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ABSTRACT

Reinforcement learning algorithms are fundamental to align large language mod-
els with human preferences and to enhance their reasoning capabilities. However,
current reinforcement learning algorithms often suffer from training instability
due to loose on-policy constraints and computational inefficiency due to auxiliary
models. In this work, we propose On-Policy RL with Optimal reward baseline
(OPO), a novel and simplified reinforcement learning algorithm designed to ad-
dress these challenges. OPO emphasizes the importance of exact on-policy train-
ing, which empirically stabilizes the training process and enhances exploration.
Moreover, OPO integrates a practically feasible formulation of the optimal reward
baseline that minimizes gradient variance. We evaluate OPO on mathematical rea-
soning benchmarks. The results demonstrate its superior performance and train-
ing stability without additional models or regularization terms. Furthermore, OPO
achieves lower policy shifts and higher output entropy, encouraging more di-
verse and less repetitive responses. These results highlight OPO as a promising
direction for stable and effective reinforcement learning in large language model
alignment and reasoning tasks. The OPO implementation is integrated into the
VeRL library.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) is a foundational approach for aligning large
language models (LLMs) with human preferences (Stiennon et al., 2020; Ouyang et al., 2022; Bai
et al., 2022). The standard RLHF pipeline typically involves supervised fine-tuning followed by rein-
forcement learning, commonly employing proximal policy optimization (PPO) algorithm (Schulman
et al., 2017), guided by a learned reward model. Beyond general alignment, reinforcement learn-
ing has proven effective in enhancing the reasoning abilities of LLMs through test-time scaling,
as demonstrated by the OpenAI-o1 model (OpenAI, 2024). Most recent work such as DeepSeek-
R1 (Guo et al., 2025) further shows that reinforcement learning, even with simple rule-based re-
wards, can elicit emergent reasoning behaviors and significantly boost performance on complex
tasks like mathematics and code generation.

Despite its success, current RLHF algorithms face some challenges regarding stability and effi-
ciency. For instance, PPO (Schulman et al., 2017) requires training an extra value model to estimate
advantages, which introduces additional computational overhead. While methods like Group Rela-
tive Policy Optimization (GRPO) address this by using response groups to compute a relative reward
baseline (Shao et al., 2024), these methods are often prone to instability due to loose on-policy con-
straints. This often results in large policy shifts and reduced sample diversity, a phenomenon known
as alignment tax (Askell et al., 2021; Kirk et al., 2024).

In this work, we introduce On-Policy RL with Optimal reward baseline (OPO), a simple yet effective
algorithm with two key improvements. First, OPO employs exact on-policy training, which empiri-
cally stabilizes the training process and significantly enhances exploration capabilities. Second, we
incorporate the optimal reward baseline that theoretically minimizes gradient variance. While the
original optimal baseline is impractical, we derive a simplified form under intuitive assumptions,
which makes it feasible for practical use. By integrating these improvements, OPO eliminates the
need for auxiliary components such as value and reference models, as well as regularization terms.
Instead, it relies solely on a single policy model optimized directly to maximize the expected reward.

1
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We validate the effectiveness of OPO on Deepseek-R1-Distill-Qwen-7B model across various math-
ematical reasoning benchmarks. Our experimental results demonstrate that OPO outperforms exist-
ing baselines in both performance and training stability. In particular, OPO consistently maintains
lower policy shifts and higher output entropy, leading to more diverse and less repetitive responses.
In summary, the key advantages of OPO are:

• Theoretical Soundness: We incorporate the optimal reward baseline for sequence genera-
tion problems, which theoretically minimizes the gradient variance and practically easy to
implement.

• Enhanced Stability: OPO exhibits stable training dynamics, even without explicit KL or
entropy regularization, which is crucial for reliable performance.

• Empirical Effectiveness: OPO achieves better performance on math reasoning bench-
marks and yields more diverse and less repetitive responses.

