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ABSTRACT

Detecting concealed objects, such as in vivo lesions or camouflage, requires cus-
tomized imaging systems. Lensless cameras, being compact and flexible, offer
a promising alternative to bulky lens systems. However, the absence of lenses
leads to measurements lacking visual semantics, posing significant challenges for
concealed object detection (COD). To tackle this issue, we propose a region gaze-
amplification network (RGANet) for progressively exploiting concealed objects
from lensless imaging measurements. Specifically, a region gaze module (RGM)
is proposed to mine spatial-frequency cues informed by biological and psycholog-
ical mechanisms, and a region amplifier (RA) is designed to amplify the details
of object regions to enhance COD performance. Furthermore, we contribute the
first relevant dataset as a benchmark to prosper the lensless imaging community.
Extensive experiments demonstrate the exciting performance of our method.

1 INTRODUCTION

Concealed object detection (COD) (Liu et al. (2023); Sun et al. (2024)) is an emerging task that plays
an essential role in many visual applications, such as medical image analysis (Luo et al. (2022)),
as it aims to extract objects hidden in the scene. Various models (Fan et al. (2022); Mei et al.
(2021)) have been developed and performed well on relevant datasets collected by current imaging
systems. However, owing to their bulky size, existing imaging systems cannot access the tight
areas. Accordingly, developing miniature and compact imaging systems has become imperative to
overcome these challenges. Due to replacing lenses with optical masks (Khan et al. (2022); Asif
et al. (2017); Boominathan et al. (2020); Antipa et al. (2018)) and calculations, lensless cameras are
allowed to be flexibly miniaturized (Tan et al. (2019)). Thus, the aggregation of lensless cameras
into COD is a potential option.

As shown in Fig. 1 (a), unlike existing imaging systems that enable scene-resembling imaging, op-
tical mask-based lensless camera modulates the scene radiances into encoded patterns (i.e., lensless
imaging measurements) without any visual information, which leads to severe challenges in COD
for lensless cameras. The primary challenges are: 1) Lensless imaging lacks traditional visual fea-
tures, making it challenging to extract task-relevant information from the data; 2) The complexity of
the data impose greater demands on model training and optimization, particularly in noise suppres-
sion and key information retention; And 3) the inherent challenges of the COD task itself. Existing
lensless imaging studies present several closely related topics that offer valuable insights into COD
within the context of lensless imaging. A recent study (Yin et al. (2022)) proposes a spatial feature
learning (SFL) module for obtaining partial coarse spatial information to facilitate the detection of
objects in lensless imaging while maintaining low computational costs. Inspired by this, we design
an optical-aware feature extraction (OFE) module for learning spatial features. Note that unlike
the supervised SFL module in (Yin et al. (2022)), our OFE module is not supervised but learns in
concert with the subsequent task, thus learning more meaningful features.

Recent studies (Rao et al. (2022); Lin et al. (2023)) have shown that according to biological and psy-
chological investigations, frequency information helps to effectively mitigate semantic clutter and
improve COD performance. Therefore, to boost the detection of concealed objects against back-
grounds, frequency cues are one of the key elements. Inspired by this, we propose a region gaze
module (RGM), where a frequency cue encoding (FCE) component and a spatial information en-
coding (SIE) component are designed to extract frequency cues and spatial cues respectively, and
then a spatial-frequency feature fusion (SFFF) component is built for collaborative learning of spa-
tial cues and frequency cues. Further, another study (Xing et al. (2023)) observed that maintaining
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Figure 1: Illustrations of systems and visual examples of COD for lensless imaging measurements:
a. Comparison between our COD based on lensless camera and the current COD based on traditional
camera; b. The results by state-of-the-art COD method (ZoomNet Pang et al. (2022)) and our
RGANet. Our method can mine concealed objects from the lensless imaging measurements.

proximity to an object plays a crucial role in enhancing the perception of intricate details. This de-
tail perception at high-level, in turn, contributes significantly to the overall process of recognizing
and identifying the object. To this end, we design a region amplifier (RA) to simulate this proxim-
ity mechanism to further enhance the COD performance by locally amplifying the region details.
Based on the above description, we propose a region gaze-amplification network (RGANet), which
consists of an OFE module, two RGMs, and a RA, as well as a hierarchical feature decoding (HFD)
module for fine reasoning. Some visualization examples in Fig. 1 demonstrate that our RGANet can
effectively detect concealed objects from lensless imaging measurements. In a nutshell, our main
contributions are summarized as:

• To the best of our knowledge, we are the first to investigate the detection of concealed
objects in lensless imaging, demonstrating the potential of lensless imaging for various
high-level tasks.

• We propose a region gaze-amplification network (RGANet) for COD in lensless imaging.
In the RGANet, the region gaze modules (RGMs) based on the spatial-frequency collabo-
rative learning strategy are proposed to recognize the object regions, and a region amplifier
(RA) based on local attention is designed to amplify the region details.

• We contribute corresponding datasets as benchmarks and extensive experiments demon-
strate that our method can accurately detect concealed objects from lensless imaging mea-
surements.

