
RELATE: A Schema-Agnostic Perceiver Encoder for
Multimodal Relational Graphs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Relational multi-table data is common in domains such as e-commerce, healthcare,1

and scientific research, and can be naturally represented as heterogeneous temporal2

graphs with multimodal node attributes. Existing graph neural networks (GNNs)3

rely on schema-specific feature encoders, requiring separate modules for each node4

type and feature column, which hinders scalability and parameter sharing. We5

introduce RELATE (Relational Encoder for Latent Aggregation of Typed Entities),6

a schema-agnostic, plug-and-play feature encoder that can be used with any general7

purpose GNN. RELATE employs shared modality-specific encoders for categorical,8

numerical, textual, and temporal attributes, followed by a Perceiver-style cross-9

attention module that aggregates features into a fixed-size, permutation-invariant10

node representation. We evaluate RELATE on ReLGNN and HGT in the RelBench11

benchmark, where it achieves performance within 3% of schema-specific encoders12

while reducing parameter counts by up to 5x. This design supports varying schemas13

and enables multi-dataset pretraining for general-purpose GNNs, paving the way14

toward foundation models for relational graph data.15

1 Introduction16

Learning from relational multi-table data is a core challenge in domains such as e-commerce, health-17

care, finance, and scientific discovery [1]. This data can be naturally represented as heterogeneous18

temporal graphs, where nodes and edges have different types and attributes span multiple modali-19

ties—including text, time-series, and numerical values. Effectively modeling such graphs requires20

handling diverse schemas and capturing high-dimensional, multimodal inputs associated with each21

node type.22

Recent graph neural networks (GNNs) such as HGT [4] and RelGNN [10] have shown promising23

results on individual relational datasets. However, these models are tightly coupled to the underlying24

schema: they require separate encoders for each node type and feature column, leading to architectures25

that (i) scale poorly with the number of columns, (ii) incur high memory and parameter costs, and26

(iii) inhibit generalization to new datasets with unseen schemas. As a result, these models are not27

well-suited for foundation model training, where a single model must handle diverse and non-aligned28

feature spaces across datasets.29

To address these challenges, we introduce the RELATE (Relational Encoder for Latent Aggregation30

of Typed Entities), a schema-agnostic feature encoder designed for heterogeneous graphs with31

multimodal node features. RELATE uses modality-specific modules shared across all columns of the32

same type (e.g., categorical, numerical, textual), followed by a Perceiver-style cross-attention layer33

[5] that compresses the set of column embeddings into a compact, fixed-size representation per node.34

This design is permutation-invariant to column order, accommodates varying schemas across node35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Cross
Aention

Self Aention
Transformer

Numeric
Encoder

Temporal
Encoder

Categorical
Encoder

Text
Encoder

Product
Embedding

Cat
Node: products

Text
Text
Num
Cat

product_id
brand

description
price
grade
time Temp

Text
Encoder

+

+
+
+
+
+

Figure 1: Overview of the RELATE architecture. Columns are encoded by shared modality-specific
encoders, aggregated with column metadata, and summarized by a cross-attention transformer into fixed-size
node embeddings for GNNs.

types, and scales to datasets with hundreds of features by attending from a small number of learnable36

latent queries.37

We evaluate RELATE on a wide range of node classification and regression tasks from the RelBench38

benchmark [10], comparing against schema-specific encoders used in prior RDL frameworks.39

RELATE achieves performance on par (within 3%) with task-specific encoders on while reducing40

parameter count in datasets with a large number of features. Its schema-agnostic design enables plug-41

and-play integration into existing GNN architectures and paves the way toward scalable multi-dataset42

pretraining for general-purpose graph foundation models.43

Our contributions are as follows:44

• We propose RELATE, a schema-agnostic encoder for heterogeneous temporal graphs45

that replaces per-column and per-type encoders with shared modality-specific modules,46

and uses a Perceiver-style cross-attention bottleneck to summarize variable-length column47

embeddings into fixed-size node representations.48

• RELATE generates fixed-size node embeddings that integrate seamlessly with existing GNN49

architectures (e.g., HGT, RelGNN), enabling plug-and-play use.50

• We show that RELATE achieves strong performance across diverse tasks in the RelBench51

benchmark—within 3% of task-specific encoders for classification—while reducing param-52

eter count by up to 5x.53

2 Background54

Relational databases are widely used in domains such as finance, healthcare, and human resources.55

