RECURSIVE SPECULATIVE DECODING: ACCELERAT-ING LLM INFERENCE VIA SAMPLING WITHOUT RE-PLACEMENT

Wonseok Jeon, Mukul Gagrani, Raghavv Goel, Junyoung Park, Mingu Lee*, Christopher Lott* Qualcomm AI Research^{\dagger}

Abstract

Speculative decoding is an inference-acceleration method for large language models (LLMs) where a small language model generates a draft-token sequence which is further verified by the target LLM in parallel. Recent works have advanced this method by establishing a draft-token tree, achieving superior performance over a single-sequence speculative decoding. However, those works independently generate tokens at each level of the tree, not leveraging the tree's entire diversifiability. Besides, their empirical superiority has been shown for fixed length of sequences, implicitly granting more computational resource to LLM for the tree-based methods. None of the existing works has conducted empirical studies with fixed target computational budgets despite its importance to resource-bounded devices. We present Recursive Speculative Decoding (RSD), a novel tree-based method that samples draft tokens without replacement and maximizes the diversity of the tree. During RSD's drafting, the tree is built by either *Gumbel-Top-k trick* that draws tokens without replacement in parallel or Stochastic Beam Search that samples sequences without replacement while early-truncating unlikely draft sequences and reducing the computational cost of LLM. We empirically evaluate RSD with Llama 2 and OPT models, showing that RSD outperforms the baseline methods, consistently for fixed draft sequence length and in most cases for fixed computational budgets at LLM.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023; Zhang et al., 2022; Brown et al., 2020; Achiam et al., 2023; Jiang et al., 2023) have gained popularity due to their outstanding achievements with high-quality text generation, which has drastically increased demands for faster text generation. However, auto-regressive nature of LLMs limits text generation to produce a single token at a time and often suffers from memory-bandwidth bottleneck, which leads to slower inference (Shazeer, 2019).

Speculative decoding (Chen et al., 2023; Leviathan et al., 2023) has emerged as a solution for LLM inference acceleration by leveraging the innate parallelizability of the transformer network (Vaswani et al., 2017). This decoding method utilizes a draft model, i.e., a smaller language model, to autoregressively generate a sequence of draft tokens with a significantly lower cost and latency, followed by the target LLM producing the token-wise probability distributions in parallel. Rejection sampling then verifies those draft tokens, recovering the sequence distribution by auto-regressive decoding with the target model. As speculative decoding uses a single sequence of draft tokens, one needs to increase the draft-sequence length to better exploit LLM's parallelizability. However, the longer draft sequence may slow down the overall inference in practice due to the computational overhead caused by additional auto-regressive decoding steps from the draft model, possibly decelerating the target model process due to the increased number of draft tokens.

^{*}Correspondence to Wonseok Jeon (wjeon@qti.qualcomm.com), Mingu Lee (mingul@qti.qualcomm.com), Christopher Lott (clott@qti.qualcomm.com)

[†]Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

Recent works on tree-based speculative decoding (Sun et al., 2023; Miao et al., 2023) have achieved better diversity and higher acceptance rate via multiple draft-token sequences. Despite promising results, their decoding methods independently sample the draft tokens, often harming the diversity of the tree when samples overlap. Also, their experiments have been conducted for the fixed length of draft-token sequences across decoding methods, implicitly requiring more computational resource to the target model when using tree-based methods. To the best of our knowledge, no prior work has thoroughly investigated the performance of single-sequence and tree-based speculative decoding methods with fixed target computational budget, which has practical importance for resource-bounded devices.

We propose **R**ecursive **S**peculative **D**ecoding (RSD), a novel tree-based speculative decoding algorithm that fully exploits the diversity of the draft-token tree by using sampling without replacement. We summarize our contributions as below:

Theoretical contribution. We propose *recursive rejection sampling* capable of recovering the target model's distribution with the sampling-without-replacement distribution defined by the draft model. **Algorithmic contribution.** We present RSD which builds draft-token tree composed of the tokens *sampled without replacement*. Two tree construction methods, **RSD** with Constant branching factors (RSD-C) and **RSD** with Stochastic Beam Search (RSD-S) (Kool et al., 2019), are proposed.

Empirical contribution. Two perspectives are considered in our experiments: (*Exp1*) *performance* for fixed length of draft sequence, which is also widely considered in previous works (Sun et al., 2023; Miao et al., 2023), and (*Exp2*) *performance for fixed target computational budget*, where we compared methods with given size of the draft-token tree. RSD is shown to outperform the baselines consistently in (*Exp1*) and for the majority of experiments in (*Exp2*).

2 BACKGROUND

Let us consider a sequence generation problem with a set \mathcal{X} of tokens. We also assume that there is a target model characterized by its conditional probability $q(x_{i+1}|x_{1:i}) := \Pr\{X_{i+1} = x_{i+1}|X_{1:i} = x_{1:i}\}, i \in \mathbb{N}$ for $x_{1:i} := (x_1, ..., x_i)$, where $X_1, ..., X_{i+1} \in \mathcal{X}$ and $x_1, ..., x_{i+1} \in \mathcal{X}$ are random tokens and their realizations, respectively. Given an input sequence $X_{1:t} = x_{1:t}$, we can auto-regressively and randomly sample an output sequence $X_{t+1:t+i}$ for $i \in \mathbb{N}$, i.e., $X_{t+i+1} \sim q(\cdot|X_{1:t+i})$.

Speculative decoding. Auto-regressive sampling with modern neural network accelerators (e.g., GPU/TPU) is known to suffer from the memory-bandwidth bottleneck (Shazeer, 2019), which prevents us from utilizing the entire computing power of those accelerators. Speculative decoding (Leviathan et al., 2023; Chen et al., 2023) addresses such issue by using the target model's parallelizability. It introduces a (small) draft model which outputs $p(\hat{X}_{i+1}|\hat{X}_{1:i}) := \Pr{\{\hat{X}_{i+1} = \hat{x}_{i+1}|\hat{X}_{1:i} = \hat{x}_{1:i}\}, i \in \mathbb{N}$. Speculative decoding accelerates the inference speed by iteratively conducting the following steps:

1) Draft token generation: For an input sequence $X_{1:m} = x_{1:m}$ and the draft sequence length L, sample draft tokens $\hat{X}_{n+1} \sim p(\cdot|X_{1:m}, \hat{X}_{m+1:n})$ auto-regressively for n = m, ..., m+L-1 (where $\hat{X}_{m+1:m} = \emptyset$).

2) Evaluation with target model: Use the target model to compute $q(\cdot|X_{1:m}, \hat{X}_{m+1:n}), n = m, ..., m + L$ in parallel.

3) Verification via rejection sampling: Starting from n = m + 1 to m + L, sequentially accept the draft token \hat{X}_n (i.e., $X_n = \hat{X}_n$) with the probability $\min\{1, \frac{q(\hat{X}_n|X_{1:n-1})}{p(\hat{X}_n|X_{1:n-1})}\}$. If one of the draft tokens \hat{X}_n is rejected, we sample $X_n \sim q_{res}(\cdot|X_{1:n-1})$, where the residual distribution is defined by $q_{res}(\cdot|\tau) := \operatorname{Norm}[[q(\cdot|\tau) - p(\cdot|\tau)]^+]$, for $[f]^+ := \max\{0, f(\cdot)\}$ and $\operatorname{Norm}[f] := \frac{f}{\sum_{x' \in \mathcal{X}} f(x')}$. If all draft tokens are accepted $(X_n = \hat{X}_n \text{ for } n = m + 1, ..., m + L)$, sample an extra token $X_{m+L+1} \sim q(\cdot|X_{1:m+L})$.

Chen et al. (2023) and Leviathan et al. (2023) have shown that the target distribution can be recovered when rejection sampling is applied.

Tree-based speculative decoding. One can further improve the sequence generation speed by using multiple draft-token sequences, or equivalently, a tree of draft tokens. *SpecTr* (Sun et al., 2023) is a tree-based speculative decoding algorithm motivated by the Optimal Transport (OT) (Villani et al.,

2009). It generalizes speculative decoding with K i.i.d. draft tokens $\hat{X}^{(k)} \sim p, k = 1, ..., K$, while recovering the target distribution q. To this end, a K-sequential draft selection algorithm (K-SEQ) was proposed, where the algorithm decides whether to accept K draft tokens $\hat{X}^{(k)}, k = 1, ..., K$, or not with the probability $\min\{1, \frac{q(\hat{X}^{(k)})}{\gamma_p(\hat{X}^{(k)})}\}, \gamma \in [1, K]$. If all draft tokens are rejected, we use a token drawn from the residual distribution

Norm
$$\left[q - \min\left\{p, \frac{q}{\gamma}\right\} \frac{1 - (1 - \beta_{p,q}(\gamma))^K}{\beta_{p,q}(\gamma)}\right]$$

for $\beta_{p,q}(\gamma) := \sum_{x \in \mathcal{X}} \min\{p(x), q(x)/\gamma\}$. SpecInfer also used the draft-token tree to speed up the inference with multiple draft models $p^{(k)}, k = 1, ..., K$ (Miao et al., 2023). During the inference of SpecInfer, all draft models generate their own draft tokwns independently and create a draft-token tree collectively through repetetion. For draft verification, multi-round rejection sampling is used to recover the target distribution, where we determine whether to accept one of the draft tokens or not with probability $\min\{1, \frac{q^{(k)}(\hat{X}^{(k)})}{p^{(k)}(\hat{X}^{(k)})}\}$ with distributions $q^{(1)} := q$ and $q^{(k)} := \operatorname{Norm}\left[[q^{(k-1)} - p^{(k-1)}]^+\right], k = 2, ..., K + 1$. If all draft tokens are rejected, we sample a token $Y \sim q^{(K+1)}$ from the last residual distribution. Due to the limited pages, we remain other related works in Appendix A.

3 RECURSIVE SPECULATIVE DECODING

In this section, we present **R**ecursive **S**peculative **D**ecoding (RSD), a tree-based speculative decoding method that constructs draft-token trees via sampling without replacement. We first propose recursive rejection sampling that generalizes multi-round speculative decoding (Miao et al., 2023) and is applicable to draft distributions with dependencies, where sampling-without-replacement distribution is one instance of such distributions. Then, we use recursive rejection sampling to validate each level of the draft-token tree which can be efficiently constructed via either Gumbel-Top-ktrick (Vieira, 2014) and Stochastic Beam Search (Kool et al., 2019),

3.1 RECURSIVE REJECTION SAMPLING: GENERALIZED MULTI-ROUND REJECTION SAMPLING

Suppose we have target distribution $q(x), x \in \mathcal{X}$. In recursive rejection sampling, we introduce random variables $\hat{X}^{(1)}, ..., \hat{X}^{(K)} \in \mathcal{X}$ that represent *K* draft tokens; these tokens will locate at the same level of the draft-token tree in Section 3.2. We aim to recover target distribution *q*, where

$$\hat{X}^{(1)} \sim p^{(1)}, \hat{X}^{(k)} \sim p^{(k)}(\cdot | \hat{X}^{(1:k-1)}),
k = 2, ..., K,$$
(1)

for some distributions $p^{(k)}, k = 1, ..., K$ and a sequence $\hat{X}^{(1:k-1)} := (\hat{X}^{(1)}, ..., \hat{X}^{(k-1)})$. Note that we assume distributions with dependencies unlike prior works such as SpecTr Sun et al. (2023) consider independent distributions. By

Algorithm 1 Recursive Rejection Sampling

- 1: Input: Draft dist. $p^{(k)}, k = 1, ..., K$, target dist. q.
- 2: Sample $\hat{X}^{(k)}$ by equation 1.
- 3: Compute $q^{(k)}(\cdot|\hat{X}^{(1:k-2)})$ and $\Theta^{(k)}$ by equation 2 and equation 3.
- 4: for k in $\{1, ..., K\}$ do
- 5: Sample $A^{(k)} \in \{ \texttt{acc}, \texttt{rej} \}$ with probability $\Theta^{(k)}$.
- 6: if $A^{(k)} = \text{acc}$ then return $Z \leftarrow \hat{X}^{(k)}$; end if
- 7: end for
- 8: return $Z \sim q^{(K+1)}(\cdot | \hat{X}^{(1:K-1)})$

using $p^{(1)}, ..., p^{(K)}$ and q, we define $q^{(1)} := q$ and residual distributions $q^{(k+1)}(|x^{(1:k-1)}) := \text{Norm}\left[[q^{(k)}(|x^{(1:k-2)}) - p^{(k)}(|x^{(1:k-1)})]^+ \right]$

$$q^{(k+1)}(\cdot|x^{(1:k-1)}) := \operatorname{Norm}\left[\left[q^{(k)}(\cdot|x^{(1:k-2)}) - p^{(k)}(\cdot|x^{(1:k-1)}) \right]^+ \right]$$
(2)

for k = 1, ..., K and $x^{(1)}, ..., x^{(K+1)} \in \mathcal{X}$, where $x^{(1:k')} = \emptyset$ (empty sequence, i.e., no conditioning) if k' < 1, or $(x^{(1)}, ..., x^{(k')})$, otherwise. Together with draft, target, and residual distributions, recursive rejection sampling introduces threshold random variables $\Theta^{(1)}, ..., \Theta^{(K)} \in [0, 1]$ which

determines rejection criteria for each draft token $\hat{X}^{(k)}, k = 1, ..., K$:

$$\Theta^{(k)} := \min\left\{1, \frac{q^{(k)}(\hat{X}^{(k)}|\hat{X}^{(1:k-2)})}{p^{(k)}(\hat{X}^{(k)}|\hat{X}^{(1:k-1)})}\right\}.$$
(3)

Specifically, each $\Theta^{(k)}$ can be used to define random variables $A^{(k)} \in \{ \texttt{acc,rej} \}$ (where acc and rej indicate acceptance and rejection of draft tokens, respectively) such that $\Pr \{ A^{(k)} = \texttt{acc} | \Theta^{(k)} = \theta \} = \theta$ for $\theta \in [0, 1]$.

Finally, recursive rejection sampling can be characterized by defining a random variable $Z \in \mathcal{X}$ such that

$$Z := \begin{cases} \hat{X}^{(k)}, & \text{if } A^{(1:k-1)} = \operatorname{rej}^{k-1}, A^{(k)} = \operatorname{acc}, \\ & k = 1, \dots, K, \\ Y, & \text{if } A^{(1:K)} = \operatorname{rej}^{K}, \\ & Y \sim q^{(K+1)}(\cdot | \hat{X}^{(1:K-1)}), \end{cases}$$
(4)

where $A^{(1:k-1)} := (A^{(1)}, ..., A^{(k-1)})$ and rej^k is a length-k sequence with all of its elements equal to rej. Intuitively, we select $\hat{X}^{(1)}$ if it is accepted $(A^{(1)} = \operatorname{acc})$; we select $\hat{X}^{(k)}$ when all previous draft tokens $\hat{X}^{(1)}, ..., \hat{X}^{(k-1)}$ are rejected and $\hat{X}^{(k)}$ is accepted $(A^{(1:k-1)} = \operatorname{rej}^{k-1}, A^{(k)} = \operatorname{acc})$ for each k; we sample $Y \sim q^{(K+1)}(\cdot|\hat{X}^{(1:K-1)})$ and select Y if all draft tokens are rejected $(A^{(1:K)} = \operatorname{rej}^K)$. We summarize the entire process of recursive rejection sampling in Algorithm 1. Note that the original rejection sampling Leviathan et al. (2023); Chen et al. (2023) is a special case of our recursive rejection sampling with K = 1. Also, it can be shown that recursive rejection sampling equation 4 always recovers the target distribution q:

Theorem 3.1 (Recursive rejection sampling recovers target distribution). For the random variable $Z \in \mathcal{X}$ in equation 4, $\Pr\{Z = z\} = q(z), z \in \mathcal{X}$. (See Appendix B.1 for the proof.)

Although the proposed recursive rejection sampling is applicable to arbitrary distributions with dependencies following equation 1, we assume a single draft model (as in SpecTr (Sun et al., 2023) and focus on the cases where the draft model samples predictive tokens without replacement, which is an instance of equation 1.

Toy example. We present a didactic example with Bernoulli distributions (given by Sun et al. (2023)) to showcase the benefit of recursive rejection sampling. Suppose that Bernoulli distributions are used for both draft and target models and only K = 2 tokens are allowed for draft proposals. The acceptance rates for different methods are depicted in Figure 1; multi-round speculative decoding (from SpecInfer (Miao et al., 2023)), K-SEQ and Optimal Transport with Membership costs (OTM) (Sun et al., 2023), use sampling *with* replacement, whereas recursive rejection sampling uses sam-

Figure 1: Acceptance rates for multi-round speculative decoding, K-SEQ, OTM and recursive rejection sampling are given when Ber(p) and Ber(q) are draft and target distributions, respectively, and two tokens are proposed by the draft model (K = 2).

pling *without* replacement; note that both K-SEQ and OTM were presented in SpecTr paper (Sun et al., 2023) where OTM shows theoretically optimal acceptance rate. For all the baselines, acceptance rates decrease as the discrepancy between draft and target distribution increases, since tokens sampled from draft models become more unlikely from target models. On the other hand, recursive rejection sampling achieves 100% acceptance rate even with high draft-target-model discrepancy; once the first draft token is rejected, the second draft token is always aligned with the residual distribution. This example shows that draft distributions with dependencies, e.g., sampling-without-replacement distribution, leads to higher acceptance rate and becomes crucial, especially for the cases with higher distributional discrepancy between draft and target.

3.2 TREE-BASED SPECULATIVE DECODING WITH RECURSIVE REJECTION SAMPLING

Recursive rejection sampling is applicable to tree-based speculative decoding algorithms if sampling without replacement is used to construct a *draft-token tree*. Two Recursive Speculative Decoding

Figure 2: We describe the entire process of RSD with Stochastic Beam Search (RSD-S); the difference between RSD-S and RSD with Constant branching factors (RSD-C) lies at the method of constructing the draft-token tree. Draft tokens the tree are sampled in parallel at each level and autoregressively across levels, while Stochastic Beam Search samples sequences without replacement at each tree level. The established draft-token tree is then processed by the target model in parallel, which lets us acquire the token-wise target model probabilities. Finally, recursive rejection sampling (for sampling-without-replacement distribution) is applied to each level of the tree, recovering the sequence generation distribution of the target model.

(RSD) algorithms using recursive rejection sampling are presented in this section, while they share the same pipeline for parallel target evaluation and draft tree verification after building the draft-token tree (See *Figure 2*.). We describe details about how RSD works in the following sections.

3.2.1 DRAFT-TOKEN TREE GENERATION

We consider two RSD algorithms: **RSD** with Constant branching factors (RSD-C) and **RSD** with Stochastic Beam Search (RSD-S). RSD-C builds the draft-token tree having constant branching factors, which makes sequences from the tree to have the same length. RSD-S, on the other hand, builds the tree via Stochastic Beam Search Kool et al. (2019) that samples *draft sequences* without replacement, while truncating sequences that are unlikely to be generated from the draft model and efficiently handling the computational cost.

RSD with Constant branching factors (RSD-C). Let *L* denote the fixed length for all draft se-

Figure 3: We describe examples of constructing draft-token trees with the (maximum) draft length equal to 3; (a) The tree constructed by RSD-C with branching factors $\mathbf{b} = (3, 2, 1)$ is given; (b) we depict the tree constructed by RSD-S with beamwidth W = 3, where edges are determined via Stochastic Beam Search.

quences, which is equivalent to the depth of the draft-token tree, and $\tau_0^{(1)}$ denote the input sequence of tokens. Let us assume that the tree level increases from root (l = 0) to leaf (l = L) nodes, where each node is characterized by the (partial) sequence. We also define $\mathbf{b} := (b_0, ..., b_{L-1})$ where b_l is the branching factor at the level l (See *Figure 3(a)* for the example with $\mathbf{b} = (3, 2, 1)$.).

At each level $l \in \{0, ..., L-1\}$ of the draft tree, we begin with N_l sequences $\tau_l^{(k)}, k = 1, ..., N_l$ generated from the previous level, where $N_0 := 1$ and $N_l := \prod_{l'=0}^{l-1} b_{l'}$ for $l \ge 1$. Then, we evaluate log probabilities $\phi_l(\tau_l^{(k)}, \cdot)$ and perturbed log probabilities $\tilde{\phi}_l(\tau_l^{(k)}, \cdot)$ for each k, i.e., for i.i.d. Gumbel samples $G_l^{(k)}(x), x \in \mathcal{X}$,

$$\phi_l(\boldsymbol{\tau}_l^{(k)}, \cdot) := \log p(\cdot | \boldsymbol{\tau}_l^{(k)}), \tag{5}$$

$$\phi_l(\tau_l^{(k)}, \cdot) := \log p(\cdot | \tau_l^{(k)} \cdot),$$

$$\tilde{\phi}_l(\tau_l^{(k)}, \cdot) := \phi_l(\tau_l^{(k)}, \cdot) + G_l^{(k)},$$
(6)

where both log probabilities and Gumbel samples can be computed in parallel; proper positional encodings and attention masking (Cai et al., 2023; Miao et al., 2023) are required for the parallel log-probability computation when transformer architecture is used (Vaswani et al., 2017). By using Gumbel-Top-k trick (Vieira, 2014; Kool et al., 2019) with perturbed log probabilities equation 6, one can sample top- b_l tokens without replacement for each sequence $\tau_l^{(k)}$:

$$\hat{X}_{l+1}^{((k-1)b_l+1)}, ..., \hat{X}_{l+1}^{((k-1)b_l+b_l)} = \underset{x \in \mathcal{X}}{\operatorname{argtop-}b_l} \left(\tilde{\phi}_l(\boldsymbol{\tau}_l^{(k)}, x) \right).$$
(7)

Note that the outputs $\hat{X}_{l+1}^{((k-1)b_l+k')}, k' = 1, ..., b_l$, in equation 7 are assumed to be in the decreasing order of values $\tilde{\phi}_l(\tau_l^{(k)}, \hat{X}_{l+1}^{((k-1)b_l+k')})$, for each k. Finally, we define

$$O_{l+1}^{((k-1)b_l+k')} := (\hat{X}_{l+1}^{((k-1)b_l+k')}, k), \tau_{l+1}^{((k-1)b_l+1)} := (\tau_l^{(k)}, \hat{X}_{l+1}^{((k-1)b_l+1)})$$
(8)

for $k \in 1, ..., N_l$ and $k' \in \{1, ..., b_l\}$, where $O_{l+1}^{((k-1)b_l+k')}$ is a pair of draft token and parent sequence index. Those pairs in equation 8 are stored for all levels l = 0, ..., L - 1 and used for draft tree verification, which exploits the fact that *the tokens* $\hat{X}_{l+1}^{((k-1)b_l+1)}, ..., \hat{X}_{l+1}^{((k-1)b_l+b_l)}$ follow sampling without replacement from $p(\cdot | \boldsymbol{\tau}_{l}^{(k)})$ for any given parent sequence index k.

RSD with Stochastic Beam Search (RSD-S). One caveat of RSD-C is that its constant branching factors b should be carefully determined to handle tree complexity, when the computation budget is limited; for example, if $\mathbf{b} = (n, ..., n)$ with its length L, the number of nodes in the draft tree will be $\sum_{l=0}^{L-1} n^l = O(n^{L-1})$, which is computationally prohibitive for large n and L. Also, RSD-C constructs sequences at each level l by using the *myopic* token-wise log probabilities ϕ_l in equation 6. RSD-S addresses both issues by using Stochastic Beam Search (Kool et al., 2019) that early-truncates unlikely sequences and utilizes *far-sighted* sequence log probabilities.

Let us define the maximum draft sequence length L and the beamwidth W. We also define $\tau_0^{(1)}$ as the input sequence similar to RSD-C. At each level $l \in \{0, ..., L-1\}$, SBS uses beam

$$\mathcal{B}_{l} := (t_{l}^{(1)}, \dots, t_{l}^{(W)}), t_{l}^{(k)} := (\tau_{l}^{(k)}, \phi_{l-1}(\tau_{l}^{(k)}), \psi_{l-1}(\tau_{l}^{(k)}))$$

generated from the previous level $l - 1^{l}$. Here, each tuple $t_{l}^{(k)}$ for $k \in \{1, ..., W\}$ consists of (a) a sequence $\tau_{l}^{(k)}$, (b) its sequence log probability $\phi_{l-1}(\tau_{l}^{(k)})$ of $\tau_{l}^{(k)}$, and (c) the transformed (perturbed and truncated) sequence log probability $\psi_{l-1}(\tau_l^{(k)})$, respectively.

For each tuple $t_l^{(k)}$ in the beam \mathcal{B}_l , we evaluate the (next-level) sequence log probabilities $\phi_l(\tau_l^{(k)}, \cdot)$ and the perturbed sequence log probabilities $\tilde{\phi}_l(\tau_l^{(k)}, \cdot)$. Specifically for i.i.d. Gumbel samples $G_{l}^{(k)}(x), x \in \mathcal{X}$, we compute

$$\phi_l(\boldsymbol{\tau}_l^{(k)}, \cdot) := \phi_{l-1}(\boldsymbol{\tau}_l^{(k)}) + \log p(\cdot | \boldsymbol{\tau}_l^{(k)}), \tilde{\phi}_l(\boldsymbol{\tau}_l^{(k)}, \cdot) := \phi_l(\boldsymbol{\tau}_l^{(k)}, \cdot) + G_l^{(k)},$$

where the terms $\tau_l^{(k)}$ and $\phi_{l-1}(\tau_l^{(k)})$ within the tuple $t_l^{(k)}$ of within the beam \mathcal{B}_l are reused. Similar to RSD-C, both log probabilities and Gumbel samples can be parallelly computed with positional encodings and attention masking (Cai et al., 2023; Miao et al., 2023). In addition to the perturbed log probabilities, SBS in RSD-S transforms $\tilde{\phi}_l(\tau_l^{(k)}, \cdot)$ into the truncated function

$$\psi_l(\boldsymbol{\tau}_l^{(k)}, \cdot) := T(\psi_{l-1}(\boldsymbol{\tau}_l^{(k)}), \tilde{\phi}_l(\boldsymbol{\tau}_l^{(k)}, \cdot)), \tag{9}$$

$$T(u,\phi) := -\log\left(e^{-u} - e^{-\max\phi} + e^{-\phi(\cdot)}\right)$$
(10)

for $\max \phi := \max_{x \in \mathcal{X}} \phi(x)$ by reusing $\psi_{l-1}(\tau_l^{(k)})$ in $t_l^{(k)}$. Note that $T(u, \phi)$ in equation 10 is monotonically increasing w.r.t. ϕ and transforms ϕ to the function with the upper bound u (Kool et al., 2019)²

¹For l = 0, $\phi_{-1}(\tau_0^{(1)}) = \phi_{-1}(\tau_0^{(1)}) = 0$ is used with $\mathcal{B}_0 := (t_0^{(1)})$ (Kool et al., 2019). ²In Appendix B.3 of Kool et al. (2019), a numerical stable way of evaluating the function T in equation 10 is provided.

After evaluating $\psi_l(\tau_l^{(k)}, \cdot)$ for all parent sequences $\tau_l^{(k)}$ s, SBS selects top-W pairs (\hat{X}_{l+1}, p_{l+1}) of draft token and parent sequence index *across the beam* \mathcal{B}_l , i.e.,

$$O_{l+1}^{(1)}, ..., O_{l+1}^{(W)} := \underset{(x,k) \in \mathcal{X} \times \mathcal{K}}{\operatorname{argtop-}W} \left(\psi_l(\boldsymbol{\tau}_l^{(k)}, x) \right)$$
(11)

for $O_{l+1}^{(k)} := (\hat{X}_{l+1}^{(k)}, p_{l+1}^{(k)})$ and $\mathcal{K} := \{1, ..., W\}$. The output pairs $O_{l+1}^{(1)}, ..., O_{l+1}^{(W)}$ are given by corresponding values $\psi_l(\tau_l^{(k)}, \hat{X}_{l+1}^{(k)})$ in the decreasing order. Finally, we construct the next beam

$$\mathcal{B}_{l+1} := (t_{l+1}^{(1)}, \dots, t_{l+1}^{(W)}), t_{l+1}^{(k)} := ((\hat{\tau}_{l+1}^{(k)}, \hat{X}_{l+1}^{(k)}), \phi_l(\hat{\tau}_{l+1}^{(k)}, \hat{X}_{l+1}^{(k)}), \psi_l(\hat{\tau}_{l+1}^{(k)}, \hat{X}_{l+1}^{(k)}))$$

for k = 1, ..., W, where $\hat{\tau}_{l+1}^{(k)} := \tau_l^{(p_{l+1}^{(k)})}$ is the selected parent sequence. Intuitively, SBS at the level l evaluates scores $\psi_l^{(k)}(\tau_l^{(k)}, x), x \in \mathcal{X}, k \in \mathcal{K}$, by considering all child nodes from the beam \mathcal{B}_l . SBS selects W nodes among all child nodes having top-W scores. Note that the above process is theoretically equivalent to sample top-W length-(l+1) sequences without replacement (Kool et al., 2019) and efficiently truncates sequences that are unlikely to be generated. (See Figure 3(b).)

We store the *ordered* sequence of pairs $O_{l+1}^{(1)}, ..., O_{l+1}^{(W)}$ for all levels l = 0, ..., L - 1, which is used for draft-tree verification. As in RSD-C, we show the following property:

Theorem 3.2 (Tokens from the same sequence follow sampling without replacement in RSD-S). In RSD-S, any non-empty subsequence of the sequence $\hat{X}_{l+1}^{(1)}, ..., \hat{X}_{l+1}^{(W)}$ of draft tokens (from $O_{l+1}^{(1)}, ..., O_{l+1}^{(W)}$ in equation 11) such that each element of the subsequence has the same parent $\tau_l^{(k)}$ follows sampling without replacement from $p(\cdot|\tau_l^{(k)})^3$. See Appendix B.2 of the proof.