2 RELATED WORK

2.1 CONCEALED OBJECT DETECTION (COD)
COD is challenging due to the high similarity between objects and their surrounding environments.
Previous research has been devoted to this challenge using a variety of strategies. Le et al. (Trung-
Nghia et al. (2019)) proposed to aggregate classifieds into pixel-level detection. Fan et al. (Fan et al.
(2022)) developed the SINet to advance the field of COD. Chen et al. (Chen et al. (2022)) designed
to integrate cross-level features of concealed objects. Liu et al.(Liu et al. (2023)) built MSCAF-
Net to focus on multi-scale context-aware cues. Mei et al. (Mei et al. (2021)) proposed to first
localize potential objects and then focus on discovering and eliminating interferences for progressive
reasoning. Liu et al. (Liu et al. (2022)) constructed an online confidence estimation network to
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model the aleatoric uncertainty for COD. Pang et al. (Pang et al. (2022)) used a mixed-scale triple
network to focus on the objects by mimicking the zoom-in and zoom-out behavior of humans when
viewing blurry images. Ma et al. (Ma & Sun (2023)) proposed a cross-level interaction network
based on scale-aware augmentation for the COD task. However, the above studies use clear natural
images as input to perform COD and cannot be directly applied to lensless imaging. By exploring
spatial-frequency cues for Region Gaze and proposing local amplification mechanisms for detail
magnification, we are the first to peform COD for lensless imaging measurements.

2.2 LENSLESS IMAGING

Lensless imaging is increasingly recognized for its potential to overcome size limitations in smart-
phone photography and micro-robotics applications. The core of lensless cameras is optical masks
designed with various encoding elements, including amplitude masks (Khan et al. (2022); Asif et al.
(2017)) and phase masks (Boominathan et al. (2020); Antipa et al. (2018)). The diverse design of
optical masks has given rise to various prototypes, including the Fresnel zone aperture (FZA) cam-
era (Wu et al. (2020; 2021)), FlatCam (Khan et al. (2022); Asif et al. (2017)), PHlatCam (Boomi-
nathan et al. (2020)), and DiffuserCam (Antipa et al. (2018); Monakhova et al. (2020); Cai et al.
(2020)). They have demonstrated potential in various applications such as hyperspectral imag-
ing Monakhova et al. (2020), fluorescence microscopy imaging (Adams et al. (2017)), light field
encoding (Cai et al. (2020)), and depth information acquisition (Zheng & Salman Asif (2020)).
Recently, some studies have begun to explore high-level tasks in lensless imaging, such as gender
estimation (Pan et al. (2021b)), recognition (Pan et al. (2021a)), face verification (Tan et al. (2019);
Cai et al. (2024)), and object segmentation (Yin et al. (2022; 2024)). These studies provide a proof-
of-concept investigation for the potential of inference tasks using lensless imaging measurements.
However, these above efforts have yet to demonstrate performance in performing COD task or ex-
plicitly address the grand limits posed by such methods.

2.3 LEARNING IN THE FREQUENCY DOMAIN

Frequency information has been widely employed in convolutional neural networks (CNNs) for im-
age enhancement, data compression, object detection (Shao et al. (2023); Li et al. (2022); Wang &
Sertel (2021); Liu et al. (2024)), etc. Previous studies (Wang et al. (2022)) characterized the edges
of objects and smooth regions by high and low-frequency semantics, respectively. Additionally,
some researchers (Mi et al. (2022)) promoted channel recognition networks into frequency domains.
Compressing vision Transformers (Kong et al. (2023)) has also been explored by removing or com-
pressing low-frequency components. Moreover, Rao et al. (Rao et al. (2022)) explicitly modeled
the semantic information of different frequencies and accurately guided the semantic alignment of
objects. In the context of COD, frequency learning has been employed to mitigate the influence of
complex high-frequency texture information (Lin et al. (2023); Sun et al. (2024)). However, there
still needs to be more exploration regarding the intensive prediction of the interaction between fre-
quency and spatial domains. In contrast, our method improves COD performance by facilitating
collaborative learning between the frequency and spatial domains, thereby obtaining richer cues.

3 METHODOLOGY

3.1 OVERVIEW

As depicted in Fig. 2, based on a lensless imaging prototype, i.e., PHlatCam (Boominathan et al.
(2020)), we propose the RGANet for COD in lensless imaging, which contains an optical-aware
feature extraction (OFE) module, two region gaze modules (RGMs), a region amplifier (RA), and
a hierarchical feature decoding (HFD) module. Specifically, we employ the OFE module to learn
the beneficial underlying semantics for COD. Then, we propose two RGMs to progressively reason
concealed objects by mining spatial and frequency cues. Furthermore, the RA embedded between
the two RGMs is exploited to magnify the details of object regions to drive COD performance.
Finally, the outputs of two RGMs are aggregated in the HFD module to obtain refinement results.
Our RGANet provides a comprehensive workflow for performing COD on lensless imaging and
demonstrates promising results.

3.2 OPTICAL-AWARE FEATURE EXTRACTION

Among various lensless imaging prototypes, PHlatCam (Boominathan et al. (2020)) is promising for
its high luminous flux, lightweight, and low cost. Given this, we perform our work on PHlatCam.
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Figure 2: Overview of our RGANet. It consists of an optical-aware feature extraction (OFE) mod-
ule, two region gaze modules (RGMs), a region amplifier (RA), and a hierarchical feature decoding
(HFD) module. Specifically, we employ the OFE module to learn the meaningful underlying se-
mantics for COD, and the two RGMs progressively reason concealed objects by mining spatial and
frequency cues. Furthermore, the RA embedded between the two RGMs is used to magnify the de-
tails of regions to auxiliary the detection of concealed objects. Finally, the outputs of the two RGMs
are fed into the HFD module to refine the final results.

