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ABSTRACT

Large Language Models (LLMs) have advanced rapidly but face significant mem-
ory demands. While quantization has shown promise for LLMs, current methods
typically require lengthy training to alleviate the performance degradation from
quantization loss. However, deploying LLMs across diverse scenarios with differ-
ent resource constraints, e.g., servers and personal computers, requires repeated
training per application, which amplifies the lengthy training problem. Given
that, it is advantageous to train a once-for-all (OFA) supernet capable of yielding
diverse optimal subnets for downstream applications through one-shot training.
Nonetheless, the scale of current language models impedes efficiency and amplifies
interference from weight sharing between subnets. We make an initial attempt
to extend the once-for-all framework to large language models. Specifically, we
decouple shared weights to eliminate the interference and incorporate Low-Rank
adapters for training efficiency. Furthermore, we observe the imbalance allocation
of training resources from the traditional uniform sampling. A non-parametric
scheduler is introduced to adjust the sampling rate for each quantization configura-
tion, achieving a more balanced allocation among subnets with varying demands.
We validate the approach on LLaMA2 families and Mistral on downstream evalu-
ation, demonstrating high performance while significantly reducing deployment
time faced with multiple scenarios.

1 INTRODUCTION

Large Language Models have shown surprising performance in the past years. However, they suffer
from huge storage and computational costs; for example, inference with a LLaMA (Touvron et al.,
2023) model with 70B parameters needs at least 280 GB of GPU memory. To further boost the LLMs
development for fitting diverse scenarios, recent studies have adopted quantization to compress the
model size and reduce the computational costs.

Previous works have extensively explored Post-Training Quantization (Frantar et al., 2022; Xiao
et al., 2023; Lin et al., 2023) and Quantization-Aware Training (Dettmers et al., 2024; Xu et al.,
2023) to alleviate the memory cost of LLMs. Post-training quantization (PTQ) offers a fast model
compression approach but may lead to performance degradation. In contrast, Quantization-aware
training (QAT) alleviates performance losses by simulating quantization errors during training,
although it is significantly more time-consuming than standard fine-tuning. When deploying LLMs
for diverse scenarios with varying resource constraints, repeating quantization-aware training for each
scenario is impractical, as shown in Figure 1 (a). From the above analysis, the training major the cost
of deployments; hence, it would be beneficial to train a once-for-all (OFA) supernet. This supernet
can generate optimal subnets with diverse configurations (e.g., quantization bit-width) tailored to
specific applications, as shown in Figure 1 (b, c).

To the best of our knowledge, once-for-all quantization-aware training for LLMs has not been
investigated, primarily due to the large scale of current language models and the high cost of
traditional QAT. Previous research on once-for-all strategies primarily employs a weight-sharing
approach to avoid the model size explosion that would result from allocating separate weights for
each configuration (Wang et al., 2020; Chen et al., 2021). However, the weight-sharing combined
with traditional QAT presents two significant challenges: 1) various quantization configurations (e.g.,
2, 3, 4 bit-width) share the weight but have different orders of magnitude of quantization noise,
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Figure 1: (a) Compressing Large Language Models (LLMs) for deployment across various platforms
while ensuring performance is a challenging task. Applying Quantization-Aware Training (QAT) for
each platform is both time-consuming and costly. (b) Instead, our objective is to one-shot fine-tune
one quantized LLM that can be efficiently specialized for multiple platforms. The one-shot fine-
tuning process significantly reduces the investment. (c) The LLM-QFA framework excels in swiftly
delivering optimal networks under different resource constraints in one shot, whereas the traditional
method requires repeated fine-tuning.

resulting in the noteworthy interference problem and optimization challenges (Tang et al., 2024). 2)
Tradition QAT is based on full-finetuning, combined with the time-consuming process of simulating
quantization errors, which is inefficient even under the weight-sharing scheme.

Furthermore, our observations reveal that the uniform sampling strategy used by traditional OFA
methods leads to an imbalance in the allocation of training resources. As illustrated in Figure 3,
subnets derived from uniform sampling exhibit a bias toward their average bit-width, which falls
into a low variance distribution. Consequently, subnets whose average bit-width deviates from this
distribution are prone to under-fitting.

Integrating these aspects, we propose the LLM-QFA (Quantization-Aware Fine-tuning one LLM
for All scenarios) framework that efficiently fine-tunes a once-for-all supernet to later generate
optimal subnets for diverse scenarios. First, we introduce interference-less fine-tuning to decouple the
weights of different configurations, accompanied by Low-Rank adapters to enable efficient training.
Specifically, we quantize the weights with different quantization configurations and freeze them,
then apply Low-Rank adapters to each quantized weight for later fine-tuning. Second, we propose
a resource-balanced sampling strategy, which utilizes a non-parametric scheduler that dynamically
adjusts the sampling strategy across training steps.