2 BACKGROUND

Proximal Policy Optimization (PPO) PPO (Schulman et al., 2017) is a widely adopted policy
gradient algorithm. As an actor-critic method, PPO leverages a policy model (actor) to optimize the
reward and a value model (critic) to estimate the value of each state. A central feature of PPO is its
clipped surrogate objective function, designed to enhance training stability and sample efficiency by
limiting the magnitude of policy updates at each iteration. The objective is formally defined as:

JPPO(θ) = Ex∼D,y∼πθ(·|x)

[ |y|∑
t=1

{
min(wt ·At, clip(wt, 1− ϵ, 1 + ϵ) ·At)

}]
wt =

πθ(yt|x, y<t)

πθold(yt|x, y<t)

(1)

where wt is the importance ratio, and At denotes the advantage estimate at time step t, computed
using Generalized Advantage Estimation (GAE, Schulman et al. 2018), which combines information
from the reward function and the value function. The hyperparameter ϵ controls the clipping range,
effectively constraining the policy update to prevent drastic changes that can make training unstable.

Group Relative Policy Optimization (GRPO) To eliminate the computational cost of a separate
value model, GRPO (Shao et al., 2024) computes relative advantages within a group of sampled
responses by normalizing rewards. For each input x, GRPO samples a group of K trajectories
{yi}Ki=1 from the policy and defines the advantage of each trajectory based on its reward relative to
others in the group:

Âi,t =
r(x, yi)−mean({r(x, yi)}Ki=1)

std({r(x, yi)}Ki=1)
(2)

This group-wise normalization ensures zero mean and unit variance of advantages within each
group, which achieves efficient training without requiring the additional value model. It extends
the PPO objective with the relative advantage:

JGRPO(θ) = Ex∼D,{yi}K
i=1∼πθold (·|x)

[
1

K

K∑
i=1

1

|yi|

|yi|∑
t=1

min
(
wi,tÂi,t, clip(wi,t, 1− ϵ, 1 + ϵ)Âi,t

)]
wi,t =

πθ(yi,t|x, yi,<t)

πθold(yi,t|x, yi,<t)
(3)

KL and Entropy Regularization In the reinforcement learning stage of RLHF, two regularization
terms are commonly incorporated into the objective function to stabilize policy optimization: the
Kullback-Leibler (KL) divergence loss and the entropy bonus. The KL divergence loss constrains
the updated policy from drifting too far from a reference policy (typically the original supervised
fine-tuned model) (Schulman, 2020). This constraint helps mitigate the alignment tax, which refers
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to the degradation of helpfulness, safety, or factuality when the model over-optimizes for reward at
the cost of its original capabilities.

In addition to the KL divergence loss, an entropy bonus is introduced to encourage exploration and
prevent the policy to collapsing into a suboptimal solution (Ahmed et al., 2019). By maximizing
the entropy of the policy distribution, we encourage the model to explore a broader set of potential
high-reward responses, thus enhancing the diversity and robustness of the generated outputs.

Balancing these components (the primary reward objective, KL loss, and entropy bonus) is essential
for achieving stable learning and maintaining both original capabilities and alignment performance.
Over-penalizing with KL and entropy can limit learning progress, whereas under-penalizing can
lead to undesirable policy drift. Similarly, entropy must be tuned to avoid both under-exploration
and excessive randomness.

3 METHOD: ON-POLICY RL WITH OPTIMAL REWARD BASELINE (OPO)

We propose On-Policy RL with Optimal reward baseline (OPO), which employs two key strategies:
(1) exact on-policy training, which we argue is crucial for mitigating issues like entropy collapse
and large policy shifts in off-policy settings, and (2) the optimal reward baseline that theoretically
minimizes gradient variance. OPO solely optimizes a policy model the maximize the expected
reward without other regularization terms, which not only simplifies the training process but also
leads to more stable and effective training compared to methods with loose on-policy settings and
suboptimal baselines.