The imaging model of PHlatCam can be formulated as a convolution model:

Y = A ∗X + ξ, (1)

where ∗ is the convolution operator, A is the point-spread-function (PSF), which is the pattern pro-
jected onto the image sensor by the mask under the illumination of a single-point light source. X is
the underlying scenes, Y is the measurements captured by image sensor, and ξ denotes the noise.

Our work focuses on detecting concealed objects in the scene radiance X from the lensless imaging
measurements Y . However, Y do not inherently contain visual cues of concealed objects. To drive
COD for lensless imaging, we design an OFE module with a Wiener filtering mechanism as

IOFE = F−1

(
Conj (F(Aθ))

Kθ + |F(Aθ)|2
⊙F(Y )

)
, (2)

where F and F−1 denote the fast Fourier transform (FFT) and the inverse FFT (IFFT) operations,
respectively. Conj(·) is the conjugate operation, and ⊙ is Hadamard multiplication. In the OFE
module, PSF Aθ and regularization parameter Kθ are learnable. Note that unlike Khan et al. (2022);
Boominathan et al. (2020), our OFE module does not act as visual reconstruction to satisfy the
requirements of the human eye but rather collaborates with the back-end design to reason about the
semantics that will benefit COD, and effectively addressing the challenges of lensless imaging.
3.3 REGION GAZE VIA SPATIAL-FREQUENCY COLLABORATIVE LEARNING

We propose an RGM that incorporates frequency and spatial features in a collaborative learning
manner. In the RGM, a spatial information encoding (SIE) component and a frequency cue encoding
(FCE) component are designed to extract spatial cues and frequency cues, respectively, and then a
spatial-frequency feature fusion (SFFF) component is built for collaborative learning of spatial cues
and frequency cues. In our method, two RGMs are coupled to refine the predictions incrementally.
Since both RGMs share the same structure, we only detail the first RGM.

Spatial Information Encoding. Recent study (Wang et al. (2021)) shows that Transformer-based
architectures, handling global features better than traditional CNNs. Therefore, we use the Pyra-
mid Vision Transformer (PVTv2) to build the SIE component for extracting global features and
understanding lensless semantic scenes. PVTv2, with its pyramidal structure, efficiently captures
multi-scale, high-resolution features through a progressive shrinking strategy and spatial reduction
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Figure 3: Illustrations of the FCE component. It contains the DCT operation, frequency separation,
and frequency selection for the collection of frequency cues.

attention. To adapt it for the lensless COD task, we remove the classification layer and design a
COD head to generate multi-scale feature maps across four stages (T1, T2, T3, and T4 from bottom
to up), as illustrated in Fig. 2.

Frequency Cue Encoding. We design the FCE to mine frequency cues, as shown in Fig. 3.

First, we divide I
OFE

∈ RH×W×3 into a set of 8 × 8 patches, and obtain{
pci,j | 1 ≤ i ≤ H

8 , 1 ≤ j ≤ W
8

}
from bottom to up patch at color channel c. Considering that the

FFT leads to the plural that the network hardly handles, we use DCT to transform each patch into
a frequency spectrum as F c

i,j =
{
DCT(pci,j) | 1 ≤ i ≤ H

8 , 1 ≤ j ≤ W
8

}
, F c

i,j ∈ R8×8 corresponds
to 64 frequency band, each value of the feature F c

i,j belongs to a certain frequency band.

Second, we divide F c
i,j into two parts, i.e., low-/high-frequency component (FL

i,j)
c and (FH

i,j)
c by{

(FL
i,j)

c = F c
i,j(m,n), |m− om| ≤ r, |n− on| ≤ r

(FH
i,j)

c = F c
i,j(m,n), otherwise

, (3)

where (om, on) denotes the coordinates of the starting point of the image, i.e., (0, 0). We use
F c
i,j(m,n) to index the value of F c

i,j at position (m,n). The |·| is the absolute value. Note that r is
a learnable parameter to achieve adaptive separation of frequencies (Each F c

i,j(m,n) from the same
patch shares the same r to maintain consistency of dimension).

Third, we flatten the spectrums into a vector that aggregates all the components with same frequency
into the exact location of each channel by IHi,j = Flatten

(
(FH

i,j)
c
)
, ILi,j = Flatten

(
(FL

i,j)
c
)
.

Fourth, we adaptively select high-/low-frequency features IHi,j and ILi,j through some channel-mixing
multi-layer perceptrons (MLP) (Tolstikhin et al. (2021)) consisting of a fully-connect (FC) layer, a
batch normalization (BN), and a ReLU. Specifically, we feed IHi,j and ILi,j into two separate channel-
mixing MLPs to filter feature and concatenate their outputs, and then use another channel-mixing
MLP (from bottom to up) to adaptively select frequency features Ifs . The above steps are formulated
as Ifs = MLP

(
Cat

(
MLP

(
IHi,j

)
,MLP

(
ILi,j

)))
, Cat(·) is the concatenation operation, and the

MLP(·) is the channel-mixing MLP capturing the correlation among each patch of input features.

