BDLib [2].
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Figure 3: Memory usage (left) and accuracy (right) comparisons

before and after compression for ESC-10 [6].

We evaluate the proposed compression technique by comparing
the uncompressed HDC model with SoundHD, as shown in Figure 2
and Figure 3. The memory comparisons indicate a significant reduc-
tion in memory usage - approximately 7x smaller than the baseline
HDC implementation - thanks to our hypervector compression al-
gorithm. Despite smaller memory footprint, our resource-efficient
implementation maintains little drops in accuracy, with less than
5% for BDLib [2] and less than 9% degradation for ESC-10 [6]. After
compression, we notice SoundHD with D = 1000 for BDIib [2] and
D = 500 for ESC-10 [6] fit within the target MCU with minimal
accuracy degradation. Specifically, SoundHD reduces memory us-
age from 1864KB to 243KB on BDLib [2] with D = 1000, making it
feasible for implementation on memory-constrained MCUs.

4 Discussion and Future Work

In this poster, we present SoundHD, a resource-efficient HDC frame-
work for ESC. Our results show that we save 4X memory usage and
75X inference time compared to the baseline methods. SoundHD
enables resource-efficient and real-time ESC on the edge. In fu-
ture work, we will explore the on-device training using HDC in a
dynamic and complex sound environment.
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