Traditional pipelines rely on costly joins to flatten relational data into a single feature matrix. Rela-56

tional Deep Learning (RDL) instead exploits the relational schema directly, learning from intercon-57

nected tables without materializing large joins [10].58

From relational data to graphs. Let a database be (T ,R), where T = {T1, . . . , Tn} is a set of59

tables and R ⊆ T × T encodes foreign-key → primary-key relations. Each table contains entities60

(rows) with identifiers, foreign keys, features, and timestamps. This structure is naturally modeled61

as a heterogeneous temporal graph G = (V, E , ϕ, ψ, τ), where nodes V are entities, directed edges62

E ⊆ V × V represent relations, ϕ : V→TV and ψ : E→TE assign node/edge types, and τ attaches63

timestamps to nodes or edges.64

The standard encoder in RDL. The common practice is to give each feature column its own65

encoder and then concatenate the resulting embeddings. For a node v, let Cv be its set of feature66

columns. Each column c ∈ Cv is mapped to an embedding ϕc(x
(c)
v ), where x

(c)
v is the raw value(s)67

of column c and ϕc is a column-specific encoder selected by modality (e.g., MLP for numeric,68

2



embedding lookup for categorical). The initial node representation is69

hconcat
v =

⊕
c∈Cv

ϕc
(
x(c)
v

)
,

with ⊕ denoting concatenation. A tabular backbone ftab (often a ResNet [3]) is then applied before70

passing the result to a downstream GNN.71

Limitations. While expressive, this design tightly couples the model to each schema: every new72

column introduces a new encoder (ϕc), and every node type typically requires its own backbone.73

This leads to parameter explosion in databases with hundreds of columns and hinders schema-74

agnostic pretraining across datasets. Related homogeneous GFMs (e.g., GraphFM [6]) also rely on75

dataset-specific MLPs [11], limiting transfer to new schemas.76

3 Method77

We propose RELATE, a schema-agnostic encoder for heterogeneous temporal graphs with high-78

dimensional, multimodal node features. RELATE is a plug-and-play feature encoder that enables79

multi-dataset pretraining for any general-purpose GNN model. RELATE consists of two key compo-80

nents: (i) a library of modality-specific encoders shared across all node types and columns, and (ii) a81

Perceiver-style cross-attention module that aggregates a variable-length set of column embeddings82

into a fixed-size embedding which serves as the initial node representation for the model.83

3.1 Modality-Specific Encoders84

We group all node features into four high-level modalities and apply a shared encoder for each: (i)85

Numerical, representing continuous scalar values such as age or price; (ii) Timestamp, capturing86

time-stamped information such as event times or birth dates; (iii) Categorical, covering discrete87

non-text attributes such as product category or gender; and (iv) Textual, handled by a pretrained text88

encoder for free-text fields or high-cardinality categorical attributes expressed in text. Features from89

each modality are processed by a dedicated encoder shared across all columns of that type. These90

encoders are conditioned on the column metadata through a shared text embedding model.91

Numerical Encoder. We use the Fourier Number Embedding (FoNE) encoder [16] to map continu-92

ous scalar values into dense embeddings. Missing values (e.g., NaN) are represented by a learnable93

token, and unlike standard approaches, FoNE does not require normalization. An optional shared94

linear projection maps the resulting embedding into the target space. By design, FoNE is schema-95

independent and can be applied to any numeric feature.96

Timestamp Encoder. Each timestamp is decomposed into interpretable components (year, month,97

day, etc.), then encoded using a combination of positional encodings (for absolute time) and cyclic98

encodings (for periodicity). A shared linear projection maps the encoded time features to the target99

embedding space.100

Categorical Encoder. Categorical inputs are hashed into a shared vocabulary space, with the hash101

function conditioned on the column embedding. This allows identical values from different columns102

(e.g., “1”) to map to distinct embeddings, ensuring both efficient use of the embedding space and103

semantic separation across columns. The categorical encoder is suited for anonymized fields such as104

hashed IDs common in real-world databases, while features with semantically meaningful values are105

instead processed by a pretrained text encoder.106

Pretrained Text Encoder. Textual columns are encoded with a pretrained sentence encoder [14],107

and a shared linear projection maps the resulting embeddings into the target dimension.108