Finally, we obtain frequency feature If by a channel-mixing MLP and double-layer convolution
as If = DConv(MLP(Ifs )), DConv(·) is two cascaded 3 × 3 convolution layers. To match the
scale of outputs from the SIE component, If is scaled to the corresponding size, i.e., If1 , If2 , If3 ,
and If4 . Note that unlike the fixed thresholds used in previous studies Cong et al. (2023); Lin et al.
(2023); Sun et al. (2024), here we introduce an adaptive thresholding mechanism to distinguish
high-frequency information from low-frequency components. This design advantage allows for
better differentiation between noise and signal, reducing the impact of noise.
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Spatial-Frequency Feature Fusion. The frequency features are discriminative for concealed ob-
jects, while spatial features have a larger receptive field for compensating. Therefore, we build the
SFFF component to fuse the above two features, as shown in Fig. 2.

First, we filter the frequency features to extract information by Ifo = Conv17×17(I
f
i ), i = 1, 2, 3, 4,

where Conv17×17(·) is 17× 17 a convolution layer.

Second, we fuse the Ifo and the features from the SIE component, and each {Ti, I
f
o } (i =

1, 2, 3, 4) is concatenated and fed into two cascaded convolutions with 4× channels to output
Sj ∈ RH×W×n(j = 1, 2, 3, 4). We reshape Sj to HW × n for obtaining the fusion ma-
trix W1 ∈ RHW×HW for space domain, and W2 ∈ RHW×HW for frequency domain by
W1 = S1

(
S2

)⊤
, W2 = S3

(
S4

)⊤
.

Third, we align the feature maps {Ti, I
f
i } by feature correlation operation. Specifically, the trans-

formations W1 and W2 are multiplied with features {Ti, I
f
i } and then multiplied with two learn-

ing vectors (i.e., V i
T ∈ R1×C and V i

f ∈ R1×C) respectively to adjust the channel-wise infor-
mation. The output Ii

T and Ii
f are fused by addition operator. The above step is formulated as

Ii
T = W1 · Ti ⊗ V i

T , Ii
f = W2 · Ifi ⊗ V i

f , Ii
s = Ii

T + Ii
f , ⊗ is the matrix multiplier.

Fourth, we obtain the fused features by Ii
fs = DConv(Ii

s). These fused features are decoded in a
bottom-up manner and output the prediction maps as

Pd = DConv(Cat(I1
fs, I2

fs, I3
fs, I4

fs)). (4)

The SFFF component uses discriminative frequency information to search for concealed objects
while maintaining the spatial cues to ensure the details of the entities. Note that our network uses
two RGMs with outputs as shown in Eq. (4). To distinguish between the two results, we rewrite the
output of the first RGM as Pd1 and the second as Pd2.

3.4 REGION AMPLIFIER VIA LOCAL ATTENTION LEARNING

Concealed objects often appear as small, obscured, or resembling the backgrounds, which makes
detecting such objects susceptible to misses and errors. Inspired by the fundamental phenomenon
that humans tend to magnify the difference between the observed regions and the backgrounds, we
design the Region Amplifier (RA) to compress the background regions and magnify the concealed
object regions. We transform the output of first RGM, i.e., Pd1, into an attention map M , as M =
Conv9×9 (Pd1), and the Conv9×9(·) is 9 × 9 convolution layer, exploited to expand the originally
predicted region to cover the entire object region. Then, we magnify the concealed objects based
on the attention map M . As in (Zheng et al. (2019)), the marginal distribution is obtained by the
maximization of M over x axis and y axis as

Mx(n) =

n∑
s=1

max
1≤t≤W

Mt,s,My(n) =

n∑
t=1

max
1≤s≤H

Mt,s, (5)

where W and H are the width and height of M , respectively. Given the output of OFE module, i.e.,
IOFE, the sampling function Q (IOFE,M) is defined as

Q (IOFE,M)t,s = (IOFE)M−1
x (t),M−1

y (s) , (6)

where M−1
x (·) and M−1

y (·) indicate the inverse operation of Eq. (5). Thus we can obtain the final
result of local magnification as IRA = Q (IOFE,M). Note that our RA module aims to amplify
region of interests (RoIs) for secondary recognition, which significantly enhances the reconstruction
quality.

3.5 HIERARCHICAL FEATURE DECODING

The concealed objects are progressively highlighted by magnification and spatial-frequency cues.
Since the boundaries of concealed objects are often ambiguous, the above processing performance
needs to be enhanced. An intuitive method is to introduce attention mechanisms to explore the in-
line association of different pixels, which may contribute to determining minor differences between
boundaries and backgrounds. As shown in Fig. 2, we propose the HFD module, which fuses the
output of the two RGMs, i.e., Pd1 and Pd2, and then enhances the object regions with an attention
mechanism to output more refined predictions.
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3.6 LOSS FUNCTION

To well train, we combine the weighted BCE loss L
wBCE

and weighted IoU loss L
wIOU

(Wei et al.
(2020)), that is, L

s
= L

wBCE
+ L

wIOU
to perform supervised learning on the outputs of the two

RGMs and the final output. The final loss function is given as

L
All

= L
s
(Pd1, Pgt) + L

s
(Pd2, Pgt) + L

s
(Pfinal, Pgt), (7)

where Pd1, Pd2 are the outputs of 1st RGM, 2nd RGM, respectively. Pfinal is the final result of HFD
module and Pgt is the ground truth.