3.2.2 DRAFT-TREE EVALUATION AND VERIFICATION

Tree evaluation with target model. After the draft-tree construction, we have sequences of pairs $(O_l^{(1)}, ..., O_l^{(N_l)}), l = 1, ..., L$, where $N_l = \prod_{l'=0}^l b_{l'}$ for RSD-C and $N_l = W$ for RSD-S, respectively $(N_0 := 1 \text{ for both})$. Those pairs include the node-connection information of the draft tree and can be used to *parallelly* evaluate the draft tree via the target model by utilizing appropriate attention masking and positional encodings. From the evaluation process, we acquire the target log probabilities for all sequences $\tau_l^{(k_l)}$ in the draft tree, i.e., $q(\cdot|\tau_l^{(k_l)}), l = 0, ..., L, k_l = 1, ..., N_l$.

Verification via recursive rejection sampling. Earlier, we show that tokens in the tree having the same parent sequence $\tau_l^{(k_l)}$ follows the sampling-without-replacement distribution from $p(\cdot|\tau_l^{(k_l)})$ for both RSD-C and RSD-S. Thus, one can apply recursive rejection sampling iteratively at each tree level. Specifically, at the level $l \in \{0, 1, ..., L\}$, we begin with a sequence $\tau_l^{(k'_l)}$ where k'_l is the index of the parent sequence accepted in the previous level $(k'_0 = 1 \text{ at the level } l = 0)$. Within the *ordered* sequence $(O_{l+1}^{(1)}, ..., O_{l+1}^{(N_{l+1})})$ of pairs, we find the subsequence $\mathbf{o}_{l+1}^{(k'_l)}$ having $\tau_l^{(k'_l)}$ as parent, which can be validated by checking the second element of each pair $O_{l+1}^{(k)}$, and the token sequence $\mathbf{x}_{l+1}^{(k'_l)}$ in $\mathbf{o}_{l+1}^{(k'_l)}$. Earlier, we show that tokens $\mathbf{x}_{l+1}^{(k'_l)}$ follows sampling-without-replacement distribution in its order, so we can apply recursive rejection sampling to those tokens with draft and target distributions, $p(\cdot|\tau_l^{(k'_l)})$ and $q(\cdot|\tau_l^{(k'_l)})$, respectively. If any token x in $\mathbf{x}_{l+1}^{(k'_l)}$ is accepted, we set k'_{l+1} that corresponds to $\tau_l^{(k'_{l+1})} := (\tau_l^{(k'_l)}, x)$, and we continue to the next-level verification if child nodes exist. If all tokens are rejected, we sample from the last residual distribution of recursiver rejection sampling. If there is no child node, we sample from the target $q(\cdot|\tau_l^{(k'_l)})$ similar to the single-sequence speculative decoding (Chen et al., 2023; Leviathan et al., 2023). We provide detailed descriptions for RSD-C (Algorithm 2) and for RSD-S (Algorithm 7) in Appendix C.

4 EXPERIMENTS

We evaluate RSD-C and RSD-S together with our baselines including speculative decoding (SD) (Chen et al., 2023; Leviathan et al., 2023) and SpecTr (Sun et al., 2023), where a single draft model is assumed⁴. We consider the following perspectives during our experiments: (*Exp1*) How

 $^{^{3}}$ We define a subsequence of a sequence as any sequence acquired by removing its elements *while maintaining the order in the original sequence.*

⁴We exclude SpecInfer (Miao et al., 2023) from our baselines since it uses multiple draft models.

Figure 4: Block efficiency, MBSU, token rate and accuracy for various lengths (2, 3, 4, 5) of draft sequences are given. We consider two target models, Llama 2-70B and Llama 2-Chat-70B, each of which has a corresponding smaller draft model for speculative decoding. All results are normalized by the corresponding numbers from auto-regressive decoding. RSD-S always outperforms SD, SpecTr and RSD-C. All methods including auto-regressive decoding show similar accuracy for WMT and XSum.

will the performance be affected by *the length of draft sequences*? (*Exp2*) How will the performance be affected by *the target computational budget*, i.e., the number of tokens processed at the target model? While (*Exp1*) has been frequently investigated by existing tree-based speculative decoding methods (Sun et al., 2023; Miao et al., 2023), (*Exp2*) has not been conducted as far as we concern, which has practical importance when running the target model on resource-bounded devices.

Models. We consider the following target models; **Llama 2** and **Llama 2-Chat** (Touvron et al., 2023) with **7B**, **13B** and **70B** parameters; **OPT** (Zhang et al., 2022) with **13B**, **30B** and **66B** parameters. Each class of target models adopts corresponding draft model; see Appendix D.1. In this section, we only present Llama 2-70B and Llama 2-Chat-70B results, and other results (Llama 2 with other sizes and OPT) can be found in Appendix D.4.

Tasks. Our methods and baselines are evaluated for **WMT**18-DeEn (Bojar et al., 2018, translation) and **XSum** (Narayan et al., 2018, summarization) for each target model, while we report accuracy scores (BLEU for WMT and ROUGE-2 for XSum) to confirm if the target model's distribution is recovered; Databricks-**Dolly**-15k (Conover et al., 2023, question and answering) is used only for Llama 2-Chat without accuracy evaluation. We use temperature 0.3 for both XSum and WMT and 1.0 for Dolly, where we further apply nucleus (top-*p*) sampling (Holtzman et al., 2019) with p = 0.95 for Dolly.

Performance metrics. We evaluate **block efficiency** (Leviathan et al., 2023), Memory-Bound Speed-Up (**MBSU**) (Zhou et al., 2023) and **token rate** (tokens/sec) on A100 GPUs; see Appendix D.2 for details.

4.1 (*Exp 1*) FIXED DRAFT SEQUENCE LENGTH

We fix (maximum) draft sequence length as the value in $\{2, 3, 4, 5\}$ and evaluate our methods and baselines, which is summarized in *Figure 4*. Regarding the tree structures of each decoding methods, we let both SpecTr and RSD-S always use draft-token trees, the size of which is smaller than or equal to that of RSD-C's tree; see Appendix D.3.1 for details. Our results show that tree-based methods (SpecTr, RSD-C and RSD-S) always outperform SD in terms of block efficiency and MBSU, whereas token rates for SpecTr and RSD-C can be lower than that for SD; this is since block efficiencies for both SpecTr and RSD-C are relatively low and there is additional computational overhead to process the tree. On the other hand, *RSD-S strictly outperforms both SD and SpecTr for all performance metrics*, showing the superiority of RSD-S over our baselines and the importance of earlytruncating unlikely draft sequences. We also observe that there is no strong correlation between

Figure 5: Block efficiency, MBSU, token rate and accuracy for various target computational budgets (the numbers 6, 10, 14, 21, 30 of draft tokens processed at the target model) are given. We consider two target models, Llama 2-70B and Llama 2-Chat-70B, each of which has a corresponding smaller draft model for speculative decoding. All results are normalized by the corresponding numbers from auto-regressive decoding. RSD-S outperforms SD, SpecTr and RSD-C in the majority of cases. All methods including auto-regressive decoding show similar accuracy for both WMT and XSum.

MBSU and token rate; this is since A100 GPUs used to measure token rates are *not* memory-bound. Furthermore, token rates in many cases are shown to decrease as the length of draft-token sequence becomes higher, which is due to the increased computation overhead to execute draft models with the longer draft sequence; however, one needs to be cautious since this result may not generally hold since token rate is hugely affected by the efficiency of software implementation and the devices which we execute the methods on. Finally, in WMT and XSum, BLEU and ROUGE-2 scores are similar across different methods, respectively, which implies that all methods recover the distributions of target LLMs.

4.2 (Exp2) FIXED TARGET COMPUTATIONAL BUDGET

We select target computational budget, i.e., the number of draft tokens processed at the target model in parallel for each speculative decoding iteration, among values in $\{6, 10, 14, 21, 30\}$ and evaluate our proposed methods and baselines; we summarize the results in *Figure 5* and describe tree structures in Appendix D.3.2. While RSD-S achieves higher block efficiency and MBSU than SD and SpecTr in most cases, SD beats RSD-C in the relatively low budget regime, e.g., $\{6, 10\}$ with Llama 2-70B and XSum, and $\{6\}$ with Llama 2-Chat-70B and Dolly. We believe that our draft models are well-aligned with corresponding target models for those cases (from the observation that block efficiencies of SD close to 3.0, which are significantly higher than the numbers in other cases, are achieved), and increasing the depth rather than the width of the tree could quickly increase the acceptance rate in such cases. In the high budget regime, on the other hand, RSD-S beats SD for both block efficiency and MBSU. In terms of token rate, RSD-S strictly outperforms our baselines, whereas SD's token rate severely decreases for higher target computation budgets due to the computational overhead caused by the draft model's auto-regressive decoding with the longer draft sequence.

5 CONCLUSION

We present RSD algorithms, a novel tree-based speculative decoding method leveraging the full diversifiability of the draft-token tree; RSD-C efficiently samples draft tokens without replacement via Gumbel-Top-k trick, while RSD-S uses Stochastic Beam Search and samples draft-token sequences without replacement. We also propose recursive rejection sampling that can verify the tree built by the sampling-without-replacement process and recovers the exact target model distribution. We show that RSD outperforms the baselines in most cases, supporting the importance of diverse drafting when accelerating LLM inference.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Ondrej Bojar, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Philipp Koehn, and Christof Monz. Findings of the 2018 conference on machine translation (WMT18). In Proceedings of the Third Conference on Machine Translation, Volume 2: Shared Task Papers, pp. 272–307, Belgium, Brussels, October 2018. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/W18-6401.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in Neural Information Processing Systems (NeurIPS)*, 33:1877–1901, 2020.
- Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, and Tri Dao. Medusa: Simple framework for accelerating llm generation with multiple decoding heads. https://github.com/ FasterDecoding/Medusa, 2023.
- Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao. Medusa: Simple Ilm inference acceleration framework with multiple decoding heads. *arXiv* preprint arXiv:2401.10774, 2024.
- Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper. Accelerating large language model decoding with speculative sampling. *arXiv preprint arXiv:2302.01318*, 2023.
- Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world's first truly open instruction-tuned llm, 2023. URL https://www.databricks.com/blog/2023/04/ 12/dolly-first-open-commercially-viable-instruction-tuned-llm.
- Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Breaking the sequential dependency of LLM inference using lookahead decoding, November 2023. URL https://lmsys.org/blog/ 2023-11-21-lookahead-decoding/.
- Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. arXiv preprint arXiv:1904.09751, 2019.
- Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7B. arXiv preprint arXiv:2310.06825, 2023.
- Sehoon Kim, Karttikeya Mangalam, Jitendra Malik, Michael W Mahoney, Amir Gholami, and Kurt Keutzer. Big little transformer decoder. arXiv preprint arXiv:2302.07863, 2023.
- Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them: The Gumbel-Top-*k* trick for sampling sequences without replacement. In *Proceedings of the 36th International Conference on Machine Learning (ICML)*, pp. 3499–3508. PMLR, 2019.
- Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding. In Proceedings of the 40th International Conference on Machine Learning (ICML), 2023.
- Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. SpecInfer: Accelerating generative LLM serving with speculative inference and token tree verification. *arXiv preprint arXiv:2305.09781*, 2023.
- Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don't give me the details, just the summary! Topic-aware convolutional neural networks for extreme summarization. *arXiv preprint arXiv:1808.08745*, 2018.

- Noam Shazeer. Fast transformer decoding: One write-head is all you need. *arXiv preprint* arXiv:1911.02150, 2019.
- Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix Yu. SpecTr: Fast speculative decoding via optimal transport. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems (NeurIPS), 30, 2017.
- Tim Vieira. Gumbel-max trick and weighted reservoir sampling. 2014. URL https://timvieira.github.io/blog/post/2014/08/01/ gumbel-max-trick-andweighted-reservoir-sampling/.
- Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.
- Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey of speculative decoding. arXiv preprint arXiv:2401.07851, 2024.
- Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.
- Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative decoding via knowledge distillation. *arXiv preprint arXiv:2310.08461*, 2023.

A RELATED WORKS

Many recent works have aimed to address the inference bottleneck of LLMs caused by autoregressive decoding. Speculative decoding methods (Leviathan et al., 2023; Chen et al., 2023; Sun et al., 2023; Miao et al., 2023) use the target model (LLM) with a draft model (a small language model), while recovering target distribution via rejection sampling. See the recent survey on speculative decoding (Xia et al., 2024) for more comprehensive understanding.

Other than speculative decoding methods, BiLD (Kim et al., 2023) is another method to accelerate inference, where it uses a fallback policy which determines when to invoke the target model and a rollback policy to review and correct draft tokens. Medusa (Cai et al., 2024) uses multiple decoding heads to predict future tokens in parallel, constructs the draft-token tree and uses a typical acceptance criteria. Lookahead decoding Fu et al. (2023) caches the historical *n*-grams generated on-the-fly instead of having a draft model and performs parallel decoding using Jacobi iteration and verifies *n*-grams from the cache. While showing promising results with greedy sampling, these works do not guarantee target distribution recovery in contrast to speculative decoding methods.

B THEOREMS AND PROOFS

B.1 PROOF OF THEOREM 3.1

Theorem 3.1 (Recursive rejection sampling recovers target distribution). The random variable $Z \in \mathcal{X}$ defining recursive rejection sampling rule equation 4 follows the target distribution q, i.e.,

$$\Pr\left\{Z=z\right\} = q(z), z \in \mathcal{X}.$$

Proof. We remain a sketch of the proof here and the formal proof is given in the next paragraph. We first consider the case where $\hat{X}^{(1)}, ..., \hat{X}^{(K-1)}$ are rejected and see whether we accept $\hat{X}^{(K)}$ or not; we either accept $\hat{X}^{(K)}$ with probability $\Theta^{(K)}$ in equation 3 or sample a new token $Y \sim q^{(K+1)}(\cdot|\hat{X}^{(1:K-1)})$ when all draft tokens are rejected. Since $q^{(K+1)}$ is the residual distribution from $q^{(K)}$, one can regard it as the simple sampling by Chen et al. (2023) and Leviathan et al. (2023), which recovers $q^{(K)}$. The same idea is applied to $\hat{X}^{(K-1)}, ..., \hat{X}^{(1)}$ in the reversed order until we recover $q = q^{(1)}$ at the end.

Let us desribe the formal proof. From the definition of recursive rejection sampling equation 4, we have

$$\Pr\left\{Z = z\right\} = \sum_{k=1}^{K} \underbrace{\Pr\left\{A^{(1:k-1)} = \operatorname{rej}^{k-1}, \hat{X}^{(k)} = z, A^{(k)} = \operatorname{acc}\right\}}_{=:\Sigma_{1,k}} + \underbrace{\Pr\left\{A^{(1:K)} = \operatorname{rej}^{K}, \tilde{X}^{(K+1)} = z\right\}}_{=:\Sigma_{2,K}}.$$
(12)

It can be shown that the following equality holds for each k:

$$\Sigma_{2,k-1} = \Sigma_{1,k} + \Sigma_{2,k}.$$
 (13)

Let us first consider k = K, then,

$$\begin{split} & \sum_{1,K} + \sum_{2,K} \Pr\left\{ \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} \\ & \times \Pr\left\{ A^{(1:K-1)} = \operatorname{rej}^{K-1}, \hat{X}^{(K)} = z, A^{(K)} = \operatorname{acc} \left| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} \right\} \\ & + \sum_{x^{(1),...,x^{(K)}}} \Pr\left\{ \hat{X}^{(1:K)} = x^{(1:K)} \right\} \\ & \times \Pr\left\{ A^{(1:K)} = \operatorname{rej}^{K}, \hat{X}^{(K+1)} = z \left| \hat{X}^{(1:K)} = x^{(1:K)} \right\} \right\} \\ & = \sum_{x^{(1),...,x^{(K-1)}}} \Pr\left\{ \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} \left(\\ & \Pr\left\{ A^{(1:K-1)} = \operatorname{rej}^{K-1}, \hat{X}^{(K)} = z, A^{(K)} = \operatorname{acc} \left| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right. \right\} \right. \\ & \quad + \underbrace{\sum_{x^{(K)}}}_{x^{(K)}} \Pr\left\{ \hat{X}^{(K)} = x^{(K)} \left| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right. \right\} \times \Pr\left\{ A^{(1:K)} = \operatorname{rej}^{K}, \hat{X}^{(K+1)} = z \left| \hat{X}^{(1:K)} = x^{(1:K)} \right. \right\} \right). \\ & \quad = :T_2(K) \end{split}$$

One can represent $T_{1,K}$ and $T_{2,K}$ as follows:

$$\begin{split} T_{1,K} \\ &= \Pr\left\{A^{(1:K-1)} = \operatorname{rej}^{K-1} \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} \\ &\times \Pr\left\{\hat{X}^{(K)} = z \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} \times \Pr\left\{A^{(K)} = \operatorname{acc} \middle| \hat{X}^{(1:K)} = (x^{(1:K-1)}, z) \right\} \\ &= \Pr\left\{A^{(1:K-1)} = \operatorname{rej}^{K-1} \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} p^{(K)}(z|x^{(1:K-1)}) \min\left\{1, \frac{q^{(K)}(z|x^{(1:K-2)})}{p^{(K)}(z|x^{(1:K-1)})}\right\} \\ &= \Pr\left\{A^{(1:K-1)} = \operatorname{rej}^{K-1} \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} \min\left\{p^{(K)}(z|x^{(1:K-1)}), q^{(K)}(z|x^{(1:K-2)})\right\}, \end{split}$$

$$\begin{split} & T_{2,K} \\ & = \sum_{x^{(K)}} \Pr\left\{ \hat{X}^{(K)} = x^{(K)} \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} \\ & \times \Pr\left\{ A^{(1:K)} = \operatorname{rej}^{K}, \hat{X}^{(K+1)} = z \middle| \hat{X}^{(1:K)} = x^{(1:K)} \right\} \\ & = \sum_{x^{(K)}} p^{(K)}(x^{(K)} | x^{(1:K-1)}) \times \Pr\left\{ A^{(1:K)} = \operatorname{rej}^{K} \middle| \hat{X}^{(1:K)} = x^{(1:K)} \right\} \\ & \times \Pr\left\{ \hat{X}^{(K+1)} = z \middle| \hat{X}^{(1:K-1)} \right) \times \Pr\left\{ A^{(1:K)} = \operatorname{rej}^{K} \middle| \hat{X}^{(1:K)} = x^{(1:K)} \right\} \times q^{(K+1)}(z | x^{(1:K-1)}) \\ & = \sum_{x^{(K)}} p^{(K)}(x^{(K)} | x^{(1:K-1)}) \times \Pr\left\{ A^{(1:K-1)} = \operatorname{rej}^{K-1} \middle| \hat{X}^{(1:K-1)} = x^{(1:K)} \right\} \\ & \times \Pr\left\{ A^{(K)} = \operatorname{rej} \middle| \hat{X}^{(1:K-1)} = x^{(1:K)} \right\} \times q^{(K+1)}(z | x^{(1:K-1)}) \\ & = \sum_{x^{(K)}} p^{(K)}(x^{(K)} | x^{(1:K-1)}) \times \Pr\left\{ A^{(1:K-1)} = \operatorname{rej}^{K-1} \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} \\ & \times \Pr\left\{ A^{(1:K-1)} = \operatorname{rej} \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} q^{(K+1)}(z | x^{(1:K-1)}) \\ & \times \sum_{x^{(K)}} p^{(K)}(x^{(K)} | x^{(1:K-1)}) \times \Pr\left\{ A^{(K)} = \operatorname{rej} \middle| \hat{X}^{(1:K)} = x^{(1:K)} \right\} \\ & = \Pr\left\{ A^{(1:K-1)} = \operatorname{rej} i^{K-1} \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} q^{(K+1)}(z | x^{(1:K-1)}) \\ & \times \sum_{x^{(K)}} p^{(K)}(x^{(K)} | x^{(1:K-1)}) \times \left(1 - \Pr\left\{ A^{(K)} = \operatorname{acc} \middle| \hat{X}^{(1:K)} = x^{(1:K)} \right\} \right) \\ & = \Pr\left\{ A^{(1:K-1)} = \operatorname{rej} i^{K-1} \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} q^{(K+1)}(z | x^{(1:K-1)}) \\ & \times \sum_{x^{(K)}} p^{(K)}(x^{(K)} | x^{(1:K-1)}) \times \left(1 - \min\left\{ 1, \frac{q^{(K)}(x^{(K)} | x^{(1:K-1)})}{p^{(K)}(x^{(K)} | x^{(1:K-1)})} \right\} \right) \\ & = \Pr\left\{ A^{(1:K-1)} = \operatorname{rej} i^{K-1} \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} \\ & \times \frac{\max\left\{ 0, q^{(K)}(x^{(K)} | x^{(1:K-2)}) - p^{(K)}(x^{(K)} | x^{(1:K-1)})}{\sum_{x^{(K)}} \max\left\{ 0, q^{(K)}(x^{(K)} | x^{(1:K-2)}) - p^{(K)}(x^{(K)} | x^{(1:K-1)}) \right\} \right\} \\ & = \Pr\left\{ A^{(1:K-1)} = \operatorname{rej} i^{K-1} \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} \\ & \max\left\{ 0, q^{(K)}(x^{(1:K-1)} - p^{(K)}(x^{(K)} | x^{(1:K-1)})} \right\} \\ & = \Pr\left\{ A^{(1:K-1)} = \operatorname{rej} i^{K-1} \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} \\ \\ & = \Pr\left\{ A^{(1:K-1)} = \operatorname{rej} i^{K-1} \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} \\ \\ & = \Pr\left\{ A^{(1:K-1)} = \operatorname{rej} i^{K-1} \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} \\ \\ \\ & = \Pr\left\{ A^{(1:K-1)} = \operatorname{rej} i^{K-1} \middle|$$

Therefore, we have

$$\begin{split} T_{1,K} + T_{2,K} \\ &= \Pr\left\{A^{(1:K-1)} = \operatorname{rej}^{K-1} \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)}\right\} \\ &\quad \times \left(\min\left\{p^{(K)}(z|x^{(1:K-1)}), q^{(K)}(z|x^{(1:K-2)})\right\} \\ &\quad + \max\left\{0, q^{(K)}(z|x^{(1:K-2)}) - p^{(K)}(z|x^{(1:K-1)})\right\}\right) \\ &= \Pr\left\{A^{(1:K-1)} = \operatorname{rej}^{K-1} \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)}\right\} q^{(K)}(z|x^{(1:K-2)}) \\ &= \Pr\left\{A^{(1:K-1)} = \operatorname{rej}^{K-1}, \tilde{X}^{(K)} = z \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)}\right\}, \end{split}$$

where we define a random variable $\tilde{X}^{(K)}$ such that

$$\Pr\left\{\tilde{X}^{(K)} = z \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} := q^{(K)}(z | x^{(1:K-1)}),$$

which leads to

$$\begin{split} & \Sigma_{1,K} + \Sigma_{2,K} \\ &= \sum_{x^{(1)},\dots,x^{(K-1)}} \Pr\left\{ \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} (T_{1,K} + T_{2,K}) \\ &= \sum_{x^{(1)},\dots,x^{(K-1)}} \Pr\left\{ \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} \\ &\times \Pr\left\{ A^{(1:K-1)} = \operatorname{rej}^{K-1}, \tilde{X}^{(K)} = z \middle| \hat{X}^{(1:K-1)} = x^{(1:K-1)} \right\} \\ &= \Pr\left\{ A^{(1:K-1)} = \operatorname{rej}^{K-1}, \tilde{X}^{(K)} = z \right\} \\ &= \Sigma_{2,K-1}. \end{split}$$

Since the same derivation can be done for k = 2, ..., K - 1, we have

$$\Pr\{Z=z\} = \sum_{k=1}^{K} \Sigma_{1,k} + \Sigma_{2,K} = \sum_{k=1}^{K-1} \Sigma_{1,k} + \Sigma_{2,K-1} = \dots = \Sigma_{1,1} + \Sigma_{2,1} = q(z),$$

where the last equality holds from the derivation of original speculative decoding by (Chen et al., 2023; Leviathan et al., 2023). \Box

B.2 PROOF OF THEOREM 3.2

Theorem 3.2 (Tokens from the same sequence follow sampling without replacement in RSD-S). In RSD-S, any non-empty subsequence of the sequence $\hat{X}_{l+1}^{(1)}, ..., \hat{X}_{l+1}^{(W)}$ of draft tokens (from $O_{l+1}^{(1)}, ..., O_{l+1}^{(W)}$ in equation 11) such that each element of the subsequence has the same parent $\tau_l^{(k)}$ follows sampling without replacement from $p(\cdot | \tau_l^{(k)})$.

Proof. For fixed $\tau_l^{(k)}$, consider a sequence of tokens

$$\bar{\mathbf{X}}_{l+1}^{(k)} := \underset{x \in \mathcal{X}}{\operatorname{argsort}} \, \psi_l(\boldsymbol{\tau}_l^{(k)}, x) = \underset{x \in \mathcal{X}}{\operatorname{argsort}} \, \tilde{\phi}_l(\boldsymbol{\tau}_l^{(k)}, x),$$

where the last equality holds since T in equation 9 is monotonically increasing w.r.t. $\tilde{\phi}_l(\tau_l^{(k)}, \cdot)$ for fixed $\tau_l^{(k)}$. Thus, $\bar{\mathbf{X}}_{l+1}^{(k)}$ can be seen as samples from $p(\cdot | \tau_l^{(k)})$ without replacement.

For a length- l_k subsequence $\mathbf{o}_{l+1}^{(k)}$ of $(O_{l+1}^{(1)}, ..., O_{l+1}^{(W)})$ in equation 11, where each element of the subsequence have $\tau_l^{(k)}$ as its parent, the token sequence in $\mathbf{o}_{l+1}^{(k)}$ is a subsequence of $\mathbf{\bar{X}}_{l+1}^{(k)}$, i.e., those tokens are top- l_k samples without replacement from $p(\cdot|\tau_l^{(k)})$.

