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Abstract

Recent advances in bioengineering have enabled the creation of biological neural
networks in vitro, raising the prospect of novel, unconventional platforms that
can leverage genuine biological computation. The technology could help unlock
computing paradigms that could be faster, more powerful, and more energy efficient
than the silicon-based architectures that dominate today’s computing landscape.
However, engineering cell cultures for computing applications presents a radical
departure from digital von Neumann architectures that computer scientists have
grown accustomed to and will require a rethink of the entire stack. Here, we
provide a brief overview of the key technologies, principles, and challenges of
this emerging interdisciplinary field. We argue that seizing on its potential will
require the development of new machine learning approaches that can process the
vast observable activity of neuronal cell cultures and learn to control and make
sense of their neural code. Such an effort could provide a pathway for leveraging
biological neural networks and contribute to our understanding of what makes
biological learning in neurons so incredibly efficient, holding broader lessons for
the development of next-generation AI systems.

1 Introduction

In recent years, two mutually influential fields, artificial intelligence (AI) and neuroscience, have
witnessed revolutionary developments leading to new synergistic opportunities. The remarkable
success of large-scale neural networks in machine learning (ML) has enabled the effective modeling of
complex data patterns and relationships across diverse domains such as natural language processing,
computer vision, and time-series analysis [6]. In bioengineering, groundbreaking work in cellular
reprogramming has enabled the conversion of ordinary human cells to stem cells [48], facilitating the
in vitro cultivation of brain cell cultures for study and application outside of their natural biological
context [46]. These advances make possible an emerging interdisciplinary effort to develop machine
learning models that learn to interact with in vitro biological neural networks.

This primer presents a brief and introductory overview of this development and its potential. Review-
ing long-standing efforts in multiple disciplines, we illustrate a possible strategy to leverage in vitro
“wetware” that integrates work on neural simulation, spiking neural networks, surrogate optimization,
neuromorphic computing, and machine learning models. Apart from delivering “wetware” substrates
for computing, this undertaking can also serve as a vehicle for gaining a deeper understanding of the
mechanisms that make biological neural processing so efficient. Thus, we expect that engineered
living biological systems will continue to drive progress in ML and neuroscience and ultimately
contribute to alternative hardware for artificial intelligence applications.
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2 Principles, technologies, and challenges

To begin, this section 2 reviews key principles, technologies, and challenges. Although our review is
far from comprehensive, it provides pointers to surveys in the respective disciplines that shape this
emerging field. Against this background, in Section 3, we sketch out a possible pathway to leverage
machine learning techniques to learn to harness in vitro systems. We discuss open challenges and
future directions the community might help address, before concluding in Section 4.

2.1 Biological neural networks

Given the significant success of neural networks in machine learning it can be easy to forget that
artificial neurons are a radical simplification of their biological counterparts that originally inspired
them. Biological neurons do not only encode information in a fundamentally different way through
spiking temporal dynamics [44], but also leverage processes such as synaptic, homeostatic and
structural plasticity [3, 60], local error propagation via dendritic computation [39, 33], or neuromod-
ulation [12] whose complexity far exceeds those of artificial neurons. Thus, it is no surprise that
improvements in artificial neural networks continue to seek inspiration from neurophysiology and
neuroscience [32, 65]. At the same time, despite significant progress, our understanding of biological
neural computing leaves much to be desired. In particular, while the huge divergence in power
requirements between artificial and biological neural networks suggests a greater energy efficiency of
biological neural learning, exactly how it is achieved remains unclear. At a lower level, however, the
general physiological principles that give rise to the complex neural dynamics have been uncovered.
Put simply, biological neurons transmit signals in the form of potential differences between ions that
are separated by the cell membrane [17]. The opening of ion channels in the membrane causes the
cell to depolarize, a process that propagates along the membrane toward downstream cells. Upon
reaching the synaptic terminal, neurotransmitters are released that diffuse to and induce a current in
the post-synaptic neuron, which continues the signal transmission chain.

2.2 Neural recording and stimulation

Fundamentally, these physiological processes can be manipulated in multiple ways [59]. For one,
changing the extracellular potential can illicit depolarization and thus induce spiking activity. Alterna-
tively, manipulation of the ion-channel permeability can alter the current flow and neural processing
as a result. More fundamentally, neurotransmitter and blocker agents can interfere with the chemical
balance at the synapses and modulate the synaptic neuro-transmission. In practice, experimental
techniques leverage these principles to establish some level of control over neural dynamics.