4 EXPERIMENTS

4.1 DATASETS

To perform COD for lensless imaging, we develop the datasets, including the training dataset and
testing dataset. The dataset formation process is shown in Fig. 7 in Appendix. The specific details
are as follows.

Simulated Data Generation. The simulated data is collected from four famous COD datasets, in-
cluding CAMO (Trung-Nghia et al. (2019)), CHAMELEON (Przemysław), COD10K (Fan et al.
(2022)), and NC4K (Lv et al. (2021)). We select 1857 of these images, then generate the corre-
sponding simulated lensless imaging measurements by the following forward imaging model

Y c = F−1 (F (Ac)⊙F (Xc)) +N (µc, σc) , c ∈ {R,G,B} , (8)

where X is the underlying scene, A is the PSF bound to the lensless camera. The N (µc, σc) is the
noise, which we set as Gaussian distribution with µc = 0 and σc = 0.1∗max (Xc). Then combined
with the existing paired label maps, we obtain the SLCOD dataset, as shown in Fig. 7.

Real Data Acquisition. The real-scene data is acquired by PHlatCam from display captured
dataset (Khan et al. (2022)) containing 1000 categories. First, we exclude unsuitable scenes to
obtain 2600 paired images. Then we use Eiseg software to annotate and acquire label maps for
performing COD for lensless imaging measurements. Finally, we double-check and re-adjust the
labeled maps with significant differences to keep the annotation precision, ultimately creating the
DLCOD dataset as shown in Fig. 7. Note that our DLCOD dataset and the dataset in Yin et al. (2022)
both originate from the same source: a 10k subset of ImageNet. Unlike our dataset, reference Yin
et al. (2022) targets general object segmentation with broader selection criteria, resulting in a larger
subset of 5.9k pairs. Thus some overlap is unavoidable, our analysis shows 326 overlapping data
pairs.

Dataset Splitting. We split the formed dataset into multiple datasets for training and testing. For
training, we randomly select 2060 pairs from DLCOD and merge them with SLCOD to generate
a training set containing 3917 paired data. For testing, we divide the remaining pairwise data of
DLCOD into two datasets, i.e., Test-Easy with 220 paired data and Test-Hard with 320 paired data,
according to the difficulty of double-checking. Fig. 8 shows some examples of our datasets.

4.2 SETUPS

Evaluation Metrics. We apply four evaluation metrics for comprehensive comparisons, i.e., mean
absolute error (M), mean E-measure (Eξ) (Fan et al. (2021)), weighted F-measure(Fw

β ) (Margolin
et al. (2014)), and S-measure (Sα) (Fan et al. (2017)).

Implementation Bodies. In our method, the backbone is initialized with the pre-trained PVT on
ImageNet and subsequently trained alongside other components. The ADAM optimizer is used for
training with a “cosine” learning rate scheduling policy defined as lr = 0.5× init r× (1+ cos(π ∗
epoch/max epoch)). Here, the learning rate lr is initialized with init r = 5× 10−4, and the total
training epoch is set to max epoch = 100 with epoch ranging from 1 to max epoch. The batch
size is configured as 8. All experiments are conducted on a Linux 20.04 server with an NVIDIA
GTX 3090, utilizing PyTorch 1.8.0.

4.3 COMPARISONS WITH THE STATE-OF-THE-ART BASELINES

Compared Baselines. We compare our RGANet against two kinds of baseline methods: (1) lens-
less inference-base methods, such as EyeCoD (You et al. (2023)), LLI T (Pan et al. (2021a)), and
LOINet (Yin et al. (2022)); (2) state-of-the-art COD methods, including MSCAF-Net (Liu et al.
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Table 1: Quantitative results of COD for lensless imaging measurements with the state-of-the-art
baseline on Test-Easy and Test-Hard datasets. The first-ranked results are highlighted in red.

Method FLOPs (G) #Param (M) Test-Easy Test-Hard
Fw
β ↑ M ↓ Eξ ↑ Sα ↑ Fw

β ↑ M ↓ Eξ ↑ Sα ↑
EyeCoD 84.37 26.92 0.712 0.131 0.819 0.791 0.563 0.162 0.745 0.710
LLI T 44.35 17.23 0.743 0.110 0.832 0.802 0.527 0.167 0.741 0.651
LOINet 6.42 25.31 0.762 0.103 0.853 0.821 0.624 0.122 0.779 0.733
MSCAF-Net 63.04 30.32 0.697 0.131 0.812 0.788 0.563 0.161 0.790 0.710
OCENet 13.32 55.01 0.623 0.163 0.851 0.769 0.511 0.182 0.811 0.709
ZoomNet 39.41 32.58 0.714 0.126 0.821 0.782 0.619 0.121 0.804 0.717
Ours 48.62 39.45 0.815 0.079 0.896 0.834 0.705 0.098 0.845 0.770

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 4: Qualitative comparisons with the state-of-the-art baselines on Test-Easy dataset. The (d)–
(j) denote the results of RGANet (ours), EyeCoD (You et al. (2023)), LLI T (Pan et al. (2021a)),
LOINet (Yin et al. (2022)), MSCAF-Net (Liu et al. (2023)), OCENet (Liu et al. (2022)), and Zoom-
Net (Pang et al. (2022)). The (c) is label maps corresponding to lensless imaging measurements (a)
and underlying scenes (b).