3.2 Column-Level Metadata Conditioning109

To improve generalization across columns and datasets, we incorporate column-level metadata into110

each modality encoder. Column names, table names (node types), and optional descriptions are111

3



encoded with a pretrained text embedding model and injected into the feature encoding process,112

enabling the encoder to distinguish between semantically different columns that share the same113

modality and value space and to generalize to unseen schemas. We adopt different strategies for114

aggregating column metadata with cell embeddings depending on the modality; details are provided115

in Appendix A.1.2.116

3.3 Permutation-Invariant Column Aggregation117

To transform a variable-length set of column embeddings into a fixed-size node representation, we118

adopt a cross-attention module inspired by PerceiverIO [5]. A shared sequence of L learnable latent119

tokens Z = [z1, . . . , zL] ∈ RL×d serves as queries, while the column embeddings for node v,120

Xv = [x1, . . . ,xCv
] ∈ RCv×d, form the input sequence. Since L ≪ Cv, this formulation reduces121

computational cost by decoupling self-attention from the number of input columns.122

Zv = Z+ softmax

(
QK⊤

v√
dk

)
Vv, (1)

where Q = WqZ, Kv = WkXv , and Vv = WvXv . This operation is permutation-invariant to the123

input column order and enables flexible adaptation to nodes with different schemas and numbers of124

attributes. Following this compression, N layers of self-attention are applied to the latent tokens to125

produce the final node representation zv .126

Remark. Permutation invariance is especially valuable when training across datasets with overlapping127

but non-identical schemas. The same semantic node type (e.g., user, item) may appear with columns128

in different orders or with partial feature overlap. By avoiding reliance on fixed input positions,129

our aggregation mechanism produces consistent node representations across schemas, enabling130

schema-agnostic pretraining.131

4 Results132

We evaluate RELATE on RelBench [10], a recently introduced benchmark for relational deep learning133

that spans seven real-world multi-table datasets across domains such as e-commerce, healthcare,134

and finance. These datasets are structured as heterogeneous temporal graphs with multiple node135

and edge types and rich, multimodal attributes. Our experiments cover two primary tasks: node136

classification and node regression. We report Area Under the ROC Curve (AUC) for classification137

and Mean Absolute Error (MAE) for regression. To ensure a fair comparison, all models are trained138

using the same splits and optimization protocols defined in the benchmark [10]. We integrate139

RELATE into two widely-used architectures—Heterogeneous Graph Transformer (HGT) [4] and140

RelGNN [10]—demonstrating compatibility with standard backbones. We compare against the141

default heteroencoder used in RelBench [3], which uses distinct encoders for each node type and142

column. RELATE instantiates only a single backbone encoder across all node types and shares143

weights for each modality encoder across node types.144

4.1 Experimental Setup145

We implement RELATE within the RDL pipeline [10] by replacing the original heteroencoder with146

our architecture. We preserve the underlying task logic and training infrastructure. RELATE is trained147

using the AdamW optimizer [8] with a fixed learning rate of 5× 10−3. All other settings, such as148

batch size and dropout remain fixed across datasets. Rather than perform exhaustive hyperparameter149

tuning, we examine the architecture’s ability to learn in variable schemas. More information can be150

found in the appendix in A.1151

4.2 Performance Comparison152

On average, RELATE achieves accuracy within 3% of dataset-specific encoders for HGT and RelGNN153

respectively on classification tasks, despite using a shared, schema-agnostic architecture. Table 1154

reports per-task metrics (AUROC or MAE).155

RELATE matches or slightly underperforms the RelBench heteroencoder on most tasks, while156

using a single backbone encoder across all node types and not being explicitly tied to any schema.157

4



Table 1: Results on RelBench for Standard Encoder v/s RELATE We evaluate HGT and RelGNN
with two feature encoders: Standard and RELATE. Classification uses AUC (higher is better);
regression uses MAE (lower is better). ∆ is RELATE−Standard.