3.1 EXACT ON-POLICY TRAINING

The objective of policy-based reinforcement learning is to optimize a parameterized policy πθ to
maximize the expected reward. This objective is inherently on-policy, meaning that the reward
expectation is taken with respect to trajectories generated directly by the current policy. Specifically,
we aim to:

max
θ

Ex∼D,y∼πθ(·|x)[r(x, y)] (4)

where x is the input sampled from the dataset D, y represents a trajectory sampled from the current
policy πθ(·|x), and r(x, y) is the reward function for trajectory y given input x. For simplicity, we
mainly consider settings where the reward is trajectory-level.

A foundational characteristic of OPO is its strict adherence to exact on-policy training. This con-
trasts with common policy gradient methods, such as PPO, which typically collect a batch of data
using the current policy and then perform multiple gradient updates on this fixed batch. While
reusing rollouts can improve sample efficiency, subsequent updates introduce an off-policy diver-
gence. In practice, it may contribute to sample entropy collapse and large policy shifts, thereby
necessitating explicit entropy regularization. In contrast, exact on-policy training ensures that each
gradient step is computed using fresh data sampled from the current policy. This preserves the the-
oretical properties of the policy objective and empirically leads to more stable entropy throughout
training. Furthermore, exact on-policy training maintains a lower KL divergence between the cur-
rent policy and the initial policy, reducing the alignment tax and improving the overall performance
of the model.

3.2 LENGTH-WEIGHTED OPTIMAL REWARD BASELINE FOR VARIANCE REDUCTION

Reducing the variance of policy gradient estimates is crucial for stable and efficient reinforcement
learning (Dayan, 1991; Weaver & Tao, 2001; Kakade & Langford, 2002; Greensmith et al., 2004).
A common technique to reduce the variance is to subtract a baseline b from the reward. Recall the
policy gradient g derived from the policy gradient theorem:

g = Ex∼D,y∼πθ(·|x)[∇θ log πθ(y|x) · r(x, y)] (5)

where ∇θ log πθ(y|x) is the score function gradient. We can modify this gradient estimator to
include a baseline b, which does not change the expected value of the gradient but can significantly
reduce its variance. The modified gradient estimator becomes:

g = Ex∼D,y∼πθ(·|x)[∇θ log πθ(y|x) · (r(x, y)− b)] (6)

3
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There exists the theoretical optimal baseline which can minimize the gradient variance. The variance
is defined as:

Var[g] = E[(∇θ log πθ(y|x) · (r(x, y)− b))2]− (E[∇θ log πθ(y|x) · (r(x, y)− b)])2 (7)

Since the second term (the square of the expected gradient) is independent of b, minimizing Var[g]
is equivalent to minimizing the first term. We can derive the optimal baseline b∗ by taking the
derivative with respect to b and setting it to zero:

d

db
E[(∇θ log πθ(y|x) · (r(x, y)− b))2] = 0 (8)

Solving this equation yields the optimal baseline b∗:

b∗ =
Ey∼πθ(·|x)

[
(∇θ log πθ(y|x))2 · r(x, y)

]
Ey∼πθ(·|x)

[
(∇θ log πθ(y|x))2

] (9)

This optimal baseline represents a weighted average of rewards, where the weights are the squared
magnitudes of the score function gradients. This specific weighting minimizes the variance of our
policy gradient estimate. The detailed derivation is provided in Appendix A. The computation of
Equation 9 is impractical because it requires individual gradient norm calculations for each trajec-
tory. Nevertheless, we demonstrate how to simplify this equation for practical sequence generation
under a straightforward assumption.

Practical Optimal Baseline for Sequence Generation For sequence generation problems, such
as language modeling, we can make a simple assumption that the gradients of different tokens are
approximately orthogonal and the norm of the gradient for each token follows a same distribution.
Under this condition, the squared magnitude of the policy gradient for a trajectory is proportional to
its length (||∇θ log πθ(y|x)||2 ∝ ly), where ly is the length of the response y. With this simplifica-
tion, the optimal reward baseline simplifies to:

b∗ =
Ey∼πθ(·|x)[ly · r(x, y)]

Ey∼πθ(·|x)[ly]
(10)

where longer responses contribute proportionally more to the baseline calculation. This formulation
results in a length-weighted average of the reward, making it both theoretically sound and straight-
forward to compute in practice, which facilitates its integration into sequence generation problems
with trajectory-level rewards.