To evaluate our proposed framework, we conduct experiments on LLaMA2 models and validate the
performance on the MMLU and Common Sense QA benchmarks. The results show that our proposed
framework can yield diverse optimal quantized models for various scenarios. It is worth noting that
our framework can be easily scaled up to even larger models since the training time per step is the
same with previous LoRA-tuning (Xu et al., 2023). We summarize our contributions as follows:

• We first introduce the once-for-all training paradigm for large language models (LLMs),
which helps to reduce the training cost for deploying LLMs across diverse scenarios.

• we decouple weights of configurations to mitigate interference issues and incorporate Low-
Rank adapters to enhance the training efficiency.

• To address the imbalance training caused by the uniform sampling strategy, we propose a
resource-balanced sampling strategy that focuses on providing fair sampled opportunity
across subnets with various resource demands.

2 RELATED WORK

LLM Quantization. Quantization is a compression technique that reduces the bit-width of weights
and/or activations to save memory and accelerate inference. The quantization of LLM can be
categorized into two main lines. The first one is post-training quantization (PTQ) (Frantar et al.,
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2022; Xiao et al., 2023; Lin et al., 2023; Kim et al., 2023), which focuses on reducing the memory
footprint without retraining. Although lots of designs are designed to mitigate the degradation of
performance, e.g., handling outliers in parameters (Kim et al., 2023; Li et al., 2023a) and dynamic
quantization (Xiao et al., 2023; Lin et al., 2023), PTQ still have to drop the ultra-low bit-width (e.g.,
2 bit and 3 bit) to guarantee the performance. Hence, the second line, Quantization-Aware Training
(QAT) can help alleviate the performance drop. The first QAT method applied on LLM (Liu et al.,
2023) inherits the idea of traditional QAT, which is computationally expensive in the fine-tuning
stage. To reduce the training cost, (Dettmers et al., 2024; Xu et al., 2023; Guo et al., 2023; Li et al.,
2023b) utilizing LoRA-tuning on quantized weight and gain a decent performance. Specifically, (Xu
et al., 2023) adds constraints on LoRA to maintain the quantization property after merging between
LoRA weight and quantization weight, which firstly brings LoRA-tuning to actual quantization-aware
training. Though Lora-tuning can save memory footprint and training costs, when faced with diverse
development scenarios with different resource constraints, LoRA-tuning still falls into the pitfall of
repeated training.

Once for All training. Once-for-all training (OFA) methods (Wang et al., 2020; Chen et al., 2021; Yu
et al., 2020; Tang et al., 2023; 2022) aim to train a one-shot supernet that can serve diverse scenarios
with different resource constraints and save expensive retraining per scenario. On non-LLMs, the
success of one-shot training comes from the weight-sharing scheme between different configurations
(Chen et al., 2021; Yu et al., 2020), while weight-sharing also brings interference between different
bit-widths for quantization-aware training (Tang et al., 2024; 2023). Moreover, traditional OFA with
weight sharing necessitates fine-tuning entire parameters, which is impracticable for LLMs due to
their extensive size.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

This paper focuses on the dimension of quantization to compress the LLMs for efficient deployment
across diverse scenarios, which involves 1) post-training quantization to compress LLMs and 2)
constructing the layer-wise mixed-precision supernet based on quantized LLMs and 3) optimizing
the supernet.

Post-training Quantization To reduce memory cost, it is effective to quantize the pre-trained weight
of LLMs in low-bit representation; mathematically, given the bit-width N and the target weight W,
the quantization process can be defined as

Ŵ = ⌊W
α

⌉, α = (max(|W|))/(2N−1 − 1), (1)

where α denotes scaling factors. ⌊·⌉ denoted the rounding operation. Ŵ is the quantized weight, and
its elements are stored in a set of {0, 1, . . . , 2N − 1}. Here, only two float point numbers and a series
of integers are needed for storage and computation memory,

Layer-wise Mixed-precision Supernet In contrast to uniform bit-width quantization, mixed-
precision quantization, which allows for varying bit-widths across different layers, can yield superior
performance by capitalizing on the inherent redundancy in specific layers. In this work, we build a
supernet containing different quantization bit-width configurations layer-wise. Each single path of
the supernets denotes a mixed-precision LLM, and we aim to optimize all single paths, which can be
formulated as

{s1, s2, . . . , si, ..., sN−1, sN},where si = [Q1,i1 , Q2,i2 , . . . , QL,iL ], (2)
where si denotes one subnet. L represents the number of layers in the large model. We quantize
the model into N different quantization bit-widths, denoted as B = {b1, b2, . . . , bN}. Ql,i represent
the quantized l-th layer with bit-width bi. We apply quantize the pre-trained weight W with 2, 3, 4
bit-width quantization. Hence, the quantity of subnets in the space is 3L. Our target is to 1) optimize
all the subnets at once and 2) offer optimal subnets under given resource constraints.