Dataset Task
HGT RelGNN

Standard RELATE ∆ (RELATE−Standard) Standard RELATE ∆ (RELATE−Standard)

Classification — AUC

rel-f1 driver-dnf 0.7337 0.6653 -0.0684 0.7135 0.6892 -0.0243
rel-f1 driver-top3 0.8297 0.4779 -0.3518 0.7701 0.6901 -0.0800
rel-avito user-clicks 0.6490 0.6434 -0.0056 0.6590 0.6610 0.0020
rel-avito user-visits 0.6459 0.6262 -0.0197 0.6620 0.6625 0.0005
rel-event user-repeat 0.7351 0.7234 -0.0117 0.7551 0.6710 -0.0841
rel-event user-ignore 0.8130 0.8510 0.0380 0.8035 0.8114 0.0079
rel-trial study-outcome 0.6695 0.5979 -0.0716 0.6742 0.5838 -0.0904
rel-amazon user-churn 0.6384 0.6548 0.0164 0.7033 0.6886 -0.0147
rel-amazon item-churn 0.7529 0.7515 -0.0014 0.8283 0.8124 -0.0159
rel-stack user-engagement 0.8723 0.8805 0.0082 0.9059 0.9010 -0.0049
rel-stack user-badge 0.8227 0.8226 -0.0001 0.8890 0.8664 -0.0226
rel-hm user-churn 0.6561 0.6525 -0.0036 0.6955 0.6937 -0.0018

Average ∆ (AUC) -0.0393 -0.0274

Regression — MAE

rel-f1 driver-position 4.6649 6.1843 1.5194 4.2056 4.2621 0.0565
rel-avito ad-ctr 0.0365 0.0382 0.0017 0.0424 0.0421 -0.0003
rel-trial site-success 0.4244 0.4353 0.0109 0.3457 0.4191 0.0734
rel-stack post-votes 0.0679 0.0679 0.0000 0.0652 0.0649 -0.0003
rel-hm item-sales 0.0677 0.0708 0.0031 0.0556 0.0589 0.0033

Average ∆ (MAE) 0.3070 0.0265

Additionally, the number of learnable parameters is significantly smaller on several tasks, especially158

those with a large number of tables and features. For example, RELATE outperforms the comparison159

method on rel-event user-ignore while using only around 29% of learnable parameters compared to160

the heteroencoder. We find that RELATE performs generally on par with dataset-specific encoders on161

regression, however in the rel-f1 task RELATE under performs by a larger margin. We expect this is162

due to rel-f1 having a small number of train examples and a trade-off of single dataset performance163

and universality.164

4.3 Parameter Efficiency165

Figure 2A compares the number of trainable parameters between schema-specific encoders and166

RELATE across RelBench datasets (see Table 3 in Appendix A.3 for exact parameter counts) .167

RELATE maintains a nearly constant parameter footprint across datasets, since it uses a fixed set of168

modality-specific encoders shared across node types. In contrast, the parameter count of schema-169

specific encoders grows rapidly with the number of tables and features. As a result, RELATE170

achieves up to a 5× reduction in parameters on feature-rich datasets such as rel-trial and rel-171

event, while remaining competitive in cases with fewer features. This stability makes RELATE172

particularly advantageous for real-world schemas involving hundreds or thousands of attributes,173

where schema-specific encoders become prohibitively large.174

4.4 Ablation Study175

We evaluate the role of cross-attention by replacing it with a full self-attention (SA) mechanism176

applied over the input tokens. As shown in Figure 2B, we report the relative performance of self-177

attention for RelGNN, averaged over all classification tasks. This substitution yields marginal gains178

on a few datasets but does not consistently improve performance, with self-attention achieving179

only 90–101% of cross-attention on average. At the same time, the computational overhead of full180

self-attention is substantially higher due to its quadratic complexity. In contrast, the cross-attention181

bottleneck in RELATE provides a more efficient and scalable alternative, preserving accuracy while182

enabling training on large and feature-rich graphs. Comprehensive AUC and MAE results for both183

RelGNN and HGT are reported in Appendix A.2.184

5



A B

Figure 2: (A) Parameter comparison across RelBench datasets. We compare the number of trainable
parameters between schema-specific encoders (Std) and RELATE. Schema-specific encoders grow
with the number of tables and features, whereas RELATE maintains a nearly constant footprint.
Percentages above the RELATE bars indicate the parameter ratio relative to schema-specific encoders.
(B) Attention ablation for RelGNN, reporting average AUC performance relative to cross-attention.
Bars show the performance of self-attention compared to cross-attention within each dataset.