(2023)), OCENet (Liu et al. (2022)), and ZoomNet (Pang et al. (2022)). Prediction maps for all the
mentioned methods are generated through re-training their models using open-source codes and a
consistent OFE module for equitable comparisons. Moreover, the evaluation of all prediction maps
is performed using identical code, ensuring a fair and standardized evaluation.

Qualitative Evaluation. Figs. 4 and 5 illustrate the qualitative results obtained on the Test-Easy
and Test-Hard datasets, illustrating the effectiveness of our method in accurately performing COD
for lensless imaging measurements. As demonstrated in the comparative results, our method outper-
forms alternative approaches in inferring a more comprehensive object structure. The success of our
approach can be attributed to two key factors: (1) the incorporation of an encoder-decoder frame-
work within the two RGMs facilitates spatial-frequency cue mining, and (2) the implementation of
a local amplification mechanism contributes to the preservation of intricate details and boundaries.

Quantitative Evaluation. Tab. 1 displays the quantitative results of our method in comparison to
state-of-the-art baselines on the Test-Easy and Test-Hard datasets. Our method surpasses all the
compared methods across all metrics. On the Test-Easy dataset, our method achieves a significant
decrease in M by 23.3% and an improvement in Fw

β by 7.0% compared with the excellent method,
LOINet. On the Test-Hard dataset, our method achieves a notable decrease in M by 19.7% and an
improvement in Fw

β by 13.0% compared with LOINet.

Complexity Analysis. We further provide the computational complexity of each method in terms of
FLOPs and the number of parameters (#Param) in Tab. 1. The two metrics bound to our method are
at an intermediate level among all compared methods, but our method outperforms these compared
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 5: Qualitative comparisons with the state-of-the-art baselines on Test-Hard dataset. The (d)–
(j) denote the results of RGANet (ours), EyeCoD (You et al. (2023)), LLI T (Pan et al. (2021a)),
LOINet (Yin et al. (2022)), MSCAF-Net (Liu et al. (2023)), OCENet (Liu et al. (2022)), and Zoom-
Net (Pang et al. (2022)). The (c) is label maps corresponding to lensless imaging measurements (a)
and underlying scenes (b).

methods for COD in lensless imaging. Overall, our method achieves a balance between detection
performance and computational complexity.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 6: Qualitative comparison on ablation of different configurations. The (d)–(m) denote the
configurations #1 – #10, respectively. The (n) is the result with our full model (RGANet) and (c) is
the label maps corresponding to lensless imaging measurements (a) and underlying scenes (b) (see
Tab. 2 for configuration indexed by IDs).

4.4 ABLATION STUDIES

The Effectiveness of RGM. Tab. 2 (#4, #5, #6) reveals a significant boost in detection performance
when integrating FCE into RGMs (#5, #6), relative to baseline (#4). This enhancement is corrobo-
rated by Fig. 6 (g)-(i), illustrating more complete object regions and finer details due to FCE integra-
tion. These outcomes highlight the crucial role of frequency cues in advancing the COD framework
for lensless imaging. Additionally, Tab. 3 presents ablation studies on frequency adaptive selection
within FCE, emphasizing the significance of balanced low- and high-frequency utilization. An op-
timal ratio (r = 5) consistently outperforms other configurations (r = 1, r = 7, and exclusions),
underscoring the necessity of frequency adaptation for effective RGANet application in COD. Tab. 2
(#1, #7, #11) indicates that reducing any RGM adversely impacts performance, stressing their im-
portance for precision and reliability. Visual comparisons in Fig. 6 (d) and (j) across different RGM
counts further validate this, showing diminished performance and visual quality with fewer RGMs.

The Effectiveness of RA. The evaluation results presented in Tab. 2 (#9, Ours) highlight the signif-
icant enhancement in COD performance achieved through the incorporation of the RA. Conversely,
the exclusion of RA results in a substantial decline in performance. Furthermore, as depicted in
Fig. 6 (l) and (n), RA effectively enhances local details, illustrating its ability to amplify concealed
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Table 2: Quantitative comparison on ablation of different configurations. The first-ranked results are
highlighted in red.

ID OFE 1-st RGM RA 2-nd RGM HFD Test-Easy Test-Hard
FCE SIE SFFF FCE SIE SFFF Fw

β ↑ M ↓ Fw
β ↑ M ↓

#1 ✓ ✓ ✓ ✓ 0.509 0.259 0.468 0.306
#2 ✓ ✓ ✓ ✓ ✓ 0.624 0.163 0.511 0.182
#3 ✓ ✓ ✓ ✓ ✓ ✓ 0.651 0.139 0.557 0.158
#4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.682 0.134 0.564 0.153
#5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.721 0.122 0.596 0.147
#6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.718 0.125 0.592 0.145
#7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.729 0.116 0.601 0.142
#8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.795 0.087 0.672 0.116
#9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.756 0.106 0.617 0.134
#10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.423 0.382 0.392 0.361
#11 ✓ ✓ ✓ ✓ ✓ ✓ 0.631 0.157 0.539 0.162
Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.815 0.079 0.705 0.098

object features. This observation validates RA’s capacity to focus on local intricacies, allowing the
network to extract more valuable information from specific regions and contributing to the overall
improvement in COD performance.