3.2 ONE-SHOT OPTIMIZATION

Interference-Less Fine-tuning. We have observed that previous one-shot training methodologies
(Cai et al., 2019; Yu et al., 2020) gained success from their weight-sharing scheme, which avoids
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Figure 2: Illustration of the goal of LLM-QFA. Unlike traditional OFA with Quantization-Aware Training, our
method avoids interference issues by decoupling shared weights and incorporating the Low-Rank Adapter to
enhance training efficiency further. Additionally, we employ a resource-balance sampling strategy, accelerating
the convergence of subnets across resource constraints.

large model sizes caused by saving the weight of each configuration. However, the weight-sharing
scheme also brings interference problems, as shown in Figure 2 (a).

Yl = X · αl · ⌊
W

αl
⌉, (3)

∂
∑L

l=1 Lossl

∂W
=

L∑
l=1

(
∂Lossl
∂Yl

·X · αl ·
∂⌊W

αl
⌉

∂W
αl

) = X ·
L∑

l=1

∂Lossl
∂Yl

, (4)

where l denotes different quantization settings, and Yl varies for different quantization error.
Specifically, high and low bit-width have different quantization noise, and significantly superimposed
quantization noise leads to optimization challenges (Tang et al., 2024).

To alleviate interference between different configurations, the straightforward approach is to decouple
shared weights and assign weights for each configuration. Hence, we incorporate low-rank adapters
to represent each quantization configuration, which only brings negligible extra costs compared with
the size of LLMs, as shown in Figure 2 (b). Specifically, the forward process can be defined as:

Y = X · αl · ⌊
W

αl
⌉+BlAl ·X,

∂Lossl
∂BlAl

= X · ∂Lossl
∂Yl

, (5)

where Al,Bl denotes the weight of Low-Rank adapters for lth quantization configuration. It is
noteworthy that a low-rank adapter is updated solely for one quantization setting, which is crucial for
avoiding interference among different configurations.

To avoid heterogeneity between float point LoRA weights and quantized weight, which hinder the
acceleration for inference, we follow QA-LoRA (Xu et al., 2023) to add constraints on adapters’
weight for preserving quantization property after merging.

Integrating the above designs, the task of optimizing all subnets can be formulated as

min
WL

∑
ai

Lval

(
f(WL,WQ, ai)

)
, (6)

where f(WL,WQ, ai) denotes the process that forms a sub-network according to architectural
configuration ai and inherits corresponding quantization weight WQ and LoRA weight WL.

Resource-Balance Sampling Strategy. Fine-tuning all the subnets is a multi-objective problem.
Given the impracticality of enumerating and tuning every subnet at each training iteration, a simplistic
yet sub-optimal approach is to uniformly sample a few subnets from the configuration space for fine-
tuning. Specifically, each layer has a uniform probability of choosing one quantization configuration,
which can be formulated as P(Ql,i) =

1
N .
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Figure 3: (a) Distribution of average bit-width of samples obtained from uniform sampling, approx-
imating a low variance Gaussian distribution. (b) Mixed Gaussian Distribution can approximate
Uniform Distribution. (c) Showcase of our Resource-Balance sampling strategy.

Though it seems fair, the naive uniform sampling strategy is biased toward subnets whose average
bit-width is close to its expected value. Assume variable qi as quantization bit-width for ith layer.
Variables [q1, q2, . . . qL] are independent; hence the average of bit-width can be formulated as:

Var[Bit(s)] = Var[
∑L

i=1 qi

L
] =

1

L2

L∑
i=1

Var[qi] =
σ2

L
, (7)

where the Bit(s) denotes the average bit-width of the sampled and σ2 denotes the variance of qi.
As shown in Figure 3 (a), the distribution of Bit(s) is close to a normal distribution, where the
variance is extremely small when L = 32. Hence, the subnet with an average bit-width far from the
distribution center would get unbalanced training resources.

Revealed by Figure 3 (b), straightforwardly stacking normal distributions with different means
can approximate a uniform distribution for Bit(s) and alleviate the imbalance problem. From
the implementation perspective, mixed Gaussian distribution can be achieved by setting different
sampling strategies for configurations across training steps. The process can be formulated as

E[Bit(s, t)] = (bN − b1) · |2 ·
t

SL
− 1|+ b1, (8)

where SL is the length of one schedule epoch. bN represents the maximum bit-width and b1 denotes
the minimum bit-width. Within one schedule, the mean of distribution would move from bN to b1
and then back to bN , leading to a smooth switchover between schedule epochs. Compared to the
uniform sampling strategy, our approach prevents bias on subnets in median size. Therefore, the
subnet space converges more efficiently, as shown in Figure 3 (c), which makes the following search
process more effective.

3.3 SEARCH OPTIMIZED SUBNET

We decouple the fine-tuning process and the searching process. No extra retraining cost is needed
when finding the optimal subnet under the given resource constraint. The searching process starts
with random searching, where a few subnets are sampled. Then, correlation analysis between the
subnets’ performance on the validation set and the quantization bit-width of each layer is conducted.
Learning from the correlation, the sensitivity of each layer to quantization bit-width can be obtained,
and the search space can be further narrowed down. Finally, we further sample subnets from the
narrowed search space, and the final optimal subnet is selected based on the performance of the
validation set.