C Algorithm

C.1 RECURSIVE SPECULATIVE DECODING WITH CONSTANT BRANCHING FACTORS (RSD-C)

Algorithm 2 Recursive Speculative Decoding with Constant Branching Factors (RSD-C)

```
1: Input: The length L_{draft} of draft sequences (depth of the draft tree), a sequence x_{input} of input
     tokens, a list \mathbf{b} := [b_0, ..., b_{L_{draft}-1}] of constant branching factors in the draft tree, the maximum
     length L_{\text{output}} of the output sequence.
 2: // Get the length of the input sequence.
     L_{\text{input}} \leftarrow \texttt{GetLength}(\mathbf{x}_{\text{input}}).
    // Initialize empty KV caches for draft and target models.
     \mathbf{C}_{\text{draft}} \leftarrow \emptyset, \mathbf{C}_{\text{target}} \leftarrow \emptyset.
 4: while L_{input} < L_{output} do
        // (STEP 1) Create a draft tree by using the draft model.
 5:
        \mathcal{T}, \mathbf{x}_{\text{input}}, \mathbf{C}_{\text{draft}}, \mathbf{M}, \mathbf{id}_{\text{position}}, \mathcal{L}_{\text{num\_nodes}} \leftarrow \texttt{CreateDraftTreeConst}(\mathbf{x}_{\text{input}}, \mathbf{C}_{\text{draft}}, \mathbf{b}, L_{\text{draft}}).
        // (STEP 2) Evaluate draft tokens by using the target model.
 6:
        // - Apply {
m M} to the right below corner of attention weights.
        // - The target log probability \Phi_{\mathrm{target}} is a \mathtt{GetLength}(\mathbf{x}_{\mathrm{input}})
        N_{\rm vocab} tensor.
        // - N_{\rm vocab} is the vocabulary size.
        \Phi_{target}, \mathbf{C}_{target} \leftarrow \texttt{TargetModelForwardPass}(\mathbf{x}_{input}, \mathbf{C}_{target}, \mathbf{id}_{position}, \mathbf{M}).
 7:
        // - Convert the log probability tensor into the list of log
        probabilities for each level of the tree.
        \mathcal{L}_{\text{log-probs-target}} \leftarrow \texttt{SplitTensor}(\Phi_{\text{target}}[-\texttt{Sum}(\mathcal{L}_{\text{num-nodes}}):,:], \mathcal{L}_{\text{num-nodes}}, \texttt{dim} = 0)
 8:
        // (STEP 3) Run Recursive Rejection Sampling for each level
        of the tree.
        \mathbf{x}_{accepted}, \mathbf{x}_{last}, \mathbf{id}_{accepted\_flat\_node} \leftarrow \texttt{RecursiveRejectionSampling}(\mathcal{T}, \mathcal{L}_{log\_probs\_target})
 9:
        // (STEP 4) Use KV caches that are accepted, and prepare for
        the next round.
        \mathbf{C}_{\text{draft}}, \mathbf{C}_{\text{target}} \leftarrow \texttt{FilterKVCache}(\mathbf{C}_{\text{draft}}, \mathbf{C}_{\text{target}}, L_{\text{input}}, \mathbf{id}_{\text{accepted_flat_node}})
10:
        \mathbf{x}_{input} \leftarrow \texttt{Concat}([\mathbf{x}_{input}[: L_{input}], \mathbf{x}_{accepted}, \mathbf{x}_{last}])
11:
        L_{\text{input}} \leftarrow \texttt{GetLength}(\mathbf{x}_{\text{input}})
12: end while
13: Output: a sequence \mathbf{x}_{input} that includes both input tokens and generated output tokens.
```

Algorithm 3 CreateDraftTreeConst $(x_{input}, C_{draft}, b, L_{draft})$

```
1: Input: An input sequence x_{input}, the draft KV cache C_{draft}, the branching factor b :=
          [b_0, ..., b_{L_{draft}-1}], the draft length L_{draft}
  2: // Get the length of the input sequence.
          L_{\text{input}} \leftarrow \texttt{GetLength}(\mathbf{x}_{\text{input}}).
  3: // Initialize lists for 1) draft log probabilities, 2)
          flattened node IDs, 3) parent node ids (within each level of
          the draft tree), 4) draft tokens, 5) numbers of nodes (for all
          levels of the tree), respectively.
          \mathcal{L}_{\text{log-probs.draft}} \leftarrow [], \mathcal{L}_{\text{flat_node_ids}} \leftarrow [], \mathcal{L}_{\text{parent_ids}} \leftarrow [], \mathcal{L}_{\text{draft_tokens}} \leftarrow [], \mathcal{L}_{\text{num_nodes}} \leftarrow [], \mathcal{L}_{\text{rum_nodes}} \leftarrow [], \mathcal{
          [].
  4: // Initialize a draft tree.
          \mathcal{T} \leftarrow (\mathcal{L}_{\text{log-probs\_draft}}, \mathcal{L}_{\text{flat\_node\_ids}}, \mathcal{L}_{\text{parent\_ids}}, \mathcal{L}_{\text{draft\_tokens}}).
  5: // Set an empty attention mask, and position ids; inclusive for
          start and exclusive for end.
          \mathbf{M} \leftarrow \emptyset, \mathbf{id}_{\text{position}} \leftarrow \text{Arange}(\texttt{start} = 0, \texttt{end} = L_{\text{input}}).
  6: // Set the counter to check the number of nodes in the tree.
          N_{\text{tree\_prev}} \leftarrow 0, N_{\text{tree\_curr}} \leftarrow 0.
  7: // Set the number of nodes at the current level of the tree.
          N_{\text{nodes}} \leftarrow 1, \mathcal{L}_{\text{num_nodes}}.append(N_{\text{nodes}}).
  8: for l_{\text{draft}} = 0 to L_{\text{draft}} - 1 do
            // Apply {
m M} to the right below corner of attention weights.
  9:
                // The draft log probability \Phi_{
m draft} is a GetLength({f x}_{
m input}) 	imes N_{
m vocab}
                tensor.
                 // N_{\rm vocab} is the vocabulary size.
                \Phi_{\text{draft}}, \mathbf{C}_{\text{draft}} \leftarrow \texttt{DraftModelForwardPass}(\mathbf{x}_{\text{input}}, \mathbf{C}_{\text{draft}}, \mathbf{id}_{\text{position}}, \mathbf{M}).
10:
                // Sample b_{l_{\mathrm{draft}}} nodes without replacement, independently for
                N_{\rm nodes} nodes.
                // NOTE: Outputs are sorted w.r.t. the value of perturbed
                log probabilities and flattened.
                \mathbf{x}_{\text{draft}}, \mathbf{id}_{\text{parent}} \leftarrow \texttt{SampleWithGumbelTopK}(\mathbf{\Phi}_{\text{draft}}[-N_{\text{nodes}}:,:], b_{l_{\text{draft}}}).
11:
                // Update the input sequence of tokens.
                \mathbf{x}_{input} \leftarrow \texttt{Concat}([\mathbf{x}_{input}, \mathbf{x}_{draft}]).
12:
                // Get the number of newly added nodes.
                N_{\text{nodes}} \leftarrow \texttt{GetLength}(\mathbf{x}_{\text{draft}}).
13:
                // Build attention mask reflecting tree topology.
                \mathbf{M} \leftarrow \texttt{BuildAttentionMask}(\mathbf{M}, \mathbf{id}_{parent}, N_{nodes}, N_{tree\_prev}, N_{tree\_curr}).
14:
                // Update counters.
                N_{\text{tree\_prev}} \leftarrow N_{\text{tree\_curr}}, N_{\text{tree\_curr}} \leftarrow N_{\text{tree\_curr}} + N_{\text{nodes}}.
15:
                // Update position IDs.
                \mathbf{id}_{\text{position}} \leftarrow \text{Concat}([\mathbf{id}_{\text{position}}, (L_{\text{input}} + l_{\text{draft}}) \times \mathbf{1}_{N_{\text{nodes}}}]).
                // Get node IDs considering the flattened draft tree.
16:
                // This is used to update KV caches.
                \mathbf{id}_{\mathrm{flat\_node}} \leftarrow \mathtt{Arange}(\mathtt{start} = L_{\mathrm{input}} + N_{\mathrm{tree\_prev}}, \mathtt{end} = L_{\mathrm{input}} + N_{\mathrm{tree\_curr}}).
17:
                // Update the lists of the tree.
                \mathcal{L}_{log-probs-draft}.append(\Phi_{draft}),
                                                                                                                                                               \mathcal{L}_{\mathrm{flat\_node\_ids}}.\mathtt{append}(\mathtt{id}_{\mathrm{flat\_node}}),
                \mathcal{L}_{parent\_ids}.append(id_{parent}),
                \mathcal{L}_{draft\_tokens}.append(\mathbf{x}_{draft}), \mathcal{L}_{num\_nodes}.append(N_{nodes}).
18: end for
19: Output: \mathcal{T}, \mathbf{x}_{input}, \mathbf{C}_{draft}, \mathbf{M}, \mathbf{id}_{position}, \mathcal{L}_{num_nodes}.
```

Algorithm 4 SampleWithGumbelTopK $(\mathbf{\Phi}, K)$

- 1: Input: a $N_{\text{nodes}} \times N_{\text{vocab}}$ log probabilities Φ , the number K of desired samples without replacement.
- 2: // Sample a matrix where elements are i.i.d. standard Gumbel random variables.
- $\mathbf{G} \leftarrow [g_{ij}], g_{ij} \leftarrow \mathsf{SampleStandardGumbel}(), i = 0, ..., N_{\mathrm{nodes}} 1, j = 0, ..., N_{\mathrm{vocab}} 1.$ 3: // Perturb log probabilities with Gumbel random variables.
- Φ ← Φ + G.
 4: // Get top-K elements corresponding to the K largest perturb log probabilities.
 // Outputs are sorted (in each row) w.r.t. the values of perturbed log probabilities and flattened.
 x ← argtop^(K)(Φ,dim = -1).flatten().
 5: // Set parent ids.
 id_{parent} ← Concat([0 ⋅ 1_K, 1 ⋅ 1_K, ..., (N_{nodes} 1) ⋅ 1_K]).
 6: // When probability filtering methods (e.g., top-p, top-k) were applied, filter some elements of x and id_{parent} if corresponding log probability is equal to -∞.
- 7: **Output**: \mathbf{x} , \mathbf{id}_{parent} .

Algorithm 5 BuildAttentionMask $(\mathbf{M}, \mathbf{id}_{parent}, N_{nodes}, N_{tree_{prev}}, N_{tree_{curr}})$

- Input: previous attention mask M, parent node ids id_{parent} for newly added nodes, the number N_{nodes} of nodes newly added to the tree, the total number N_{tree_prev} of nodes in the previous-iteration tree, the total number N_{tree_curr} of nodes in the current-iteration tree.
 if M == Ø then
- // If the attention mask is empty, we initialize with zeros. 3: $\mathbf{M} \leftarrow \mathbf{0}_{N_{\mathrm{nodes}} \times N_{\mathrm{nodes}}}.$ 4: **else** // If the attention mask exists, we zero-pad. 5: $\mathbf{M} \leftarrow \text{ZeroPadding}(\mathbf{M}, \text{right} = N_{\text{nodes}}, \text{bottom} = N_{\text{nodes}}).$ 6: for i = 0 to $N_{\text{nodes}} - 1$ do // Copy the row about paraent nodes to the row about child 7: nodes. $\mathbf{M}[N_{\text{tree_curr}} + i, :] \leftarrow \mathbf{M}[N_{\text{tree_prev}} + \mathbf{id}_{\text{parent}}[i], :].$ 8: end for 9: end if 10: // Set diagonal elements equal to 1. $\mathbf{M} \leftarrow \mathbf{M}.\texttt{fill_diagonal}(1)$
- 11: **Output:** the new attention mask M.

```
\overline{\textbf{Algorithm 6}} \text{ Recursive Rejection Sampling}(\mathcal{T}, \mathcal{L}_{\text{log-probs-target}})
 1: Input: the draft tree \mathcal{T}, the list \mathcal{L}_{\log probs_target} of target log probabilities
 2: // Get lists from the draft tree.
     \mathcal{L}_{\text{log-probs-draft}}, \mathcal{L}_{\text{flat-node-ids}}, \mathcal{L}_{\text{parent-ids}}, \mathcal{L}_{\text{draft-tokens}} \leftarrow \mathcal{T}
 3: \ensuremath{\left. \right.} // Set the current node id.
     i_{node} \leftarrow 0
 4: // Initialize the lists to store accepted draft tokens and
     flattened node ids (for KV cache update).
     \mathcal{L}_{accepted\_draft\_tokens} \leftarrow [], \mathcal{L}_{accepted\_flat\_node\_ids} \leftarrow [].
 5: for l_{\text{draft}} = 0 to L_{\text{draft}} - 1 do
       // Get log probabilities at the current node.
 6:
        // Both are 1~	imes~N_{
m vocab} tensors, where N_{
m vocab} is the vocabulary
        size.
         \Phi_{
m draft}
                                \mathcal{L}_{\text{log-probs-draft}}[l_{\text{draft}}][i_{node}]
                                                                            :
                                                                                   (i_{node} + 1), :],
                                                                                                                \Phi_{\text{target}}
                        \leftarrow
        \mathcal{L}_{log_probs_target}[l_{draft}][i_{node}:(i_{node}+1),:]
        // Get draft tokens, flattened node IDs, parent IDs at the
 7:
        current level.
        \mathbf{x}_{\mathrm{draft}} \ \leftarrow \ \mathcal{L}_{\mathrm{draft\_tokens}}[l_{\mathrm{draft}}], \ \mathbf{id}_{\mathrm{flat\_node}} \ \leftarrow \ \mathcal{L}_{\mathrm{flat\_node\_ids}}[l_{\mathrm{draft}}], \ \mathbf{id}_{\mathrm{parent}}
                                                                                                                                \leftarrow
        \mathcal{L}_{\text{parent_ids}}[l_{\text{draft}}]
 8:
        // Initialize an acceptance indicator as False.
        accept \leftarrow False
 9:
        for i in id_{parent} do
10:
            if i \neq i_{node} then
11:
               continue
12:
            end if
13:
            // Get the current draft token.
            x_d \leftarrow \mathbf{x}_{draft}[i].
14:
            // Sample a uniform random variable.
            U \sim \text{Uniform}[0, 1].
15:
            if U < \min\{1, \exp(\mathbf{\Phi}_{\text{target}}[0, x_d] - \mathbf{\Phi}_{\text{draft}}[0, x_d])\} then
16:
               // Set the indicator as True is the token is accepted.
               accept \leftarrow True.
               // Store the accepted token and corresponding flattened
17:
               node ID.
               \mathcal{L}_{\text{accepted\_draft\_tokens}}.\texttt{append}(x_d), \mathcal{L}_{\text{accepted\_draft\_tokens}}.\texttt{append}(\texttt{id}_{\text{flat\_node}}[i]).
18:
               i_{node} \leftarrow i.
19:
               break
20:
            end if
21:
            // Get clamped target log probability.
            \mathbf{\Phi}_{\text{target}} \leftarrow \log((\exp(\mathbf{\Phi}_{\text{target}}) - \exp(\mathbf{\Phi}_{\text{draft}})).\texttt{clamp}(\texttt{min} = 0)\})
            // Normalize the clamped target log probability.
22:
            \mathbf{\Phi}_{\mathrm{target}} \leftarrow \mathbf{\Phi}_{\mathrm{target}} - \mathtt{LogSumExp}(\mathbf{\Phi}_{\mathrm{target}})
            // Neglect draft log probability of already sampled token.
23:
            \Phi_{\text{draft}}[i] \leftarrow -\infty
            // Normalize the draft log probability.
24:
            \mathbf{\Phi}_{\mathrm{draft}} \leftarrow \mathbf{\Phi}_{\mathrm{draft}} - \mathtt{LogSumExp}(\mathbf{\Phi}_{\mathrm{draft}})
25:
        end for
        if accept == False then
26:
27:
            break
        end if
28:
29: end for
30: if accept then
31:
        // At the leaf node when all tokens are accepted, we use
        target log probability to draw a sample.
        \mathbf{\Phi}_{\text{target}} \leftarrow \mathcal{L}_{\text{log-probs-target}}[l_d][i_{node}:(i_{node}+1),:]
32: end if
33: \mathbf{x}_{\text{last}} \sim \texttt{SampleWithGumbelTopK}(\mathbf{\Phi}_{\text{target}}, 1)
34: \mathbf{x}_{accepted} \leftarrow \mathbf{Stack}(\mathcal{L}_{accepted\_draft\_tokens}), \mathbf{id}_{accepted\_flat\_node} \leftarrow \mathbf{Stack}(\mathcal{L}_{accepted\_draft\_tokens}).
35: Output: x_{accepted}, x_{last}, id_{accepted\_flat\_node}
```

C.2 RECURSIVE SPECULATIVE DECODING WITH STOCHASTIC BEAM SEARCH (RSD-S)

We highlight the difference w.r.t. RSD-C.

Alg	orithm 7 Recursive Speculative Decoding with Stochastic Beam Search (RSD-S)
1:	Input: The length L_{draft} of draft sequences (depth of the draft tree), a sequence \mathbf{x}_{input} of input tokens, the beamwidth W , the maximum length L_{output} of the output sequence.
2:	// Get the length of the input sequence.
	$L_{\text{input}} \leftarrow \texttt{GetLength}(\mathbf{x}_{\text{input}}).$
3:	// Initialize empty KV caches for draft and target models.
	$\mathbf{C}_{ ext{draft}} \leftarrow \emptyset, \mathbf{C}_{ ext{target}} \leftarrow \emptyset.$
4:	while $L_{\text{input}} < L_{\text{output}}$ do
5:	// (STEP 1) Create a draft tree by using the draft model.
	$\mathcal{T}, \mathbf{x}_{ ext{input}}, \mathbf{C}_{ ext{draft}}, \mathbf{M}, \mathbf{id}_{ ext{position}}, \mathcal{L}_{ ext{num_nodes}}$
	$\leftarrow \texttt{CreateDraftTreeStochasticBeamSearch}(\mathbf{x}_{\text{input}}, \mathbf{C}_{\text{draft}}, W, L_{\text{draft}}).$
6:	<pre>// (STEP 2) Evaluate draft tokens by using the target model.</pre>
	// – Apply ${ m M}$ to the right below corner of attention weights.
	// – The target log probability $\Phi_{ m target}$ is a ${ t GetLength}({f x}_{ m input})$ $ imes$
	$N_{ m vocab}$ tensor.
	// – $N_{ m vocab}$ is the vocabulary size.
	$\mathbf{\Phi}_{ ext{target}}, \mathbf{C}_{ ext{target}} \leftarrow extsf{TargetModelForwardPass}(\mathbf{x}_{ ext{input}}, \mathbf{C}_{ ext{target}}, \mathbf{id}_{ ext{position}}, \mathbf{M}).$
7:	// - Convert the log probability tensor into the list of log
	probabilities for each level of the tree.
	$\mathcal{L}_{\text{log-probs}_target} \leftarrow \texttt{SplitTensor}(\boldsymbol{\Phi}_{\text{target}}[-\texttt{Sum}(\mathcal{L}_{\text{num_nodes}}):,:], \mathcal{L}_{\text{num_nodes}}, \texttt{dim} = 0)$
8:	<pre>// (STEP 3) Run Recursive Rejection Sampling for each level</pre>
	of the tree.
	$\mathbf{x}_{\text{accepted}}, \mathbf{x}_{\text{last}}, \mathbf{id}_{\text{accepted_flat_node}} \leftarrow \texttt{RecursiveRejectionSampling}(\mathcal{T}, \mathcal{L}_{\text{log_probs_target}})$
9:	// (STEP 4) Use KV caches that are accepted, and prepare for
	the next round.
	$\mathbf{C}_{\mathrm{draft}}, \mathbf{C}_{\mathrm{target}} \leftarrow \mathtt{FilterKVCache}(\mathbf{C}_{\mathrm{draft}}, \mathbf{C}_{\mathrm{target}}, L_{\mathrm{input}}, \mathtt{id}_{\mathrm{accepted_flat_node}})$
10:	$\mathbf{x}_{\text{input}} \leftarrow \texttt{Concat}([\mathbf{x}_{\text{input}}]; L_{\text{input}}], \mathbf{x}_{\text{accepted}}, \mathbf{x}_{\text{last}}])$
11:	$L_{ ext{input}} \leftarrow \texttt{GetLength}(\mathbf{x}_{ ext{input}})$
12:	end while

13: **Output:** a sequence \mathbf{x}_{input} that includes both input tokens and generated output tokens.

Algorithm 8 CreateDraftTreeStochasticBeamSearch($x_{input}, C_{draft}, W, L_{draft}$) 1: Input: An input sequence x_{input} , the draft KV cache C_{draft} , the beamwidth W, the draft length L_{draft} 2: // Get the length of the input sequence. $L_{\text{input}} \leftarrow \texttt{GetLength}(\mathbf{x}_{\text{input}}).$ 3: // Initialize lists for 1) draft log probabilities, 2) flattened node IDs, 3) parent node ids (within each level of the draft tree), 4) draft tokens, 5) numbers of nodes (for all levels of the tree), respectively. $\mathcal{L}_{\text{log-probs}\text{.draft}} \leftarrow [], \mathcal{L}_{\text{flat}\text{.node}\text{.ids}} \leftarrow [], \mathcal{L}_{\text{parent}\text{.ids}} \leftarrow [], \mathcal{L}_{\text{draft}\text{.tokens}} \leftarrow [], \mathcal{L}_{\text{num}\text{.nodes}} \leftarrow [$ []. 4: // Initialize a draft tree. $\mathcal{T} \leftarrow (\mathcal{L}_{\text{log-probs-draft}}, \mathcal{L}_{\text{flat-node_ids}}, \mathcal{L}_{\text{parent_ids}}, \mathcal{L}_{\text{draft-tokens}}).$ 5: // Set an empty attention mask, and position ids; inclusive for start and exclusive for end. $\mathbf{M} \leftarrow \emptyset, \mathbf{id}_{\text{position}} \leftarrow \texttt{Arange}(\texttt{start} = 0, \texttt{end} = L_{\text{input}}).$ 6: // Set the counter to check the number of nodes in the tree. $N_{\text{tree}-\text{prev}} \leftarrow 0, N_{\text{tree}-\text{curr}} \leftarrow 0.$ 7: // Set the number of nodes at the current level of the tree. $N_{\text{nodes}} \leftarrow 1, \mathcal{L}_{\text{num_nodes}}.\texttt{append}(N_{\text{nodes}}).$ 8: // Set stochastic beam parameters: sum log probabilities Σ and truncated Gumbels Γ for each node in the current level of draft tree $\boldsymbol{\Sigma} \leftarrow \boldsymbol{0}_{N_{\text{nodes}} \times 1}, \boldsymbol{\Gamma} \leftarrow \boldsymbol{0}_{N_{\text{nodes}} \times 1}.$ 9: for $l_{\text{draft}} = 0$ to $L_{\text{draft}} - 1$ do // Apply ${
m M}$ to the right below corner of attention weights. 10: // The draft log probability $\Phi_{
m draft}$ is a ${\tt GetLength}({f x}_{
m input})$ imes $N_{
m vocab}$ tensor. // $N_{\rm vocab}$ is the vocabulary size. $\Phi_{\text{draft}}, \mathbf{C}_{\text{draft}} \leftarrow \texttt{DraftModelForwardPass}(\mathbf{x}_{\text{input}}, \mathbf{C}_{\text{draft}}, \mathbf{id}_{\text{position}}, \mathbf{M}).$ 11: // Sample $b_{l_{\mathrm{draft}}}$ nodes without replacement, independently for $N_{\rm nodes}$ nodes. // NOTE: Outputs are sorted w.r.t. the value of perturbed log probabilities and flattened. $\mathbf{x}_{\text{draft}}, \mathbf{id}_{\text{parent}}, \mathbf{\Sigma}, \mathbf{\Gamma} \leftarrow \texttt{SampleWithStochasticBeam}(\mathbf{\Phi}_{\text{draft}}[-N_{\text{nodes}}:,:], \mathbf{\Sigma}, \mathbf{\Gamma}, W).$ 12: // Update the input sequence of tokens. $\mathbf{x}_{input} \leftarrow \texttt{Concat}([\mathbf{x}_{input}, \mathbf{x}_{draft}]).$ 13: // Get the number of newly added nodes. $N_{\text{nodes}} \leftarrow \texttt{GetLength}(\mathbf{x}_{\text{draft}}).$ 14: // Build attention mask reflecting tree topology. $\mathbf{M} \leftarrow \mathtt{BuildAttentionMask}(\mathbf{M}, \mathtt{id}_{\mathtt{parent}}, N_{\mathtt{nodes}}, N_{\mathtt{tree_prev}}, N_{\mathtt{tree_curr}}).$ // Update counters. 15: $N_{\text{tree_prev}} \leftarrow N_{\text{tree_curr}}, N_{\text{tree_curr}} \leftarrow N_{\text{tree_curr}} + N_{\text{nodes}}.$ // Update position IDs. 16: $\mathbf{id}_{\text{position}} \leftarrow \text{Concat}([\mathbf{id}_{\text{position}}, (L_{\text{input}} + l_{\text{draft}}) \times \mathbf{1}_{N_{\text{nodes}}}]).$ // Get node IDs considering the flattened draft tree. 17: // This is used to update KV caches. $\mathbf{id}_{\mathrm{flat_node}} \leftarrow \mathtt{Arange}(\mathtt{start} = L_{\mathrm{input}} + N_{\mathrm{tree_prev}}, \mathtt{end} = L_{\mathrm{input}} + N_{\mathrm{tree_curr}}).$ 18: // Update the lists of the tree. $\mathcal{L}_{log_probs_draft}.append(\Phi_{draft}),$ $\mathcal{L}_{\mathrm{flat_node_ids}}.\mathtt{append}(\mathtt{id}_{\mathrm{flat_node}}),$ $\mathcal{L}_{\text{parent_ids}}.\texttt{append}(\mathbf{id}_{\text{parent}}),$ $\mathcal{L}_{draft_tokens}.append(\mathbf{x}_{draft}), \mathcal{L}_{num_nodes}.append(N_{nodes}).$ 19: end for 20: **Output:** \mathcal{T} , \mathbf{x}_{input} , \mathbf{C}_{draft} , \mathbf{M} , $\mathbf{id}_{position}$, \mathcal{L}_{num_nodes} .

Algorithm 9 SampleWithStochasticBeam $(\mathbf{\Phi}, \mathbf{\Sigma}, \mathbf{\Gamma}, K)$

- 1: Input: a $N_{\text{nodes}} \times N_{\text{vocab}}$ log probabilities Φ , a $N_{\text{nodes}} \times 1$ sum log probabilities Σ , a $N_{\text{nodes}} \times 1$ truncated Gumbels Γ , the beamwidth K.
- 2: // Get sum log probs up to child nodes. $\Phi \leftarrow \Phi + \Sigma \mathbf{1}_{1 \times N_{\mathrm{vocab}}}.$
- 3: // Sample a matrix where elements are i.i.d. standard Gumbel random variables.

 $\mathbf{G} \leftarrow [g_{ij}], g_{ij} \leftarrow \texttt{SampleStandardGumbel}(), i = 0, ..., N_{nodes} - 1, j = 0, ..., N_{vocab} - 1.$

- 4: // Perturb $\underset{\Phi}{\text{sum}}$ log probabilities with Gumbel random variables. $\overset{\Phi}{\Phi} \leftarrow \Phi + G.$
- 5: // Compute row-wise maximum value of perturbed sum log probabilities.
 - $M_{\widetilde{z}}^{\prime}$ The output size is $N_{
 m nodes} imes 1$.
 - $ilde{\Phi}_{\max} \leftarrow ilde{\Phi}.\mathtt{max}(\mathtt{dim} = -1, \mathtt{keepdim} = \mathrm{True}).$
- $\begin{array}{l} \text{6: }// \text{ Get truncated Gumbels for all expansion.} \\ // \text{ The output size is } N_{\text{nodes}} \times N_{\text{vocab}}. \\ // \text{ NOTE: the numerical stable way of computing this quantity} \\ \text{was described in the original Stochastic Beam Search paper.} \\ \tilde{\Gamma} \leftarrow -\log(\exp(-\Gamma \mathbf{1}_{1 \times N_{\text{vocab}}}) \exp(-\tilde{\Phi}_{\max} \mathbf{1}_{1 \times N_{\text{vocab}}}) + \exp(-\tilde{\Phi})) \end{array}$
- 7: // Get top-K elements and the K largest truncated Gumbels. // NOTE: we consider top-K elements for all elements in $\tilde{\Gamma}$, so both parent node IDs and token IDs can be acquired. Make sure that both output IDs are sorted w.r.t. the corresponding values in $\tilde{\Gamma}$.
 - $\mathbf{id}_{\mathrm{parent}}, \mathbf{x}, \mathbf{\Gamma} \leftarrow \operatorname{argtop-} K(\mathbf{\Phi}).$
- 8: // Get sum log probs for top-K elements. $\Sigma \leftarrow \Phi[\mathrm{id}_{\mathrm{parent}}, \mathbf{x}].$
- 9: // When probability filtering methods(e.g., top-p, top-k) were applied, filter some elements of $\mathbf{x}, \mathbf{id}_{parent}, \mathbf{\Sigma}, \mathbf{\Gamma}$ if corresponding log probability is equal to $-\infty$.

```
10: Output: \mathbf{x}, \mathbf{id}_{parent}, \boldsymbol{\Sigma}, \boldsymbol{\Gamma}
```

D EXPERIMENTS

D.1 DRAFT MODELS

The following draft models are used:

- For Llama 2 target models, we use the 115M Llama 2 drafter and Llama 2-Chat drafter for Llama 2 and Llama 2-Chat target models, respectively.
 - Llama 2 drafter uses smaller Llama archiecture (Touvron et al., 2023) and is pretrained on the 600B-token dataset
 - Llama 2-Chat drafter is the model fine-tuned from Llama 2-drafter so that it can be aligned with Llama 2-Chat-7B via distillation.
- For OPT target models, we use **OPT** with **125M** and **350M** parameters for target OPT models.

D.2 PERFORMANCE METRICS

In the experiments, we consider three metrics (except accuracy) for all target models.

• **Block efficiency** (Leviathan et al., 2023) is the average number of tokens generated per target model call. Within a single target call, auto-regressive decoding always generates a single token, while speculative decoding methods generates

(Number of accepted tokens) + 1.

The block efficiency η is the average over all target calls.

• Memory-Bound Speed Up (MBSU) is the fictitious inference speed-up relative to autoregressive decoding, where we assume each model's runtime is proportional to the model size. Specifically, let L denote the (maximum) length of draft sequences, which is the depth of the draft-token tree for tree-based speculative decoding methods, and r denote the relative speed of running the draft model to that of the target model. The walltime improvement (Leviathan et al., 2023; Zhou et al., 2023) is

$$\frac{\eta}{L \times r + 1}.$$

MBSU considers a specific case where r is equal to (Size of the target model)/(Size of the draft model), considering practical scenarios in memory-bound devices where loading model weights takes significant amount time, often proportional to their size.

• **Token rate** is the measure of average number of generated tokens per second while running on A100 GPUs. It shows different results from MBSU since running A100 GPUs is far from memory-bound scenarios.

D.3 TREE STRUCTURE

D.3.1 EXPERIMENT FOR VARIOUS LENGTHS OF DRAFT SEQUENCE

The following trees are used for draft sequence length L, where SD uses a single draft sequence with length L. For each L, we first set RSD-C with constant branching factors always equal to 2 and set the draft-tree sizes for SpecTr and RSD-S *always less than or equal to* the tree size of RSD-C. Then, we add RSD-C with the branching factor $\mathbf{b} := [n, 1, ..., 1]$ where n is properly set to have the draft-tree size equal to that of SpecTr and RSD-S. In *Figure 4*, we show the best results across all tree structures for each L and algorithm.

- L = 2:
 - SpecTr and RSD-S: $(K, L) \in \{(2, 2), (3, 2)\}$, where K becomes the number of independent draft sequences for SpecTr and the beamwidth for RSD-S
 - RSD-C: $\mathbf{b} \in \{[2,2], [2,1], [3,1]\}$ for a vector \mathbf{b} of branching factors.

- *L* = 3
 - SpecTr and RSD-S: $(K, L) \in \{(3, 3), (4, 3)\}$, where K becomes the number of independent draft sequences for SpecTr and the beamwidth for RSD-S
 - RSD-C: $b \in \{[2, 2, 2], [3, 1, 1], [4, 1, 1]\}$ for a vector b of branching factors.
- L = 4
 - SpecTr and RSD-S: $(K, L) \in \{(5, 4), (7, 4)\}$, where K becomes the number of independent draft sequences for SpecTr and the beamwidth for RSD-S
 - RSD-C: $\mathbf{b} \in \{[2, 2, 2, 2], [5, 1, 1, 1], [7, 1, 1, 1]\}$ for a vector **b** of branching factors.
- L = 5
 - SpecTr and RSD-S: $(K, L) \in \{(6, 5), (12, 5)\}$, where K becomes the number of independent draft sequences for SpecTr and the beamwidth for RSD-S
 - RSD-C: $\mathbf{b} \in \{[2, 2, 2, 2, 2], [6, 1, 1, 1, 1], [12, 1, 1, 1, 1]\}$ for a vector \mathbf{b} of branching factors.

D.3.2 EXPERIMENT FOR VAIROUS TARGET COMPUTATIONAL BUDGET

The following trees are used for target computational budgets B, i.e., the number of tokens to process at the target model, where B becomes the draft length of SD. In *Figure 5*, we show the best results across all tree structures for each B and algorithm.