5 Related Work185

Tabular Foundation Models Recent models such as ConTextTab [13] and PORTAL [12] leverage186

table semantics, e.g., column headers, as context for cell values. Ablations showed that removing187

headers causes significant drops in performance, highlighting the importance of semantic metadata.188

These models typically use shared, modality-specific encoders for multi-modal values (numerical,189

categorical, text, temporal). ConTextTab, for example, scales numeric values, applies a learnable190

vector, encodes text with a pretrained language model, and sums embeddings for temporal components.191

Other approaches such as XTAB [17] pretrain only the transformer backbone while relying on dataset-192

specific feature preprocessing, which limits transfer across schemas.193

Graph Foundation Models One of the key challenges of GFMs are to design architectures that194

can transfer across varying input spaces [9]. Recent homogeneous GFM models [6] demonstrate195

rapid transfer to downstream tasks after pretraining, but still rely on dataset-specific featurization196

that limits generalization and prevents true zero-shot transfer. RELATE addresses these limitations197

by introducing task-agnostic encoders that integrate directly with standard GNN backbones. The198

concurrent work Griffin [15] uses pretrained encoders for text and numeric features and applies cross-199

attention over cells, column metadata, and task information. Its feature encoders are task-conditioned200

and limited to text and numeric modalities, potentially conflating categorical IDs with text. Other201

GFMs, such as OFA [7], only operate on text-attributed graphs (TAGs). GraphAlign [2] aims to align202

feature distributions across across diverse graphs by leveraging mixture of experts (MOE), however203

the model is similarly limited to TAGs.204

6 Conclusion205

We introduced RELATE, a schema-agnostic encoder for heterogeneous temporal graphs that replaces206

per-column and per-type feature stacks with shared modality-specific modules and a Perceiver-style207

cross-attention bottleneck. By attending from a fixed set of latent tokens to variable-length column208

embeddings, RELATE achieves permutation invariance to column order and decouples the complexity209

of self-attention from the raw feature dimensionality of a node. We integrate RELATE with widely210

used heterogeneous GNN backbones, including HGT and RelGNN, demonstrating its effectiveness211

as a plug-and-play encoder that achieves competitive accuracy while substantially reducing parameter212

counts. Beyond reducing redundancy across schemas, RELATE provides a foundation for learning213

across datasets and may serve as a building block for future multi-dataset pretraining on general-214

purpose GNNs. Future work aims to evaluate RELATE in such multi-dataset settings, analyze how215

schema diversity and structural variation influence generalization, and conduct systematic ablations216

to disentangle the contributions of architectural components and training design choices.217

6



References218

[1] E. F. Codd. A relational model of data for large shared data banks. Communications of the ACM,219

13(6):377–387, 1970.220

[2] Z. Hou, H. Li, Y. Cen, J. Tang, and Y. Dong. Graphalign: Pretraining one graph neural network on multiple221

graphs via feature alignment, 2024. arXiv preprint.222

[3] W. Hu, Y. Yuan, Z. Zhang, A. Nitta, K. Cao, V. Kocijan, J. Sunil, J. Leskovec, and M. Fey. Pytorch frame:223

A modular framework for multi-modal tabular learning. arXiv preprint arXiv:2404.00776, 2024.224

[4] Z. Hu, Y. Dong, K. Wang, and Y. Sun. Heterogeneous graph transformer. In Proceedings of the Web225

Conference, pages 2704–2710, 2020.226

[5] A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, D. Zoran, A. Brock,227

E. Shelhamer, et al. Perceiver io: A general architecture for structured inputs and outputs. arXiv preprint228

arXiv:2107.14795, 2021.229

[6] D. Lachi, M. Azabou, V. Arora, and E. Dyer. Graphfm: A scalable framework for multi-graph pretraining.230

arXiv preprint arXiv:2407.11907, 2024. Preprint, under review.231

[7] H. Liu, J. Feng, L. Kong, N. Liang, D. Tao, Y. Chen, and M. Zhang. One for all: Towards training one232

graph model for all classification tasks, 2023. Published as a conference paper at ICLR 2024.233

[8] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,234

2017.235

[9] H. Mao, Z. Chen, W. Tang, J. Zhao, Y. Ma, T. Zhao, N. Shah, M. Galkin, and J. Tang. Position: Graph236

foundation models are already here, 2024. Position paper, ICML 2024 (spotlight).237

[10] J. Robinson, R. Ranjan, W. Hu, K. Huang, J. Han, A. Dobles, M. Fey, J. E. Lenssen, Y. Yuan, Z. Zhang,238

et al. Relbench: A benchmark for deep learning on relational databases. Advances in Neural Information239