3.3 OVERALL ALGORITHM

The OPO algorithm integrates the two key techniques discussed: exact on-policy training and the
optimal reward baseline. In practice, we follow the GRPO setup: for each prompt, we sample
K outputs using the current policy, compute an approximation of the optimal baseline using these
samples, and then perform policy optimization with exact on-policy training. Specifically, given a
prompt x and K sampled responses {yi}Ki=1, the objective function of OPO can be expressed as:

JOPO(θ) = Ex∼D,{yi}K
i=1∼πθ(·|x)

[
1

K

K∑
i=1

log πθ(yi|x) ·Ai(x, yi)

]
(11)

where the advantage Ai for trajectory yi is calculated using an empirical estimate of the optimal
baseline b∗(x) based on the K samples:

Ai = r(x, yi)− b∗(x)

b∗(x) =

∑K
i=1 lyi

· r(x, yi)∑K
i=1 lyi

(12)

By normalizing the reward with this optimal baseline, we can minimize the variance of our policy
gradient estimates practically, leading to more stable and effective learning. In particular, our objec-
tive function omits commonly used KL and entropy regularization terms. We demonstrate that OPO
can achieve strong performance even without relying on these regularizations. A detailed summary
of the OPO algorithm is provided in Algorithm 1.

4
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Algorithm 1 Optimal on-Policy Optimization (OPO)
Require: Initial policy model πSFT, reward function r(x, y), prompt dataset D

1: policy model πθ ← πSFT
2: for step = 1, 2, ..., N do
3: Sample a batch of prompts Db ∼ D
4: For each prompt x ∈ Db, sample K responses {yi}Ki=1 ∼ πθ(·|x)
5: Compute the advantage Ai for each sampled response yi using Equation 12
6: Update the policy model πθ by maximizing JOPO(θ) defined in Equation 11
7: end for

Ensure: πθ

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Training Setup We validate OPO through two sets of comparisons, each designed to isolate the
contribution of a key component. The implementation is based on verl1 (Sheng et al., 2024) train-
ing library. To evaluate the impact of exact on-policy training, we compare on-policy GRPO and
loose on-policy (off-policy) GRPO training from the DeepSeek-R1-Distill-Qwen-7B2 model. Both
variants use a training length of 8k, a learning rate of 1e-6, zero KL penalty, and a batch size of
256 questions. For each question, K=16 responses are sampled. For the rollout process, we adopt a
temperature of 0.6 and a top-p sampling threshold of 1.0. The mini-batch sizes are 256 (on-policy)
and 128 (off-policy). The total training step is 500. We also follow prior work and apply a clip range
of 0.2 and a small entropy penalty of 0.001 to the off-policy variant to mitigate entropy collapse,
while the on-policy version uses no entropy regularization.

To evaluate the effect of the optimal reward baseline under exact on-policy training, we adopt a
more comprehensive and realistic setting. We first perform supervised fine-tuning using long-form
chain-of-thought (long-CoT) data, followed by reinforcement learning using both standard on-policy
GRPO and our proposed method (OPO), which augments exact on-policy training with the optimal
baseline. Both methods share the same hyperparameters: a training length of 24k, a batch size of
256 questions, K=8 responses sampled per question, and no KL or entropy terms are applied.

Training Datasets For training datasets, we utilize the math subset from Skywork-OR1-RL-Data3.
This dataset comprises 48k unique math problems, which undergoes an initial offline difficulty es-
timation for each problem and the problems with all correct or all incorrect responses are excluded.
For reinforcement learning, we employ the rule-based reward function (Guo et al., 2025), a reward
of 1 for a correct response, and 0 for an incorrect one. The correctness is given by the Math-Verify
evaluator4. For the SFT-then-RL experiments, we exclude duplicates from the OR1 data during the
SFT stage, using the remaining 25k samples for RL training.