4 EXPERIMENTS

4.1 SETTINGS

Models and Quantization. We conduct experiments on LLMs, LLaMA2-7b, LLaMA2-13b, and
Mistral. The quantization is based on GPTQ (Frantar et al., 2022) with 2, 3, 4 bit-width quantization.
The detailed quantization configuration, e.g., group size, and order, are consistent with QA-LoRA
(Xu et al., 2023).
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Figure 4: Left: The time required to obtain N specialized networks varies across methods. Our
proposed QFA approach significantly reduces the time cost compared to the QA-LoRA method and
achieves a comparable efficiency level to the pure quantization technique, GPTQ. Right: For each
method, we obtain three specialized networks under (2, 3, 4) bit constraints on the LLaMA2-7b
and LLaMA2-13B models. The average accuracy on the 5-shot MMLU benchmark for networks
quantized at (2, 3, 4) bits is reported. Although GPTQ can achieve a lower time cost, it is accompanied
by an unacceptable level of performance degradation. Full results are provided in Table 1.

Datasets and Training Details. We fine-tune models with Alpaca (Taori et al., 2023), which contains
52K instruction-following data generated from GPT 3.5 (Wang et al., 2022). The length of one
schedule epoch is 8k training steps. Following previous works(Dettmers et al., 2024; Xu et al.,
2023), we use a paged AdamW optimizer with a batch size 16 and a learning rate of 2× 10−5. The
training process is conducted on one A100 GPU, and only 8 GPU hours are needed to fine-tune one
LLaMA2-7b-based supernet with 10K steps.

Evaluation. We evaluate the performance of the models on MMLU (Hendrycks et al., 2021) and
Common Sense QA benchmarks. The MMLU dataset contains four categories: Humanities, STEM,
Social, and Other. The Common Sense QA benchmarks include HellaSwag (Zellers et al., 2019),
PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), ARC-e, ARC-c (Clark et al., 2018),
BoolQ (Clark et al., 2019), and OBQA (Mihaylov et al., 2018). For the MMLU Benchmark, we
search the optimal subnets on the MMLU evaluation dataset. Initially, we sampled the first 100
subnets randomly and subsequently employed a shrinkage strategy to sample an additional 50 subnets,
denoted as [100, 50]. For the Common Sense QA datasets, we similarly searched for optimal subnets
on the ARC-C dataset with [100,50] setting. We report the 0-shot and 5-shot accuracy on MMLU
and 5-shot accuracy on Common Sense QA benchmarks.

4.2 MAIN RESULTS

Comparisons with on MMLU. Figure 4 reports the comparison between LLM-QFA and
Quantization-Aware training methods (QA-LoRA) and the Post-Training Quantization method
(GPTQ) under (2, 3, 4) bit-widths. LLM-QFA demonstrates significantly higher efficiency than
QA-LoRA faced with multiple deployment scenarios. This advantage stems from the training cost
associated with LLM-QFA remaining constant, in contrast to the methods that scale linearly with
the number of deployment scenarios N. Although our approach incurs a modestly higher time cost
than GPTQ, the substantial performance degradation observed in GPTQ is unacceptable. Table 1
illustrates that, despite delivering only comparable performance under the 4-bit constraint, the average
metrics of our method across (2, 3, 4) bit constraints consistently surpass those of QA-LoRA and
GPTQ, without the need for costly repeated training.

Comparisons on Common Sense QA. We conduct the experiment on Common Sense QA with
LLaMA families and Mistral as shown in Table 2. Consistent with the findings from the MMLU
benchmark, LLM-QFA demonstrates comparable performance with baselines at extreme bit-width (2,
4) and outperforms at median bit-width (3). The advantage is significant with LLaMA2-13B under
3-bit constraints, where LLM-QFA gains 3.5% accuracy improvement over QA-LoRA.

LLM-QFA under Different Resource Constraints. Figure 5 summarizes the results of LLM-
QFA under different bit-width constraints. LLM-QFA achieves 45.0% ARC-C accuracy with
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Table 1: 0-shot and 5-shot accuracy (%) on the Massive Multitask Language Understanding (MMLU) dataset.
Each block is based on the same foundation model specified in the first row. For each method, we present the
metrics achieved under the bit-width resource constraints of 2, 3, 4, as well as the corresponding averages.

Method Bit MMLU (0-shot) MMLU (5-shot)
Const. Hums. STEM Social Other Avg. Hums. STEM Social Other Avg.

