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ABSTRACT

Data-driven approaches to genomic discovery have been accelerated by emerging
efforts in machine learning. However, due to the inherent complexity of genomic
data, it can be challenging to model or utilize the data and their intricate relation-
ships. In this work, we propose a framework for genomic prediction utilizing in-
formation from various genomic databases. We use a knowledge graph following
existing work to extract gene representations and either use XGBoost or construct
a graph to rank feature importance. By filtering key features and computing rel-
evancy scores with genes that are known to be associated or unassociated with a
specified area, we recommend unlabeled gene candidates with a high likelihood
of association for further genomic research. We demonstrate how this framework
works by applying it to autophagy genomics, illustrating its potential as a powerful
recommendation system for genomic discovery.

1 INTRODUCTION

The explosion of various biological data types has opened a data-centric paradigm for the discovery
of genes with novel functions. Within this paradigm, machine learning (ML) data pipelines deployed
on extensive biological datasets (Libbrecht & Noble, [2015} |Zitnik et al., [2019} |Greener et al., 2022;
Yang et al.,|2024)) can perform computational analysis to screen potential genes linked to particular
pathways and diseases, revolutionizing the discovery of novel genes and the understanding of their
functions. The challenges mainly lie in how to identify a universal and task-agnostic representation
that can facilitate efficient search among the extensive and mostly unlabeled genomics space to
recommend desirable gene candidates.

Traditionally, determining gene functions largely relies on functional genomics mining methods,
such as CRISPR/Cas9 (Zhou et al} 2014), RNA interference (Vanhecke & Janitz, [2005), or gene
knockouts (Skarnes et al., [2011). These methods alter gene expression, followed by phenotypic
screening to observe changes that the genetic modifications incur. Novel functionalities often emerge
as distinct phenotypic features or changes in cellular processes. However, this conventional method
is often slow and demands significant resources. Efforts have been made to facilitate the gene
identification process by utilizing computational network-based methods. For example, Erten et al.
(2011) showed that the effectiveness of global prioritization techniques, including random walk
and network propagation, is significantly influenced by the degree of candidate genes. (Oprea et al.
(2019) proposed a MetaPath framework that can be applied in conjunction with various classification
algorithms, which has been shown to identify novel genes associated with autophagy successfully.
Most of the existing graph representation learning methods in biological networks are based on
extending the idea of random walks, which learn a continuous low-dimensional vector representation
of nodes in a graph.

In this paper, we present a recommendation system that is inspired by the existing work (Oprea
et al.| [2019) while enhancing the integration of gene interactions. Following |Oprea et al.|(2019),
we utilized the information collected from various genomic databases and generated the represen-
tation vectors for both labeled and unlabeled genes. Our framework prioritizes feature importance
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to select a subset of features using two methods: a graph-based approach integrating edge infor-
mation for gene representations, and an approach relying solely on gene representations based on
XGBoost (Chen & Guestrin, [2016).

For the graph-based method, we constructed graph convolutional networks (GCNs) (Kipf & Welling,
2016)) with the representation vectors as node embedding and protein-protein interactions as edges.
We then apply GNNExplainer (Ying et al., 2019) to calculate the average contributions for nodes
with positive labels and select the top features based on the contribution ranking. In contrast, XG-
Boost is trained on the representation vectors and ranks features by their importance within the
trained model. Our genomics recommendation framework uses the selected features to compute the
relevancy score between unlabeled genes and genes with positive labels and recommends candidate
genes that are most likely to be associated with the target biological term.

To summarize, our contribution is a flexible framework for gene recommendation based on feature
selection using either XGBoost or graph convolutional networks. Given a biological term for a spe-
cific species, our framework identifies the most important features and recommends candidate genes
that, while unlabeled, are likely to be associated with the term. We demonstrate the effectiveness
of this approach by applying it to recommend autophagy-related genes for the model species yeast,
showcasing its practical workflow.