Evaluation Setup We evaluate model performance on three widely used math reasoning bench-
marks: MATH-500, AIME 2024 (MAA, 2024), and AIME 2025. For each dataset, we sampled
multiple responses from the model with a maximum response length of 32768, a sampling temper-
ature of 0.6, and a top-p sampling threshold of 1.0. We also use the Math-Verify evaluator to assess
the correctness. For MATH-500, we sample 8 reasponses for each question, while for AIME 2024
and AIME 2025, we sample 16 responses. The pass@k metric for k ∈ {1, 2, 4, 8, 16} is calculated
following the method in Chen et al. (2021).

Beyond accuracy, we also analyze the training dynamics of the entropy of the model’s output dis-
tribution and the KL divergence between the updated and original models. Given comparable per-
formance, lower KL divergence and higher entropy are preferable. Lower KL divergence indicates

1https://github.com/volcengine/verl
2https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
3https://huggingface.co/datasets/Skywork/Skywork-OR1-RL-Data
4https://github.com/huggingface/Math-Verify
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lower alignment tax (undesirable model changes from alignment), while higher entropy indicates
greater sampling diversity.

4.2 RESULTS

Table 1: The performance comparision between on-policy and off-policy training.
Dataset Method pass@1 pass@2 pass@4 pass@8 pass@16
MATH-500 Off-Policy 92.97 95.60 97.14 98.20 -

On-Policy 93.90 96.21 97.43 98.16 -

AIME 2024 Off-Policy 53.50 65.62 73.92 78.07 80.00
On-Policy 55.42 66.60 74.37 78.81 81.33

AIME 2025 Off-Policy 36.21 44.05 51.60 59.02 66.67
On-Policy 38.37 46.58 53.65 58.54 62.66

We first investigate the impact of exact on-policy training. Table 1 presents the average perfor-
mance over the last five checkpoints (steps 420 to 500, in increments of 20) to reduce evaluation
variance. The results show that with the same optimization steps, exact on-policy training consis-
tently improves the pass@1/2/4 scores across all benchmarks, indicating that it yields models with
higher precision in generating correct solutions on average. For larger k values, the performance
gap between on-policy and off-policy methods narrows, suggesting that while off-policy training
can eventually recover correct answers through multiple sampling, but in a less efficient manner.
In contrast, on-policy training produces models that are more reliable and require fewer samples to
achieve strong accuracy. These findings highlight the importance of aligning the optimization pro-
cedure with the exact on-policy distribution, as it not only boosts average accuracy but also reduces
the reliance on multiple sampling for robust performance.

Table 2: The performance comparision between OPO and GRPO. Both OPO and GRPO follow the
exact on-policy training from the SFT policy.