Processing Systems, 37:21330–21341, 2024.240

[11] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain.241

Technical Report 85-460-1, Cornell Aeronautical Laboratory, Buffalo, NY, 1957.242

[12] M. Spinaci, M. Polewczyk, J. Hoffart, M. C. Kohler, S. Thelin, and T. Klein. Portal: Scalable tabular243

foundation models via content-specific tokenization, 2024. arXiv preprint.244

[13] M. Spinaci, M. Polewczyk, M. Schambach, and S. Thelin. Contexttab: A semantics-aware tabular245

in-context learner, 2025. arXiv preprint.246

[14] S. Tulkens and T. van Dongen. Model2vec: Fast state-of-the-art static embeddings. https://github.247

com/MinishLab/model2vec, 2024.248

[15] Y. Wang, X. Wang, Q. Gan, M. Wang, Q. Yang, D. Wipf, and M. Zhang. Griffin: Towards a graph-centric249

relational database foundation model, 2025. arXiv preprint.250

[16] T. Zhou, D. Fu, M. Soltanolkotabi, R. Jia, and V. Sharan. Fone: Precise single-token number embeddings251

via fourier features. arXiv preprint arXiv:2502.09741, 2025.252

[17] B. Zhu, X. Shi, N. Erickson, M. Li, G. Karypis, and M. Shoaran. Xtab: Cross-table pretraining for tabular253

transformers, 2023. arXiv preprint.254

7

https://github.com/MinishLab/model2vec
https://github.com/MinishLab/model2vec
https://github.com/MinishLab/model2vec


A Appendix255

A.1 Model Details256

A.1.1 Hyperparameters257

For both the full self-attention and cross-attention encoder variants, we fix the number of attention258

heads and layers to 4, apply a dropout rate of 0.2, and set the hidden dimension to 128. In the259

Perceiver encoder, the number of latent tokens is set to 8. All models are trained for up to 10 epochs.260

For the GNN backbone, we use 128 channels, a 2-hop neighborhood, and uniformly sample 128261

neighbors per node.262

A.1.2 RELATE Column Meta Aggregation263

We opt to aggregate column information for numeric and text columns by adding the multi-modal264

cell embedding to the projection of the column metadata (e.g., column name). Then, we input this265

into a two layer MLP with RELU activation. Specifically:266

X = CellEmbeddings Wshared

H = ColProj(ColumnEmbeddings)
Z = X +H

Z̃ = Z + MLP(Z), MLP(Z) = ReLU(ZW1 + b1)W2 + b2

(2)

For hashed features we do not incorporate column metadata. Finally, for time columns we find gating267

to be effective. We apply the sigmoid function to the projection of the column embeddings. We268

multiply the result with the projection of the time embeddings.269

Z =
(
CellEmbeddings(Wshared)) ⊙ σ(ColProj(ColumnEmbeddings)) (3)

A.1.3 RELATE Cross-Attention270

Here we describe the cross-attention performed by RELATE. X is the result of the multi-modal271

encoders described in 3.1. X contains an embedding for each cell according to its modality. Q, K ,and272

V are all projected using shared weights and L is initialized as a learnable parameter which represents273

the latent tokens. After cross-attention is performed, self-attention is executed on the latents. This274

process is performed for N layers.275

Q = LWQ, L ∈ RB×Nlat×d

K = XWK , V = XWV , X ∈ RB×Ncells×d

CrossAttn(L,X) = softmax
(
QK⊤
√
d

)
V

L′ = L+ CrossAttn(L,X)

L′′ = L′ + SelfAttn(L′)

(4)

A.2 Ablation Results276

Table 2 reports the complete results of our attention ablation study, comparing the Perceiver-style277

cross-attention encoder with a full self-attention (SA) variant for both HGT and RelGNN across all278

RelBench datasets.279

For classification tasks, we evaluate performance using AUC (higher is better). On average, cross-280

attention outperforms self-attention by +0.0068 AUC in HGT and +0.0039 AUC in RelGNN. While281

self-attention achieves marginal improvements on a few tasks, these gains are inconsistent and come282

with a substantial increase in computational cost.283

8



For regression tasks, we report MAE (lower is better). Here, cross-attention again performs slightly284

better, reducing MAE by 0.0670 in HGT and 0.0160 in RelGNN on average.285

Overall, the results confirm that the latent cross-attention bottleneck provides accuracy on par with or286

better than full self-attention while offering substantially higher efficiency, making it the preferable287

choice for training on large and feature-rich graphs.288

Table 2: Attention Ablation. We compare full self-attention and cross-attention (Perceiver). Classifi-
cation uses AUC (higher is better); regression uses MAE (lower is better). ∆ is Perceiver−Full.