LLaMA2-7b 16 48.3 35.2 48.8 45.8 43.6 51.6 37.3 52.2 49.9 46.8
GPTQ 4 40.4 33.7 45.9 42.2 39.9 50.5 36.9 50.5 47.5 45.1
GPTQ 3 28.8 25.8 25.6 28.0 27.0 31.6 28.2 25.6 32.9 30.7
GPTQ 2 23.8 23.7 22.5 23.8 23.5 24.3 23.0 23.9 26.1 24.2
GPTQ Avg. 30.1 33.3
QA-LoRA 4 49.7 37.5 51.4 47.8 45.7 49.8 36.8 49.8 47.8 45.1
QA-LoRA 3 43.3 33.7 44.8 42.9 40.5 40.2 34.8 44.1 40.8 39.5
QA-LoRA 2 32.6 27.2 35.6 33.2 31.7 27.2 26.9 29.0 30.5 28.3
QA-LoRA Avg. 39.3 37.6
LLM-QFA 4 50.3 37.4 49.8 46.8 45.2 48.4 35.6 48.1 46.9 44.0
LLM-QFA 3 42.3 34.4 48.1 42.9 41.2 41.4 33.3 46.2 41.2 39.8
LLM-QFA 2 33.7 28.7 36.3 32.9 32.5 28.8 28.2 32.5 30.5 29.8
LLM-QFA Avg. 39.6 37.9
LLaMA2-13b 16 56.9 42.4 61.0 55.6 52.8 62.9 44.4 63.9 56.7 55.7
GPTQ 4 55.3 41.6 58.1 53.3 51.1 61.3 43.3 62.5 57.2 54.9
GPTQ 3 42.0 31.8 43.6 41.3 39.0 41.4 36.5 46.7 43.7 41.5
GPTQ 2 25.0 22.4 22.3 24.4 23.5 23.8 23.4 22.6 24.9 23.7
GPTQ Avg. 37.9 40.0
QA-LoRA 4 56.9 41.5 60.4 54.9 52.3 59.6 42.7 62.2 57.4 54.2
QA-LoRA 3 54.0 40.0 57.1 52.5 49.9 56.8 41.9 59.0 53.5 51.7
QA-LoRA 2 32.6 28.9 31.4 35.3 31.8 30.3 28.2 34.4 36.5 32.0
QA-LoRA Avg. 44.7 46.0
LLM-QFA 4 57.4 41.3 60.4 55.8 52.5 59.1 42.1 61.1 56.2 53.4
LLM-QFA 3 56.3 40.3 58.8 54.6 51.3 56.7 40.6 59.9 54.5 51.8
LLM-QFA 2 34.5 30.3 33.0 37.3 33.5 32.2 28.5 36.0 37.2 33.1
LLM-QFA Avg. 45.8 46.1

QA-LoRAOurs

Figure 5: LLM-QFA can deliver multiple optimal subnets under different constraints. Left: Compari-
son of ARC-C dataset; Right: Comparison of the rest of Common Sense QA tasks.

2.1 average bit-width, being 5% more accurate than QA-LoRA with similar resource demands.
Compared with QA-LoRA at 3-bit, our approach can achieve the same level of performance with

GPTQOurs QA-LoRA

Figure 6: Subnets sampled from LLM-QFA
show significant robustness over baselines
with simple mixed-precision.

fewer resources, a 1.2x reduction on ARC-C, and a 1.1x
reduction on the rest of Common Sense QA.

Impact of Mixed Precision and Quality of Optimiza-
tion. Previous results have significant performance im-
provement in the median resource constraints. To ensure
the gains are not solely due to mixed precision, we sam-
pled 100 mixed-precision configurations for both GPTQ
and QA-LoRA and evaluated them on the ARC-C dataset.
To be noticed, we evaluate mixed-precision QA-LoRA
based on the fine-tuned QA-LoRA weight at (2, 3, 4)
bit. Figure 6 demonstrates that performs more robustly
across varying resource demands, further validating that
our method can help optimize all the subnets, not just ben-
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Table 2: 5-shot accuracy (%) on the Common Sense QA tasks. Each block is based on the same
foundation model specified in the first row. We organize all results under different quantization bit
widths. Mixed precision configurations are searched on ARC-C, and the best configurations are tested
on the rest of the Common Sense QA tasks.

Method Bit Eval Test
Const. ARC-C HellaSwag PIQA WinoGrande ARC-e BoolQ OBQA Avg.

LLaMA2-7B 16 52.0 78.2 80.1 74.1 81.1 79.3 45.2 73.0
GPTQ 4 50.8 77.0 79.5 73.8 80.2 74.1 43.4 71.3
QA-LoRA 4 55.5 79.0 80.0 73.3 79.6 75.9 46.4 72.4
LLM-QFA 4 53.8 76.8 79.3 73.5 78.1 77.4 49.0 72.4
GPTQ 3 30.1 49.9 68.3 59.3 55.5 44.3 35.0 52.1
QA-LoRA 3 47.8 72.4 75.0 68.4 73.6 72.0 44.8 67.7
LLM-QFA 3 49.1 72.3 76.7 69.0 73.8 72.8 43.4 68.0
GPTQ 2 25.8 26.2 51.1 50.6 26.0 41.7 25.0 36.8
QA-LoRA 2 40.4 65.6 73.6 62.0 66.0 65.9 37.2 61.7
LLM-QFA 2 43.1 64.8 73.2 62.2 67.0 64.3 38.8 61.7