Dataset Method pass@1 pass@2 pass@4 pass@8 pass@16
SFT 94.80 96.61 97.63 98.40 -

MATH-500 GRPO 95.10 96.64 97.51 98.16 -
OPO 95.26 97.00 97.91 98.52 -

SFT 66.04 75.72 80.13 81.65 83.33
AIME 2024 GRPO 67.96 75.54 79.62 81.67 83.33

OPO 68.50 76.10 80.06 82.12 84.00
SFT 46.88 57.39 68.13 76.89 83.33

AIME 2025 GRPO 50.21 61.45 70.96 77.64 81.33
OPO 50.00 60.88 70.37 78.02 85.33

To validate the effectiveness of the optimal reward baseline, we compare the performance of OPO
against GRPO and the initial supervised fine-tuned policy. Both OPO and GRPO follow the exact on-
policy training and share all hyperparameters. The only difference lies in their advantage estimation:
OPO uses the optimal reward baseline as defined in Equation 12, whereas GRPO uses the standard
baseline in Equation 2. Table 2 presents the results averaged over the last five checkpoints. As
demonstrated, OPO outperforms GRPO across most cases, with its improvements becoming more
pronounced at higher k values (e.g., pass@8 and pass@16). On the MATH-500 benchmark, which
has 500 test examples and thus much lower evaluation variance, OPO consistently outperforms
GRPO across all k in pass@k. For example, OPO achieves 95.26 pass@1 and 98.52 pass@8,
surpassing both GRPO and the SFT baseline. The uniform improvements at every k indicate that
the optimal reward baseline provides more effective and stable policy updates, leading to consistent
gains in a low-variance evaluation setting. In contrast, the AIME 2024 and AIME 2025 benchmarks
contain only 30 test examples each, making the results more sensitive to evaluation variance. On
these benchmarks, OPO and GRPO show competitive performance at low k, with GRPO sometimes

6
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slightly ahead. However, as k increases, OPO exhibits clearer advantages. Notably, OPO achieves
the highest pass@8 and pass@16 results on both datasets. These findings highlight that the optimal
reward baseline enhances both the stability and generalization of on-policy optimization, making
OPO a more reliable and effective approach across diverse evaluation settings.

4.3 ANALYSIS
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Figure 1: Training dynamics of on-policy and off-policy training. Left: Training rewards; Middle:
KL divergence; Right: Entropy.
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Figure 2: Left: Comparison of KL divergence and math performance between OPO and GRPO.
Both OPO and GRPO follow the exact on-policy training from the SFT policy. The x-axis repre-
sents KL divergence, and the y-axis denotes math performance. Middle: Training dynamics of KL
divergence. Right: Training dynamics of entropy.

OPO achieves better performance and more stable training. We compare the training dynam-
ics of on-policy and off-policy methods in Figure 1. While off-policy training achieves similar
or even slightly higher training rewards than exact on-policy training in the earlier stage, it yields
inferior performance on math reasoning tasks. It suggests a potential overfitting issue with off-
policy learning. Furthermore, exact on-policy training exhibits significantly lower KL divergence
and higher entropy throughout training, even without any explicit KL or entropy regularization,
whereas off-policy training includes an additional entropy bonus. Lower KL divergence implies a
reduced alignment tax and higher entropy suggests stronger exploration capability. Figure 2 presents
the comparison between OPO and GRPO with exact on-policy training. OPO maintains similar en-
tropy levels while achieving lower KL divergence. The left subplot visualizes the trade-off between
KL divergence and math performance, demonstrating that OPO consistently achieves higher perfor-
mance with more stable training dynamics.
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Table 3: Comparison of repetition rate (Rep-5) and sampling diversity (Self-BLEU) between on-
policy and off-policy training. Lower values indicate better performance.

Dataset MATH-500 AIME 2024 AIME 2025
Method Rep-5 ↓ Self-BLEU ↓ Rep-5 ↓ Self-BLEU ↓ Rep-5 ↓ Self-BLEU ↓
Off-Policy 18.11 74.45 25.71 69.60 27.27 69.99
On-Policy 15.56 61.80 19.75 62.54 20.74 63.76

Table 4: Comparison of repetition rate (Rep-5) and sampling diversity (Self-BLEU) between OPO
and GRPO. Lower values indicate better performance.

Dataset MATH-500 AIME 2024 AIME 2025
Method Rep-5 ↓ Self-BLEU ↓ Rep-5 ↓ Self-BLEU ↓ Rep-5 ↓ Self-BLEU ↓
GRPO 14.82 66.70 22.62 64.53 22.71 63.89
OPO 14.70 66.76 22.08 64.01 21.84 63.20