Multi-electrode arrays As one of the most established neuromodulation techniques [40, 50],
electrical stimulation is commonly realized with extra-cellular electrodes that can detect and deliver
potential differences in surrounding cells [43]. In particular, multi-electrode arrays (MEAs) that
arrange electrodes in configurable mesh-like layouts allow high-resolution electrophysiological
measurements with minimal disruption to cell tissues [10]. However, a major limitation of electrical
stimulation is its inability to target specific cells and regions due to current spread [54].

Optogenetic stimulation Optogenetics has emerged as a promising alternative for neurostimu-
lation, as it uses light to manipulate specific neurons and neuron groups [15, 57, 11]. The method
involves introducing foreign light-sensitive transmembrane proteins, known as opsins, into target cell
populations [35]. Opsins may, for instance, be delivered via viral infection, allowing the targeting of
specific cells [63]. Subsequent light stimulation can then precisely activate or deactivate ion channels
and neuronal activity without affecting neighboring cells. In particular, there is a wide variety of
different microbial and genetically modified opsins that allow flexible experimental design and
trade-offs [34]. For example, certain opsins may respond to low-intensity light, minimizing potential
cell damage [42]. Optogenetic stimulation also works well with MEA-based systems, allowing for
increasingly integrated experimentation platforms [45, 8, 53]. Thus, it is no surprise that optogenetic
stimulation is seeing widespread adoption for in vitro experimentation [64, 36, 23, 67, 57, 11].

Continued development Besides these mainstream techniques, approaches such as magnetic
stimulation [59, 9] or ultrasonic stimulation [28] continue to be developed and may emerge as
additional options in the future.
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2.2.1 Neural coding and data processing

Decoding information from biological neurons is an essential yet challenging process. Modern
recording devices, such as MEAs, allow the simultaneous recording of activity from hundreds to
thousands of neurons [25] making neural data extremely high dimensional. Neural processes are
also inherently stochastic. Synaptic vesicles, for example, are known to spontaneously release
neurotransmitters even in the absence of evoked activity, causing random activity fluctuations as
a result [2]. At the same time, recording devices and techniques introduce additional noise and
uncertainty. For instance, since MEAs typically record extracellularly from a bunch of cells, complex
post-processing algorithms that determine which neurons fired are required, adding another layer of
uncertainty [21].

Several neural coding strategies have been proposed, such as rate, temporal, rank, and direct coding,
to extract and represent the information content of neural activity [47, 62]. However, it remains
unclear to what degree biological neural networks actually employ such encoding schemes. Although
there is significant evidence that cognitive processes depend on the precise timing of neuronal activity
[52], how information processing is reliably sustained in the presence of noise is an open question.

An alternative, higher-level approach to processing and decoding neural activity involves uncovering
low-dimensional representations of high-dimensional neural data. Recent work suggests that neural
activity can be effectively represented in fewer dimensions, indicating that the high-dimensional nature
of current neural data might be highly redundant [26]. However, identifying these low-dimensional
representations remains a challenge. Neural population activity exhibits inherent nonlinearity [19],
yet many widely used dimensionality reduction techniques, such as Principal Component Analysis
(PCA), make linear assumptions and may not capture data patterns effectively. At the same time,
non-linear dimensionality reduction methods, such as autoencoders, often struggle with issues such
as noise and overfitting in neural data [1].

As such, further advances are necessary in processing and decoding neural recordings. For example,
the study of neural dynamics could help fill knowledge gaps and automatically uncover functional
and structural properties of neural systems [41].

2.3 In vitro neural networks

Notably, in vitro systems can increasingly support these efforts by providing a test bed for experi-
mentation with realistic neural activity and extensive options for causal intervention. While the field
was historically restricted to recording and stimulation technology in vivo [18], advances in bioengi-
neering are opening up new possibilities for the study and use of neural systems and technologies in
vitro.

Induced pluripotent stem cells The key to this development is induced pluripotent stem cells (iPS).
They are a type of pluripotent cell derived from adult somatic cells that have been reprogrammed
to an embryonic-like state, providing a virtually unlimited and less ethically problematic source of
cells for biomedical research [48]. Initially developed using mouse fibroblasts, the development
of human iPS cells (hiPSCs) shortly followed, with tremendous implications for biomedical and
adjacent fields [61, 48, 29, 37]. In particular, the cheaper and more reliable production of cells with
characteristics of embryonic stem cells makes it possible to consider the development of computing
applications based on living neurons [46].