LLaMA2-13B 16 57.5 81.7 81.7 76.0 84.4 83.2 48.2 75.9
GPTQ 4 56.5 81.1 80.9 75.6 83.3 81.7 47.4 75.0
QA-LoRA 4 58.0 79.2 81.3 74.0 83.3 83.8 49.4 75.2
LLM-QFA 4 56.0 79.6 82.0 73.2 83.5 83.2 51.0 75.4
GPTQ 3 47.8 68.6 77.7 67.9 77.1 71.9 42.8 67.7
QA-LoRA 3 53.5 67.0 79.4 66.7 80.1 76.3 41.8 68.5
LLM-QFA 3 53.7 75.1 79.7 70.3 80.5 78.4 48.0 72.0
GPTQ 2 27.8 25.8 50.2 50.2 26.6 37.8 23.4 35.7
QA-LoRA 2 49.1 70.8 76.6 66.4 76.1 74.1 44.8 68.1
LLM-QFA 2 49.2 70.9 77.0 67.2 76.3 74.3 44.6 68.4
Mistral-7B / 64.3 84.1 84.4 78.9 84.9 86.0 50.6 78.1
GPTQ 4 62.3 78.2 80.3 78.8 83.9 85.1 49.6 76.0
QA-LoRA 4 57.8 79.7 83.1 76.3 83.3 85.2 48.6 76.0
LLM-QFA 4 58.3 78.7 83.3 76.1 83.2 86.0 49.2 76.1
GPTQ 3 56.7 74.5 78.5 73.0 81.5 84.7 48.4 73.4
QA-LoRA 3 57.1 77.0 80.6 74.0 80.7 84.5 47.8 74.1
LLM-QFA 3 58.1 76.1 81.2 74.4 82.2 84.6 49.0 74.6
GPTQ 2 24.4 40.5 64.2 49.7 38.8 61.1 24.8 46.5
QA-LoRA 2 30.0 47.5 66.3 53.1 52.5 63.4 30.0 52.1
LLM-QFA 2 37.3 52.5 69.4 60.0 63.8 66.2 30.2 57.0

efiting from mixed precision. Although the mixed-precision version of QA-LoRA exhibits a modest
improvement in performance at higher bit-widths, it incurs a threefold increase in training time to
achieve these results. Moreover, the observed performance instability suggests a potential loss of
optimal subnet configurations under certain constraints.

4.3 ABLATION STUDY

Ablation on Interference-Less Fine-tuning. To assess the effectiveness of decoupling shared
weights, we introduce a variant called shared-LoRA, wherein different quantization settings share
the same Low-Rank adapter. Figure 7 reports that shared-LoRA underperforms the original version
across all resource demands, validating the interference problem in one-shot LLM training.

Ablation on Resource-Balance Sampling. Similarly, we implement a uniform sampling version of
our method. Figure 7 also shows a consistently under-performing uniform sampling strategy; even the
resource-concentrated area (3 bit) falls short in the comparison. This has motivated the development
of a resource-balanced sampling strategy for training, which is designed to counteract the challenges
of under-fitting and over-fitting encountered in one-shot training.

Ablation for Scheduler. Lastly, we investigate two aspects of configuration for the scheduler,
which are the length of epochs (SL) and schedule orders. In our main experiments, the epoch length is
set to 8k training steps. For the short-term schedule, it is reduced to 1k steps, while for the long-term
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Figure 7: Verification of the effectiveness of Interference-Less Fine-Tuning and Resource-Balance
Sampling Strategy.

Long ScheduleOurs Short ScheduleOurs Hard to EasyOurs

Figure 8: Common Sense QA accuracy (%) of LLM-QFA with different scheduler settings.

schedule, it is extended to 16k steps. Figure 8 demonstrates that the short-term diminishes robustness
and hinders convergence, particularly at lower bit configurations. Regarding the schedule orders, we
initiate our training with 4-bit configurations, employing an easy-to-hard strategy. In this part, we
assess the hard-to-easy setting. Figure 8 demonstrates that the order has negligible impact.