- *B* = 6
 - SpecTr and RSD-S: $(K, L) \in \{(2, 3), (3, 2)\}$, where K becomes the number of independent draft sequences for SpecTr and the beamwidth for RSD-S
 - RSD-C: $b \in \{[2, 1, 1], [2, 2], [3, 1]\}$ for a vector b of branching factors.
- B = 10
 - SpecTr and RSD-S: $(K, L) \in \{(2, 5), (5, 2)\}$, where K becomes the number of independent draft sequences for SpecTr and the beamwidth for RSD-S
 - RSD-C: $b \in \{[2, 1, 1, 1, 1], [2, 2, 1], [5, 1]\}$ for a vector b of branching factors.
- *B* = 14
 - SpecTr and RSD-S: $(K, L) \in \{(2, 7), (7, 2)\}$, where K becomes the number of independent draft sequences for SpecTr and the beamwidth for RSD-S
 - RSD-C: $\mathbf{b} \in \{[2, 1, 1, 1, 1, 1], [2, 2, 2], [7, 1]\}$ for a vector **b** of branching factors.
- *B* = 21
 - SpecTr and RSD-S: $(K, L) \in \{(3, 7), (7, 3)\}$, where K becomes the number of independent draft sequences for SpecTr and the beamwidth for RSD-S
 - RSD-C: $\mathbf{b} \in \{[3, 1, 1, 1, 1, 1], [3, 2, 2], [7, 1, 1]\}$ for a vector **b** of branching factors.
- *B* = 30
 - SpecTr and RSD-S: $(K, L) \in \{(5, 6), (6, 5)\}$, where K becomes the number of independent draft sequences for SpecTr and the beamwidth for RSD-S
 - RSD-C: $\mathbf{b} \in \{[2, 2, 2, 2], [5, 1, 1, 1, 1], [6, 1, 1, 1, 1]\}$ for a vector \mathbf{b} of branching factors.

D.4 EXPERIMENT RESULTS WITH PLOTS

D.4.1 BLOCK EFFICIENCY, MBSU, TOKEN RATE AND ACCURACY FOR VARIOUS LENGTHS OF DRAFT SEQUENCE

Figure 6: Block efficiency, MBSU, token rate and accuracy for varying lengths of draft sequence are given for multiple target models: Llama 2-7B, Llama 2-13B, Llama 2-Chat-7B, Llama 2-Chat-13B. Chat models use the same draft model, while the other models use the same draft model different from the one for chat models. All results are normalized w.r.t. the values of AR decoding.

Figure 7: Block efficiency, MBSU, token rate and accuracy for varying lengths of draft sequence are given for multiple pairs of draft and target models: the size of draft model is in $\{125M, 350M\}$, and the size of target model is in $\{13B, 30B, 66B\}$. All results are normalized w.r.t. the values of AR decoding.

D.4.2 BLOCK EFFICIENCY, MBSU, TOKEN RATE AND ACCURACY FOR VARIOUS TARGET COMPUTATIONAL BUDGET

Figure 8: Block efficiency, MBSU, token rate and accuracy for varying numbers of tokens processed at the target model are given for multiple target models: Llama 2-7B, Llama 2-13B, Llama 2-Chat-7B, Llama 2-Chat-13B. Chat models use the same draft model, while the other models use the same draft model different from the one for chat models. All results are normalized w.r.t. the values of AR decoding.

Figure 9: Block efficiency, MBSU, token rate and accuracy for varying numbers of tokens processed at the target model are given for multiple pairs of draft and target models: the size of draft model is in {125M, 350M}, and the size of target model is in {13B, 30B, 66B}. All results are normalized w.r.t. the values of AR decoding.

D.5 EXPERIENT RESULTS WITH TABLES

For readers curious about raw numbers, we remain all the numbers used for plots as tables in this section.

- D.5.1 BLOCK EFFICIENCY, MBSU, TOKEN RATE AND ACCURACY FOR VARYING LENGTHS OF DRAFT SEQUENCE
 - Llama 2-7B (with 115M drafter)
 - XSum (Table 1), WMT (Table 2)
 - Llama 2-13B (with 115M drafter)
 - XSum (Table 3), WMT (Table 4)
 - Llama 2-70B (with 115M drafter)
 - XSum (Table 5), WMT (Table 6)
 - Llama 2-Chat-7B (with 115M drafter)
 - XSum (Table 7), WMT (Table 8), Dolly (Table 9)
 - Llama 2-Chat-13B (with 115M drafter)
 - XSum (Table 10), WMT (Table 11), Dolly (Table 12)
 - Llama 2-Chat-70B (with 115M drafter)
 - XSum (Table 13), WMT (Table 14), Dolly (Table 15)
 - OPT-13B (with OPT-125M drafter)
 - XSum (Table 16), WMT (Table 17)
 - OPT-30B (with OPT-125M drafter)
 - XSum (Table 18), WMT (Table 19)
 - OPT-66B (with OPT-125M drafter)
 - XSum (Table 20), WMT (Table 21)
 - OPT-13B (with OPT-350M drafter)
 - XSum (Table 22), WMT (Table 23)
 - OPT-30B (with OPT-350M drafter)
 - XSum (Table 24), WMT (Table 25)
 - OPT-66B (with OPT-350M drafter)
 - XSum (Table 26), WMT (Table 27)

- D.5.2 BLOCK EFFICIENCY, MBSU, TOKEN RATE AND ACCURACY FOR VARYING NUMBERS OF TOKENS PROCESSED AT THE TARGET MODEL
 - Llama 2-7B (with 115M drafter)
 - XSum (Table 28), WMT (Table 29)
 - Llama 2-13B (with 115M drafter)
 - XSum (*Table* 30), WMT (*Table* 31)
 - Llama 2-70B (with 115M drafter)
 - XSum (Table 32), WMT (Table 33)
 - Llama 2-Chat-7B (with 115M drafter)
 - XSum (Table 34), WMT (Table 35), Dolly (Table 36)
 - Llama 2-Chat-13B (with 115M drafter)
 - XSum (Table 37), WMT (Table 38), Dolly (Table 39)
 - Llama 2-Chat-70B (with 115M drafter)
 - XSum (Table 40), WMT (Table 41), Dolly (Table 42)
 - OPT-13B (with OPT-125M drafter)
 - XSum (Table 43), WMT (Table 44)
 - OPT-30B (with OPT-125M drafter)
 - XSum (Table 45), WMT (Table 46)
 - OPT-66B (with OPT-125M drafter)
 - XSum (Table 47), WMT (Table 48)
 - OPT-13B (with OPT-350M drafter)
 - XSum (Table 49), WMT (Table 50)
 - OPT-30B (with OPT-350M drafter)
 - XSum (Table 51), WMT (Table 52)
 - OPT-66B (with OPT-350M drafter)
 - XSum (Table 53), WMT (Table 54)

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	37.269	0.141
			SD	2	2.166	2.093	51.515	0.143
			SpecTr	2×2	2.218	2.143	52.950	0.146
			Spec II	3×2	2.279	2.202	53.346	0.139
		2		2-1	2.267	2.191	53.980	0.142
		2	RSD-C	2 - 2	2.398	2.317	56.609	0.143
				3-1	2.291	2.214	53.930	0.140
			ם מש	2×2	2.367	2.288	54.586	0.143
			KSD-S	3×2	2.432	2.350	55.465	0.140
			SD	3	2.465	2.343	54.195	0.140
			SpeaTr	3×3	2.644	2.513	55.273	0.140
			specifi	4×3	2.718	2.583	56.688	0.145
		2		2-2-2	2.868	2.726	59.879	0.141
		3	RSD-C	3-1-1	2.641	2.511	55.384	0.143
				4-1-1	2.688	2.555	57.518	0.140
			RSD-S	3×3	2.927	2.782	58.843	0.139
Llama 2-7B	XSum			4×3	2.970	2.823	61.937	0.136
		4	SD	4	2.728	2.551	53.731	0.137
			SpecTr	5×4	2.974	2.781	56.002	0.144
				7×4	3.093	2.892	60.053	0.139
			RSD-C	2-2-2-2	3.205	2.997	61.723	0.142
				5-1-1-1	2.898	2.710	56.343	0.141
				7-1-1-1	2.974	2.781	58.423	0.137
			200 6	5×4	3.427	3.205	64.887	0.140
			KSD-S	7×4	3.535	3.306	64.456	0.140
			SD	5	2.865	2.636	53.199	0.140
			SpecTr	6×5	3.209	2.953	55.424	0.141
			Spec II	12×5	3.425	3.152	60.133	0.141
		5		2-2-2-2-2	3.492	3.213	62.753	0.143
		5	^J RSD-C	6-1-1-1-1	3.133	2.883	55.796	0.142
				12-1-1-1-1	3.249	2.990	58.352	0.141
			PSD S	6×5	3.811	3.507	65.160	0.141
			1.20-2	12×5	4.073	3.748	67.409	0.145

Table 2: We summarize experiment results with Llama 2-7B target and 115M draft for the WMT task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	37.631	0.374
			SD	2	1.673	1.617	42.447	0.370
			CT.	2×2	1.727	1.669	42.013	0.370
			Specif	3×2	1.757	1.698	43.128	0.376
		2		2-1	1.768	1.708	43.044	0.377
		Ζ	RSD-C	2 - 2	1.858	1.796	45.245	0.372
				3-1	1.819	1.758	44.482	0.375
				2×2	1.824	1.763	43.536	0.370
			K2D-2	3×2	1.912	1.847	45.018	0.373
			SD	3	1.783	1.695	40.816	0.374
			CT.	3×3	1.890	1.796	42.746	0.381
			Specif	4×3	1.913	1.819	41.990	0.379
		2		2-2-2	2.033	1.933	44.669	0.372
	WMT	3	RSD-C	3-1-1	1.940	1.844	42.981	0.370
				4-1-1	1.981	1.883	43.791	0.376
			RSD-S	3×3	2.064	1.962	43.684	0.372
Llama 2-7B				4×3	2.143	2.037	45.766	0.374
		4	SD	4	1.854	1.734	38.651	0.377
			SpecTr	5×4	2.023	1.892	41.134	0.375
			spectr	21r 7×4	2.059	1.925	42.573	0.373
			RSD-C	2-2-2-2	2.152	2.013	43.755	0.378
				5-1-1-1	2.083	1.948	43.142	0.375
				7 - 1 - 1 - 1	2.130	1.992	42.567	0.375
				5×4	2.311	2.161	44.367	0.375
			K2D-2	7×4	2.408	2.252	46.197	0.376
			SD	5	1.910	1.758	36.041	0.378
			SpecTr	6×5	2.120	1.951	38.841	0.373
			specifi	12×5	2.176	2.002	39.702	0.376
		5		2-2-2-2-2	2.234	2.056	42.161	0.375
		5	RSD-C	6-1-1-1-1	2.171	1.998	40.331	0.372
				12 - 1 - 1 - 1 - 1	2.249	2.070	41.585	0.376
				6×5	2.467	2.270	43.898	0.370
			120-2	12×5	2.657	2.445	46.843	0.374

Table 3: We summarize experiment results with Llama 2-13B target and 115M draft for the XSum task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	28.141	0.166
			SD	2	2.120	2.082	40.958	0.164
			CT.	2×2	2.172	2.133	40.870	0.170
			Specif	3×2	2.212	2.173	41.116	0.165
		2		2-1	2.224	2.185	41.866	0.165
		Z	RSD-C	2 - 2	2.347	2.305	44.593	0.166
				3-1	2.269	2.229	42.981	0.158
				2×2	2.311	2.271	43.533	0.165
			K2D-2	3×2	2.412	2.370	44.529	0.162
			SD	3	2.377	2.315	42.777	0.160
			CmaaTr.	3×3	2.559	2.492	45.252	0.166
		3	specifi	4×3	2.578	2.510	44.703	0.164
				2-2-2	2.784	2.711	47.985	0.166
	XSum		RSD-C	3-1-1	2.560	2.493	44.855	0.164
				4 - 1 - 1	2.593	2.525	44.639	0.161
			RSD-S	3×3	2.832	2.758	48.388	0.162
Llama 2-13B				4×3	2.919	2.842	50.092	0.163
		4	SD	4	2.608	2.517	43.309	0.165
			SpecTr	5×4	2.880	2.780	45.940	0.161
				7×4	2.944	2.842	47.456	0.162
			RSD-C	2-2-2-2	3.096	2.989	49.203	0.167
				5-1-1-1	2.813	2.715	44.641	0.165
				7-1-1-1	2.864	2.764	45.288	0.162
			מספת	5×4	3.347	3.231	50.517	0.163
			KSD-S	7×4	3.442	3.322	52.105	0.157
			SD	5	2.738	2.621	41.562	0.165
			SpecTr	6×5	3.108	2.974	46.120	0.169
			Specifi	12×5	3.230	3.091	46.587	0.166
		5		2-2-2-2-2	3.365	3.220	48.923	0.165
		5	RSD-C	6-1-1-1-1	3.014	2.885	43.751	0.163
				12-1-1-1-1	3.069	2.937	44.262	0.164
				6×5	3.648	3.492	50.782	0.162
			120-2	12×5	3.948	3.778	55.044	0.164

Table 4: We summarize experiment results with Llama 2-13B target and 115M draft for the WMT task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	30.467	0.413
			SD	2	1.662	1.632	34.571	0.410
			С Т .	2×2	1.717	1.686	35.383	0.405
			Specif	3×2	1.748	1.717	35.124	0.408
		2		2-1	1.760	1.729	36.200	0.405
		2	RSD-C	2 - 2	1.852	1.819	38.384	0.407
				3-1	1.815	1.783	37.576	0.408
				2×2	1.810	1.778	35.906	0.404
			K2D-2	3×2	1.903	1.869	37.934	0.410
			SD	3	1.778	1.731	34.213	0.408
			SpaaTr	3×3	1.876	1.827	35.754	0.407
			specifi	4×3	1.903	1.853	35.127	0.409
		2		2-2-2	2.027	1.974	36.916	0.407
	WMT	3	RSD-C	3-1-1	1.929	1.878	37.279	0.413
				4 - 1 - 1	1.965	1.914	35.558	0.408
			RSD-S	3×3	2.059	2.005	36.511	0.406
Llama 2-13B				4×3	2.141	2.084	39.415	0.413
		4	SD	4	1.852	1.787	33.728	0.406
			SpecTr	5×4	2.004	1.935	34.950	0.409
				7×4	2.038	1.968	34.973	0.411
			RSD-C	2 - 2 - 2 - 2	2.122	2.048	36.819	0.407
				5-1-1-1	2.080	2.008	35.434	0.411
				7-1-1-1	2.116	2.042	35.526	0.406
				5×4	2.304	2.224	37.842	0.408
			K2D-2	7×4	2.399	2.315	38.315	0.410
			SD	5	1.913	1.831	31.396	0.406
			SpecTr	6×5	2.101	2.011	34.184	0.408
			Specifi	12×5	2.168	2.074	34.936	0.408
		5		2-2-2-2-2	2.198	2.103	34.472	0.412
		5	RSD-C	6-1-1-1-1	2.163	2.070	34.502	0.408
				12-1-1-1-1	2.238	2.142	35.575	0.410
				6×5	2.448	2.343	36.278	0.408
			K9D-9	12×5	2.638	2.525	39.182	0.412

Table 5: We summarize experiment results with Llama 2-70B target and 115M draft for the XSum task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	9.079	0.194
			SD	2	2.103	2.096	15.054	0.188
			CT.	2×2	2.164	2.157	15.171	0.189
			Specif	3×2	2.204	2.197	15.346	0.191
		2		2-1	2.189	2.181	15.276	0.187
		Ζ	RSD-C	2 - 2	2.322	2.314	16.033	0.189
				3-1	2.239	2.231	15.480	0.197
				2×2	2.288	2.280	15.719	0.189
			K2D-2	3×2	2.376	2.368	16.284	0.193
			SD	3	2.365	2.353	15.992	0.193
			SpeeTr	3×3	2.528	2.515	16.533	0.195
		3	specifi	4×3	2.554	2.541	16.586	0.193
	XSum			2-2-2	2.757	2.743	17.790	0.188
			RSD-C	3-1-1	2.551	2.538	16.837	0.189
				4-1-1	2.543	2.531	16.617	0.196
			RSD-S	3×3	2.765	2.751	17.689	0.192
Llama 2-70B				4×3	2.862	2.848	18.163	0.186
		4	SD	4	2.584	2.566	16.656	0.196
			SpecTr	5×4	2.844	2.825	17.159	0.192
				7×4	2.883	2.863	17.052	0.192
			RSD-C	2-2-2-2	3.028	3.008	17.885	0.191
				5-1-1-1	2.749	2.730	16.658	0.193
				7-1-1-1	2.780	2.762	16.568	0.190
			PSD S	5×4	3.242	3.220	18.965	0.196
			KSD-S	7×4	3.361	3.338	19.248	0.191
			SD	5	2.680	2.658	16.634	0.194
			SpecTr	6×5	3.103	3.077	17.603	0.192
			Specifi	12×5	3.206	3.179	17.344	0.194
		5		2 - 2 - 2 - 2 - 2	3.295	3.268	17.675	0.191
		5	RSD-C	6-1-1-1-1	2.935	2.910	16.809	0.193
				12 - 1 - 1 - 1	3.004	2.978	16.371	0.193
			Red e	6×5	3.556	3.526	19.484	0.192
			NOD 0	12×5	3.851	3.819	19.808	0.194
Table 6: We summarize experiment results with Llama 2-70B target and 115M draft for the WMT task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	TR Acc. 9.706 0.439 13.331 0.440 13.742 0.445 13.710 0.445 13.710 0.445 13.710 0.445 13.710 0.445 13.710 0.445 13.992 0.436 14.512 0.443 14.245 0.440 14.211 0.438 14.727 0.439 13.620 0.442 13.906 0.440 13.959 0.437 14.875 0.438 14.474 0.441 14.483 0.439 15.132 0.440 15.591 0.437 13.698 0.437 13.833 0.441 15.550 0.434 15.550 0.434 15.962 0.437 13.430 0.4437 13.737 0.443 13.619 0.442 13.988 0.443	
			SD	2	1.661	1.655	13.331	0.440
			<u>с</u> т.	2×2	1.732	1.726	13.742	TRAcc. 706 0.439 331 0.440 742 0.445 710 0.445 992 0.436 512 0.443 245 0.440 211 0.438 727 0.439 620 0.442 906 0.440 959 0.437 875 0.438 474 0.441 483 0.439 132 0.440 591 0.437 698 0.437 865 0.440 833 0.441 550 0.434 962 0.437 737 0.443 619 0.442 988 0.443 095 0.440 575 0.439 941 0.439
			Specir	3×2	1.756	1.750	13.710	0.445
		2		2-1	1.770	1.764	13.992	0.436
		Z	RSD-C	2 - 2	1.853	1.847	14.512	0.443
				3-1	1.819	1.813	14.245	0.440
				2×2	1.819	1.813	14.211	0.438
			K2D-2	3×2	1.907	1.900	14.727	0.439
			SD	3	1.778	1.769	13.620	0.442
			SpaaTr	3×3	1.880	1.870	13.906	0.440
			specifi	4×3	1.909	1.899	13.959	0.437
		3		2-2-2	2.021	2.010	14.875	0.438
	3	3	RSD-C	3-1-1	1.940	1.930	14.474	0.441
				4-1-1	1.968	1.958	14.483	0.439
			RSD-S	3×3	2.068	2.057	15.132	0.440
Llama 2-70B	WMT		KSD-S	4×3	2.140	2.129	15.591	0.437
			SD	4	1.866	1.854	13.698	0.437
			SpecTr	5×4	2.016	2.003	13.865	0.440
			specifi	7×4	2.048	2.034	13.833	0.441
		4		2 - 2 - 2 - 2	2.130	2.116	14.338	0.440
		4	RSD-C	5 - 1 - 1 - 1	2.088	2.074	14.311	0.440
				7-1-1-1	2.132	2.117	14.406	0.441
			RSD-S	5×4	2.309	2.293	15.550	0.434
			KSD-5	7×4	2.408	2.392	15.962	0.437
			SD	5	1.917	1.901	13.430	0.437
			SpecTr	6×5	2.113	2.095	13.737	0.443
			Specifi	12×5	2.177	2.159	13.619	0.442
		5		2 - 2 - 2 - 2 - 2	2.232	2.214	13.988	0.443
		5	RSD-C	6-1-1-1-1	2.173	2.154	14.095	0.440
			NOD C	12 - 1 - 1 - 1	2.246	2.227	14.022	0.440
			RSD-S	6×5	2.451	2.430	15.575	0.439
		_	NOD 0	12×5	2.650	2.628	15.941	0.439

Table 7: We summarize experiment results with Llama 2-Chat-7B target and 115M draft for the XSum task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	41.651	R Acc. 51 0.092 08 0.091 22 0.092 26 0.092 25 0.091 25 0.091 49 0.089 15 0.090 49 0.090 40 0.090 41 0.090 60 0.090 11 0.092 60 0.091 27 0.090 60 0.091 26 0.091 26 0.091 26 0.091 27 0.089 06 0.089 06 0.089 67 0.093 95 0.089 04 0.091 18 0.087 002 0.092 95 0.091 98 0.092 960 0.090 97 0.089 42 0.089
			SD	2	1.938	1.873	47.708	0.091
			Smaa Tr	2×2	1.961	1.896	46.422	0.092
			spectr	3×2	1.972	1.906	45.886	0.092
		2		2-1	2.048	1.979	49.725	0.091
		Z	RSD-C	2 - 2	2.162	2.090	51.949	0.089
				3-1	2.100	2.030	50.115	0.091
				2×2	2.129	2.058	50.315	0.090
			K2D-2	3×2	2.220	2.146	52.867	0.090
			SD	3	2.144	2.038	47.360	0.090
			Smaa Tr	3×3	2.202	2.093	46.211	0.092
			specifi	4×3	2.211	2.102	46.960	0.091
		2		2-2-2	2.484	2.362	54.127	0.090
		3	RSD-C	3-1-1	2.311	2.196	49.424	0.090
				4 - 1 - 1	2.345	2.229	50.509	0.089
				3×3	2.525	2.400	51.902	0.093
Llama 2-Chat-7B	XSum		K2D-2	4×3	2.650	2.519	54.496	0.091
			SD	4	2.269	2.122	45.826	0.091
			SpecTr	5×4	2.366	2.212	46.726	0.091
			specifi	7×4	2.379	2.225	46.287	0.089
		4		2-2-2-2	2.701	2.526	52.867	0.093
		4	RSD-C	5 - 1 - 1 - 1	2.503	2.341	49.052	0.089
				7-1-1-1	2.562	2.396	52.106	0.089
				5×4	2.921	2.732	54.744	0.091
			K2D-2	7×4	3.023	2.827	56.318	0.087
			SD	5	2.345	2.158	43.302	0.092
			SpecTr	6×5	2.455	2.259	44.595	0.091
			specifi	12×5	2.513	2.312	44.089	0.093
		5		2-2-2-2-2	2.830	2.604	51.392	0.092
		5	RSD-C	6-1-1-1-1	2.615	2.407	47.560	0.090
			KSD-C	12 - 1 - 1 - 1 - 1	2.669	2.456	47.987	0.089
			PSDS	6×5	3.142	2.891	54.142	0.089
			1/20-2	12×5	3.397	3.126	58.208	0.091

Table 8: We summarize experiment results with Llama 2-Chat-7B target and 115M draft for the WMT task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	37.093	0.377
			SD	2	1.639	1.584	41.440	0.379
			Smaa Tr	2×2	1.664	1.608	40.657	0.379
			Specif	3×2	1.673	1.617	41.907	0.378
		2		2-1	1.739	1.681	43.511	0.378
		Z	RSD-C	2 - 2	1.813	1.752	43.929	0.375
				3-1	1.784	1.724	44.122	0.378
			ם מש	2×2	1.786	1.726	44.139	0.378
			K2D-2	3×2	1.865	1.802	46.030	0.379
			SD	3	1.747	1.660	40.480	0.376
			Smaa Tr	3×3	1.783	1.695	39.483	0.377
			Specif	4×3	1.791	1.702	39.811	0.374
		2		2-2-2	1.967	1.870	42.825	0.377
		3	RSD-C	3-1-1	1.896	1.802	42.228	0.379
				4-1-1	1.918	1.824	41.396	0.376
				3×3	2.009	1.909	43.212	0.377
Llama 2-Chat-7B	WMT		K2D-2	4×3	2.064	1.962	44.172	0.378
			SD	4	1.815	1.697	37.235	0.380
			SpaaTr	5×4	1.870	1.749	38.695	0.377
			specifi	7×4	1.884	1.761	38.151	0.380
		4		2 - 2 - 2 - 2	2.067	1.933	41.411	0.377
		4	RSD-C	5 - 1 - 1 - 1	2.021	1.889	40.048	0.379
				7 - 1 - 1 - 1	2.054	1.921	41.217	0.376
				5×4	2.217	2.073	43.154	0.378
			K2D-2	7×4	2.290	2.142	43.310	0.375
			SD	5	1.861	1.713	35.968	0.375
			SpecTr	6×5	1.936	1.781	36.752	0.376
			specifi	12×5	1.994	1.835	37.541	0.371
		5		2-2-2-2-2	2.142	1.971	40.408	0.376
		J	RSD-C	6-1-1-1-1	2.093	1.926	38.438	0.376
				12-1-1-1-1	2.155	1.983	38.945	0.377
			RSD-S	6×5	2.335	2.149	40.428	0.375
			1/20-2	12×5	2.488	2.289	43.359	0.375

Table 9: We summarize experiment results with Llama 2-Chat-7B target and 115M draft for the Dolly task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	37.596	-
			SD	2	2.122	2.051	51.492	TR Acc. $\overline{596}$ - $\overline{596}$ - $\overline{492}$ - $\overline{471}$ - $\overline{350}$ - $\overline{732}$ - $\overline{610}$ - $\overline{539}$ - $\overline{320}$ - $\overline{740}$ - $\overline{347}$ - $\overline{358}$ - $\overline{402}$ - $\overline{358}$ - $\overline{302}$ - $\overline{360}$ - $\overline{581}$ - $\overline{204}$ - $\overline{570}$ - $\overline{562}$ - $\overline{322}$ - $\overline{466}$ - $\overline{369}$ - $\overline{522}$ - $\overline{231}$ - $\overline{231}$ - $\overline{231}$ - $\overline{555}$ - $\overline{504}$ -
			CT.	2×2	2.177	2.104	50.471	
			Specif	3×2	2.215	2.140	49.350	-
		2		2-1	2.182	2.109	50.732	-
		Z	RSD-C	2 - 2	2.253	2.178	52.610	-
				3-1	2.201	2.127	51.639	-
				2×2	2.239	2.164	50.320	-
			K2D-2	3×2	2.278	2.202	51.740	-
			SD	3	2.429	2.309	51.847	-
			CT.	3×3	2.549	2.423	54.051	-
			Specif	4×3	2.579	2.451	53.358	-
		2		2-2-2	2.628	2.498	54.402	-
		3	RSD-C	3-1-1	2.508	2.384	52.888	-
				4-1-1	2.506	2.382	52.892	-
				3×3	2.660	2.528	54.360	-
Llama 2-Chat-7B	Dolly		K2D-2	4×3	2.686	2.553	55.581	-
	•		SD	4	2.642	2.470	51.204	-
			CT.	5×4	2.853	2.668	52.977	-
			Specif	7×4	2.888	2.700	54.500	-
		4		2-2-2-2	2.914	2.725	55.146	-
		4	RSD-C	5-1-1-1	2.716	2.539	52.369	-
				7-1-1-1	2.728	2.551	53.662	-
				5×4	2.994	2.799	54.032	-
			K2D-2	7×4	3.005	2.810	54.242	-
			SD	5	2.764	2.543	50.163	-
			Smaa Tr	6×5	3.072	2.826	53.907	-
			spectr	12×5	3.153	2.902	55.039	-
		5		2-2-2-2-2	3.125	2.876	54.231	-
		3	RSD-C	6-1-1-1-1	2.854	2.626	51.919	-
		_		12-1-1-1-1	2.860	2.631	52.547	-
				6×5	3.221	2.963	53.055	-
			кор- о	12×5	3.241	2.982	52.504	-

Table 10: We summarize experiment results with Llama 2-Chat-13B target and 115M draft for the XSum task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	28.727	0.112
			SD	2	1.941	1.906	38.799	0.113
			SmaaTe	EffSpec1.00 2 1.94 2×2 1.97 3×2 1.97 3×2 1.97 $2-1$ 2.04 $2-2$ 2.16 $3-1$ 2.09 2×2 2.12 3×2 2.23 3 2.16 3×3 2.20 4×3 2.21 $2-2-2$ 2.47 $3-1-1$ 2.30 $4-1-1$ 2.34 3×3 2.52 4×3 2.61 4 2.29 5×4 2.37 7×4 2.38 $2-2-2-2$ 2.69 $5-1-1-1$ 2.51 $7-1-1-1$ 2.55 5×4 2.92 7×4 3.05 5 2.37	1.973	1.938	38.368	0.110
			spectr	3×2	1.976	1.941	38.896	0.114
		2		2-1	2.044	2.008	40.215	0.111
		Z	RSD-C	2 - 2	2.166	2.128	42.176	0.112
				3-1	2.093	2.056	39.946	0.114
			מ מא	2×2	2.127	2.089	40.412	0.111
			KSD-S	3×2	2.232	2.193	42.700	0.111
			SD	3	2.160	2.104	39.082	0.111
			SpecTr	3×3	2.200	2.142	39.496	0.113
			specifi	4×3	2.211	2.153	38.870	0.110
		3		2-2-2	2.476	2.411	42.802	0.112
		5	RSD-C	3-1-1	2.308	2.247	41.188	0.112
				4-1-1	2.346	2.284	41.058	0.109
			PSD S	3×3	2.522	2.456	43.542	0.112
Llama 2-Chat-13B	XSum		KSD-5	4×3	2.616	2.548	45.064	0.113
			SD	4	2.290	2.211	38.922	0.113
			SpecTr	5×4	2.376	2.293	38.781	0.111
			Specifi	7×4	2.387	2.304	38.827	0.113
		4		2-2-2-2	2.692	2.598	43.417	0.112
		-	RSD-C	5 - 1 - 1 - 1	2.510	2.423	41.620	0.110
				7-1-1-1	2.553	2.465	41.016	0.109
			PSDS	5×4	2.924	2.823	46.864	0.112
			KSD-5	7×4	3.056	2.950	48.332	0.111
			SD	5	2.371	2.269	37.278	0.111
			SpecTr	6×5	2.499	2.392	38.423	0.111
			Specifi	12×5	2.530	2.421	38.113	0.113
		5		2-2-2-2-2	2.853	2.731	43.183	0.110
		5	RSD-C	6-1-1-1-1	2.621	2.508	40.949	0.112
			NOD C	12 - 1 - 1 - 1 - 1	2.684	2.569	39.693	0.112
			RSD-S	6×5	3.153	3.018	46.345	0.112
			NOD-0	12×5	3.390	3.244	48.010	0.108