Dataset Task
HGT RelGNN

Full Perceiver ∆ (Perceiver−Full) Full Perceiver ∆ (Perceiver−Full)

Classification — AUC

rel-f1 driver-dnf 0.6359 0.6653 0.0294 0.6661 0.6892 0.0231
rel-f1 driver-top3 0.5609 0.4779 -0.0830 0.7227 0.6901 -0.0326
rel-avito user-clicks 0.6316 0.6434 0.0118 0.6618 0.6610 -0.0008
rel-avito user-visits 0.6272 0.6262 -0.0010 0.6627 0.6625 -0.0002
rel-event user-repeat 0.6036 0.7234 0.1198 0.6554 0.6710 0.0156
rel-event user-ignore 0.8412 0.8510 0.0098 0.8242 0.8114 -0.0128
rel-trial study-outcome 0.5275 0.5979 0.0704 0.5311 0.5838 0.0527
rel-amazon user-churn 0.6727 0.6548 -0.0179 0.6894 0.6886 -0.0008
rel-amazon item-churn 0.7878 0.7515 -0.0363 0.8110 0.8124 0.0014
rel-stack user-engagement 0.8780 0.8805 0.0025 0.9016 0.9010 -0.0006
rel-stack user-badge 0.8236 0.8226 -0.0010 0.8668 0.8664 -0.0004
rel-hm user-churn 0.6760 0.6525 -0.0235 0.6909 0.6937 0.0028

Average ∆ (AUC) 0.0068 0.0039

Regression — MAE

rel-f1 driver-position 6.5346 6.1843 -0.3503 4.3267 4.2621 -0.0645
rel-avito ad-ctr 0.0387 0.0382 -0.0005 0.0415 0.0421 0.0006
rel-trial site-success 0.4241 0.4353 0.0112 0.4339 0.4191 -0.0148
rel-stack post-votes 0.0679 0.0679 0.0000 0.0651 0.0649 -0.0002
rel-hm item-sales 0.0664 0.0708 0.0044 0.0600 0.0589 -0.0011

Average ∆ (MAE) -0.0670 -0.0160

A.3 Parameter Comparison289

Table 3 reports the exact parameter counts corresponding to Figure 2. As shown, the parameter290

footprint of schema-specific encoders increases substantially with the number of tables and features291

in each dataset, ranging from 1.1M on rel-amazon to over 7.3M on rel-trial. In contrast, RELATE292

remains nearly constant at ∼1.4M parameters across all datasets, since it reuses a fixed set of modality-293

specific encoders. This property results in significant parameter savings—up to a 5× reduction on294

feature-rich datasets such as rel-trial and rel-event—while still maintaining competitive performance.295

Table 3: Parameter comparison: We compare the number of trainable parameters between the
heteroencoder and RELATE Standard across datasets.

Dataset # of Tables # of Features Std. Encoder (#params) Universal (#params) Universal / Std (%)

rel-amazon 3 15 1.08122 × 106 1.4713 × 106 136.078
rel-avito 8 43 2.04058 × 106 1.38483 × 106 67.8648
rel-event 5 128 4.96602 × 106 1.45178 × 106 29.2342
rel-f1 9 77 3.25939 × 106 1.45626 × 106 44.6788
rel-hm 3 37 1.968 × 106 1.4313 × 106 72.7285
rel-trial 15 140 7.29984 × 106 1.44026 × 106 19.73
rel-stack 7 51 2.62387e+06 1.457672 × 106 55.50

9


	Introduction
	Background
	Method
	Modality-Specific Encoders
	Column-Level Metadata Conditioning
	Permutation-Invariant Column Aggregation

	Results
	Experimental Setup
	Performance Comparison
	Parameter Efficiency
	Ablation Study

	Related Work
	Conclusion
	Appendix
	Model Details
	Hyperparameters
	RELATE Column Meta Aggregation
	RELATE Cross-Attention

	Ablation Results
	Parameter Comparison