Table 3: Quantitative ablation experiments of frequency adaptive selection in FCE. The first-ranked
results are highlighted in red.

ID Configuration Test-Easy Test-Hard
Fw
β ↑ M ↓ Fw

β ↑ M ↓

#11 w/o. FH 0.732 0.109 0.608 0.139
#12 w/o. FL 0.769 0.102 0.656 0.122

#13 r = 1 0.774 0.098 0.662 0.114
#14 r = 7 0.782 0.091 0.675 0.103

Ours Full model (r = 5) 0.815 0.079 0.705 0.098

The Effectiveness of HFD Module. The evaluation results presented in Tab. 2 (#8, Ours) un-
derscore the superior performance of our proposed HFD module in terms of COD accuracy. The
visualizations in Fig. 6 (k) and (n) provide additional insights, illustrating that the HFD module
effectively integrates information from the two RGMs to compensate for missing features. This in-
tegration leads to more refined and visually enhanced results, highlighting the capacity of the HFD
module to improve the overall effects of COD.

The Effectiveness of OFE Module. The results presented in Tab. 2 (#10, Ours) underscore the
pivotal role of the OFE module in COD for lensless imaging. Specifically, the removal of the
OFE module leads to a decline in COD performance, while its inclusion enhances COD accuracy.
Additionally, a visual comparison in Fig. 6 (m) and (n) further supports these findings, emphasizing
that the absence of the OFE module hampers practical performance, while its inclusion enables
accurate and meaningful generalization of results. This observation suggests that incorporating the
OFE module provides a rich source of underlying semantics that significantly benefits the COD task.

5 CONCLUSION

This paper aims to solve the challenge of accurate COD on lensless imaging measurements by
proposing a region gaze-amplification network (RGANet). In the RGANet, we incorporate fre-
quency and spatial cues by RGMs for driving reasoning performance and introduce the RA embed-
ded in the two RGMs to magnify potential concealed objects for refining final results. Furthermore,
we present the first dataset for COD on lensless imaging measurements, which serves as a bench-
mark for future research. Experimental results demonstrate the superiority of the RGANet over
existing methods and highlight its potential in advancing the community of lensless imaging.
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A APPENDIX

A.1 DATASET

To reduce data costs, we combined simulated and real data to build the dataset for model training.
The data generation process is shown in Fig. 7. The collection of real data requires adherence to the
following experimental configuration:

(1) Distance between the PHlatCam and the display: The PHlatCam was positioned 42 cm from the
display throughout all real-capture experiments. This distance was carefully selected to optimize
image capture, considering the camera’s field of view and resolution. This configuration remained
consistent during both training and testing phases, ensuring uniform alignment of camera and mon-
itor pixels.

(2) Display specifications:

Model and Type: The display used was a Dell S2425HS, which is an LCD screen.

Size: The screen size was 24 inches, with a resolution of 1920×1080 pixels.

Additional Notes: The image was resized via bicubic interpolation to fit the largest central square
on the monitor. The white balance for PHlatCam was calibrated using the automatic white balance
setting of the PointGrey Flea3 camera, determined when an all-white image was displayed on the
monitor. The exposure time was governed by the automatic mode of camera, with gain fixed at 0
dB.

Data collection is completed based on the aforementioned processing. Based on these, we divided
the collected datasets into separate sets for training and testing. For training, we randomly selected
2060 pairs from DLCOD and combined them with SLCOD, creating a training set with 3917 pairs.
For testing, the remaining DLCOD data was split into two sets based on verification difficulty: Test-
Easy with 220 pairs and Test-Hard with 320 pairs. Fig. 8 presents examples from these datasets.
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Figure 7: The formation process of our datasets for performing COD of lensless imaging measure-
ments.

A.2 COMPARISONS WITH DETECTION-AFTER-RECONSTRUCTION STRATEGY

To investigate the effect of the detection-after-reconstruction strategy, we employ the state-of-the-
art FlatNet (Khan et al. (2022)) for reconstruction. Subsequently, we apply EyeCoD (You et al.
(2023)), LLI T (Pan et al. (2021a)), LOINet (Yin et al. (2022)), MSCAF-Net (Liu et al. (2023)),
OCENet (Liu et al. (2022)), and ZoomNet (Pang et al. (2022)) for COD. For equitable comparisons,
our method replaces the OFE module with FlatNet. In Fig. 9 (b), the reconstructed image by FlatNet
closely resembles the original scene in Fig. 9 (a).
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Figure 8: Examples of our datasets. Each row of images from top to bottom represents the lensless
imaging measurements, the underlying scenes, label maps, and the annotation visualizations (i.e.,
the label maps are overlaid on the underlying scenes to show the annotations).