Organoids Notably, the so-called “organoid” technology is driving further progress to enable
increasingly sophisticated applications [68]. Organoids are stem cell-derived, artificially generated
three-dimensional (3D) cultures of cells. They can contain different cell types that self-organize
through cell-sorting processes and spatial restrictions. Importantly, organoids can be generated in
vitro from iPS cells. Researchers often opt for 3D cultures (organoids) over two-dimensional cultures
(iPS cells) to obtain more physiologically realistic cellular compositions and achieve extensive culture
growth, all while maintaining the potential for high-throughput screenings and analysis [51]. For
instance, high-content imaging (HCI) and machine learning strategies allow for a fast analysis of data
derived from organoids [13]. Overall, the technology has matured to the point where leveraging of
cell cultures for computing applications is moving into the realm of distinct possibility [46].
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3 Machine learning for leveraging in vitro neural networks

Despite the many advances and increasing technological sophistication, the engineering of cell
cultures for computing applications faces, as we will argue, a bootstrapping problem. To illustrate
this, consider that the development of conventional von Neumann type computers was driven by a
theory of computation developed before any prototype of real-world computers would emerge. The
question was not how a Turing-machine-like device could compute in theory, but how to solve a
host of practical challenges to realize its real-world implementation. Engineering of biological tissue
for computing, on the other hand, faces two problems at once: figuring out the practical challenges
of this effort while at the same time developing a theory of how what has been developed works
(or does not work). This has important methodological implications. Notably, data collection and
algorithmic analysis of neural activity in itself may be of limited value as long as a formal framework
for its interpretation is lacking [30]. Moreover, it is important to keep in mind that the engineered
cell culture may not behave as it would in a healthy in vivo subject and is in this sense “functioning
correctly”. Furthermore, the high data dimensionality of recording and stimulation devices paired
with the low signal-to-noise ratio makes systematic interactions with the system challenging (see
Section 2). The extensive post-processing to sort and reconstruct spiking activity from the raw data
adds another layer of uncertainty in itself [21, 16].

3.1 Towards end-to-end optimization in vitro

In practice, however, despite the numerous challenges, there is a growing list of successes in learning
to control and leverage neural systems in computing applications. For instance, brain-computer
interfaces that are tested with human patients have been demonstrated to decode thought from
neural activity recordings with remarkable accuracy [20]. For simpler organisms like the nematode
Caenorhabditis elegans, optogenetic stimulation has been used to induce basic motor control [31].
Furthermore, the activity feedback of in vitro neurons has been used to realize basic video game
play [27]. Arguably, the key to these successes has been effective machine learning methods that
can build rich, implicit representations of the observed system dynamics. By framing the problem
as a control problem amenable to optimization, it becomes possible to steer the neural activity
toward desired states and dynamics despite the limited understanding and experimental control of the
neural dynamics. The continued progress in machine learning supports these developments further.
The rise of attention-based transformer architectures provides a scalable and effective way to build
powerful representations from large-scale pre-training corpora that can be fine-tuned to specific
applications [6]. To illustrate the potential of these developments and motivate further research,
we sketch out a possible work in this area in the remainder of this paper. Crucially, it may be
possible to sidestep bootstrapping issues by framing the bio-engineering task as a general, end-to-end
optimization problem to improve the in vitro computing capabilities while uncovering the working
principles of biological information processing.

Learning control model While the technology and capabilities of experimental systems can vary
significantly (Section 2), at a basic level, controlling in vitro cell cultures comes down to figuring
out a stimulation sequence in response to observed activity. Specifically, a control model needs
to learn to predict appropriate stimulation of the available input channels at certain times. This
may be, for instance, a sequence of times when to deliver stimulation through certain electrodes
or via laser-induced optogenetic means. As such, the control model can be characterized as a
mapping f : RN×T → Rj(x)×T ′