Table 11: We summarize experiment results with Llama 2-Chat-13B target and 115M draft for the WMT task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	29.233	0.340
			SD	2	1.729	1.699	36.679	0.346
			Smaa Tr	2×2	1.806	1.774	37.746	0.338
			spectr	3×2	1.758	1.727	36.160	0.343
		2		2-1	1.758	1.727	37.315	0.357
		2	RSD-C	2 - 2	1.928	1.894	39.464	0.345
				3-1	1.891	1.858	38.600	0.344
				2×2	1.956	1.922	39.052	0.333
			кэр-э	3×2	2.023	1.987	40.458	0.349
			SD	3	1.831	1.783	35.515	0.342
			SpecTr	3×3	1.839	1.791	35.208	0.347
			specifi	4×3	1.915	1.865	35.999	0.338
		3		2-2-2	2.078	2.023	38.741	0.335
		5	RSD-C	3-1-1	2.115	2.060	39.754	0.336
				4-1-1	2.033	1.980	38.500	0.348
			PSD S	3×3	2.138	2.082	39.120	0.348
Llama 2-Chat-13B	WMT		KSD-5	4×3	2.271	2.212	40.370	0.340
			SD	4	1.963	1.895	35.054	0.346
			SpecTr	5×4	2.050	1.979	35.219	0.348
			Specifi	7×4	2.012	1.943	34.089	0.339
		4		2 - 2 - 2 - 2	2.314	2.233	39.395	0.342
		4	RSD-C	5-1-1-1	2.098	2.025	36.062	0.344
				7-1-1-1	2.213	2.136	37.582	0.335
			PSDS	5×4	2.385	2.302	39.546	0.340
			KSD-5	7×4	2.629	2.538	43.600	0.329
			SD	5	2.089	1.999	34.688	0.347
			SpecTr	6×5	2.077	1.988	32.472	0.348
			Specifi	12×5	2.069	1.980	32.444	0.342
		5		2 - 2 - 2 - 2 - 2	2.401	2.298	38.278	0.343
		5	RSD-C	6-1-1-1-1	2.381	2.278	38.381	0.339
				12-1-1-1	2.254	2.157	35.717	0.346
			RSD-S	$6 \times \overline{5}$	2.532	2.423	39.268	0.348
			NOD 0	12×5	2.683	2.568	41.290	0.340

Table 12: We summarize experiment results with Llama 2-Chat-13B target and 115M draft for the Dolly task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	29.672	-
			SD	2	2.103	2.066	42.833	-
			0	2×2	2.158	2.120	41.752	-
			SpecIr	3×2	2.187	2.148	42.515	TR Acc. 9.672 - 2.833 - 1.752 - 2.515 - 2.755 - 3.217 - 3.658 - 3.460 - 5.408 - 4.136 - 5.408 - 5.106 - 6.587 - 4.776 - 5.310 - 6.587 - 4.776 - 5.310 - 6.5131 - 7.439 - 3.673 - 5.791 - 6.150 - 6.618 - 4.729 - 6.212 - 6.711 - 5.207 - 4.830 - 2.134 - 6.303 - 5.254 -
		2		2-1	2.163	2.125	42.755	-
		2	RSD-C	2 - 2	2.241	2.201	43.217	-
				3-1	2.181	2.143	43.658	-
				2×2	2.230	2.191	43.460	-
			K2D-2	3×2	2.262	2.222	45.408	-
			SD	3	2.393	2.330	44.136	-
			С Т .	3×3	2.513	2.447	43.976	-
			Specif	4×3	2.548	2.482	45.106	-
		2		2-2-2	2.614	2.545	46.587	-
		3	RSD-C	3-1-1	2.471	2.406	44.776	-
				4-1-1	2.481	2.416	45.310	-
				3×3	2.631	2.562	46.313	-
Llama 2-Chat-13B	Dolly		K2D-2	4×3	2.660	2.590	47.439	-
	•		SD	4	2.590	2.500	43.673	-
			CT.	5×4	2.809	2.711	45.791	-
			Specif	7×4	2.841	2.743	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
		4		2-2-2-2	2.885	2.785	46.618	-
		4	RSD-C	5-1-1-1	2.671	2.579	44.789	-
				7-1-1-1	2.684	2.591	44.729	-
				5×4	2.958	2.855	46.212	-
			K2D-2	7×4	2.976	2.873	46.711	-
			SD	5	2.710	2.593	42.688	-
			SpecTr	6×5	3.009	2.880	45.217	-
			specifi	12×5	3.083	2.951	45.207	-
		5		2-2-2-2-2	3.059	2.928	44.830	-
		5	RSD-C	6-1-1-1-1	2.811	2.690	42.811	-
			NOD-C	12-1-1-1-1	2.810	2.690	42.134	-
			PSD S	6×5	3.172	3.036	46.303	-
				12×5	3.222	3.084	45.254	-

Table 13: We summarize experiment results with Llama 2-Chat-70B target and 115M draft for the XSum task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	9.242	0.118
			SD	2	1.905	1.899	14.110	0.121
			SmaaTe	2×2	1.933	1.926	14.048	0.121
			specifi	3×2	1.939	1.932	14.057	0.122
		2		2-1	2.017	2.010	14.688	0.118
		2	RSD-C	2 - 2	2.130	2.123	15.354	0.118
				3-1	2.074	2.067	14.868	0.118
			PSD S	2×2	2.093	2.086	15.080	0.119
			KSD-5	3×2	2.195	2.188	15.645	0.119
			SD	3	2.098	2.088	14.865	0.120
			SpecTr	3×3	2.159	2.148	14.875	0.121
			Specifi	4×3	2.163	2.152	14.798	0.120
		3		2 - 2 - 2	2.440	2.427	16.425	0.120
		5	RSD-C	3-1-1	2.273	2.261	15.561	0.121
				4-1-1	2.295	2.283	15.542	0.119
			RSD-S	3×3	2.478	2.466	16.644	0.121
Llama 2-Chat-70B	XSum			4×3	2.586	2.573	17.256	0.120
			SD	4	2.204	2.189	14.860	0.120
			SpecTr	5×4	2.302	2.286	14.639	0.119
			Specifi	7×4	2.319	2.304	14.479	0.121
		4		2 - 2 - 2 - 2	2.624	2.606	16.203	0.121
		•	RSD-C	5 - 1 - 1 - 1	2.454	2.437	15.492	0.122
				7-1-1-1	2.482	2.465	15.430	0.121
			RSD-S	5×4	2.854	2.835	17.528	0.122
			KoD 5	7×4	2.985	2.964	18.034	0.120
			SD	5	2.289	2.270	14.734	0.123
			SpecTr	6×5	2.412	2.392	14.608	0.120
			speen	12×5	2.439	2.419	14.016	0.119
		5		2 - 2 - 2 - 2 - 2	2.728	2.705	15.593	0.121
		0	RSD-C	6-1-1-1-1	2.549	2.528	15.182	0.120
				12-1-1-1-1	2.619	2.597	15.029	0.118
			RSD-S	6×5	3.068	3.043	17.742	0.117
				12×5	3.325	3.297	18.217	0.121

Table 14: We summarize experiment results with Llama 2-Chat-70B target and 115M draft for the WMT task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	9.754	0.426
			SD	2	1.647	1.642	13.305	0.424
			CT.	2×2	1.668	1.663	13.144	0.425
			Specif	3×2	1.680	1.674	13.218	0.423
		2		2-1	1.738	1.732	13.796	0.422
		Z	RSD-C	2 - 2	1.819	1.813	14.305	0.423
				3-1	1.790	1.783	14.044	0.422
				2×2	1.790	1.784	13.995	0.425
			K2D-2	3×2	1.871	1.865	14.620	0.423
			SD	3	1.754	1.745	13.420	0.424
			SpeeTr	3×3	1.799	1.790	13.407	0.426
			specifi	4×3	1.802	1.793	13.346	0.424
		2		2-2-2	1.980	1.970	14.577	0.424
		5	RSD-C	3-1-1	1.908	1.898	14.252	0.425
				4 - 1 - 1	1.937	1.927	14.338	0.425
			DOD C	3×3	2.023	2.013	14.938	0.425
Llama 2-Chat-70B	WMT		K3D-3	4×3	2.086	2.075	15.205	0.423
			SD	4	1.832	1.819	13.440	0.427
			SpecTr	5×4	1.880	1.867	13.031	0.425
			Specifi	7×4	1.896	1.884	12.960	0.422
		4		2-2-2-2	2.079	2.065	14.068	0.423
		4	RSD-C	5-1-1-1	2.034	2.020	13.980	0.420
				7-1-1-1	2.069	2.055	13.867	0.423
			PSD S	5×4	2.225	2.210	14.970	0.424
			KSD-5	7×4	2.306	2.290	15.231	0.423
			SD	5	1.865	1.849	12.976	0.427
			SpecTr	6×5	1.944	1.927	12.627	0.424
			Specifi	12×5	1.967	1.951	12.359	0.424
		5		2 - 2 - 2 - 2 - 2	2.149	2.131	13.449	0.426
		5	RSD-C	6-1-1-1-1	2.105	2.088	13.736	0.426
				12-1-1-1	2.166	2.148	13.496	0.424
			RSD-S	6×5	2.343	2.323	14.732	0.425
			NOD 0	12×5	2.509	2.488	15.249	0.428

Table 15: We summarize experiment results with Llama 2-Chat-70B target and 115M draft for the Dolly task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	9.718	-
			SD	2	2.080	2.073	16.477	-
			SpeeTr	2×2	2.134	2.126	16.481	-
			specifi	3×2	2.166	2.158	16.682	TR Acc. 718 - 477 - 181 - 582 - 574 - 281 - 766 - 141 - 264 - 309 - 192 - 244 - -064 - 121 - -064 - 121 - -064 - 121 - -064 - 1550 - 577 - 6350 - 577 - 701 - 524 - 072 - 355 - 789 - 532 - 950 - 807 - 281 -
		2		2-1	2.136	2.129	16.674	-
		2	RSD-C	2 - 2	2.218	2.210	17.281	-
				3-1	2.153	2.146	16.766	-
				2×2	2.200	2.193	17.141	-
			K2D-2	3×2	2.241	2.234	17.264	-
			SD	3	2.355	2.343	17.809	-
			SpeeTr	3×3	2.479	2.467	18.192	-
			specifi	4×3	2.508	2.496	18.244	-
		3 F	-	2-2-2	2.573	2.560	18.954	-
		3	RSD-C	3-1-1	2.431	2.419	18.064	-
				4-1-1	2.444	2.431	18.121	-
				3×3	2.604	2.591	19.036	-
Llama 2-Chat-70B	Dolly		K2D-2	4×3	2.632	2.618	19.177	-
	-		SD	4	2.538	2.521	18.163	-
			SpecTr	5×4	2.748	2.730	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
			specifi	7×4	2.796	2.777		-
		4		2 - 2 - 2 - 2	2.830	2.810	19.677	-
		4	RSD-C	5-1-1-1	2.626	2.608	18.701	-
				7 - 1 - 1 - 1	2.634	2.616	18.624	-
				5×4	2.905	2.886	19.845	-
			K2D-2	7×4	2.942	2.922	20.072	-
			SD	5	2.658	2.635	18.355	-
			SpecTr	6×5	2.958	2.933	18.789	-
			specifi	12×5	3.038	3.013	18.532	-
		5		2-2-2-2-2	3.015	2.990	19.950	-
		3	RSD-C	6-1-1-1-1	2.748	2.725	18.807	-
			KSD-C	12-1-1-1-1	2.764	2.740	18.725	-
			PSD S	6×5	3.127	3.101	20.180	-
				12×5	3.164	3.138	20.281	-

Table 16: We summarize experiment results with OPT 13B target and 125M draft for the XSum task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	42.367	0.127
			SD	2	1.751	1.718	30.824	0.129
			SmaaTr	2×2	1.813	1.778	29.711	0.131
			specifi	3×2	1.833	1.798	30.132	0.127
		2		2-1	1.842	1.807	30.599	0.128
		2	RSD-C	2 - 2	1.909	1.872	30.851	0.124
				3-1	1.854	1.818	30.008	0.127
			PSD S	2×2	1.871	1.835	31.408	0.129
			KSD-S	3×2	1.930	1.893	31.803	0.124
			SD	3	1.986	1.930	29.710	0.128
			SpecTr	3×3	1.960	1.904	27.323	0.132
			specifi	4×3	2.013	1.956	27.824	0.125
		3		2 - 2 - 2	2.126	2.065	29.494	0.127
		5	RSD-C	3-1-1	2.011	1.954	28.503	0.129
				4-1-1	2.084	2.025	29.138	0.126
			RSD-S	3×3	2.163	2.102	29.968	0.126
OPT-125M-13B	XSum		KSD-5	4×3	2.216	2.153	30.852	0.125
			SD	4	1.998	1.923	26.381	0.126
			SpecTr	5×4	2.083	2.005	25.273	0.131
			specifi	7×4	2.232	2.149	26.990	0.126
		4		2 - 2 - 2 - 2	2.248	2.164	26.945	0.127
		т	RSD-C	5 - 1 - 1 - 1	2.203	2.121	26.424	0.125
				7-1-1-1	2.148	2.068	25.358	0.125
			RSD-S	5×4	2.350	2.262	28.305	0.126
				7×4	2.476	2.384	29.880	0.122
			SD	5	2.063	1.967	24.052	0.123
			SpecTr	6×5	2.264	2.159	24.458	0.128
			speen	12×5	2.405	2.293	24.413	0.127
		5		2 - 2 - 2 - 2 - 2	2.443	2.329	25.559	0.126
		5	RSD-C	6-1-1-1-1	2.260	2.155	24.876	0.129
			1.52 0	12-1-1-1	2.184	2.083	22.646	0.122
			RSD-S	6×5	2.503	2.387	25.885	$0.12\overline{4}$
				12×5	2.581	2.461	25.507	0.128

Table 17: We summarize experiment results with OPT 13B target and 125M draft for the WMT task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	37.028	0.318
			SD	2	1.426	1.399	25.706	0.325
			Smaa Tr	2×2	1.469	1.441	24.168	0.320
			specif	3×2	1.493	1.464	25.004	0.323
		2		2-1	1.515	1.486	25.733	0.315
		Z	RSD-C	2 - 2	1.576	1.546	26.510	0.320
				3-1	1.592	1.561	26.555	0.320
			מ מאמ	2×2	1.549	1.520	25.100	0.315
			кэр-э	3×2	1.630	1.598	26.872	0.320
			SD	3	1.466	1.424	22.810	0.326
			SpecTr	3×3	1.544	1.500	22.404	0.319
			specifi	4×3	1.564	1.520	22.173	0.322
		3		2-2-2	1.658	1.611	23.247	0.317
		5	RSD-C	3-1-1	1.605	1.559	23.189	0.319
				4 - 1 - 1	1.670	1.623	23.911	0.317
			מטא מא	3×3	1.687	1.639	24.159	0.315
OPT-125M-13B	WMT		KSD-S	4×3	1.735	1.685	24.195	0.320
			SD	4	1.478	1.423	19.810	0.323
			SpecTr	5×4	1.597	1.537	19.865	0.320
			Spec II	7×4	1.634	1.573	20.351	0.317
		4		2 - 2 - 2 - 2	1.682	1.619	20.922	0.319
		4	RSD-C	5-1-1-1	1.670	1.608	20.916	0.319
				7-1-1-1	1.705	1.641	20.649	0.321
			מסא מ	5×4	1.848	1.779	22.590	0.314
			KSD-S	7×4	1.877	1.806	22.264	0.318
		-	SD	5	1.483	1.414	17.405	0.317
			SpecTr	6×5	1.668	1.590	18.722	0.321
			Specifi	12×5	1.686	1.608	17.612	0.319
		5		2-2-2-2-2	1.703	1.624	18.167	0.320
		5	RSD-C	6-1-1-1-1	1.751	1.669	19.170	0.316
				12 - 1 - 1 - 1 - 1	1.763	1.682	18.373	0.319
			RSD-S	6×5	1.860	1.774	20.295	0.316
			100-0	12×5	1.983	1.891	19.838	0.322

Table 18: We summarize experiment results with OPT 30B target and 125M draft for the XSum task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	20.438	0.126
			SD	2	1.862	1.846	23.711	0.126
			SmaaTr	2×2	1.866	1.850	22.566	0.122
			specifi	3×2	1.944	1.928	23.188	0.127
		2		2-1	1.913	1.897	23.400	0.125
		2	RSD-C	2 - 2	1.995	1.978	23.434	0.121
				3-1	1.944	1.928	23.315	0.121
			PSD S	2×2	2.023	2.006	24.688	0.122
			KSD-S	3×2	2.032	2.015	24.074	0.123
			SD	3 2.054 2	2.029	23.173	0.124	
			SpecTr	3×3	2.174	2.147	U TR Acc. 00 20.438 0.126 46 23.711 0.126 50 22.566 0.122 28 23.188 0.127 77 23.400 0.125 78 23.434 0.121 28 23.15 0.121 29 23.173 0.124 47 23.102 0.125 46 22.684 0.122 29 23.354 0.121 25 22.869 0.120 35 22.869 0.120 33 23.294 0.125 24.006 0.126 14 22.063 0.124 50 22.741 0.125 28 23.471 0.120 38 23.471 0.120 39 20.644 0.118 58 23.471 0.120 39 20.944 0.125 30 22.029 0.123 <tr< td=""><td>0.125</td></tr<>	0.125
			Specifi	4×3	2.172	2.146		0.122
		3		2-2-2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23.354	0.121	
		5	RSD-C	3-1-1		2.135	22.869	0.120
				4-1-1	2.210	2.183	23.294	0.123
			PSD S	3×3	2.270	2.242	23.394	0.125
OPT-125M-30B	XSum		KSD-S	4×3	2.328	2.299	24.006	0.126
			SD	4	2.150	2.114	22.063	0.124
			SpecTr	5×4	2.390	2.350	22.741	0.125
			Specir	7×4	2.438	2.398	22.644	0.118
		4		2 - 2 - 2 - 2	2.509	2.468	23.471	0.120
		4	RSD-C	5 - 1 - 1 - 1	2.358	2.319	22.303	0.123
				7-1-1-1	2.348	2.309	22.029	0.125
			מ מא	5×4	2.579	2.537	23.926	0.122
			KSD-S	7×4	2.609	2.567	23.362	0.124
			SD	5	2.285	2.239	20.944	0.125
			SpecTr	6×5	2.398	2.349	20.216	0.125
			Specifi	12×5	2.685	2.630	20.243	0.123
		5		2-2-2-2-2	2.600	2.547	20.488	0.123
		5	RSD-C	6-1-1-1-1	2.335	2.287	20.014	0.124
				12 - 1 - 1 - 1 - 1	2.385	2.336	18.672	0.124
			RSD-S	6×5	2.746	2.690	22.562	0.121
			NOD 0	12×5	2.824	2.766	21.108	0.128

Table 19: We summarize experiment results with OPT 30B target and 125M draft for the WMT task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.	
Model	Task	DL	Dec.	Spec.					
		0	AR	-	1.000	1.000	19.180	0.347	
			SD	2	1.430	1.418	18.274	0.341	
			SpeeTr	2×2	1.479	1.466	18.092	0.346	
			specifi	3×2	1.480	1.468	17.717	0.345	
		2		2-1	1.494	1.481	18.121	0.342	
		2	RSD-C	2 - 2	1.563	1.550	18.484	0.344	
				3-1	1.546	1.533	18.216	0.342	
			ם מש	2×2	1.531	1.519	18.386	0.344	
			KSD-S	3×2	1.609	1.596	18.954	0.344	
			SD	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.346			
			SpecTr	3×3	1.544	1.525	16.561	0.342	
			Spec II	4×3	1.538	1.519	J TR Acc. 0 19.180 0.347 3 18.274 0.341 5 18.092 0.346 3 17.717 0.345 1 18.121 0.342 0 18.484 0.344 3 18.216 0.342 0 18.484 0.344 3 18.216 0.342 0 18.386 0.344 3 16.582 0.346 5 16.561 0.342 0 18.386 0.344 3 16.582 0.346 5 16.561 0.342 9 16.183 0.345 3 17.255 0.343 5 17.699 0.343 5 17.699 0.342 0 15.176 0.340 5 15.264 0.342 1 15.613 0.339 8 15.827 0.348		
		3		2-2-2	1.623	1.603	IR Acc. 19.180 0.347 18.274 0.341 18.092 0.346 17.717 0.345 18.121 0.342 18.121 0.342 18.484 0.344 318.216 0.342 18.484 0.344 318.216 0.342 18.386 0.344 316.582 0.346 16.582 0.344 316.582 0.344 316.582 0.343 16.755 0.343 16.755 0.343 16.755 0.343 16.755 0.343 16.873 0.339 17.699 0.343 16.873 0.342 15.176 0.340 515.264 0.342 15.827 0.344 15.815 0.348 216.587 0.344 216.587 0.344 216.587 0.344 216.587 0.348		
		5	RSD-C	3-1-1	1.584	1.564		0.344	
				4-1-1	1.618	1.400 18.092 1.468 17.717 1.468 17.717 1.481 18.121 1.550 18.484 1.533 18.216 1.519 18.386 1.596 18.954 1.423 16.582 1.525 16.561 1.519 16.183 1.603 17.255 1.564 16.755 1.598 16.873 1.670 17.699 1.695 17.429 1.431 14.959 1.549 15.176 1.576 15.264 1.631 15.613 1.638 15.827 1.667 15.815 1.752 16.587 1.819 16.597 1.427 13.614 1.566 13.906 1.645 13.380	0.339		
			DCD C	3×3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.699	0.343		
OPT-125M-30B	WMT		KSD-S	4×3	1.717	1.598 16.873 1.670 17.699 1.695 17.429 1.431 14.959 1.540 15.176	0.345		
			SD	4	1.455	1.431	14.959	0.342	
			SpecTr	5×4	1.575	1.549	15.176	0.340	
			SpecIr	7×4	1.602	1.576	15.264	0.342	
		4		2-2-2-2	1.658	1.631	15.613	0.339	
		4	RSD-C	5-1-1-1	1.665	1.638	15.827	0.344	
				7-1-1-1	1.694	1.667	15.815	0.348	
			מ מא	5×4	1.781	658 1.631 15.61 665 1.638 15.82 694 1.667 15.81 781 1.752 16.58	16.587	0.344	
			KSD-S	7×4	1.850	1.819	16.597	0.338	
			SD	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.427	13.614	0.339		
			SpecTr	6×5	1.599	1.566	13.906	0.343	
			Specifi	12×5	1.679	1.645	13.389	0.340	
		5		2-2-2-2-2	1.678	1.644	13.557	0.346	
		5	RSD-C	6-1-1-1-1	1.683	1.649	14.351	0.348	
				12 - 1 - 1 - 1	1.742	1.706	13.892	0.347	
			RSD-S	6×5	1.837	1.800	15.287	0.338	
			NOD 0	12×5	1.961	1.921	15.112	0.347	

Table 20: We summarize experiment results with OPT 66B target and 125M draft for the XSum task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0 AR	AR	-	1.000	1.000	9.550	0.125
			SD	2	2.047	2.040	14.726	0.125
			SmaaTr	2×2	2.080	2.073	14.598	0.120
			spectr	3×2	2.140	2.132	14.638	0.121
		2		2-1	2.165	2.157	14.885	0.124
		2	RSD-C	2 - 2	2.122	2.114	14.755	0.122
				3-1	2.139	2.131	14.896	0.123
			ם מש	2×2	2.090	2.082	14.578	0.122
			KSD-S	3×2	2.218	2.210	15.424	0.121
			SD	3	2.310	2.297	14.920	0.124
			SpecTr	3×3	2.427	2.413	J TR Acc 0 9.550 0.125 0 14.726 0.125 3 14.598 0.120 2 14.638 0.121 7 14.885 0.122 1 14.755 0.122 1 14.885 0.122 1 14.885 0.122 1 14.896 0.123 2 14.578 0.122 1 14.896 0.123 2 14.578 0.122 0 15.424 0.123 2 14.578 0.122 0 15.424 0.124 3 15.373 0.125 4 15.477 0.125 9 16.701 0.119 7 16.128 0.125 8 14.111 0.126 2 15.668 0.125 6 14.881 0.126 9 15.539 0.121	0.125
			Spec II	4×3	2.438	2.424	15.477	0.125
		3		2-2-2	2.438 2.424 15.47 2.644 2.629 16.70 2.532 2.517 16.12 2.301 2.288 14.11	16.701	0.119	
		5	RSD-C	3-1-1	2.532	2.517	0 9.550 0.125 0 14.726 0.125 3 14.598 0.120 2 14.638 0.121 7 14.885 0.124 4 14.755 0.122 1 14.885 0.124 4 14.755 0.122 1 14.896 0.123 2 14.578 0.122 1 14.896 0.123 2 14.578 0.122 0 15.424 0.121 7 14.920 0.124 3 15.373 0.125 4 15.477 0.125 9 16.701 0.119 7 16.128 0.125 8 14.111 0.124 3 15.239 0.123 1 15.800 0.128 2 15.668 0.125 6 14.881 0.126 9 15.571 0.124 <	0.125
				4 - 1 - 1	2.301	2.288		0.124
			PSD S	3×3	2.407	2.393	15.239	0.123
OPT-125M-66B	XSum		KSD-5	4×3	2.515	2.501	15.800	0.128
			SD	4	2.571	2.552	15.668	0.125
			SpecTr	5×4	2.566	2.546	14.881	0.126
			Specif	7×4	2.729	2.709	15.539	0.121
		4		2 - 2 - 2 - 2	2.900	2.878	16.261	0.129
		4	RSD-C	5 - 1 - 1 - 1	2.715	2.694	15.571	0.124
				7-1-1-1	2.851	2.829	16.362	0.119
			PSD S	5×4	2.972	2.950	15.489	0.125
			KSD-S	7×4	2.895	2.873	16.371	0.120
		4 RSD-0 RSD-5	SD	5	2.884	2.856	15.897	0.120
	-		SpecTr	6×5	2.852	2.825	13.819	0.121
			specifi	12×5	2.897	2.870	14.488	0.125
		5		2-2-2-2-2	3.082	3.053	15.712	0.121
		5	RSD-C	6-1-1-1-1	2.990	2.962	15.533	0.123
				12-1-1-1	2.726	2.700	13.769	0.125
			RSD-S	6×5	2.920	2.893	13.903	0.122
			NOD 0	12×5	3.318	3.287	16.555	0.124

Table 21: We summarize experiment results with OPT 66B target and 125M draft for the WMT task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.	
Model	Task	DL	Dec.	Spec.					
		0	AR	-	1.000	1.000	9.418	0.359	
			SD	2	1.416	1.411	10.206	0.356	
			SpeeTr	2×2	1.464	1.458	10.209	0.361	
			specifi	3×2	1.486	1.481	10.285	0.356	
		2		2-1	1.500	1.494	10.371	0.360	
		2	RSD-C	2 - 2	1.570	1.564	10.613	0.361	
				3-1	1.557	1.551	10.846	0.360	
			RSD-S	2×2	1.541	1.535	10.628	0.358	
			K2D-2	3×2	1.619	1.613	11.203	0.361	
			SD	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.594	0.355		
			SpeeTr	3×3	1.524	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.359		
			specifi	4×3	1.549	1.540	9.896	TR Acc. 9.418 0.359 10.206 0.356 10.209 0.361 10.285 0.356 10.371 0.360 10.613 0.361 10.846 0.360 10.628 0.358 11.203 0.361 9.594 0.355 9.574 0.359 9.896 0.359 10.243 0.361 10.329 0.358 10.602 0.359 10.565 0.360 8.982 0.353 9.166 0.358 9.280 0.356 9.716 0.360 9.482 0.362 9.657 0.358 10.292 0.355 10.565 0.359 8.353 0.356 8.709 0.351 8.693 0.357 9.046 0.355 8.817 0.358 9.503 0.357 <t< td=""></t<>	
		2		2-2-2	1.635	En.MBSUIRAcc. 000 1.000 9.418 0.359 416 1.411 10.206 0.356 464 1.458 10.209 0.361 486 1.481 10.285 0.356 500 1.494 10.371 0.360 570 1.564 10.613 0.361 557 1.551 10.846 0.360 541 1.535 10.628 0.358 619 1.613 11.203 0.361 449 1.441 9.594 0.355 524 1.515 9.574 0.359 535 1.625 10.243 0.361 591 1.582 10.151 0.361 630 1.621 10.329 0.358 671 1.661 10.602 0.359 727 1.717 10.565 0.360 488 1.477 8.982 0.353 589 1.577 9.166 0.358 608 1.596 9.280 0.356 669 1.656 9.716 0.360 664 1.651 9.482 0.362 695 1.682 9.657 0.358 796 1.783 10.292 0.355 860 1.846 10.565 0.359 467 1.453 8.353 0.356 710 1.694 8.709 0.351 684 1.668 8.693 0.357 692 1.676 9.046 </td <td>0.361</td>	0.361		
		5	RSD-C	3-1-1	1.591	1.582	10.151	0.361	
				4 - 1 - 1	1.630	1.621	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.358	
			DCD C	3×3	1.671 1.	1.661	10.602	0.359	
OPT-125M-66B	WMT		KSD-S	4×3	1.727	1.717	10.243 0.3 10.151 0.3 10.329 0.3 10.602 0.3 10.565 0.3 8.982 0.3 9.166 0.3 9.280 0.3	0.360	
			SD	4	1.488	1.477	8.982	0.353	
			SpecTr	5×4	1.589	1.577	9.166	0.358	
			SpecIr	7×4	1.608	1.596	9.280	0.356	
		4		2 - 2 - 2 - 2	1.669	1.656	9.716	0.360	
		4	RSD-C	5 - 1 - 1 - 1	1.664	1.651	9.482	0.362	
				7 - 1 - 1 - 1	1.695	1.682	9.657	0.358	
			מ מא	5×4	1.796	1.783	10.292	0.355	
			KSD-S	7×4	1.860	1.846	10.565	0.359	
		-	SD	5	1.467	1.453	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.356	
			SpecTr	6×5	1.639	1.624	8.803	0.356	
			Specifi	12×5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.694	8.709	0.351	
		5		2-2-2-2-2	1.684	1.668	8.693	0.357	
		5	RSD-C	6-1-1-1-1	1.692	1.676	9.046	0.355	
				12 - 1 - 1 - 1 - 1	1.742	1.725	8.817	0.358	
			RSD-S	6×5	1.846	1.829	9.503	0.359	
			N9D-9	12×5	1.972	1.953	9.786	0.361	