OPO generates more diverse and less repetitive outputs. The KL divergence and entropy cor-
relate with important output quality metrics that directly impact user experience, such as sampling
diversity and repetition rate. We use the Self-BLEU metric (Zhu et al., 2018) to evaluate the diver-
sity of the generated responses. For each query, multiple responses are sampled; each response is
treated as a hypothesis and compared to others as references. The average BLEU score across all
combinations is reported as Self-BLEU. A lower Self-BLEU score indicates higher diversity among
outputs. For measuring the repetition rate of the generated responses, we employ the Rep-5 met-
ric (Welleck et al., 2020), which calculates the proportion of duplicate 5-grams in each generated
sequence. A lower Rep-5 score reflects less intra-sequence repetition. Tables 1 and 2 summarize the
results. Benefitting from exact on-policy training and the optimal reward baseline, OPO consistently
produces outputs that are both more diverse and less repetitive compared to its counterparts.

4.4 EXPERIMENTS ON REINFORCE++
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Figure 3: Training dynamics of OPO and Reinforce++. Both OPO and Reinforce++ follow the exact
on-policy training. Left: Training rewards; Middle: KL divergence; Right: Entropy.

OPO is a general technique that can be applied to other policy-gradient algorithms. We apply it
to the Reinforce++ algorithm (Hu, 2025) to further validate its effectiveness. Unlike GRPO, Rein-
force++ utilizes the normalized reward of an entire batch instead of each group as its baseline. We
exclude the KL reward in Reinforce++ as exact on-policy training can omit it. For the preliminary
experiment, we use Deepseek-R1-Distill-Qwen-1.5B for training, with a response length of 8k and
a batch size of 256 questions. We make both OPO and Reinforce++ follow the exact on-policy
training. As shown in Figure 3, the training dynamics demonstrate that OPO, by leveraging the
length-weighted optimal baseline normalized across each batch, consistently achieves higher train-
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ing rewards and maintains higher entropy compared to on-policy Reinforce++. This suggests that
the optimal baseline effectively stabilizes training and promotes more diverse policy exploration.

5 RELATED WORK

RL Algorithms Among various policy-based RL algorithms (Sutton & Barto, 2018), Proximal
Policy Optimization (PPO, Schulman et al. 2017) has been the most common choice since Instruct-
GPT (Ouyang et al., 2022) due to its balance of stability and sample efficiency. However, PPO needs
to train an extra value model to estimate the reward baseline. To address this, Group Relative Policy
Optimization (GRPO, Shao et al. 2024) proposes to generate multiple responses and use their aver-
age score as a baseline for advantage estimation. It eliminates the need for a separate value model,
thereby improving memory efficiency. Other works also focus on alternative advantage estimation
methods without a value model, like ReMax (Li et al., 2024), RLOO (Ahmadian et al., 2024), Rein-
force++ (Hu, 2025), Dr. GRPO (Liu et al., 2025) and LUFFY (Yan et al., 2025). Furthermore, while
some research aims to resolve issues like KL or entropy collapse in loose on-policy settings (He
et al., 2025; Yu et al., 2025; Yan et al., 2025), both our method and Chen et al. (2025) emphasize
exact on-policy training.

Variance Reduction in RL The foundational policy-gradient algorithm REINFORCE (Williams,
1987; 1992; Sutton & Barto, 2018) suffers from high gradient variance. Prior work (Dayan, 1991;
Weaver & Tao, 2001; Kakade & Langford, 2002; Greensmith et al., 2004) derive the theoretical
optimal baseline that minimizes variance, but the original formulation is impractical in real-world
sequence generation scenarios. In the context of LLMs, ReMax (Li et al., 2024) employs a greedy
baseline for variance reduction. Other common algorithms apply the mean reward as the baseline.
In contrast, we show that under the intuitive assumption, the optimal baseline formulation simplifies
to a length-weighted reward, which is feasible for practical use.