2 RELATED WORK

2.1 DEEP LEARNING FOR GENOMIC APPLICATION

Deep learning has been applied in many fields to assist research, due to its advantages of learning
from large-scale data and capturing complex or subtle patterns. There has been a line of deep
learning approaches applied in genomics (Libbrecht & Noblel 2015} |[Eraslan et al.| |2019; |Quazi,
2022)), with popular deep learning methods having been widely adopted. One key task is to predict
the gene expression from DNA sequences, where methods using CNNs (Zhou et al.l [2018; Kelley
et al., 2018; Kelley, [2020; |Agarwal & Shendure, 2020) or Transformers (Avsec et al.,[2021]) showed
strong performance. Another important task is the identification of genomic sequence elements,
such as promoters, enhancers, or other regulatory elements. Methods (Alipanahi et al.; [2015} |[Zhou
& Troyanskayal, 2015} Kelley et al., 2016} [Zeng et al., 2016) utilized CNNs to achieve this goal
successfully, and popular methods include DeepBind (Alipanahi et al., 2015), DeepSEA (Zhou &
Troyanskaya, [2015), and Basset (Kelley et al., 2016). The protein sequences can be utilized to
predict protein functions with various methods based on CNNs (Kulmanov et al., 2018} Kulmanov &
Hoehndorf, [2020)), RNNs (Liu}|2017;|Cao et al.,|2017), and GNNs (Gligorijevic et al.,[2021)). Unlike
protein function prediction, which relies on sequence data, gene function prediction uses graph-
based methods built upon protein-protein interaction (PPI) to represent gene interactions. Methods
have been proposed to identify specified gene functions, such as functional genes (Oprea et al.,2019;
Peng et al.;|2021)) or disease-related genes (Binder et al.,[2022; Peng et al.| 2022).

2.2 FEATURE SELECTION FOR GENOMIC APPLICATION

Feature selection refers to identifying and ranking the importance of features to select a subset
of the most relevant ones, which can be used to select core features or remove redundant fea-
tures, or gain biological insights for better explainability (Libbrecht & Noblel 2015} [Eraslan et al.,
2019). There are a number of methods in machine learning and deep learning that allow for
ranking feature importance (Yang et al., |2024)), such as Random Forest (Hol [1995), LASSO Cox
regression (Tibshirani, [1997), XGBoost (Chen & Guestrin, [2016), and GNNs with the GNNEx-
plainer (Ying et al.,[2019). Additionally, techniques including Local Interpretable Model-agnostic
Explanations (LIME) (Ribeiro et al., 2016) and SHapley Additive exPlanations (SHAP) (Lundberg
& Leel 2017) provide explanations for general deep learning models. Given the reliance of PPI,
which is generally modeled as a graph, we adopt the GNNs and GNNExplainer to rank the feature
importance.
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From Databases

Figure 1: The Example Workflow of the Graph-based Recommendation System. The workflow
begins with information retrieval from various databases to collect genomic and protein data to con-
struct a knowledge graph integrating labeled and unlabeled genes. A graph of genes is created with
protein-protein interactions as edges and representation vectors as node embeddings. Then, feature
selection is performed using GNNExplainer, and relevancy ranking computes scores to recommend
gene candidates most likely associated with the target biological term.

3 METHOD

3.1 OVERVIEW

This section discusses the workflow for the application in genomic discovery. Using a specified
keyword of genetic function and its synonyms, we first retrieve relevant genomic data for a given
species from multiple databases. To curate a set of negative examples, we collect data with negative
labels based on keywords unassociated with autophagy, identified by domain experts. Following
prior work (Sun et al., 2011} 2012 |Oprea et al., 2019), we construct a knowledge graph to cap-
ture gene interactions specific to the keyword pathway. Each gene is then represented by a vector
embedding calculated through MetaPath (Oprea et al.| [2019), a method that encodes complex re-
lationships within the knowledge graph. On top of these representations, we implement either an
XGBoost-based or graph-based method to rank feature importance, identifying high-impact fea-
tures for further analysis. Finally, relevancy scores are computed between each unlabeled gene and
all genes that are known to be associated with the given term. The framework uses the relevancy
scores to recommend the most relevant unlabeled genes as potential candidates for future research.
The example of the graph-based workflow is illustrated in Figure [I]

This section discusses the general workflow of our framework, and Section 4| applies our approach
to this well-studied model organism saccharomyces cerevisiae (yeast, brewer’s yeast, or baker’s
yeast), and validate the framework’s ability to uncover meaningful genomic insights within a defined
biological term “autophagy”. This approach serves as a powerful recommendation tool, guiding
targeted genomic discovery for genomics practitioners in autophagy and beyond.