5 CONCLUSION

This work introduces the LLM-QFA framework, a once-for-all Quantization-Aware training approach
to reduce the training cost of deploying large language models (LLMs) across diverse scenarios. By
decoupling the weights of different configurations and incorporating Low-Rank adapters, we enhance
training efficiency and mitigate interference issues. A resource-balanced sampling strategy ensures
fair training across subnets with various resource demands. Our experiments on LLaMA2 models
show that LLM-QFA deliver optimal quantized models, demonstrating its effectiveness in reducing
computational and storage costs while maintaining performance. Our framework can be easily scaled
up to even larger models since the training time per step is the same as with previous LoRA tuning.
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A QUALITY ANALYSIS

Instruction: Write a short story about a detective solving a mystery in a small town.
LLM-QFA (4-bit): Detective Williams arrived in Small Town U.S.A., population 2,500, on
a mission: to solve a recent spate of armed robberies plaguing the sleepy hamlet. Williams
interviewed dozens of potential suspects, sifting through their alibis and motives, until he
zeroed in on his prime suspect: a disgraced ex-police officer whom Williams suspected of
masterminding the crimes. Williams raided the suspect’s hideout, apprehended him, and
interrogated him mercilessly till he confessed
Instruction: Explain the significance of the statement: ’The early bird catches the worm.’
LLM-QFA (4-bit): This statement means that if you start something early, you will have an
advantage over those who start later. ’Early bird’ and ’worm’ are metaphors for ’early mover’
and ’competitive advantage’, respectively.
Instruction: Describe a day in the life of a robot in the year 2200.
LLM-QFA (4-bit): A typical day for a Robot in Year Two Thousand Two Hundred and One
might start with waking up in their humble abode. Robots do not need to sleep, of course, but
they do like to wake up feeling refreshed, so they might do a few stretches to loosen up their
joints. After that, they’d head to work, whether that’s at a factory or at an office. During the
course of their workday, robots might perform a variety of tasks, ranging from menial chores
like cleaning to more sophisticated
Instruction: Summarize the following text: ’Machine learning is a subset of artificial
intelligence that provides systems the ability to automatically learn and improve from
experience without being explicitly programmed.’
LLM-QFA (4-bit): Machine learning, a subfield of Artificial Intelligence (AI), is the process by
which a system automatically learns and improves its abilities without having to be explicitly
Programmed to do so. (Source: Wikipedia)

Instruction: Write a short story about a detective solving a mystery in a small town.
Ours (3-bit): Sherlock Holmes and his trusty sidekick, Watson, are called upon to solve a
baffling case in an idyllic English village. They must unravel a web of intrigue and decipher
clues left by an elusive killer in order to catch the culprit before he strikes again.
Instruction: Explain the significance of the statement: ’The early bird catches the worm.’
Ours (3-bit): This statement means that if you start something early, you will be more
likely to succeed than someone who starts it later. Thomas Edison once said, ’Genius is 1%
inspiration and 99% perspiration’, meaning that hard work is just as, if not more, important
than originality when it comes to achieving success. Therefore, it is better to start early rather
than procrastinate and miss out on an opportunity.
Instruction: Describe a day in the life of a robot in the year 2200.
Ours (3-bit): On a typical day, the robot would wake up at sunrise, greet its owner(s) with a
smile, and go about its day’s chores. These might include mowing the lawn, washing the dishes,
vacuuming the floors, or any number of other tasks. At the end of the day it would retire to its
charging station for the night.
Instruction: Summarize the following text: ’Machine learning is a subset of artificial
intelligence that provides systems the ability to automatically learn and improve from
experience without being explicitly programmed.’
Ours (3-bit): Machine learning, a subfield of Artificial Intelligence (AI), is an umbrella term
that encompasses a range of techniques and technologies that enable systems to learn from data
without relying on human-programmed rules or knowledge.
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Instruction: Write a short story about a detective solving a mystery in a small town.
Ours (2-bit): Detective Smith arrived in Small Town, USA on a hot and humid July day. He
was here to solve a long-unsolved case: the disappearance of a local high school cheerleader
who had vanished without a trace 10 years ago. Smith interviewed the townspeople, but none
of them could provide him with any clues as to what might have happened to her. Eventually,
Smith tracked down some of her former classmates and was able to elicit some information
from them, which led him to believe that he might be close to a breakthrough in the case.
Instruction: Explain the significance of the statement: ’The early bird catches the worm.’
Ours (2-bit): The Early Bird Catches The Worm statement means that if you are early, you will
have a better chance of catching something than those who are late. Coincidentally, this is also
true when it comes to trading. If you get in early on a stock or commodity that you believe will
go up in value, your chances of profiting from your investment will be much higher.
Instruction: Describe a day in the life of a robot in the year 2200.
Ours (2-bit): Day in Robot’s Life: Waking up at 7:32am, robot greets other robots in Breakfast
Club, goes to school for robotics lesson, returns home for lunch (robot-made sandwiches), goes
back to class for afternoon lessons, return home, go to bed, wake up next morning for same
routine.
Instruction: Summarize the following text: ’Machine learning is a subset of artificial
intelligence that provides systems the ability to automatically learn and improve from
experience without being explicitly programmed.’
Ours (2-bit): Machine learning (ML) is part of Artificial Intelligence (AI) that automatically
learns and improves from past experience, without needing to be programmatically coded to do
so.

B BROADER IMPACT

The LLM-QFA framework aims to enhance the efficiency and accessibility of deploying large lan-
guage models (LLMs) across diverse scenarios by introducing a once-for-all quantization-aware
training framework. This innovation can potentially democratize advanced LLMs, allowing organiza-
tions with limited computational resources to leverage cutting-edge AI technologies.