that takes N -dimensional inputs and outputs a sequence of
system stimulation times. The optimization objective is to find a set of parameters θ such that the
stimulation sequence fθ(x) = k⃗ steers the observable neural dynamics of the biological neural
network BNN(k⃗) = y⃗ in some desirable way. Note that this formulation does not assume anything
about the internal characteristics of the neural systems. Training f successfully means not only
overcoming the practical challenges of controlling a noisy, complex system, but it also implies
uncovering some properties of the BNN that can be exploited to achieve the given objective. For
instance, the model could simply use the BNN as a random projection into a higher dimensional
space (this would be reminiscent of reservoir computing [14]). A more sophisticated model, however,
may learn to exploit more intricate properties of the BNN . For example, the model may leverage
present plasticity by repeatedly delivering simulations to reconfigure the synaptic connectivity of the
network.
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Optimization approach How to optimize f effectively is, in general, as much of an open question
as what model and training approach would be most suitable. There are, however, principles that
can guide the experimentation. First, the high cost and slow pace of lab experiments means that the
training of f will likely rely on a pretraining scheme using synthetic data with subsequent fine-tuning
on the more limited real-world data.

Notably, the long-standing developments in high-fidelity neural simulation present a rich resource
for generating realistic synthetic data of neural dynamics. Thus, developing a simulation-driven
pretraining corpus for a large-scale sequence model f is likely a worthwhile first step. One key
question in this effort will be what level of simulation fidelity is required to allow f to represent
relevant neural dynamics without over-fitting. Evidence from real-world data suggests that pre-
trained representations may be able to bridge considerable transfer gaps. For instance, it has been
demonstrated that pre-trained representations of neural activity can be general enough to transfer
to different data domains, for example, between muscular electromyographic (EMG) signals to
electroencephalographic (EEG) brain activity [4]. It may thus be sufficient to generate and train on
synthetic data that only loosely match the lab data encountered at fine-tuning and inference time.

With suitable and sufficient data in place, the question becomes how to optimize fθ. While non-
continuous spiking dynamics are not differentiable in general, work on spiking neural networks
(SNNs) has brought about a wide range of applicable optimization techniques [44, 49, 66]. In
particular, surrogate gradient techniques offer a straightforward way to apply backpropagation-driven
training to otherwise non-differentiable spiking dynamics [38]. Moreover, for the leaky-integrate
and fire neuron model, several methods [5, 7, 58] provide exact gradients and can implement
event-based gradient computation within the dynamical system [56]. These advances allow for a
simulation framework that integrates the power of backpropagation-based machine learning models
with theoretical and experimental models of biological neural networks [41].

With approximate or exact gradients available in simulation, it becomes possible to pre-train f in an
end-to-end fashion using conventional gradient-descent optimization strategies. It is worth stressing
that the objective in this setting is to find parameters such that f exploits the biological neural network
to minimize the loss, as opposed to minimizing the loss through f directly. This is reminiscent of
a teacher-student [24] or a knowledge distillation setting [22], and work in this area may provide
lessons for effective training.

Application in vitro Finally, with a pre-trained model f as a controller, it should be possible
to “train” biological neural networks in vitro. To illustrate one possibility, consider the following
approach. Training data x are encoded with the pre-trained f in a stimulation pattern k⃗ that is fed
into both the real-world lab system and the corresponding differentiable simulation. The cell culture
output activity is recorded and used to compute the backward pass in the differentiable simulator
with respect to fθ. The resulting gradient that updates fθ will differ from the unknowable “true”
gradient of the in vitro neural network, but it may be good enough to ensure forward progress in the
iterative fine-tuning of f . However, while a similar optimization approach has been used successfully
to estimate the gradients of other real-world physical systems [55], how to effectively estimate such
“good enough” gradients of the much more complicated in vitro systems presents an important open
challenge. Leveraging simulation and data from lab experiments in such a way may produce data-
driven training strategies whose effectiveness can be continually refined and experimentally verified.
Overall, it is plausible that converging efforts, guided by feedback from real-world experiments, will
help pave the way to increasingly sophisticated computing applications in vitro.

4 Conclusion

We have reviewed an emerging interdisciplinary endeavor to develop the technology to harness in vitro
biological neural networks for computing applications. Key to this effort are machine learning models
and optimization approaches that are able to learn to effectively interact with in vitro systems. Besides
the direct practical motivations, it is likely that continued progress in this field will help uncover the
working principles of biological neural processing. As such, engineered living biological networks
may ultimately pave the way for next-generation hardware for artificial intelligence applications, be
it in silico, in vitro, or both.
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