3.2 DATA COLLECTION

Given the keyword of a biological context or genomic function for one specified organism, we first
narrow down our query to retrieve relevant information from the databases. Generally, we need
the information of a species name, the biological keyword for the genomics discovery, and other
biological keywords that are distinct from the given keyword to serve as negative labels. Due to the
inconsistencies across different databases, we suggest using not only the given keyword and species
name, but also considering their synonyms.

To embed the representations of genes, we need to collect information from various databases, such
as databases for genomic and sequences (NCBI (Brown et al.,2015)), Ensembl (Martin et al., 2023))),
proteins (UniProt (Apweiler et al.| [2004)), InterPro (Paysan-Lafosse et al., 2023))), metabolic path-
ways (KEGG (Kanehisa & Gotol [2000), Reactome (Fabregat et al., [2018))), functional annotation
(GO (Ashburner et al., |2000), UniProt), protein-protein interactions (STRING (Szklarczyk et al.,
2023))), and homology/evolutionary relationships (NCBI, Ensembl). The comprehensive integration
of these databases ensures a rich and unified representation of gene and protein attributes. Follow-
ing (Oprea et al| (2019), we collect the protein-specified information, including SwissProt acces-
sions, symbols, names, and taxonomic identifiers from UniProt, Ensembl, and NCBI to facilitate
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cross-referencing across gene and protein identifiers. The protein domains, families, and conserved
sites are categorized using InterPro. Functional annotations, including Gene Ontology (GO) terms,
are drawn from UniProt and GO, and metabolic pathways are integrated from KEGG and Reac-
tome. STRING provides the protein-protein interactions (PPI), and homology and evolutionary
relationships come from NCBI and Ensembl, linking homologous genes, taxonomic information,
and protein identifiers.

3.3 GENE REPRESENTATION

To obtain the gene representation that fully utilizes the information from the above databases, we
build a knowledge graph (KG) and obtain the embeddings of the KG with MetaPath, informed by
existing work (Oprea et al,, [2019). We integrate multiple biological data types that characterize
genes (proteins), their interactions, and functional roles. The nodes in the KG include proteins
identified by unique UniProt accessions, along with nodes representing pathways (from KEGG and
Reactome), Gene Ontology (GO) terms for biological processes, molecular functions, and cellular
components, and InterPro entries for conserved protein families and domains. The edges in the
KG capture various relationships: protein-protein interactions (PPI) represent known interactions
between proteins, pathway memberships link proteins to KEGG and Reactome pathways, GO an-
notations connect proteins to biological functions, and InterPro associations indicate structural or
functional features shared by specific protein families. Note that despite Oprea et al.constructed the
KG mainly for proteins, genes always share the same names with proteins in our case, therefore, we
can construct the KG to consider genes and their associations as well.

To generate gene representations from the knowledge graph, MetaPath (Oprea et al.| [2019) iden-
tifies meaningful pathways that connect target nodes to related genes through a sequence of inter-
mediary nodes. Starting from a target node, the associated genes are gathered by examining con-
nections within the graph, distinguishing between positively associated paths (direct relationships)
and negatively associated paths (indirect or absent relationships). Each MetaPath captures distinct
relationships, such as protein-protein interactions, pathway memberships, or functional annotations,
allowing us to analyze genes based on their proximity and type of linkage to target nodes. For
each relevant feature in the graph, the MetaPath values are computed by examining its connections
and aggregating the topological information from each unique path type. This approach produces
a feature matrix where each gene is represented by MetaPath-based scores that reflect its network
relationships and associations within the graph.