Table 22: We summarize experiment results with OPT 13B target and 350M draft for the XSum task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	38.088	0.130
			SD	2	1.680	1.598	24.407	0.131
			SmaaTr	2×2	1.724	1.639	23.198	0.125
			spectr	3×2	1.727	1.642	22.684	0.132
		2		2-1	1.703	1.620	22.835	0.127
		2	RSD-C	2 - 2	1.793	1.705	23.643	0.125
				3-1	1.739	1.654	23.101	0.125
			PSD S	2×2	1.713	1.629	22.962	0.126
			RSD-S $\frac{2}{3}$	3×2	1.808	1.720	23.932	0.129
			SD	3	1.769	1.642	20.340	0.132
			SpecTr	3×3	1.837	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.125	
			Specifi	4×3	1.840	1.708	SU TR Acc 000 38.088 0.13 598 24.407 0.13 539 23.198 0.12 542 22.684 0.13 520 22.835 0.12 542 23.643 0.12 554 23.101 0.12 529 22.962 0.12 542 20.340 0.13 705 19.272 0.12 542 20.340 0.13 705 19.272 0.12 704 20.194 0.12 705 19.607 0.12 704 21.037 0.12 705 19.607 0.12 704 1.2 0.194 712 20.194 0.12 721 20.194 0.12 73 17.508 0.12 73 17.631 0.12 74 16.552 0.12 701 17.230 0.12	0.127
		3		2-2-2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.824	21.037	0.125
		5	RSD-C	3-1-1	1.845	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.128	
				4-1-1	1.951	1.811	20.799	0.130
			PSD S	3×3	1.963 1.822 1.070 1.820	21.193	0.125	
OPT-350M-13B	XSum		KSD-5	4×3	1.970	1.829	20.446	0.129
			SD	4	1.846	1.673	17.508	0.127
			SpecTr	5×4	2.048	1.856	18.112	0.126
			Specif	7×4	1.902	1.724	16.552	0.129
		4		2-2-2-2	1.975	1.791	17.631	0.125
		4	RSD-C	5 - 1 - 1 - 1	2.015	1.827	18.346	0.123
				7-1-1-1	2.054	1.862	17.945	0.127
			PSD S	5×4	2.141	1.941	18.920	0.128
			KSD-S	7×4	2.132	1.932	18.778	0.127
			SD	5	1.885	1.670	15.230	0.126
			SpecTr	6×5	2.044	8 1.856 18.1 2 1.724 16.5: 5 1.791 17.6: 5 1.827 18.3: 4 1.862 17.9: 1 1.941 18.9: 2 1.932 18.7' 5 1.670 15.2: 4 1.811 15.5' 0 1.922 16.1	15.505	0.127
			specifi	12×5	2.170	1.922	16.132	0.124
		5		2-2-2-2-2	2.101	1.861	15.743	0.126
		5	RSD-C	6-1-1-1-1	2.094	1.855	15.918	0.125
				12-1-1-1-1	2.128	1.885	15.723	0.128
			RSD-S	6×5	2.274	2.015	17.290	0.127
			NOD 0	12×5	2.227	1.973	16.334	0.127

Table 23: We summarize experiment results with OPT 13B target and 350M draft for the WMT task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.	
Model	Task	DL	Dec.	Spec.					
		0	AR	-	1.000	1.000	41.276	0.316	
			SD	2	1.308	1.244	19.246	0.320	
			Smaa Tr	2×2	1.307	1.243	18.186	0.322	
			specifi	3×2	1.327	1.262	18.285	0.319	
		2		2-1	1.368	1.301	18.828	0.316	
		2	RSD-C	2 - 2	1.397	1.329	18.816	0.318	
				3-1	1.379	1.311	18.856	0.320	
			PSD S	2×2	1.357	1.291	18.703	0.322	
			KSD-5	3×2	1.399	1.330	19.530	0.320	
			SD	3	1.298 1.205 3 1.345 1.248	1.205	15.259	0.316	
			SpecTr	3×3		1.248	14.972	0.317	
			Specifi	4×3	1.357	.000 1.000 41.276 0.3 .308 1.244 19.246 0.3 .307 1.243 18.186 0.3 .307 1.243 18.186 0.3 .327 1.262 18.285 0.3 .368 1.301 18.828 0.3 .397 1.329 18.816 0.3 .397 1.329 18.816 0.3 .379 1.311 18.856 0.3 .379 1.311 18.856 0.3 .357 1.291 18.703 0.3 .399 1.330 19.530 0.3 .399 1.330 19.530 0.3 .399 1.295 15.120 0.3 .357 1.260 14.815 0.3 .395 1.295 15.120 0.3 .391 1.292 15.291 0.3 .426 1.324 15.505 0.3 .426 1.324 15.505 0.3 .304 1.182 12.579 0.3 .304 1.182 12.579 0.3 .392 1.262 12.599 0.3 .411 1.280 12.893 0.3 .431 1.297 13.117 0.3 .483 1.344 13.532 0.3 .313 1.164 10.823 0.3 .313 1.164 10.823 0.3 .490 1.231 10.736 0.3 .491 1.319 11.523 0.3 .485 1.316 <td< td=""></td<>			
		3		2-2-2	1.395	1.295	15.120	0.315	
		5	RSD-C	3-1-1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.318			
				4-1-1	1.413	1.312	15.581	0.316	
			RSD-S	3×3	1.426	1.324	15.505	0.317	
OPT-350M-13B	WMT		KSD-5	4×3	1.494	1.387	16.732	0.321	
			SD	4	1.304	1.182	12.579	0.317	
			SpecTr	5×4	1.380	1.251	12.382	0.310	
			Specif	7×4	1.392	1.262	12.599	0.321	
		4		2 - 2 - 2 - 2	1.411	1.280	12.893	0.320	
		т	RSD-C	5 - 1 - 1 - 1	1.431	1.297	13.117	0.317	
				7-1-1-1	1.453	1.317	13.195	0.319	
			RSD-S	5×4	1.483	1.344	13.532	0.318	
			KoD 5	7×4	1.519	1.378	13.554	0.318	
			SD	5	1.313	1.164	10.823	0.317	
			SpecTr	6×5	1.390	1.231	10.736	0.318	
			Specifi	12×5	1.414	1.253	10.731	0.317	
		5		2 - 2 - 2 - 2 - 2	1.407	1.247	10.742	0.315	
		5	RSD-C	6-1-1-1-1	1.489	1.319	11.523	0.320	
				12-1-1-1	1.485	1.316	11.321	0.322	
			RSD-S	6×5	1.516	1.343	11.630	0.316	
		RSD	NOD 5	12×5	1.571	1.392	11.758	0.317	

Table 24: We summarize experiment results with OPT 30B target and 350M draft for the XSum task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	20.116	0.125
			SD	2	1.815	1.776	19.846	0.122
			SmaaTr	2×2	1.874	1.834	19.436	0.120
			specifi	3×2	1.872	1.831	19.006	0.124
		2		2-1	1.923	1.881	20.230	0.125
		2	RSD-C 2 RSD-S 2 SD 3 SpecTr 4 RSD-C 3	2 - 2	1.952	1.910	19.745	0.122
				3-1	1.872	1.831	18.957	0.124
			PSD S	2×2	1.941	1.899	20.146	0.123
			KSD-5	3×2	1.972	1.929	19.953	0.122
			SD	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.017	0.121	
			SpecTr	3×3	2.018	1.953	TR Acc 20.116 0.125 19.846 0.122 19.436 0.122 19.006 0.124 20.230 0.125 19.745 0.122 19.745 0.122 19.745 0.122 19.745 0.122 19.745 0.122 19.745 0.122 18.957 0.122 19.953 0.122 17.299 0.122 17.858 0.122 17.384 0.122 18.017 0.122 18.895 0.122 18.895 0.122 18.645 0.122 16.732 0.122 16.732 0.122 16.732 0.122 16.732 0.122 16.732 0.122 17.676 0.122 15.020 0.122 15.636 0.122 13.978 0.122 13.978 0.122	0.126
			Specifi	4×3	2.095	2.028	17.858	0.125
		3		2-2-2	2.082	2.015	1.000 20.116 0.125 1.776 19.846 0.122 1.834 19.436 0.120 1.831 19.006 0.124 1.831 19.006 0.124 1.831 19.006 0.124 1.831 19.006 0.124 1.831 19.006 0.124 1.831 18.957 0.122 1.831 18.957 0.124 1.899 20.146 0.123 1.929 19.953 0.122 1.926 18.017 0.121 1.953 17.299 0.126 2.028 17.858 0.125 2.015 17.384 0.124 2.032 18.107 0.123 2.098 19.136 0.122 2.171 18.895 0.125 2.163 18.645 0.128 2.023 16.732 0.121 2.153 16.436 0.128 2.208 16.922 0.119 2.195 16.546 0.123 2.126 16.732 0.128 2.180 17.192 0.122 2.352 17.676 0.120 2.079 15.020 0.125 2.74 15.636 0.124 2.226 14.121 0.123 2.197 15.534 0.122	0.124
		5	RSD-C	3-1-1	2.099	2.032		0.123
				4 - 1 - 1	2.167	2.098	19.136	0.122
	XSum		PSD S	3×3	2.243	2.171	18.895	0.125
OPT-350M-30B			KSD-5	4×3	2.234	2.163	18.645	0.128
			SD	4	2.112	2.023	16.732	0.121
			SpecTr	5×4	2.248	2.153	16.436	0.128
			Specif	7×4	2.306	2.208	16.922	0.119
		4		2 - 2 - 2 - 2	2.292	2.195	16.546	0.123
		4	RSD-C	5 - 1 - 1 - 1	2.220	2.126	16.732	0.128
				7-1-1-1	2.276	2.180	17.192	0.122
			מ מא	5×4	2.487	2.382	18.310	0.121
			KSD-S	7×4	2.456	2.352	17.676	0.120
			SD	5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15.020	0.125	
			SpecTr	6×5	2.399	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15.636	0.124
			Spec II	12×5	2.349	2.226	0 17.192 2 18.310 2 17.676 9 15.020 4 15.636 6 14.121 0 13.978	0.125
		5		2-2-2-2-2	2.279	2.160	13.978	0.123
		5	RSD-C	6-1-1-1-1	2.318	2.197	15.534	0.122
				12 - 1 - 1 - 1 - 1	2.251	2.133	14.118	0.118
			DSD S	6×5	2.420	2.294	15.455	0.125
			K9D-9	12×5	2.598	2.462	15.547	0.122

Table 25: We summarize experiment results with OPT 30B target and 350M draft for the WMT task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	19.107	0.341
			SD	2	1.276	1.248	14.344	0.341
			SpeeTr	2×2	1.313	1.284	13.685	0.347
			specifi	3×2	1.324	1.295	13.659	0.342
		2		2-1	1.346	1.317	14.331	0.344
		2	RSD-C	2 - 2	1.378	1.348	14.080	0.350
				3-1	1.400	1.370	14.638	0.340
			ם מש	2×2	1.360	1.330	14.031	0.345
			KSD-S	3×2	1.407	1.376	14.399	0.345
			SD	3	1.407 1.576 14 1.333 1.290 12 1.348 1.305 11 1.363 1.320 11	12.584	0.348	
			SpecTr	3×3		11.763	0.347	
			Spec II	4×3	1.363	.000 1.000 19.107 0.3 .276 1.248 14.344 0.3 .313 1.284 13.685 0.3 .324 1.295 13.659 0.3 .324 1.295 13.659 0.3 .346 1.317 14.331 0.3 .378 1.348 14.080 0.3 .360 1.370 14.638 0.3 .360 1.330 14.031 0.3 .361 1.376 14.399 0.3 .333 1.290 12.584 0.3 .348 1.305 11.763 0.3 .363 1.320 11.966 0.3 .363 1.320 11.966 0.3 .403 1.358 12.176 0.3 .403 1.358 12.176 0.3 .410 1.365 12.574 0.3 .429 1.383 12.195 0.3 .463 1.416 12.469 0.3 .302 1.247 10.412 0.3 .302 1.247 10.761 0.3 .427 1.367 10.761 0.3 .436 1.375 10.946 0.3 .462 1.400 11.024 0.3 .451 1.378 9.056 0.3 .454 1.378 9.056 0.3		0.339
		3		2-2-2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.349		
		5	RSD-C	3-1-1	1.394	1.349	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.346
				4 - 1 - 1	1.410	403 1.538 12. 394 1.349 12. 410 1.365 12. 429 1.383 12. 463 1.416 12.	12.574	0.341
			DOD C	3×3	1.429	1.383	12.195	0.343
OPT-350M-30B	WMT		KSD-S	4×3	1.463	1.416	.303 12.374 .383 12.195 .416 12.469 .247 10.412	0.345
			SD	4	1.302	1.247	10.412	0.346
			SpecTr	5×4	1.380	1.321	10.553	0.347
			SpecIr	7×4	1.427	1.367	10.761	0.346
		4		2 - 2 - 2 - 2	1.413	1.353	10.621	0.344
		4	RSD-C	5-1-1-1	1.436	1.375	10.946	0.344
				7 - 1 - 1 - 1	1.462	1.400	11.024	0.339
			מ מא	5×4	1.492	1.429	11.074	0.343
			KSD-S	7×4	1.532	1.467	11.250	0.345
		-	SD	5	1.351	1.280	19.107 0 14.344 0 13.685 0 14.344 0 14.359 0 14.331 0 14.080 0 14.031 0 14.031 0 14.399 0 12.584 0 11.763 0 12.176 0 12.406 0 12.574 0 12.469 0 10.412 0 10.553 0 10.621 0 10.621 0 10.946 0 11.024 0 11.024 0 11.024 0 9.056 0 9.056 0 9.977 0 9.556 0 10.031 0 9.751 0	0.344
			SpecTr	6×5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.235	0.345	
			Spec II	12×5		8.974	0.345	
		5		2-2-2-2-2	1.454	1.378	9.056	0.343
		5	RSD-C	6-1-1-1-1	1.456	1.380	9.977	0.341
				12-1-1-1-1	1.491	1.413	9.556	0.344
				6×5	1.517	1.438	10.031	0.342
			K9D-9	12×5	1.583	1.500	9.751	0.349

Table 26: We summarize experiment results with OPT 66B target and 350M draft for the XSum task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	9.225	0.123
			SD	2	1.923	1.904	12.282	0.122
			Smaa Tr	2×2	1.999	1.979	12.150	0.124
			spectr	3×2	1.932	1.913	11.550	0.124
		2		2-1	2.067	2.046	12.628	0.122
			RSD-C	2 - 2	2.020	1.999	11.476	0.125
				3-1	2.038	2.018	12.425	0.123
			DOD O	2×2	2.013	1.993	12.109	0.122
			KSD-S	3×2	2.070	2.049	12.542	0.126
			SD	3	2.223	2.189	12.241	0.121
			SpecTr	3×3	2.278	2.244	J TR Acc 0 9.225 0.12 4 12.282 0.12 9 12.150 0.12 3 11.550 0.12 6 12.628 0.12 9 11.476 0.12 3 12.109 0.12 9 12.425 0.12 9 12.542 0.12 9 12.542 0.12 9 12.542 0.12 9 12.542 0.12 9 12.687 0.12 1 11.238 0.12 0 12.219 0.12 5 11.145 0.12 1 11.336 0.12 7 12.687 0.12 1 13.36 0.12 7 11.431 0.12 0 11.891 0.12 4 12.065 0.12 7 12.024 0.11 9	0.122
			Spec II	4×3	2.153	2.121	11.238	0.121
		3		2-2-2	2.325	2.290	Acc. 000 9.225 0.123 904 12.282 0.122 979 12.150 0.124 913 11.550 0.124 913 11.550 0.124 999 11.476 0.125 999 11.476 0.125 018 12.425 0.123 9993 12.109 0.122 049 12.542 0.126 189 12.241 0.121 2244 11.737 0.122 11 1.238 0.121 205 11.145 0.121 205 11.743 0.124 366 12.687 0.121 300 11.336 0.123 407 12.687 0.121 300 11.336 0.123 427 11.431 0.124 560 11.891 0.123 624 12.065 0.123 626 12.195 0.121	
		5	RSD-C	3-1-1	2.238	2.205		0.121
				4-1-1	2.238	2.205	11.743	0.124
			מ מפת	3×3	2.402	2.366	12.680	0.125
OPT-350M-66B	XSum		KSD-S	4×3	2.444	2.407	12.687	0.121
			SD	4	2.346	2.300	11.336	0.123
			SpecTr	5×4	2.476	2.427	11.431	0.124
			Specir	7×4	2.611	2.560	11.891	0.128
		4		2 - 2 - 2 - 2	2.544	2.494	10.932	0.127
		4	RSD-C	5-1-1-1	2.617	2.566	11.428	0.123
				7-1-1-1	2.677	2.624	12.065	0.123
			מספת פ	5×4	2.679	2.626	12.195	0.121
			KSD-S	7×4	2.660	2.607	12.024	0.119
			SD	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.539	11.183	0.123	
			SpecTr	6×5	2.652	2.586	10.904	0.123
			Specifi	12×5	2.742	2.675	10.673	0.119
		5		2-2-2-2-2	2.724	2.657	10.857	0.119
		5	RSD-C	6-1-1-1-1	2.587	2.523	10.554	0.124
				12 - 1 - 1 - 1 - 1	2.678	2.612	10.542	0.129
			RSD-S	6×5	2.937	2.865	11.434	0.119
			100-0	12×5	3.074	2.999	12.013	0.125

Table 27: We summarize experiment results with OPT 66B target and 350M draft for the WMT task with various draft lengths. Draft Length (DL) means the (maximum) length for all draft token sequences generated by the draft model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	DL	Dec.	Spec.				
		0	AR	-	1.000	1.000	9.329	0.355
		-	SD	2	1.270	1.257	8.045	0.359
			Smaa Tr	2×2	1.296	1.284	8.024	0.361
			spectr	3×2	1.313	1.300	8.000	0.358
		2		2-1	1.326	1.313	8.206	0.358
		Z	RSD-C	2 - 2	1.353	1.339	8.249	0.358
				3-1	1.358	1.344	8.193	0.358
			DOD 0	2×2	1.349	1.335	8.309	0.358
			KSD-S	3×2	1.390	1.376	8.556	0.361
			SD	3	1.284	1.265	7.154	0.357
			SpecTr	3×3	1.338	1.318	7.115	0.358
			Specifi	4×3	1.346	1.326	7.111	0.358
		3		2-2-2	1.384	1.364	7.307	0.357
			RSD-C	3-1-1	1.374	1.354	7.260	0.361
				4 - 1 - 1	1.402	1.381	7.491	0.362
	WMT		PSD S	3×3	1.415	1.394	7.566	0.359
OPT-350M-66B			KSD-5	4×3	1.442	1.420	7.662	0.359
			SD	4	1.290	1.264	6.256	0.358
			SpecTr	5×4	1.358	1.331	6.288	0.356
			Specif	7×4	1.376	1.349	6.346	0.357
		4		2 - 2 - 2 - 2	1.396	1.369	6.430	0.363
		-	RSD-C	5 - 1 - 1 - 1	1.419	1.391	6.596	0.365
				7-1-1-1	1.442	1.414	6.601	0.356
			RSD-S	5×4	1.473	1.443	6.866	0.362
			KoD-0	7×4	1.506	1.476	6.892	0.356
			SD	5	1.295	1.263	5.667	0.356
			SpecTr	6×5	1.373	1.340	5.721	0.360
			Specifi	12×5	1.399	1.365	5.615	0.359
		5		2-2-2-2-2	1.393	1.359	5.647	0.357
		5	RSD-C	6-1-1-1-1	1.431	1.396	5.962	0.359
				12-1-1-1	1.471	1.435	5.867	0.362
			RSD-S	$6 \times \overline{5}$	1.489	1.453	6.181	0.360
			NOD 0	12×5	1.555	1.516	6.183	0.358

Table 28: We summarize experiment results with Llama 2-7B target and 115M draft for the XSum task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

1 AR - 1.000 1.000 37.566 0. SD 6 3.087 2.796 53.455 0.).141).142).141
$\frac{1}{\text{SD}} = 6 + \frac{1.000}{3.087} + \frac{1.000}{2.796} + \frac{57.500}{53.455} + \frac{1.000}{57.500} + \frac{1.000}{57.5$).142
5D 0 51111111111111).141
-2×3 2 577 2 450 54 070 0	
SpecTr 3×2 2.279 2.202 53.730 0.	0.139
2-1-1 2.571 2.444 55.296 0.).139
6 RSD-C 2-2 2.398 2.317 57.629 0.).143
3-1 2.291 2.214 54.449 $0.$	0.140
2.791 2.653 56.179 0.	0.136
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.140
SD 10 3.438 2.929 44.156 0.).141
SpecTr 2×5 3.030 2.788 54.224 $0.$).138
5×2 2.339 2.261 55.258 0.).145
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SU TR Acc. 000 37.566 0.141 796 53.455 0.142 150 54.070 0.141 202 53.730 0.139 144 55.296 0.139 144 55.296 0.143 214 54.449 0.140 553 56.179 0.136 350 56.053 0.140 029 44.156 0.141 788 54.224 0.138 261 55.258 0.142 259 53.326 0.141 036 55.787 0.144 481 58.717 0.140 368 37.602 0.143 379 50.642 0.142 278 55.548 0.141 398 50.267 0.143 399 50.642 0.142 278 55.548 0.141 398 50.267 0.143 44 51.9
RSD-C $2-2-1$ 2.725 2.590 58.367 0.	
5-1 2.338 2.259 53.326 0.).141
$\begin{array}{cccccccccccccccccccccccccccccccccccc$).144
1000000000000000000000000000000000000	0.140
SD 14 3.565 2.868 37.602 0.).143
SpecTr 2×7 3.296 2.939 50.642 0.	0.142
$\frac{592011}{7\times 2} \qquad 2.357 \qquad 2.278 55.548 0.$	0.141
Llama 2-7B XSum $_{14}$ $_{2-1-1-1-1-1}$ $_{3.250}$ $_{2.898}$ $_{50.267}$ $_{0.267}$	0.143
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$).141
$-\frac{7-1}{2.374} 2.294 54.968 0.$).136
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.140
$\frac{7 \times 2}{2.618} = \frac{2.530}{2.530} = \frac{38.597}{0.000} = 0$	$\frac{0.140}{1.140}$
$\frac{5D}{21} = \frac{3.677}{2.695} \frac{30.002}{30.002} \frac{0}{0}$).142
SpecTr $\frac{3 \times 7}{7 \times 2}$ $\frac{3.494}{2.755}$ $\frac{3.110}{2.755}$ $\frac{51.744}{2.610}$ $\frac{59.596}{59.60}$	1.1.38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1.39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 142
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.142
$\frac{7-1-1}{3 \times 7} \qquad \begin{array}{c} 2.741 & 2.003 & 30.079 & 0. \end{array}$	$\frac{1.139}{1.139}$
RSD-S 7×3 3.168 3.011 66.555 0	142
$\frac{7 \times 5}{5.106} = \frac{3.106}{3.106} = \frac{3.106}{2.011} = \frac{3.001}{00.355} = 0.100$	$\frac{141}{130}$
$\frac{55}{5\times6} = \frac{3}{3} \frac{353}{3} = \frac{3}{3} \frac{037}{55} \frac{5}{5070} \frac{0}{0}$	145
SpecTr 6×5 3.209 2.953 5.070 0.332) 141
$\frac{2-2-2-2}{2-2-2-2} = \frac{3.205}{2.997} = \frac{2.55}{61.608} = 0$).142
$\begin{array}{cccccccccccccccccccccccccccccccccccc$).142
6-1-1-1-1 3.133 2.883 55.747 0.).142
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.138
$\begin{array}{cccccccccccccccccccccccccccccccccccc$).141

Table 29: We summarize experiment results with Llama 2-7B target and 115M draft for the WMT task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	37.340	0.374
			SD	6	1.953	1.768	34.768	0.378
			Smaa Tr	2×3	1.857	1.765	41.844	0.374
			specifi	3×2	1.757	1.698	42.912	0.376
		6		2-1-1	1.889	1.796	41.272	0.375
		0	RSD-C	2-2	1.858	1.796	44.210	0.372
				Dec.Spec.AR-1.0001.000SD61.9531.768SpecTr 2×3 1.8571.765 3×2 1.7571.698RSD-C $2-2$ 1.8581.796 $3-1$ 1.8191.758RSD-S 2×3 1.9771.879 3×2 1.9121.847SD102.0511.748SpecTr 2×5 1.9961.836SpecTr 5×2 1.7921.732RSD-S $2-1-1-1-1$ 2.0321.869RSD-C $2-2-1$ 1.9841.886 $5-1$ 1.8821.819RSD-S 2×5 2.1261.957 5×2 2.0181.950SD142.0751.669SpecTr 2×7 2.0851.859 7×2 1.8131.752RSD-C $2-2-2$ 2.0331.933 $7-1$ 1.9191.854RSD-S 7×2 2.0712.002SD212.1141.549SpecTr 3×7 2.1351.903 7×3 1.9681.870 7×3 1.9681.870RSD-S 3×7 2.3542.099 7×3 2.2852.172SD302.1771.431SpecTr 5×6 2.1521.949 6×5 2.1201.951RSD-S 5×6 2.1521.949 6×5 2.1201.951SpecTr 5×6 2.152 <td>43.938</td> <td>0.375</td>		43.938	0.375	
			ם מש	2×3	1.977	1.879	42.658	0.371
			KSD-S	3×2	1.912	1.847	45.982	0.373
			SD	10	2.051	1.748	27.755	0.377
			SpecTr	2×5	1.996	1.836	37.212	0.374
			Spec II	5×2	1.792	1.732	43.474	0.380
		10		2-1-1-1-1	2.032	1.869	37.614	0.374
		10	RSD-C	2 - 2 - 1	1.984	1.886	44.174	R Acc. 40 0.374 58 0.378 44 0.374 12 0.376 72 0.375 10 0.372 38 0.375 58 0.371 82 0.373 55 0.377 12 0.374 74 0.380 14 0.374 74 0.380 14 0.374 74 0.380 14 0.374 74 0.380 14 0.374 74 0.370 30 0.375 56 0.373 16 0.376 29 0.375 56 0.373 13 0.372 98 0.374 39 0.372 98 0.374 39 0.372 94 0.373 13 0.372
				5-1	1.882	1.819	44.958	0.376
			PSD S	2×5	2.126	1.957	36.921	0.375
			KSD-S	5×2	2.018	1.950	47.316	0.376
		SD	14	2.075	1.669	22.528	0.370	
			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32.730	0.375			
			Specifi	$\frac{cTr}{7\times2} \xrightarrow{2.000}{1.813} \xrightarrow{1.859}{1.752}$	42.856	0.375		
Llama 2-7B	WMT	14		2-1-1-1-1-1	2.110	1.882	33.053	0.373
			RSD-C	2 - 2 - 2	2.033	1.933	45.579	0.372
				7-1	1.919	1.854	45.194	0.377
			RSD-S	2×7	2.236	1.994	33.965	0.374
			KSD-S	7×2	2.071	2.002	47.111	0.380
			SD	21	2.114	1.549	17.569	0.376
			SpecTr	3×7	2.135	1.903	34.329	0.375
			Specifi	7×3	1.968	1.870	43.981	0.375
		21		3-1-1-1-1-1-1	2.160	1.926	34.656	0.373
		21	RSD-C	3 - 2 - 2	2.131	2.025	48.313	0.372
				7-1-1	2.038	1.937	45.098	0.377
			RSD-S	3×7	2.354	2.099	37.088	0.374
			KoD-0	7×3	2.285	2.172	48.239	0.372
			$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$	30	2.177	1.431	13.303	0.375
			SpecTr	5×6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37.182	0.374	
				6×5	2.120	1.951	39.488	0.373
		30		2-2-2-2	2.152	2.013	44.115	0.378
		50	RSD-C	5-1-1-1-1-1	2.197	1.990	37.424	0.370
				6-1-1-1-1	2.171	1.998	39.623	0.372
			RSD-S	5×6	2.463	2.231	39.472	0.374
			1.00 0	6×5	2.467	2.270	43.140	0.370