When performing COD based on the reconstructed results, our method (Fig. 9 (d)) consistently out-
performs advanced COD methods such as MSCAF-Net(Liu et al. (2023)) (Fig. 9 (h)), OCENet(Liu
et al. (2022)) (Fig. 9 (i)), and ZoomNet(Pang et al. (2022)) (Fig.9 (j)). Additionally, we provide
quantitative results of the detection-after-reconstruction strategy in Tab. 4. Compared with the re-
sults in Tab. 1, the detection-after-reconstruction paradigm yields improvements of up to 10% for
all compared methods in terms of Fw

β , at the cost of huge computational complexity. These findings
validate the promising potential of direct COD on lensless imaging measurements.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 9: Qualitative comparisons of COD by detection-after-reconstruction strategy on Test-Hard
dataset. The (d)–(j) denote the results of RGANet (ours), EyeCoD (You et al. (2023)), LLI T (Pan
et al. (2021a)), LOINet (Yin et al. (2022)), MSCAF-Net (Liu et al. (2023)), OCENet (Liu et al.
(2022)), and ZoomNet (Pang et al. (2022)). The (a) is the original scenes, (b) is the reconstruction
results by FlatNet (Khan et al. (2022)), and (c) is the label maps.

A.3 COMPARISONS WITH LATEST COD METHODS

To further validate the superiority of our method, we select two recent methods (FEDER He et al.
(2023) and FSPNet Huang et al. (2023)) and conducted comparative experiments based on the set-
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Table 4: Quantitative results of COD for lensless imaging measurements by detection-after-
reconstruction strategy on Test-Easy and Test-Hard datasets. The first-ranked results are highlighted
in red.

Method FLOPs (G) #Param (M) Test-Easy Test-Hard
Fw
β ↑ M ↓ Eξ ↑ Sα ↑ Fw

β ↑ M ↓ Eξ ↑ Sα ↑
FlatNet + EyeCoD 204.27 86.32 0.810 0.085 0.823 0.807 0.708 0.091 0.832 0.794
FlatNet + LLI T 164.25 76.63 0.836 0.063 0.887 0.859 0.729 0.075 0.847 0.835

FlatNet + LOINet 126.32 84.71 0.843 0.054 0.897 0.868 0.751 0.063 0.866 0.827
FlatNet + MSCAF-Net 182.94 89.72 0.831 0.071 0.889 0.851 0.737 0.078 0.856 0.804

FlatNet + OCENet 133.22 114.41 0.829 0.057 0.876 0.853 0.741 0.071 0.852 0.816
FlatNet + ZoomNet 159.31 91.98 0.847 0.051 0.903 0.871 0.752 0.059 0.869 0.831

FlatNet + Ours 48.62 39.45 0.815 0.079 0.896 0.834 0.705 0.098 0.845 0.770

Measurements Scene FEDER FSPNet Ours GT

Figure 10: Comparison results with the latest COD methods, such as FEDER He et al. (2023) and
FSPNet Huang et al. (2023), and ours.

tings and open-source code provided earlier. The corresponding qualitative and quantitative results
are presented in Fig. 10 and Tab. 5. As evidenced by the results, the comparison methods show sig-
nificantly lower performance in terms of object detection completeness, with the quantitative metrics
further supporting this conclusion.

A.4 COMPARISONS WITH STATE-OF-THE-ART COD METHODS ON REAL NATURAL SCENE

To verify the generalization ability in natural scenes, we conduct additional experiments using a
dataset that captures concealed scenarios in natural environments, free from screen-based biases.
This dataset, consisting of 34 pairs of lensless imaging data, reconstructed scenes, and ground truths,
covers a broader range of wavelengths, allowing us to evaluate the model performance in unfiltered,

Table 5: Quantitative results by latest COD methods. The first-ranked results are highlighted in red.

Method Test-Easy Test-Hard
Fw
β ↑ M ↓ Eξ ↑ Sα ↑ Fw

β ↑ M ↓ Eξ ↑ Sα ↑

FEDER 0.741 0.113 0.837 0.797 0.539 0.159 0.746 0.712
FSPNet 0.757 0.105 0.845 0.816 0.584 0.131 0.757 0.724

Ours 0.815 0.079 0.896 0.834 0.705 0.098 0.845 0.770
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Figure 11: Comparison results with state-of-the-art COD methods on real natural scene.

(a) (b) (c) (d) (e) (f)

Figure 12: Illustration of failure cases. We show examples from (d) our method and the state-of-
the-art methods such as (e) EyeCoD and (f) ZoomNet. The (a)–(c) represent the lensless imaging
measurements, underlying scenes, and label maps, respectively.

real-world conditions. The results shown in Fig. 11 highlight the effectiveness and robustness of our
method in real-world conditions, extending its capabilities beyond screen-based data.

A.5 DISCUSSIONS AND LIMITATIONS

Our method detects concealed objects for lensless imaging with high precision as illustrated in the
above results. However, our method fails to reason well for scenes with low contrast, extremely
cluttered backgrounds, and some small objects are illustrated in Fig. 12. Specifically, concealed
objects implied in the above scenes suffer from incomplete detection and incorrect object location
by our method and advanced methods, such as EyeCoD and ZoomNet. In the future, we will dedicate
more efforts to improving the COD accuracy in these cases.
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