3.4 FEATURE RANKING

Among all features generated from MetaPath on the knowledge graph, we aim to further identify
the most influential features in the predictions for genes of our interest. We apply two methods for
feature importance ranking: an XGBoost-based approach and a graph-based approach. XGBoost is
a powerful ensemble learning algorithm that is efficient and effective in various machine learning
scenarios. XGBoost iteratively constructs decision trees to minimize the predictive error. In addition
to its superior performance, XGBoost has desirable properties to evaluate the contribution of each
feature by measuring the improvement in accuracy when the feature is used to split a node in a
decision tree. Fitting the gene representations and their labels, XGBoost can provide insights into
the most influential features in the prediction.

In contrast, our graph-based approach uses not only gene representations but also gene interactions
via protein-protein interactions. We use a simple Graph Convolutional Network (GCN), which
builds on a graph with MetaPath representations as node embedding, and PPI from STRING as
edges. To evaluate feature importance, we apply GNNExplainer for each gene labeled as relevant
to the given term and compute the contribution for features averaged from all relevant gene nodes.
The average contribution allows us to rank features effectively based on their roles in the predictions
with the graph. Both approaches enable the revealing of the most important features in prediction
based on known genes. They not only facilitate the gene recommendation for the next step but also
promote transparency of prediction. Besides, the effectiveness of the framework can be validated by
examining the relation between the top features and the given term. Moreover, the top features can
serve as inspiration for wet experiments as well.
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3.5 CANDIDATE GENE RECOMMENDATION

We utilize the masked gene representations that contain only the top features for new gene rec-
ommendations. We apply the Targeted Attribute Prediction Distance (TAPD) method to calculate
relevancy scores and rank the scores for top candidate genes. TAPD computes the distance between
each unlabeled candidate gene and each gene labeled as relevant in the feature space:
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where TAPD is the total absolute percent difference, K is the total number of selected features,
h¢ and h? are the features of unlabeled candidate and positively labeled data, respectively. TAPD
measures the composite deviation of candidate features from positively labeled data features, and a
lower score is preferred. We define relevancy score R as the reciprocal of the TAPD averaged on all
selected features and positively-labeled data:
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where N is the total number of genes labeled to be associated with the specified term and K is the
total number of features selected to be most influential.

R:

The relevancy scores enable us to rank the unlabeled genes with the likelihood of association with
genes that are known to be associated with the given biological term for gene functions. We filter
the top candidate genes with the highest relevancy scores as the recommendation results, aiming to
facilitate the selection process for wet experiments to identify gene functions. Moreover, the frame-
work can be flexible and adapt to more annotations for more accurate and reliable recommendations
in the future.

4 EXPERIMENTS

4.1 “AUTOPHAGY” FOR YEAST: AN EXAMPLE

Although our framework aims to serve for general genomics discovery, we use one example, an
autophagy-related gene (ATG) recommendation for the model organism yeast, to exhibit the work-
flow of our framework. Autophagy is a fundamental cellular process that maintains cell health by
breaking down and recycling damaged parts of cells (Yang et al.| 2024). Therefore, discovering
genes involved in autophagy is crucial, as it can lead to insights into disease mechanisms and poten-
tial therapeutic targets like cancer, neurodegeneration, and infectious diseases (Yang et al.l [2024).
As we discussed in Section we start with the specification of biological terminologies. Given
the keyword “autophagy” and the organism ‘“‘saccharomyces cerevisiae” (we refer to it as yeast for
simplicity), the following information is listed per the suggestions from domain experts:

Organism name Saccharomyces cerevisiae (NCBI taxonomy Id 4932)

Alternative organism names brewer’s yeast, budding yeasts, ATCC 18824, Candida robusta,
NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces
oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast.

Keyword for Genomics Discovery Autophagy (KEGG pathway map04138, titled “Autophagy -
yeast”)

Synonyms of the Keyword Mitophagy, autophagic pathway, CVT pathway.
Keywords for Negative Labels TCA (tricarboxylic acid cycle), cell cycle, meiosis.

With the information above, we collect data from various genomics databases, as discussed in Sec-
tion Specifically, we query relevant genes, pathways, and functional annotations linked to
autophagy from sources like KEGG (particularly map04138, the “Autophagy - yeast” pathway),
Reactome, and Gene Ontology (GO). This query gathers both positive and negative samples based
on the specified keywords and synonyms, where genes associated with “autophagy” and its related



Published as a workshop paper at MLGenX 2025

terms are labeled as positive, while those linked to unrelated processes, such as “TCA”, “cell cycle”
and “meiosis” are labeled as negative.