Table 30: We summarize experiment results with Llama 2-13B target and 115M draft for the XSum task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	27.958	0.166
			SD	6	2.947	2.796	43.504	0.163
			SmaaTr	2×3	2.492	2.426	43.202	0.162
			specifi	3×2	2.212	2.173	41.701	0.165
		6		2-1-1	2.474	2.409	43.028	0.164
		0	RSD-C	2-2	2.347	2.305	44.088	0.166
				3-1	2.269	2.229	43.224	0.158
			PSD S	2×3	2.660	2.590	45.233	0.165
			K3D-3	3×2	2.412	2.370	45.802	0.162
			SD	10	3.248	2.981	38.044	0.160
			SpecTr	2×5	2.891	2.766	43.939	0.165
			Specifi	5×2	2.273	2.233	42.925	0.163
		10		2-1-1-1-1	2.868	2.745	43.935	0.164
		10	RSD-C	2 - 2 - 1	2.655	2.586	46.486	0.165
				5-1	2.312	2.272	44.677	0.163
			RSD-S	2×5	3.139	3.004	45.129	0.165
		KSD 5	5×2	2.509	2.465	47.010	0.165	
		SD	14	3.316	2.945	31.464	0.166	
			SpecTr	2×7	3.192	3.003	42.485	0.166
			speen	7×2	2.293	2.253	42.888	0.160
Llama 2-13B	XSum	14		2 - 1 - 1 - 1 - 1 - 1 - 1	3.155	2.968	41.432	0.159
		11	RSD-C	2 - 2 - 2	2.784	2.711	49.658	0.166
				7-1	2.316	2.275	43.455	0.168
			RSD-S	2×7	3.364	3.165	41.883	0.162
				7×2	2.583	2.538	47.255	0.162
			SD	21	3.470	2.920	25.644	0.166
			SpecTr	3×7	3.325	3.128	43.834	0.161
			speen	7×3	2.685	2.615	46.056	0.157
		21		3-1-1-1-1-1-1	3.172	2.984	41.657	0.163
			RSD-C	3-2-2	2.858	2.783	49.377	0.166
				7-1-1	2.629	2.560	44.732	0.161
			RSD-S	3×7	3.621	3.407	45.864	0.173
			<u></u>	<u>7×3</u>	3.066	2.985	50.916	0.165
			SD	30	3.589	2.827	20.535	0.164
			SpecTr	5×6	3.334	3.163	45.472	0.165
			1 · · ·	<u>6×5</u>	3.108	2.974	45.765	0.169
		30		2-2-2-2	3.096	2.989	49.061	0.167
			кър-с	3 - 1 - 1 - 1 - 1 - 1	5.125	2.965	44.662	0.165
				0-1-1-1-1	3.014	2.885	45.140	0.163
			RSD-S	5×0	3.741	3.350	48.762	0.163
				0×3	3.648	3.492	51.554	0.162

Table 31: We summarize experiment results with Llama 2-13B target and 115M draft for the WMT task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	28.882	0.413
			SD	6	1.950	1.850	30.533	0.409
			0 1	2×3	1.844	1.796	33.376	0.411
			SpecIr	3×2	1.748	1.717	36.005	0.408
		6		2-1-1	1.884	1.834	35.064	0.411
		6	RSD-C	2-2	1.852	1.819	37.453	0.407
				3-1	1.815	1.783	37.156	0.408
				2×3	1.956	1.905	37.177	0.409
			K2D-2	3×2	1.903	1.869	37.195	0.410
			SD	10	2.061	1.891	25.104	0.408
			CT.	2×5	1.989	1.904	31.919	0.409
			Specif	5×2	1.780	1.749	36.296	0.411
		10		2-1-1-1-1	2.012	1.926	32.918	0.409
		10	RSD-C	2-2-1	1.970	1.919	36.758	0.408
				5-1	1.872	1.838	37.063	0.414
				2×5	2.122	2.031	33.454	0.408
		K2D-2	5×2	2.004	1.968	39.922	0.406	
		SD	14	2.118	1.881	21.448	0.408	
		о т .	2×7	2.084	1.961	29.443	0.411	
			Specif	7×2	1.801	1.769	35.500	0.407
Llama 2-13B	WMT	14		2-1-1-1-1-1	2.099	1.975	29.876	0.411
		14	RSD-C	2 - 2 - 2	2.027	1.974	37.232	0.407
				7-1	1.912	1.878	38.123	0.409
				2×7	2.225	2.093	29.851	0.411
			K2D-2	7×2	2.069	2.032	40.692	0.405
			SD	21	2.239	1.884	17.204	0.409
			SpeaTr	3×7	2.133	2.007	30.245	0.408
			specifi	7×3	1.953	1.901	36.695	0.409
		21		3-1-1-1-1-1	2.156	2.028	30.470	0.408
		21	RSD-C	3-2-2	2.121	2.065	39.876	0.414
				7-1-1	2.041	1.988	37.111	0.411
				3×7	2.353	2.214	31.571	0.406
			K2D-2	7×3	2.281	2.221	41.848	0.407
			SD	30	2.341	1.844	13.847	0.409
			SmaaTr	5×6	2.153	2.043	32.312	0.407
			specifi	6×5	2.101	2.011	34.170	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		30		2-2-2-2	2.122	2.048	36.484	0.407
		50	RSD-C	5-1-1-1-1-1	2.190	2.078	32.439	0.408
				6-1-1-1-1	2.163	2.070	34.071	0.408
			DOD C	5×6	2.450	2.325	34.302	0.407
			K9D-9	6×5	2.448	2.343	37.229	0.408

Table 32: We summarize experiment results with Llama 2-70B target and 115M draft for the XSum task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	9.016	0.194
			SD	6	2.820	2.791	16.776	0.193
			SmaaTr	2×3	2.447	2.435	16.240	0.194
			specifi	3×2	2.204	2.197	15.335	0.191
		6		2-1-1	2.475	2.462	16.405	0.192
		0	RSD-C	2-2	2.322	2.314	16.063	0.189
				3-1	2.239	2.231	15.564	0.197
			PSD S	2×3	2.625	2.611	17.100	0.193
			KSD-S	3×2	2.376	2.368	16.267	0.193
			SD	10	3.142	3.090	16.134	0.192
			SpecTr	2×5	2.836	2.812	17.119	0.192
			Specifi	5×2	2.235	2.227	15.404	0.198
		10		2-1-1-1-1	2.829	2.805	17.057	0.194
		10	RSD-C	2 - 2 - 1	2.617	2.604	17.193	0.192
				5-1	2.273	2.266	15.541	0.195
			RSD-S	2×5	3.028	3.003	17.674	0.187
		KSD 5	5×2	2.484	2.475	16.683	0.193	
		SD	14	3.178	3.104	14.472	0.199	
			SpecTr	2×7	3.138	3.101	17.512	0.191
			speen	7×2	2.262	2.254	15.409	0.194
Llama 2-70B	XSum	14		2 - 1 - 1 - 1 - 1 - 1 - 1	3.028	2.993	16.938	0.189
		11	RSD-C	2 - 2 - 2	2.757	2.743	17.722	0.188
				7-1	2.296	2.288	15.587	0.193
			RSD-S	2×7	3.311	3.272	17.882	0.192
				7×2	2.565	2.556	17.094	0.191
			SD	21	3.321	3.207	12.428	0.193
			SpecTr	3×7	3.160	3.123	17.143	0.188
			speen	7×3	2.633	2.620	16.486	0.188
		21		3-1-1-1-1-1-1	3.104	3.068	16.920	0.192
			RSD-C	3-2-2	2.837	2.822	17.726	0.188
				7-1-1	2.579	2.566	16.201	0.192
			RSD-S	3×7	3.505	3.464	18.299	0.195
			00	<u>7×3</u>	3.037	3.021	18.568	0.188
			SD	30	3.341	3.179	10.399	0.189
			SpecTr	5×6	3.213	3.181	17.584	0.189
			1 · · ·	<u>6×5</u>	3.103	3.077	17.654	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		30		2-2-2-2	3.028	3.008	17.863	0.191
			кър-с	3 - 1 - 1 - 1 - 1 - 1	3.074	5.045	1/.130	0.197
				0-1-1-1-1	2.935	2.910	10.8/1	0.193
			RSD-S	3×0	3.007	3.571	18.880	0.191
				0×3	3.336	3.526	19.501	0.192

Table 33: We summarize experiment results with Llama 2-70B target and 115M draft for the WMT task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