Reinforcement Learning for LLMs Large Language Models (LLMs) have demonstrated impres-
sive capabilities across a wide range of real-world tasks (Brown et al., 2020; OpenAI, 2023; Anil
et al., 2023). A critical phase in their development is Reinforcement Learning from Human Feed-
back (RLHF, Stiennon et al. 2020; Ouyang et al. 2022; Bai et al. 2022), which typically consists
of two stages: supervised fine-tuning (SFT) and reinforcement learning (RL). In SFT, models are
initially guided toward preferred behaviors using curated datasets. Subsequently, RL optimizes the
model outputs by employing policy gradient algorithms to maximize a reward signal (Gao et al.,
2022; Rafailov et al., 2023). It ensures that the model aligns with desired outcomes like helpfulness,
truthfulness, and harmlessness. Beyond general alignment, RL has been applied to enhance the rea-
soning capabilities of LLMs (OpenAI, 2024; Guo et al., 2025; XAI, 2024; DeepMind, 2024). These
methods often emphasize test-time scaling, where models iteratively refine their thought processes,
explore alternative strategies, and self-correct through chain-of-thought reasoning (Wei et al., 2022).
Such techniques significantly boost performance on complex tasks in domains including mathemat-
ics, science, and programming.

6 CONCLUSION

This paper proposes on-policy reinforcement learning with optimal reward baseline (OPO), which
adheres to exact on-policy training and derives the practically feasible optimal baseline for advan-
tage estimation in the basic policy gradient framework. OPO employs a single policy model without
relying on KL divergence constraints or entropy regularization, yet achieves superior performance
and improved training stability. Furthermore, our results indicate that OPO encourages the genera-
tion of more diverse and less repetitive outputs. We have validated the effectiveness of the proposed
method on math reasoning tasks using a rule-based reward. For future work, we aim to conduct
more extensive experiments across a broader range of reinforcement learning algorithms to assess
the generality and robustness of our approach. In addition, we plan to extend the optimal baseline
to off-policy reinforcement learning settings to further improve the applicability.
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A DERIVATION OF THE OPTIMAL BASELINE

To reduce the variance of the policy gradient estimate, we consider adding a baseline b to the reward.
It does not affect the expectation of the gradient and can reduce its variance. By adding the baseline,
the variance of the gradient estimate is given by:

Var[g] = E
[
(∇θ log πθ(y|x) · (r(x, y)− b))

2
]
− (E [∇θ log πθ(y|x) · (r(x, y)− b)])

2

Since the second term is independent of b, minimizing the variance is equivalent to minimizing the
following objective:

J(b) = Ey∼πθ(·|x)

[
(∇θ log πθ(y|x) · (r(x, y)− b))

2
]

Let us define the shorthand:

g(y) := ∇θ log πθ(y|x), r := r(x, y)

Then the objective becomes:

J(b) = Ey∼πθ(·|x)

[
(g(y) · (r − b))

2
]

Expanding the square:

J(b) = E
[
g(y)2 · (r − b)2

]
= E

[
g(y)2 · (r2 − 2rb+ b2)

]
= E

[
g(y)2r2

]
− 2bE

[
g(y)2r

]
+ b2 E

[
g(y)2

]
To minimize J(b), we take the derivative with respect to b and set it to zero:

dJ

db
= −2E

[
g(y)2r

]
+ 2bE

[
g(y)2

]
= 0

⇒ b∗ =
E
[
g(y)2r

]
E [g(y)2]

Conclusion. The optimal baseline b∗ that minimizes the variance of the policy gradient estimate
(for a fixed input x) is:

b∗ =
Ey∼πθ(·|x)

[
(∇θ log πθ(y|x))2 · r(x, y)

]
Ey∼πθ(·|x)

[
(∇θ log πθ(y|x))2

]
This baseline depends on both the policy and the reward and yields the minimum gradient variance.

B THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used only as auxiliary tools for improving the presentation
of this paper. Specifically, we used them to (i) correct minor typographical errors, (ii) improve
grammar and clarity of sentences, and (iii) suggest formatting adjustments for tables and figures
to align with standard academic style. No LLMs were used for research ideation, methodological
design, analysis, or substantive writing of the paper. The core research contributions, experiments,
and the initial draft of the manuscript were conceived, developed, and written entirely by human
authors.
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