Using this curated information, we construct the knowledge graph by integrating protein-protein
interactions, pathway associations, and functional annotations. Each gene is embedded in the graph
using MetaPath-based representations to capture the relational context between ATG and non-ATG.
In the end, we used 868 labeled genes in total and generated 1060 features for each gene.

The edges for the GCN are derived from protein-protein interaction (PPI) data sourced from the
STRING database. This data includes connections between proteins based on evidence of physical
or functional interactions. To ensure relevance to our study, we filtered the interactions to retain
only those between proteins that match genes in our labeled data. We also removed redundant
edges, standardizing each protein pair to maintain an undirected edge structure. This process results
in a refined set of edges that accurately represent meaningful interactions within our specific set of
genes, serving as the foundation for the GCN to learn from the network structure and relationships
among proteins.

4.2 RECOMMENDATION RESULTS

As we discussed in Section we use XGBoost or GCN to rank the importance of features. By
applying both methods, we offer flexibility on whether to use gene representations solely and val-
idate the prediction across methods. Based on how the XGBoost or GCN works, the results from
the graph-based method utilize the protein-protein interactions as the edge information, while the
results from the XGBoost-based method might focus on the genes that have connections with known
ATG or pathways.

Table 1: Top-5 Most Important Features Ranked by Graph-based Method. This table presents
the top five features identified as most significant by the graph-based method, highlighting their
potential importance in the underlying biological or structural relationships.

Feature Description Gain Value

GCN4  General control transcription factor GCN4 (Amino acid biosynthesis ~ 0.162
regulatory protein) (General control protein GCN4)

PSD1 Phosphatidylserine decarboxylase proenzyme 1, mitochondrial (EC  0.157
4.1.1.65) [Cleaved into: Phosphatidylserine decarboxylase 1 beta chain;
Phosphatidylserine decarboxylase 1 alpha chain]

SEC13  Protein transport protein SEC13 0.155

RPL15B Large ribosomal subunit protein eL.15B (60S ribosomal protein L15-B)  0.151
(L13) (RP15R) (YL10) (YP18)

SNF4  5°-AMP-activated protein kinase subunit gamma (AMPK gamma)  0.149
(AMPK subunit gamma) (Regulatory protein CAT3) (Sucrose non-
fermenting protein 4)

For XGBoost-based and graph-based methods of feature ranking, we report the top-10 most impor-
tant features calculated by them, respectively, along with the feature descriptions, in Table [2] and
[ Compared with the graph-based results, XGBoost-based results favor more direct connections
with autophagy-related genes, such as ATG11 and ATGS, which aligns well with our expectation
for XGBoost methods. In contrast, the graph-based method provides a list of more general features
that do not relate to autophagy explicitly. We provide further evidence from recent research in Sec-
tion 4.3 regarding the rationality of the top features. In addition, we identified 293 common features
out of the top 500 features from both methods, underscoring the effectiveness of identifying features
for both methods. More information on the full top 500 features is attached in the supplementary
materials.

With the features selected by either XGBoost or GCN, we compute the relevancy scores between
unlabeled genes and known autophagy-related genes to recommend genes that are most likely to be
associated with autophagy. The recommended genes from both methods are displayed in Table [3]
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Table 2: Top-5 Most Important Features Ranked by XGBoost-based Method. Similarly, this
table presents the top five features identified as most significant by the XGBoost-based method.