While our work doesn’t aim to handle a specific sensitive task with negative social impacts, the
technique might possibly be misused in the future with concerns such as generating deepfake content
or spreading misinformation. However, we believe we’re moving in the right direction toward
the target of efficient deployments of LLMs and we would implement robust safeguards. and is
life-saving.
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Table 3: 5-shot accuracy (%) on the Common Sense QA tasks. We evaluate the effectiveness of
extending the mix-precision strategy to 8-bit.

Method Bit Eval Test
Const. ARC-C HellaSwag PIQA WinoGrande ARC-e BoolQ OBQA Avg.

Mistral-7B / 64.3 84.1 84.4 78.9 84.9 86.0 50.6 78.1
2,3,4(ours) 3 58.1 76.1 81.2 74.4 82.2 84.6 49.0 74.6
2,3,8 / 58.4 75.9 81.7 74.5 82.6 84.7 48.8 74.7
2,3,4,8 3 56.3 78.3 80.3 70.1 78.7 83.3 45.6 72.7
2,3,4,8 4 59.1 80.5 81.9 73.6 81.7 84.6 46.4 74.8
2,3,4,8 5 59.7 83.2 83.1 74.5 82.8 86.1 47.8 76.2
2,3,4,8 6 60.9 83.2 83.1 75.3 82.8 86.0 48.6 76.5
2,3,4,8 7 60.9 83.7 84.1 76.3 82.8 86.1 49.2 77.0

Table 4: 5-shot accuracy (%) on the Common Sense QA tasks. We fine-tune Mistral with another
dataset, Alpaca-GPT4.

Method Bit Eval Test
Const. ARC-C HellaSwag PIQA WinoGrande ARC-e BoolQ OBQA Avg.

Mistral-7B / 64.3 84.1 84.4 78.9 84.9 86.0 50.6 78.1
QA-LoRA 2 27.5 39.6 64.5 53.4 52.5 59.5 26.4 49.3
QFA 2 27.1 38.7 62.8 51.9 52.5 59.9 28.6 49.1
QA-LoRA 3 54.3 77.6 75.1 72.3 79.8 82.5 48.0 72.5
QFA 3 58.5 80.1 82.3 74.7 82.4 85.4 46.4 75.2
QA-LoRA 4 59.3 82.3 82.1 77.0 83.7 85.9 48.0 76.5
QFA 4 60.6 82.2 81.6 77.3 84.3 85.2 48.2 76.5

Table 5: 5-shot accuracy (%) on the Common Sense QA tasks. We conduct fine-tuning of Mistral
using a fixed mixed-precision strategy. We select one optimal architecture from the calibration set
and one random architecture.

Method Bit Eval Test
Const. ARC-C HellaSwag PIQA WinoGrande ARC-e BoolQ OBQA Avg.

Mistral-7B / 64.3 84.1 84.4 78.9 84.9 86.0 50.6 78.1
Ours 58.1 3 76.1 81.2 74.4 82.2 84.6 49.0 74.6
Best_arch 3 57.6 78.2 82.4 72.1 82.4 83.2 49.4 74.6
Random pick 3 52.2 71.4 79.8 71.6 80.2 83.6 44.2 71.8

C EXTENSION TO 8 BIT

Post-training Quantization exhibits low accuracy at low bit levels (below 4), demonstrating promising
results for bit widths greater than 4. Incorporating 8-bit into mixed-precision is of low yield as it
offers close performance but double the cost compared to 4-bit. Two experiments were conducted.
The first was based on (2,3,8) mixed-precision, substituting 8-bit for 4-bit. The second one was based
on (2,3,4,8) mixed-precision, aiming to explore accuracy improvement for bit widths higher than 4.
The first experiment indicates that replacing 4-bit with 8-bit does not lead to significant improvement.
The second experiment shows that including 8-bit in mixed-precision would expand the configuration
space and make optimization more challenging. The table reveals that the increment from 3-bit to
7-bit is only 2.4, which is marginal compared to 17.6 (from 2-bit to 3-bit).

D FINE-TUNING WITH DIFFERENT DATASETS

To verify the generalization of the proposed approach, we additionally perform further experiments
on the Mistral-7b and fine-tuned models on Alpaca_gpt4. The results are presented in the following
Table 4.
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E FINE-TUNING WITH FIX ARCHITECTURE

We compare the proposed method and models fine-tuned using a fixed mix-precision strategy.
Fine-tuning with a fixed strategy merely generates a single available network and is inclined to be
sub-optimal, as indicated in Table 5.

F LIMITATION

Despite the promising results, the LLM-QFA framework has several limitations that should be
acknowledged: 1) While the framework has been validated on LLaMA and LLaMA2 models, its
scalability and effectiveness across other LLM architectures remain to be proven. 2) Our framework
is only tested on GPTQ format quantization, while we believe the framework can be easily adapted to
another quantization method, e.g., NF4.
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