Feature Description Gain Value

VPS21 Vacuolar protein sorting-associated protein 21 (GTP-binding protein ~ 0.114
YPTS51) (Vacuolar protein-targeting protein 12)

ATGI11 Autophagy-related protein 11 (Cytoplasm to vacuole targeting protein  0.083

9)
ATGS5  Autophagy protein 5 0.036
CDC14 Tyrosine-protein phosphatase CDC14 (EC 3.1.3.48) 0.035

PEP5  E3 ubiquitin-protein ligase PEP5 (EC 2.3.2.27) (Carboxypeptidase Y-  0.034
deficient protein 5) (Histone E3 ligase PEP5) (RING-type E3 ubiquitin
transferase PEP5) (Vacuolar biogenesis protein END1) (Vacuolar mor-
phogenesis protein 1) (Vacuolar protein sorting-associated protein 11)
(Vacuolar protein-targeting protein 11)

Table 3: Top-10 Genes Ranked by Both Methods. X-Rank and G-Rank provide the rank of
the gene in the lists from XGBoost-based recommendation and graph-based recommendation. In
addition, the information of each gene from databases is provided.

X-Rank G-Rank Symbol Gene Name Swissprot UniProt NCBI ID Description

1 35 UTP30 YKRO60W RLIDI_YEAST P36144 853934 Ribosome biogenesis protein UTP30 (U3
snoRNP-associated protein UTP30)

2 38 MET13 YGLI125W MTHR2_YEAST P53128 852752 Methylenetetrahydrofolate reductase 2
(EC 1.5.1.53) (YmLA45)

20 23 RPL27A YHROIOW RL27A_YEAST POC2H6 856401 Large ribosomal subunit protein eL27A
(60S ribosomal protein L27-A)

3 43 LSOl YJRO05C-A LSO1.YEAST Q3E827 1466469 Protein LSO1 (Late-annotated small open
reading frame 1)

48 2 GNAl  YFLO17C GNAI_YEAST P43577 850529 Glucosamine 6-phosphate N-

acetyltransferase (EC 2.3.1.4) (Phos-
phoglucosamine acetylase) (Phosphoglu-
cosamine transacetylase)

5 48 MNN4  YKL201C MNN4_YEAST P36044 853634 Protein MNN4

53 1 UIP4  YPL186C  UIP4_.YEAST Q08926 855916 ULPI-interacting protein 4

37 17 SDS24  YBR214W SDS24 YEAST P38314 852515 Protein SDS24

7 50 WRS1  YOL097C SYWC_YEAST Q12109 854056 Tryptophan—tRNA ligase, cytoplasmic

(EC 6.1.1.2) (Tryptophanyl-tRNA syn-
thetase) (TrpRS)

8 52 YKE4  YILO23C  YKE4_YEAST P40544 854789 Zinc transporter YKE4

and[]for XGBoost-based and graph-based recommendations, respectively. Additionally, we provide
the systematic gene names (denoted as Gene Name), SwissProt identifiers (denoted as SwissProt),
UniProt accession numbers (denoted as UniProt), NCBI IDs, and their descriptions for more conve-
nient usage across databases. We compared the top 500 recommended genes from both methods and
identified 359 common recommendations among them, which provides a promising list of possible
ATGs for future research. We show the ranks in both methods for the overlapping 359 genes in
Figure[2] and a consistent trend in ranking is observed.

4.3  VALIDATION FROM RECENT RESEARCH

Since our framework aims to identify new genes that are likely to be associated with the given key-
word for a biological process, it is challenging to validate the recommended genes without relevant
genomics experiments. In this section, we compiled information from several autophagy studies to
substantiate the relationship between our top features and the given keyword autophagy in terms
of their functionality. For example, GCN4, which is the most important feature selected by the
graph-based method, is a primary transcriptional activator involved in the induction of specific ATG
genes in response to amino acid starvation, playing a crucial role in autophagy regulation Natarajan
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et al.| (2001); [Prigent et al.| (2024). The second most important feature, PSDI, is a yeast enzyme
for autophagy regulation and its overexpression can increase autophagy |[Rockenfeller et al.| (2015).
SEC13, ranked third, was reported that its silence can result in a defect of autophagy.

Compared to the graph-based selected features,
XGBoost uses features that are associated with
autophagy more explicitly, such as ATG11 and
ATGS, ranked as the second and the third re-
spectively, which are key genes in autophagy.
Besides, VPS21, as the first feature, regulates
autophagy, and its deletion of the module re-
sults in autophagy defects and accumulation of
autophagosomal clusters |Chen et al.|(2014).
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Since our recommendation system aims to
guide the revealing of gene functions for new
genes, there is little research working on the re-
lationship between these recommended genes
and autophagy.

Rank in XGBoost-based Prediction
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i ‘ ‘ ; ‘ ‘ We provide the information of recommended
0 100 200 300 400 500 genes with high ranks in both methods in Ta-

Rank in Graph-based Prediction ble 3] which might offer insights for domain
experts in experiment designs to explore pos-
sible relations. For example, the UTP30 rec-
ommended by the graph-based method, plays
a crucial role in ribosome biogenesis accord-
ing to its description. Despite not relating to
autophagy directly, the disruptions in UTP30
function might relate to autophagy through ri-
bophagy, thus leading to autophagy for clear-
ing out incomplete or faulty ribosomes. On the
other hand, UIP4, which was primarily recom-
mended by XGBoost, has several functions primarily related to nuclear. The cell might activate
nucleophagy, a form of autophagy for nucleus parts if UIP4 misfunctions in maintaining the stabil-
ity of the nucleus.

Figure 2: The Ranks of Genes Recommended
by Both Methods. There are 359 overlap-
ping predictions among the top 500 genes rec-
ommended by both methods. This figure shows
the ranks in each method for the 359 predic-
tions, where we can observe the majority of them
achieved similar ranks in both methods.

5 DISCUSSION

In this work, we present a recommender framework for genomic discovery utilizing varied
databases. By integrating data from multiple sources, such as KEGG, STRING, and Gene Ontology,
we built a graph that represents genes as nodes with rich contextual embeddings computed from a
knowledge graph, while protein-protein interactions form the edges. This multi-relational graph
provides a structured approach to capturing complex genomic relationships that would be challeng-
ing to model with traditional methods. Either using XGBoost with the sole gene representations or
using the graph explanations, we filter key features and generate relevancy scores for recommending
unlabeled gene candidates. We demonstrated the workflow of our framework with the example of
recommending autophagy-related genes for yeast.

Broader Impact. Our framework serves for genomic discovery for general purposes, given an
organism and the term for genomic context. It has the potential to advance genomic research by
suggesting key features and highly related genes for the term. Besides, the framework might accel-
erate insights into the biological processes and pathways, in terms of their relations to the given term.
In addition, the scalability and flexibility of this framework enable it to be broadly applicable across
organisms and gene functions, and allow researchers to prioritize candidate genes in experimental
setups.

Limitation. The functionality of the framework heavily depends on the data from the genomic
databases and the way to utilize their interactions. The possible bias or gaps in the databases, such as
under-representation in the study of certain pathways, might lead to biased or incorrect predictions.
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Additionally, the specification of the negative labels can introduce bias as well. To obtain the top
important features, we use data with positive (related to the given term) and negative labels to train
the XGBoost or GCN. Although we suggest that the choice of negative labels should be proceeded
with caution under the advice from domain experts, it can lead to incorrect features or predictions if
they are chosen improperly. Lastly, our framework relies on the feature ranking from XGBoost or
GCN. Despite their powerful feature selection mechanism, it is possible that they may not be able
to capture all nuances of biological relationships, thus introducing bias in the results.
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A ToP RECOMMENDATIONS FROM EACH METHOD

We provide the top 10 genes that rank high in the recommendation from both methods in Table[3] In
addition, we display the top 10 genes recommended by each method for further reference in Table 4]

and Table
Table 4: Top-10 Genes Recommended by Graph-based Method.
Symbol Gene Name Swissprot UniProt NCBIID Description
UTP30 YKRO60W RLIDI_YEAST P36144 853934 Ribosome biogenesis protein UTP30 (U3

snoRNP-associated protein UTP30)

MET13 YGLI125W MTHR2_.YEAST P53128 852752 Methylenetetrahydrofolate reductase 2 (EC
1.5.1.53) (YmLA45)

LSOl  YJRO05C-A LSOIL1_YEAST Q3ES827 1466469 Protein LSOI (Late-annotated small open reading
frame 1)

YMD8 YMLO38C YMDS_YEAST Q03697 854970 Putative nucleotide-sugar transporter YMD8

MNN4  YKL201C MNN4_YEAST P36044 853634 Protein MNN4

RFU1 YLR0O73C  RFUI_YEAST Q08003 850762 Regulator of free ubiquitin chains 1

WRS1 YOL097C  SYWC_YEAST Q12109 854056 Tryptophan—tRNA ligase, cytoplasmic (EC
6.1.1.2) (Tryptophanyl-tRNA synthetase) (Tr-
PRS)

YKE4 YIL023C YKE4_YEAST P40544 854789 Zinc transporter YKE4

COX26 YDRII9W-A COX26_-YEAST Q2V2P9 3799970 Cytochrome c oxidase subunit 26, mitochondrial

THS1 YILO78W  SYTC_YEAST P04801 854732 Threonine—tRNA ligase, cytoplasmic (EC 6.1.1.3)

(Threonyl-tRNA synthetase) (ThrRS)

Table 5: Top-10 Genes Recommended by XGBoost-based Method.

Symbol Gene Name Swissprot UniProt NCBI ID Description

UIP4 YPL186C  UIP4_.YEAST Q08926 855916 ULPI-interacting protein 4

GNAl YFLO17C GNA1_.YEAST P43577 850529 Glucosamine 6-phosphate N-acetyltransferase
(EC 2.3.1.4) (Phosphoglucosamine acetylase)
(Phosphoglucosamine transacetylase)

TDA10 YGR205W TDAI10_YEAST P42938 853119 Probable ATP-dependent kinase TDA10 (EC 2.7.-
.-) (Topoisomerase I damage affected protein 10)

ERR3 YMR323W ERR3_YEAST P42222 855373 Enolase-related protein 3 (EC 4.2.1.11)
(2-phospho-D-glycerate hydro-lyase) (2-
phosphoglycerate dehydratase)

SAP1 YER047C SAP1_YEAST P39955 856771 Protein SAP1 (SIN1-associated protein)

MDJ2  YNL328C MDIJ2_-YEAST P42834 855388 Mitochondrial DnaJ homolog 2

ASN1  YPR145W ASNS1_YEAST P49089 856268 Asparagine synthetase [glutamine-hydrolyzing] 1
(EC 6.3.5.4) (Glutamine-dependent asparagine
synthetase 1)

SRT1  YMRI101C SRT1.YEAST QO03175 855127 Dehydrodolichyl diphosphate synthase complex
subunit SRT1 (EC 2.5.1.87) (Ditrans,polycis-
polyprenyl diphosphate synthase ((2E,6E)-
farnesyl diphosphate specific))

MRK1 YDL079C MRKI1_YEAST P50873 851480 Serine/threonine-protein kinase MRKI1 (EC
2.7.11.1)

MSA1 YORO066W MSA1_YEAST QO08471 854232 Gl-specific transcription factors activator MSA1

(MBF and SBF-associated protein 1)
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B DATABASE INFORMATION AND USAGE

Following our discussion in Section[4.2] we retrieved information from a range of databases for au-
tophagy research on yeast (Saccharomyces cerevisiae) for the knowledge graph (Oprea et al.|2019).
From the Gene Ontology (GO) database, we obtained the core ontology structure (go.obo) and
species-specific annotations for Saccharomyces cerevisiae from the GO Association File (sgd.gaf).
Protein-protein interaction data were retrieved from the STRING database v11.0, specifically us-
ing the protein links file (protein.links) and protein information file (protein.info) for S. cere-
visiae with a taxonomy ID of 4932. For pathway analysis, we incorporated Reactome data,
utilizing both the pathway definitions (ReactomePathways.txt) and protein-pathway associations
(UniProt2Reactome_All_Levels.txt). InterPro data, particularly from protein2ipr.dat.gz and en-
try.list, is utilized to associate proteins with known protein families and domains. To ensure con-
sistent identifier mapping across databases, we used the Ensembl database (release 109) UniProt
mapping files which provide us with gene identifiers linked to protein accession numbers. In ad-
dition, the label information is retrieved from GO, KEGG, and UniProt according to the specified
biological terms.
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