NC 11	T 1	C	D	G	Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	9.764	0.439
			SD	6	1.955	1.936	13.160	0.441
			SpecTr	2×3	1.856	1.847	13.951	0.437
			Specifi	3×2	1.756	1.750	13.806	0.445
		6		2 - 1 - 1	1.889	1.880	14.243	0.439
		0	RSD-C	2-2	1.853	1.847	14.584	0.443
				3-1	1.819	1.813	14.200	0.440
			RSD-S	2×3	1.963	1.953	14.548	0.441
			~~~	<u>3×2</u>	1.907	1.900	14.744	0.439
			SD	10	2.045	2.011	11.774	0.437
			SpecTr	$2 \times 5$	1.994	1.977	13.664	0.438
				5×2	1.785	1.779	13.860	0.439
		10		2 - 1 - 1 - 1 - 1	2.021	2.004	13.891	0.439
			RSD-C	2-2-1	1.973	1.963	14.6/1	0.442
				$\frac{3-1}{2+5}$	1.881	1.8/4	14.520	-0.443
			RSD-S	2×5	2.12/	2.109	14.355	0.438
		<u> </u>	<u>5×2</u>	2.017	2.011	10.407	0.438	
		<u>SD</u>	$\frac{14}{2}$	2.084	2.035	10.407	0.439	
			SpecTr	$2 \times 7$ $7 \times 2$	2.078	2.035	13.221	0.439
L lama 2 70B	WMT			$\frac{7\times2}{2 1 1 1 1 1 1 1}$	$\frac{1.011}{2.110}$	2.085	13.954	0.430
Liallia 2-70D	VV IVI I	14	DSD C	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1	2.110	2.065	13.300	0.430
			KSD-C	2-2-2 7_1	2.021	2.010	14.601	0.438
				$\frac{7}{2\times7}$	2.226	2 200	13 788	-0.442
			RSD-S	$7 \times 2$	2.098	2.001	15.766	0.447
			SD	21	2.050	2.071	8 847	$\frac{0.137}{0.439}$
			~ ~ ~	3×7	2.133	2.108	13.207	$\frac{0.137}{0.442}$
			SpecTr	$7 \times 3$	1.953	1.943	13.914	0.438
				3-1-1-1-1-1	2.160	2.135	13.317	0.438
		21	RSD-C	3-2-2	2.158	2.147	15.302	0.440
				7-1-1	2.043	2.033	14.583	0.439
				3×7	2.353	2.325	14.047	0.438
			RSD-S	$7 \times 3$	2.285	2.274	15.904	0.437
			SD	30	2.252	2.143	7.616	0.443
			SpooT-	5×6	2.150	2.128	13.466	0.439
			specif	$6 \times 5$	2.113	2.095	13.811	0.443
		30		2-2-2-2	2.130	2.116	14.395	0.440
		30	RSD-C	5-1-1-1-1-1	2.193	2.171	13.754	0.437
				6-1-1-1-1	2.173	2.154	14.166	0.440
			RSDS	5×6	2.467	2.442	15.083	0.439
			1.50-0	$6 \times 5$	2.451	2.430	15.474	0.439

Table 34: We summarize experiment results with Llama 2-Chat-7B target and 115M draft for the XSum task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

Madal	Tools	Comp	Daa	Space	Eff.	MBSU	TR	Acc.
Widdei	Task	Comp.	Dec.	spec.				
		1	AR	-	1.000	1.000	36.326	0.092
			SD	6	2.393	2.168	40.649	0.092
			SpecTr	$2 \times 3$	2.177	2.069	46.704	0.090
			opeen	3×2	1.972	1.906	46.963	0.092
		6		2 - 1 - 1	2.251	2.140	48.942	0.091
		0	RSD-C	2-2	2.162	2.090	50.120	0.089
				3-1	2.100	2.030	49.313	0.091
			RSD-S	$2 \times 3$	2.390	2.272	49.905	0.089
			KOD D	$3 \times 2$	2.220	2.146	51.233	0.090
			SD	10	2.531	2.157	32.934	0.088
			SpecTr	$2 \times 5$	2.403	2.211	44.360	0.091
			Specifi	$5 \times 2$	1.993	1.926	47.010	0.089
		10		2-1-1-1-1	2.470	2.273	44.878	0.091
		10	RSD-C	2-2-1	2.370	2.253	50.696	0.091
				5-1	2.154	2.082	50.306	0.089
			2020	$2 \times 5$	2.635	2.424	45.726	0.091
			K2D-2	$5 \times 2$	2.360	2.281	55.248	0.092
			SD	14	2.551	2.052	27.493	0.091
			SmaaTr	2×7	2.514	2.241	39.394	0.091
			Specif	$7 \times 2$	1.991	1.924	45.588	0.092
Llama 2-Chat-7B	XSum	14		2-1-1-1-1-1	2.567	2.289	40.884	0.091
		14	RSD-C	2 - 2 - 2	2.484	2.362	51.459	0.090
				7-1	2.182	2.108	50.829	0.091
				2×7	2.781	2.480	41.993	0.092
			K2D-2	$7 \times 2$	2.417	2.336	55.556	0.092
			SD	21	2.556	1.873	20.512	0.090
			<u>с</u> т.	3×7	2.534	2.260	39.551	0.091
			Specif	$7 \times 3$	2.243	2.132	49.332	0.091
		01		3-1-1-1-1-1	2.643	2.357	42.535	0.090
		21	RSD-C	3-2-2	2.568	2.441	55.795	0.091
				7-1-1	2.404	2.285	52.558	0.090
				3×7	3.009	2.683	44.655	0.092
			RSD-S	$7 \times 3$	2.791	2.653	58.627	0.091
			SD	30	2.572	1.691	15.946	0.090
				5×6	2.534	2.295	42.130	0.091
			SpecTr	6×5	2.455	2.259	44.572	0.091
		20		2-2-2-2	2.701	2.526	41.993       0.092         55.556       0.092         20.512       0.090         39.551       0.091         49.332       0.091         42.535       0.090         55.795       0.091         52.558       0.090         544.655       0.092         58.627       0.091         15.946       0.090         44.572       0.091         53.578       0.093         45.281       0.090         47.230       0.090         9.821       0.089	
		30	RSD-C	5-1-1-1-1-1	2.654	2.404	45.281	0.090
				6-1-1-1-1	2.615	2.407	47.230	0.090
		_		5×6	3.168	2.869	49.821	0.089
			RSD-S	6×5	3.142	2.891	53,573	0.089
					2.1.12		00.075	0.007

Table 35: We summarize experiment results with Llama 2-Chat-7B target and 115M draft for the WMT task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	36.695	0.377
			SD	6	1.900	1.721	33.723	0.379
			С	2×3	1.770	1.683	38.953	0.377
			Specir	$3 \times 2$	1.673	1.617	41.570	0.378
		(		2-1-1	1.854	1.762	41.448	0.371
		0	RSD-C	2-2	1.813	1.752	44.864	0.375
				3-1	1.784	1.724	44.721	0.378
				2×3	1.909	1.814	41.220	0.379
			K2D-2	$3 \times 2$	1.865	1.802	44.982	0.379
			SD	10	1.955	1.666	26.231	0.373
			SmaaTr	$2 \times 5$	1.889	1.738	34.516	0.376
			Specif	$5 \times 2$	1.687	1.631	41.615	0.377
		10		2-1-1-1-1	1.965	1.808	37.284	0.376
		10	RSD-C	2 - 2 - 1	1.920	1.825	43.100	0.380
				5-1	1.838	1.776	44.881	0.381
				$2 \times 5$	2.092	1.925	36.867	0.377
			K2D-2	$5 \times 2$	1.958	1.892	47.296	0.376
			SD	14	1.961	1.578	21.506	0.375
			C T.	$2 \times 7$	1.958	1.746	31.680	0.378
			Specif	$7 \times 2$	1.695	1.638	42.528	0.376
Llama 2-Chat-7B	WMT	14		2-1-1-1-1-1-1	2.027	1.808	32.022	0.376
		14	RSD-C	2 - 2 - 2	1.967	1.870	43.105	0.377
				7-1	1.867	1.804	44.714	0.378
				$2 \times 7$	2.128	1.898	32.654	0.378
			K2D-2	$7 \times 2$	2.004	1.937	46.335	0.379
			SD	21	1.965	1.440	16.321	0.376
			SmaaTr	3×7	1.975	1.761	31.874	0.377
			specifi	$7 \times 3$	1.808	1.719	39.780	0.376
		21		3-1-1-1-1-1	2.080	1.855	32.993	0.376
		21	RSD-C	3-2-2	2.066	1.964	45.320	0.377
				7-1-1	1.976	1.878	44.574	0.378
				3×7	2.241	1.998	33.997	0.377
			K2D-2	$7 \times 3$	2.189	2.080	46.892	0.376
			SD	30	1.976	1.300	12.286	0.376
			SpecTr	5×6	1.969	1.784	33.346	0.374
			specifi	6×5	1.936	1.781	35.935	0.376
		30		2-2-2-2	2.067	1.933	42.206	0.377
		30	RSD-C	5-1-1-1-1-1	2.106	1.908	36.939	0.379
				6-1-1-1-1	2.093	1.926	38.918	0.376
			PSD S	5×6	2.341	2.120	37.980	0.378
			1/20-2	6×5	2.335	2.149	41.775	0.375

Table 36: We summarize experiment results with Llama 2-Chat-7B target and 115M draft for the Dolly task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	37.816	-
			SD	6	2.872	2.601	47.582	-
			SmaaTr	2×3	2.510	2.385	52.609	-
			Specifi	$3 \times 2$	2.215	2.140	52.020	-
		6		2-1-1	2.491	2.367	53.526	-
		0	RSD-C	2-2	2.253	2.178	52.910	-
				3-1	2.201	2.127	52.182	-
			200 6	$2 \times 3$	2.598	2.470	53.906	-
			KSD-S	$3 \times 2$	2.278	2.202	51.508	-
			SD	10	3.077	2.622	40.373	-
			SpecTr	2×5	2.898	2.666	49.652	-
			specifi	$5 \times 2$	2.230	2.155	50.708	-
		10		2-1-1-1-1	2.837	2.611	52.227	-
		10	RSD-C	2 - 2 - 1	2.572	2.445	53.858	-
				5-1	2.202	2.128	51.832	-
			DCD C	$2 \times 5$	3.026	2.785	48.969	-
			K2D-2	$5 \times 2$	2.299	2.222	52.744	-
			SD	14	3.133	2.521	33.603	-
			SpeaTr	$2 \times 7$	3.085	2.751	47.101	-
			specifi	$7 \times 2$	2.248	2.172	49.841	-
Llama 2-Chat-7B	Dolly	14		2-1-1-1-1-1-1	3.022	2.695	46.031	-
		14	RSD-C	2 - 2 - 2	2.628	2.498	56.076	-
				7-1	2.205	2.131	51.055	-
				$2 \times 7$	3.244	2.892	44.446	-
			K2D-2	$7 \times 2$	2.299	2.222	53.245	-
			SD	21	3.136	2.298	25.282	-
			SpecTr	3×7	3.180	2.836	48.530	-
			Spec II	$7 \times 3$	2.617	2.488	55.692	-
		21		3-1-1-1-1-1	3.031	2.703	46.084	-
		21	RSD-C	3-2-2	2.659	2.527	56.135	-
				7-1-1	2.506	2.382	53.688	-
				3×7	3.359	2.996	46.775	-
			K2D-2	$7 \times 3$	2.703	2.569	54.088	-
		-	SD	30	3.158	2.077	18.689	-
			SpecTr	5×6	3.186	2.886	50.516	-
			Spec II	6×5	3.072	2.826	52.096	-
		30		2-2-2-2	2.914	2.725	54.514	-
		50	RSD-C	5-1-1-1-1-1	2.975	2.695	48.944	-
				6-1-1-1-1	2.854	2.626	50.489	-
		_	PSD S	5×6	3.334	3.020	49.805	-
			K5D-5	6×5	3.221	2.963	52.867	-

Table 37: We summarize experiment results with Llama 2-Chat-13B target and 115M draft for the XSum task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	28.370	0.112
			SD	6	2.463	2.337	36.486	0.114
			CT.	2×3	2.179	2.121	40.043	0.113
			Specir	$3 \times 2$	1.976	1.941	38.373	0.114
		6		2-1-1	2.255	2.195	40.247	0.111
		0	RSD-C	2-2	2.166	2.128	41.385	0.112
				3-1	2.093	2.056	40.980	0.114
			RSD-S	$2 \times 3$	2.400	2.337	41.334	0.113
			K3D-3	$3 \times 2$	2.232	2.193	42.572	0.111
			SD	10	2.578	2.365	30.909	0.110
			SpecTr	$2 \times 5$	2.424	2.319	37.801	0.112
			specifi	$5 \times 2$	2.000	1.965	38.179	0.111
		10		2-1-1-1-1	2.498	2.391	38.946	0.112
		10	RSD-C	2 - 2 - 1	2.385	2.322	42.166	0.109
				5-1	2.153	2.115	42.599	0.112
			RSD-S	$2 \times 5$	2.682	2.567	39.875	0.114
			K3D-3	$5 \times 2$	2.341	2.300	44.695	0.111
			SD	14	2.652	2.356	26.277	0.111
			SpecTr	2×7	2.581	2.428	35.302	0.112
			Specifi	$7 \times 2$	2.003	1.968	38.576	0.110
Llama 2-Chat-13B	XSum	14		2-1-1-1-1-1	2.610	2.456	35.417	0.110
		14	RSD-C	2 - 2 - 2	2.476	2.411	44.017	0.112
				7-1	2.183	2.145	41.901	0.112
			2020	$2 \times 7$	2.830	2.663	36.540	0.114
			KSD-S	$7 \times 2$	2.405	2.363	44.631	0.114
			SD	21	2.646	2.226	20.028	0.112
			SpecTr	3×7	2.598	2.444	35.767	0.112
			specifi	$7 \times 3$	2.239	2.180	39.758	0.112
		21		3-1-1-1-1-1	2.703	2.543	37.079	0.108
		21	RSD-C	3-2-2	2.589	2.521	46.647	0.110
				7-1-1	2.403	2.340	42.168	0.112
				3×7	3.016	2.838	39.531	0.109
			K2D-2	$7 \times 3$	2.784	2.711	48.602	0.111
		-	SD	30	2.699	2.126	15.701	0.113
			SpacTr	5×6	2.566	2.435	35.917	0.112
			specif	$6 \times 5$	2.499	2.392	38.339	0.111
		30		2-2-2-2	2.692	2.598	44.569	0.112
		30	RSD-C	5-1-1-1-1-1	2.699	2.561	38.522	0.113
				6-1-1-1-1	2.621	2.508	40.221	0.112
			ם מאמ	5×6	3.201	3.037	43.176	0.110
			120-2	$6 \times 5$	3.153	3.018	45.666	0.112

Table 38: We summarize experiment results with Llama 2-Chat-13B target and 115M draft for the WMT task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	28.662	0.340
			SD	6	2.060	1.955	31.459	0.342
			SmaaTr	2×3	1.895	1.845	35.835	0.330
			Specif	$3 \times 2$	1.758	1.727	36.220	0.343
		6		2-1-1	2.018	1.965	38.230	0.346
		0	RSD-C	2-2	1.928	1.894	39.278	0.345
				3-1	1.891	1.858	38.251	0.344
			RSD-S	2×3	2.108	2.053	38.436	0.335
			K3D-3	$3 \times 2$	2.023	1.987	40.327	0.349
			SD	10	2.253	2.067	27.166	0.347
			SpecTr	$2 \times 5$	1.959	1.874	31.367	0.346
			Specifi	$5 \times 2$	1.826	1.794	36.691	0.341
		10		2-1-1-1-1	2.123	2.032	34.561	0.336
		10	RSD-C	2 - 2 - 1	2.117	2.061	40.143	0.343
				5-1	1.870	1.837	38.913	0.346
			RSD-S	$2 \times 5$	2.222	2.127	34.665	0.343
			KOD 0	$5 \times 2$	2.058	2.022	40.616	0.341
			SD	14	2.282	2.027	22.844	0.342
			SpecTr	$2 \times 7$	2.045	1.924	28.418	0.347
			opeen	7×2	1.715	1.685	34.563	0.343
Llama 2-Chat-13B	WMT	14		2 - 1 - 1 - 1 - 1 - 1 - 1	2.095	1.971	29.890	0.347
		11	RSD-C	2 - 2 - 2	2.078	2.023	39.021	0.335
				7-1	1.978	1.943	39.510	0.343
			RSD-S	$2 \times 7$	2.340	2.202	31.472	0.343
				7×2	2.170	2.132	41.309	0.346
			SD	21	2.214	1.863	17.282	0.349
			SpecTr	$3 \times 7$	2.137	2.010	30.289	0.338
			~	7×3	2.053	1.999	38.693	0.338
		21		3-1-1-1-1-1-1	2.209	2.078	31.428	0.333
			RSD-C	3-2-2	2.280	2.220	41.973	0.337
				7-1-1	2.130	2.075	40.257	0.337
			RSD-S	$3 \times 7$	2.442	2.297	33.291	0.354
			00	7×3	2.280	2.220	41.291	0.346
			SD	<u> </u>	2.223	1.751	13.360	0.338
			SpecTr	5×6	2.208	2.095	32.564	0.340
			I	6×3	2.077	1.988	33.949	0.348
		30		2-2-2-2	2.314	2.233	40.778	0.342
			KSD-C	5 - 1 - 1 - 1 - 1 - 1	2.218	2.104	33.518	0.345
				0-1-1-1-1	2.381	2.278	37.944	0.339
			RSD-S	5×6	2.525	2.396	30.318	0.344
			KSD-S (	0×3	2.552	2.423	38.549	0.348

Table 39: We summarize experiment results with Llama 2-Chat-13B target and 115M draft for the Dolly task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.								
Model	Task	Comp.	Dec.	Spec.												
		1	AR	-	1.000	1.000	29.385	-								
			SD	6	2.832	2.687	41.513	-								
			CT.	2×3	2.478	2.413	43.632	-								
			Specifi	$3 \times 2$	2.187	2.148	42.975	-								
		6		2-1-1	2.456	2.392	45.481	-								
		0	RSD-C	2-2	2.241	2.201	44.034	-								
				3-1	2.181	2.143	42.823	-								
			PSD S	2×3	2.573	2.505	45.570	-								
			K3D-3	$3 \times 2$	2.262	2.222	43.819	-								
			SD	10	2.978	2.733	35.013	-								
			SpecTr	$2 \times 5$	2.847	2.725	43.931	-								
			specifi	5×2	2.214	2.175	43.286	-								
		10		2-1-1-1-1	2.781	2.662	42.729	-								
		10	RSD-C	2 - 2 - 1	2.533	2.467	45.282	-								
				5-1	2.178	2.139	41.735	-								
			RSD-S	$2 \times 5$	2.992	2.863	43.546	-								
				5×2	2.287	2.247	44.563	-								
			SD	14	3.027	2.688	29.490	-								
			SpecTr	$2 \times 7$	3.028	2.849	40.315	-								
	<b>D</b> 11		~	7×2	2.234	2.195	42.190	-								
Llama 2-Chat-13B	Dolly	14		2-1-1-1-1-1	2.936	2.762	39.956	-								
			RSD-C	2-2-2	2.614	2.545	48.098	-								
				7-1	2.187	2.148	43.185	-								
			RSD-S	2×7	3.207	3.017	40.385	-								
			0D	7×2	2.295	2.254	44.997	-								
			<u>SD</u>	21	3.052	2.568	22.670	-								
			SpecTr	$3 \times 1$	3.103	2.920	41.949	-								
				/×3	2.393	2.521	40.033	-								
		21		3-1-1-1-1-1-1	2.901	2.780	40.040	-								
			KSD-C	3-2-2	2.034	2.303	40.239	-								
				$\frac{7-1-1}{3 \sqrt{7}}$	2.401	2.410	45.707	-								
			RSD-S	$3 \times 1$ $7 \times 3$	2.600	2.620	<i>1</i> 7 622	-								
			SD	30	2.090	2.020	17 571	-								
			50	<u> </u>	3.030	2.367	17.371	-								
			SpecTr	5×0 6×5	3.000	2.904	45.855	-								
				2_2_22	2 885	2.000	47 105	-								
		30	RSD_C	5 - 1 - 1 - 1 - 1 - 1	2.005	2.765	41 746	-								
			NSD-C	6_1_1_1_1	2.900	2.739	44 518	_								
				$\frac{5}{5\times6}$	3.296	3.127	44 636	-								
			RSD-S	6×5	3 172	3 036	45 991	-								
												0.05	5.174	5.050	тJ.771	-

Table 40: We summarize experiment results with Llama 2-Chat-70B target and 115M draft for the XSum task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	9.177	0.118
			SD	6	2.349	2.326	14.440	0.122
			0	2×3	2.133	2.122	14.685	0.121
			Specif	$3 \times 2$	1.939	1.932	14.080	0.122
		6		2-1-1	2.210	2.199	15.242	0.119
		0	RSD-C	2-2	2.130	2.123	15.332	0.118
				3-1	2.074	2.067	14.949	0.118
			DCD C	2×3	2.341	2.329	15.936	0.123
			Кор-о	$3 \times 2$	2.195	2.188	15.543	0.119
			SD	10	2.441	2.401	13.092	0.122
			SpecTr	$2 \times 5$	2.347	2.328	14.802	0.121
			specifi	$5 \times 2$	1.958	1.951	14.033	0.120
		10		2-1-1-1-1	2.412	2.391	15.092	0.121
		10	RSD-C	2-2-1	2.329	2.318	15.889	0.119
				5-1	2.128	2.120	15.127	0.119
			DEDE	$2 \times 5$	2.597	2.575	16.050	0.119
			K2D-2	$5 \times 2$	2.316	2.308	16.253	0.118
			SD	14	2.462	2.405	11.628	0.121
			SmaaTr	2×7	2.432	2.404	14.246	0.121
			specifi	$7 \times 2$	1.969	1.962	14.026	0.121
Llama 2-Chat-70B	XSum	14		2-1-1-1-1-1-1	2.496	2.467	14.635	0.119
		14	RSD-C	2 - 2 - 2	2.440	2.427	16.457	0.120
				7-1	2.161	2.154	15.136	0.120
			DCD C	$2 \times 7$	2.709	2.677	15.339	0.120
			Кор-о	$7 \times 2$	2.379	2.371	<b>16.484</b>	0.120
			SD	21	2.482	2.397	9.615	0.119
			SpecTr	3×7	2.470	2.442	14.000	0.119
			Specifi	$7 \times 3$	2.181	2.170	14.416	0.120
		21		3-1-1-1-1-1	2.570	2.540	14.676	0.121
		21	RSD-C	3-2-2	2.518	2.506	16.453	0.121
				7-1-1	2.352	2.340	15.425	0.118
			DODO	3×7	2.907	2.873	16.040	0.119
			Кор-о	$7 \times 3$	2.746	2.732	17.593	0.121
		-	SD	30	2.489	2.369	8.037	0.122
			SpecTr	5×6	2.446	2.421	14.147	0.120
			Specifi	6×5	2.412	2.392	14.499	0.120
		30		2-2-2-2	2.624	2.606	16.269	0.121
		50	RSD-C	5-1-1-1-1-1	2.588	2.562	14.991	0.120
			ROD C	6-1-1-1-1	2.549	2.528	15.230	0.120
			RSD-S	5×6	3.105	3.074	17.392	0.119
			N9D-9	6×5	3.068	3.043	17.821	0.117

Table 41: We summarize experiment results with Llama 2-Chat-70B target and 115M draft for the WMT task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	_	1.000	1.000	9.714	0.426
			SD	6	1.906	1.887	12.774	0.426
			0	2×3	1.785	1.776	13.429	0.424
			Specifi	$3 \times 2$	1.680	1.674	13.277	0.423
		(		2-1-1	1.853	1.844	13.911	0.422
		6	RSD-C	2-2	1.819	1.813	14.266	0.423
				3-1	1.790	1.783	14.097	0.422
				2×3	1.924	1.914	14.252	0.426
			K2D-2	$3 \times 2$	1.871	1.865	14.538	0.423
			SD	10	1.946	1.914	11.272	0.424
			SpeeTr	2×5	1.905	1.889	13.154	0.424
			specifi	$5 \times 2$	1.690	1.684	13.147	0.424
		10		2-1-1-1-1	1.968	1.952	13.602	0.423
		10	RSD-C	2 - 2 - 1	1.929	1.920	14.448	0.425
				5-1	1.844	1.838	14.304	0.425
			2020	$2 \times 5$	2.064	2.047	13.926	0.423
			Кор-о	$5 \times 2$	1.962	1.955	14.995	0.426
			SD	14	1.951	1.906	9.828	0.425
			SpecTr	2×7	1.957	1.934	12.441	0.421
			Specifi	$7 \times 2$	1.700	1.694	13.117	0.422
Llama 2-Chat-70B	WMT	14		2-1-1-1-1-1-1	2.023	2.000	12.924	0.423
		14	RSD-C	2 - 2 - 2	1.980	1.970	14.630	0.424
				7-1	1.873	1.867	14.313	0.425
			RSD-S	$2 \times 7$	2.125	2.100	13.136	0.422
			KoD-o	$7 \times 2$	2.014	2.008	15.222	0.421
			SD	21	1.955	1.887	7.945	0.422
			SpecTr	$3 \times 7$	1.977	1.954	12.241	0.425
			opeen	7×3	1.822	1.813	13.003	0.425
		21		3-1-1-1-1-1-1	2.081	2.056	12.696	0.424
		21	RSD-C	3-2-2	2.079	2.068	14.773	0.426
				7-1-1	1.998	1.988	14.206	0.424
			RSD-S	$3 \times 7$	2.245	2.219	13.532	0.426
			700 0	7×3	2.203	2.192	15.415	0.421
			SD	30	1.954	1.859	6.552	0.426
			SpecTr	5×6	1.971	1.951	12.467	0.423
				6×5	1.944	1.927	12.707	0.424
		30		2-2-2-2	2.079	2.065	14.062	0.423
			RSD-C	5-1-1-1-1-1	2.121	2.100	13.351	0.427
				6-1-1-1-1	2.105	2.088	13.614	0.426
			RSD-S	5×6	2.354	2.331	14.396	0.427
			RSD-S 6	6×5	2.343	2.323	14.884	0.425
Table 42: We summarize experiment results with Llama 2-Chat-70B target and 115M draft for the Dolly task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.	
Model	Task	Comp.	Dec.	Spec.					
		1	AR	-	1.000	1.000	9.741	-	
			SD	6	2.738	2.710	18.155	-	
			CT.	2×3	2.431	2.419	17.907	-	
			Specif	$3 \times 2$	2.166	2.158	16.663	-	
		6		2-1-1	2.417	2.405	18.018	-	
		0	RSD-C	2-2	2.218	2.210	17.254	-	
				3-1	2.153	2.146	16.782	-	
				2×3	2.545	2.532	18.573	-	
			K2D-2	$3 \times 2$	2.241	2.234	17.309	-	
			SD	10	2.873	2.825	16.293	-	
			Smaa Tr	$2 \times 5$	2.780	2.757	18.749	-	
			Specif	$5 \times 2$	2.198	2.191	16.720	-	
		10		2-1-1-1-1	2.720	2.697	18.665	-	
		10	RSD-C	2 - 2 - 1	2.501	2.488	18.443	-	
				5-1	2.166	2.158	16.850	-	
				$2 \times 5$	2.916	2.891	19.218	-	
			K2D-2	$5 \times 2$	2.270	2.262	17.558	-	
			SD	14	2.916	2.849	14.255	-	
			CT.	$2 \times 7$	2.951	2.916	18.354	-	
			Specir	$7 \times 2$	2.210	2.202	16.724	-	
Llama 2-Chat-70B	Dolly	14		2-1-1-1-1-1	2.878	2.845	18.090	-	
	•	14	RSD-C	2 - 2 - 2	2.573	2.560	18.881	-	
				7-1	2.165	2.158	16.866	-	
				$2 \times 7$	3.095	3.059	18.650	-	
			K2D-2	$7 \times 2$	2.275	2.267	17.554	-	
			SD	21	2.947	2.846	11.708	-	
			SpeeTr	3×7	3.027	2.992	18.297	-	
			specifi	$7 \times 3$	2.556	2.543	18.009	-	
		21		3-1-1-1-1-1	2.877	2.843	17.909	-	
		21	RSD-C	3-2-2	2.604	2.591	19.223	-	
				7-1-1	2.442	2.430	18.094	-	
				3×7	3.229	3.191	18.924	-	
			K2D-2	$7 \times 3$	2.668	2.655	19.251	-	
			SD	30	2.956	2.813	9.762		
			SpeaTr	5×6	3.054	3.023	19.007	-	
			spectr	$6 \times 5$	2.958	2.933	19.088	-	
		20		2-2-2-2	2.830	2.810	19.703	-	
		50	RSD-C	5-1-1-1-1-1	2.831	2.803	18.427	-	
				6-1-1-1-1	2.748	2.725	18.699	-	
			ם מש	5×6	3.234	3.201	19.812	-	
			RSD-	1/2D-2	6×5	3.127	3.101	20.308	-

Table 43: We summarize experiment results with OPT 13B target and 125M draft for the XSum task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	38.711	0.127
			SD	6	2.133	2.015	23.065	0.126
			SmaaTr	2×3	1.962	1.906	27.405	0.124
			Specifi	$3 \times 2$	1.833	1.798	30.186	0.127
		6		2-1-1	1.988	1.931	28.655	0.129
		0	RSD-C	2-2	1.909	1.872	31.400	0.124
				3-1	1.854	1.818	30.365	0.127
			PSD S	2×3	2.035	1.977	29.294	0.128
			K3D-3	$3 \times 2$	1.930	1.893	32.040	0.124
			SD	10	2.205	2.009	16.652	0.128
			SpecTr	$2 \times 5$	2.132	2.033	23.528	0.127
			specifi	$5 \times 2$	1.829	1.794	29.909	0.124
		10		2-1-1-1-1	2.126	2.027	23.528	0.126
		10	RSD-C	2 - 2 - 1	2.043	1.985	28.339	0.126
				5-1	1.878	1.843	30.072	0.128
			202	$2 \times 5$	2.269	2.163	24.880	0.121
			KSD-S	$5 \times 2$	1.969	1.931	31.013	0.126
			SD	14	2.221	1.954	13.362	0.126
			SpecTr	$2 \times 7$	2.309	2.162	20.931	0.123
			specifi	$7 \times 2$	1.894	1.858	30.480	0.127
OPT-125M-13B	XSum	14		2-1-1-1-1-1	2.164	2.026	20.166	0.122
		14	RSD-C	2 - 2 - 2	2.126	2.065	28.965	0.127
				7-1	1.892	1.856	30.249	0.125
			2000	$2 \times 7$	2.329	2.180	21.482	0.127
			KSD-S	$7 \times 2$	2.064	2.024	32.678	0.127
			SD	21	2.262	1.878	9.417	0.128
			SpecTr	3×7	2.223	2.081	19.577	0.128
			Speen	$7 \times 3$	2.030	1.973	28.103	0.127
		21		3-1-1-1-1-1	2.207	2.066	20.300	0.130
		21	RSD-C	3 - 2 - 2	2.154	2.093	29.846	0.126
				7-1-1	2.085	2.025	29.022	0.126
			2000	3×7	2.483	2.324	22.530	0.128
			KSD-S	$7 \times 3$	2.258	2.194	30.439	0.124
			SD	30	2.282	1.766	7.255	0.125
			SpecTr	5×6	2.260	MBSC $1K$ $000$ $1.000$ $38.711$ $0$ $33$ $2.015$ $23.065$ $0$ $b62$ $1.906$ $27.405$ $0$ $33$ $1.798$ $30.186$ $0$ $88$ $1.931$ $28.655$ $0$ $009$ $1.872$ $31.400$ $0$ $854$ $1.818$ $30.365$ $0$ $35$ $1.977$ $29.294$ $0$ $30$ $1.893$ $32.040$ $0$ $205$ $2.009$ $16.652$ $0$ $32$ $2.033$ $23.528$ $0$ $32$ $2.033$ $23.528$ $0$ $32$ $2.033$ $23.528$ $0$ $32$ $2.033$ $23.528$ $0$ $32$ $2.033$ $23.528$ $0$ $32$ $2.033$ $23.528$ $0$ $34$ $1.985$ $28.339$ $0$ $378$ $1.843$ $30.072$ $0$ $26$ $2.027$ $23.528$ $0$ $378$ $1.843$ $30.072$ $0$ $26$ $2.027$ $23.528$ $0$ $394$ $1.858$ $30.480$ $0$ $164$ $2.026$ $20.166$ $0$ $392$ $1.856$ $30.249$ $0$ $32$ $2.081$ $19.577$ $0$ $30$ $1.973$ $28.103$ $0$ $262$ $1.878$ $9.417$ $0$ $262$ $1.878$ $9.417$ $0$ $262$ $1.878$ $9.417$ $0$ $262$ $1.878$ $9.446$ </td <td>0.126</td>	0.126	
			specifi	6×5	2.264	2.159	24.471	0.128
		30		2-2-2-2	2.248	2.164	26.729	0.127
		50	RSD-C	5-1-1-1-1-1	2.326	2.197	22.974	0.126
				6-1-1-1-1	2.260	2.155	24.486	0.129
			2006	5×6	2.446	2.311	22.820	0.121
			1/20-2	6×5	2.503	2.387	25.887	0.124

Table 44: We summarize experiment results with OPT 13B target and 125M draft for the WMT task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	37.069	0.318
			SD	6	1.489	1.406	16.475	0.320
			<u>О</u> Т.	2×3	1.512	1.469	21.669	0.318
			Specir	$3 \times 2$	1.493	1.464	25.049	0.323
		6		2-1-1	1.557	1.513	22.541	0.317
		0	RSD-C	2 - 2	1.576	1.546	26.527	0.320
				3-1	1.592	1.561	26.282	0.320
			PSD S	2×3	1.601	1.555	23.367	0.316
			K3D-3	$3 \times 2$	1.630	1.598	<b>26.978</b>	0.320
			SD	10	1.494	1.362	11.782	0.320
			SpecTr	$2 \times 5$	1.544	1.472	17.808	0.318
			specifi	$5 \times 2$	1.554	1.524	26.354	0.321
		10		2-1-1-1-1	1.571	1.498	18.300	0.315
		10	RSD-C	2 - 2 - 1	1.614	1.568	23.393	0.321
				5-1	1.617	1.586	26.207	0.315
			PSD S	$2 \times 5$	1.629	1.553	18.628	0.318
			K3D-3	$5 \times 2$	1.713	1.680	27.673	0.319
			SD	14	1.493	1.313	8.985	0.317
			SpecTr	$2 \times 7$	1.551	1.452	14.843	0.321
			Specifi	$7 \times 2$	1.551	1.521	25.560	0.316
OPT-125M-13B	WMT	14		2-1-1-1-1-1	1.584	1.483	14.929	0.314
		17	RSD-C	2 - 2 - 2	1.658	1.611	23.786	0.317
				7-1	1.644	1.613	26.398	0.320
			PSD S	$2 \times 7$	1.637	1.533	15.361	0.319
			K3D-3	$7 \times 2$	1.764	1.730	27.600	0.318
			SD	21	1.491	1.238	6.465	0.315
			SpecTr	3×7	1.586	1.485	14.771	0.319
			Specifi	$7 \times 3$	1.599	1.553	22.628	0.317
		21		3-1-1-1-1-1	1.629	1.525	15.355	0.320
		21	RSD-C	3 - 2 - 2	1.732	1.683	24.226	0.317
				7-1-1	1.695	1.647	23.977	0.319
			RSD-S	3×7	1.730	1.619	16.081	0.318
			K3D-3	$7 \times 3$	1.839	<b>1.787</b>	<b>24.796</b>	0.317
			SD	30	1.491	1.154	4.812	0.316
			SpecTr	$5 \times 6$	1.616	1.527	16.789	0.320
				6×5	1.668	1.590	18.352	0.321
		30		2-2-2-2	1.682	1.619	21.212	0.319
		50	RSD-C	5-1-1-1-1-1	1.686	1.593	16.849	0.314
				6-1-1-1-1	1.751	1.669	19.230	0.316
			RSD-S	5×6	1.838	1.736	18.155	0.314
			1.00-0	6×5	1.860	1.774	19.945	0.316

Table 45: We summarize experiment results with OPT 30B target and 125M draft for the XSum task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	20.633	0.126
			SD	6	2.323	2.266	19.542	0.124
			CT.	2×3	2.199	2.172	23.748	0.122
			Specir	$3 \times 2$	1.944	1.928	23.499	0.127
		(		2-1-1	2.214	2.186	23.832	0.122
		6	RSD-C	2-2	1.995	1.978	23.985	0.121
				3-1	1.944	1.928	23.348	0.121
			DED E	2×3	2.196	2.168	23.299	0.124
			KSD-S	$3 \times 2$	2.032	2.015	24.170	0.123
			SD	10	2.544	2.442	16.464	0.123
			SmaaTr	2×5	2.361	2.313	20.368	0.121
			Specifi	$5 \times 2$	1.962	1.946	23.209	0.127
		10		2-1-1-1-1	2.314	2.266	20.594	0.123
		10	RSD-C	2 - 2 - 1	2.234	2.206	23.613	0.127
				5-1	2.011	1.994	23.874	0.122
				2×5	2.468	2.418	21.438	0.126
			RSD-S	$5 \times 2$	2.106	2.089	24.545	0.117
			SD	14	2.556	2.415	13.274	0.126
				2×7	2.527	2.455	18.833	0.121
			SpecTr	$7 \times 2$	1.985	1.968	23.429	0.122
OPT-125M-30B	XSum	1.4		2-1-1-1-1-1-1	2.577	2.504	19.684	0.124
		14	RSD-C	2 - 2 - 2	2.236	2.209	23.572	0.121
				7-1	2.011	1.994	23.608	0.121
				2×7	2.665	2.589	19.724	0.120
			K2D-2	$7 \times 2$	2.107	2.089	24.230	0.126
			SD	21	2.647	2.433	10.217	0.124
			Cra e aTra	3×7	2.617	2.543	19.371	0.127
			Specir	$7 \times 3$	2.170	2.143	22.653	0.118
		01		3-1-1-1-1-1	2.640	2.565	19.956	0.117
		21	RSD-C	3-2-2	2.350	2.321	24.503	0.123
				7-1-1	2.206	2.179	22.493	0.120
				3×7	2.778	2.699	20.585	0.121
			RSD-S	$7 \times 3$	2.391	2.362	24.425	0.128
			SD	30	2.677	2.379	7.703	0.126
				5×6	2.583	2.519	20.213	0.125
			SpecTr	6×5	2.398	2.349	20.342	0.125
		• •		2-2-2-2	2.509	2.468	23.328	0.120
		30	RSD-C	5-1-1-1-1-1	2.551	2.488	20,177	$\begin{array}{c} 0.124\\ \hline 0.122\\ 0.127\\ \hline 0.122\\ 0.121\\ \hline 0.121\\ \hline 0.123\\ \hline 0.123\\ \hline 0.123\\ \hline 0.123\\ \hline 0.123\\ \hline 0.123\\ \hline 0.127\\ \hline 0.122\\ \hline 0.126\\ \hline 0.117\\ \hline 0.126\\ \hline 0.121\\ \hline 0.122\\ \hline 0.126\\ \hline 0.121\\ \hline 0.120\\ \hline 0.126\\ \hline 0.121\\ \hline 0.126\\ \hline 0.121\\ \hline 0.123\\ \hline 0.126\\ \hline 0.121\\ \hline 0.123\\ \hline 0.120\\ \hline 0.121\\ \hline 0.123\\ \hline 0.121\\ \hline 0.124\\ \hline 0.123\\ \hline 0.121\\ \hline 0.124\\ \hline 0.123\\ \hline 0.121\\ \hline 0.124\\ \hline 0.123\\ \hline 0.121\\ \hline 0.121\\ \hline 0.123\\ \hline 0.121\\ \hline $
				6-1-1-1-1	2.335	2.287	19,893	0.124
				5×6	2.686	2.620	20.690	0.123
			RSD-S	6×5	2.300	2.690	22.804	0.123
				0.7.5	<b>2017</b> 0	<b>2000</b>	22.004	0.121

Table 46: We summarize experiment results with OPT 30B target and 125M draft for the WMT task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.	
Model	Task	Comp.	Dec.	Spec.					
		1	AR	-	1.000	1.000	19.162	0.347	
			SD	6	1.471	1.435	12.745	0.341	
			CT.	2×3	1.496	1.477	16.309	0.345	
			Specir	$3 \times 2$	1.480	1.468	17.775	0.345	
		6		2-1-1	1.535	1.516	16.667	0.340	
		0	RSD-C	2-2	1.563	1.550	18.667	0.344	
				3-1	1.546	1.533	18.126	0.342	
			PSD S	2×3	1.583	1.563	16.954	0.344	
			K3D-3	$3 \times 2$	1.609	1.596	18.783	0.344	
			SD	10	1.475	1.416	9.537	0.346	
			SpecTr	$2 \times 5$	1.519	1.488	13.829	0.345	
			Specifi	$5 \times 2$	1.514	1.502	17.872	0.341	
		10		2-1-1-1-1	1.556	1.524	13.865	0.343	
		10	RSD-C	2 - 2 - 1	1.633	1.612	17.388	0.338	
				5-1	1.610	1.597	18.691	0.344	
			PSD S	$2 \times 5$	1.613	1.580	14.255	0.344	
			K3D-3	$5 \times 2$	1.694	1.680	19.514	0.341	
			SD	14	1.472	1.390	7.912	0.344	
			SpecTr	2×7	1.527	1.483	11.671	0.345	
			Specifi	$7 \times 2$	1.525	1.512	17.959	0.342	
OPT-125M-30B	WMT	14		2-1-1-1-1-1	1.562	1.518	12.081	0.342	
		17	RSD-C	2 - 2 - 2	1.623	1.603	17.090	0.343	
				7-1	1.655	1.641	18.792	0.341	
			PSD S	$2 \times 7$	1.620	1.574	12.481	0.342	
			K3D-3	$7 \times 2$	1.737	1.722	19.383	0.340	
			SD	21	1.473	1.355	5.851	0.340	
			SpecTr	3×7	1.559	1.514	11.990	0.342	
			Specifi	$7 \times 3$	1.578	1.559	16.725	0.344	
		21		3-1-1-1-1-1	1.609	1.564	12.281	0.340	
		21	RSD-C	3 - 2 - 2	1.709	1.688	17.662	0.347	
				7-1-1	1.669	1.649	17.303	0.343	
			PSD S	3×7	1.706	1.658	12.704	0.344	
			K3D-3	$7 \times 3$	1.813	<b>1.790</b>	18.205	0.344	
			SD	30	1.478	1.313	4.415	0.346	
			SpecTr	$5 \times 6$	1.598	1.559	12.840	0.341	
			Specifi	$6 \times 5$	1.599	1.566	14.059	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		30		2-2-2-2	1.658	1.631	15.863	0.339	
		50	RSD-C	5-1-1-1-1-1	1.669	1.628	13.523	0.345	
			Кор-с . (	6-1-1-1-1	1.683	1.649	14.331	0.348	
			RSD-S	5×6	1.854	1.808	14.459	0.341	
			RS	100-0	$6 \times 5$	1.837	1.800	15.534	0.338

Table 47: We summarize experiment results with OPT 66B target and 125M draft for the XSum task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	9.454	0.125
			SD	6	2.810	2.778	14.393	0.123
			CT.	2×3	2.394	2.381	14.287	0.119
			Specir	$3 \times 2$	2.140	2.132	14.865	0.121
		6		2-1-1	2.432	2.418	15.667	0.119
		0	RSD-C	2-2	2.122	2.114	14.806	0.122
				3-1	2.139	2.131	13.853	0.123
			D6D 6	2×3	2.383	2.370	14.758	0.125
			K2D-2	$3 \times 2$	2.218	2.210	15.415	0.121
			SD	10	3.027	2.970	12.300	0.122
			SpeeTr	2×5	2.901	2.874	14.880	0.125
			specifi	$5 \times 2$	2.142	2.134	14.721	0.124
		10		2-1-1-1-1	2.651	2.626	14.175	0.125
		10	RSD-C	2 - 2 - 1	2.436	2.422	15.514	0.126
				5-1	2.186	2.178	14.726	0.125
			000 0	2×5	2.891	2.864	15.652	0.129
			K2D-2	$5 \times 2$	2.256	2.248	15.329	0.122
			SD	14	3.030	2.951	10.207	0.122
			Smaa Tr	$2 \times 7$	3.155	3.114	14.842	0.123
			Specifi	$7 \times 2$	2.158	2.150	14.811	0.124
OPT-125M-66B	XSum	14		2-1-1-1-1-1-1	2.964	2.925	13.944	0.120
		14	RSD-C	2 - 2 - 2	2.644	2.629	16.681	0.119
				7-1	2.189	2.181	13.765	0.122
			DEDE	$2 \times 7$	3.244	3.202	15.033	0.126
			K2D-2	$7 \times 2$	2.265	2.257	15.450	0.124
			SD	21	3.272	3.146	8.545	0.121
			SpecTr	3×7	3.099	3.059	14.581	0.124
			Specifi	$7 \times 3$	2.393	2.379	15.093	0.121
		21		3-1-1-1-1-1	3.028	2.988	14.228	0.126
		21	RSD-C	3-2-2	2.432	2.418	13.788	0.122
				7-1-1	2.464	2.450	14.192	0.126
			2020	3×7	3.382	3.338	15.426	0.122
			K2D-2	$7 \times 3$	2.527	2.513	15.569	0.126
			SD	30	3.345	3.164	6.731	0.123
			SpecTr	5×6	3.111	3.076	15.069	0.124
			Specifi	6×5	2.852	2.825	15.102	0.121
		30		2-2-2-2	2.900	2.878	15.344	0.129
		30	RSD-C	5-1-1-1-1-1	3.185	3.149	15.784	0.120
				6-1-1-1-1	2.990	2.962	15.892	0.123
			ם מאמ	5×6	3.283	3.246	16.125	0.122
			120-2	6×5	2.920	2.893	14.856	0.122

Table 48: We summarize experiment results with OPT 66B target and 125M draft for the WMT task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	9.306	0.359
			SD	6	1.468	1.452	7.673	0.359
			SmaaTr	2×3	1.502	1.493	9.690	0.360
			Specifi	$3 \times 2$	1.486	1.481	10.265	0.356
		6		2-1-1	1.542	1.533	9.687	0.356
		0	RSD-C	2-2	1.570	1.564	10.894	0.361
				3-1	1.557	1.551	10.544	0.360
			RSD-S	$2 \times 3$	1.589	1.580	10.212	0.362
			K5D-5	$3 \times 2$	1.619	1.613	10.951	0.361
			SD	10	1.476	1.449	6.064	0.357
			SpecTr	$2 \times 5$	1.527	1.512	8.530	0.359
			Specifi	$5 \times 2$	1.520	1.514	10.550	0.359
		10		2-1-1-1-1	1.570	1.555	8.506	0.359
		10	RSD-C	2 - 2 - 1	1.595	1.586	10.189	0.357
				5-1	1.615	1.609	11.081	0.355
			RSD-S	$2 \times 5$	1.619	1.604	8.784	0.358
			K5D-5	$5 \times 2$	1.697	1.691	11.539	0.361
			SD	14	1.483	1.445	5.163	0.357
			SpecTr	$2 \times 7$	1.539	1.518	7.344	0.354
			Specifi	$7 \times 2$	1.556	1.550	10.707	0.357
OPT-125M-66B	WMT	14		2-1-1-1-1-1-1	1.572	1.551	7.527	0.363
		14	RSD-C	2 - 2 - 2	1.635	1.625	10.345	0.361
				7-1	1.641	1.635	11.190	0.356
			RSD-S	$2 \times 7$	1.629	1.608	7.755	0.361
			KOD 0	$7 \times 2$	1.771	1.765	11.578	0.357
			SD	21	1.473	1.416	3.936	0.359
			SpecTr	$3 \times 7$	1.574	1.553	7.470	0.357
			opeen	$7 \times 3$	1.588	1.579	10.017	0.361
		21		3-1-1-1-1-1-1	1.628	1.606	7.733	0.361
		21	RSD-C	3 - 2 - 2	1.717	1.707	10.731	0.358
				7-1-1	1.685	1.675	10.545	0.359
			RSD-S	$3 \times 7$	1.716	1.693	8.120	0.359
			KOD 0	$7 \times 3$	1.830	1.820	11.197	0.357
			SD	30	1.473	1.393	2.996	0.357
			SpecTr	5×6	1.603	1.584	8.073	0.360
				6×5	1.639	1.624	8.815	0.356
		30		2-2-2-2	1.669	1.656	9.674	0.360
		50	RSD-C	5-1-1-1-1-1	1.676	1.657	8.378	0.358
				6-1-1-1-1	1.692	1.676	8.944	0.355
			RSD-S	5×6	1.817	1.797	8.953	0.360
			NOD 0	6×5	1.846	1.829	9.663	0.359

Table 49: We summarize experiment results with OPT 13B target and 350M draft for the XSum task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	37.931	0.130
			SD	6	1.892	1.638	13.451	0.128
			CT.	2×3	1.874	1.739	20.428	0.131
			Specir	$3 \times 2$	1.727	1.642	23.011	0.132
		6		2-1-1	1.844	1.711	19.973	0.126
		0	RSD-C	2 - 2	1.793	1.705	24.072	0.125
				3-1	1.739	1.654	23.247	0.125
			2000	$2 \times 3$	1.926	1.787	20.940	0.126
			KSD-S	$3 \times 2$	1.808	1.720	23.488	0.129
			SD	10	2.049	1.629	9.717	0.127
			SpecTr	$2 \times 5$	1.992	1.765	15.340	0.130
			Specifi	$5 \times 2$	1.792	1.705	23.852	0.121
		10		2-1-1-1-1	1.929	1.709	15.067	0.130
		10	RSD-C	2 - 2 - 1	1.861	1.727	19.849	0.123
				5-1	1.808	1.719	24.163	0.126
			RSD-S	$2 \times 5$	2.046	1.812	16.124	0.124
			KOD 0	$5 \times 2$	1.837	1.747	24.070	0.125
			SD	14	1.968	1.447	6.942	0.125
			SpecTr	$2 \times 7$	1.990	1.686	12.126	0.129
			opeen	7×2	1.747	1.661	22.925	0.130
OPT-350M-13B	XSum	14		2-1-1-1-1-1-1	1.983	1.680	12.010	0.129
			RSD-C	2-2-2	1.965	1.824	21.138	0.125
				7-1	1.809	1.721	23.633	0.128
			RSD-S	2×7	2.174	1.842	13.189	0.124
				7×2	1.8/3	1.781	24.198	0.130
			SD	21	2.090	1.356	5.206	0.125
			SpecTr	3×7	2.139	1.812	13.218	0.125
				7×3	1.893	1.757	20.078	0.130
		21		3-1-1-1-1-1	2.080	1.762	12.446	0.132
			RSD-C	3-2-2	1.945	1.806	20.561	0.126
				/-1-1	1.8/4	1./39	19.448	0.124
			RSD-S	$3 \times 1$	2.243	1.900	13.525	0.128
			CD	<u>/×3</u>	2.083	1.934	21.720	0.128
			<u>SD</u>	30	2.098	1.183	3.760	0.125
			SpecTr	5×0	2.106	1.824	14.511	0.125
			-	0×3	2.044	1.811	13.301	0.127
		30		$\angle -\angle -\angle -\angle -\angle$	1.9/3	1./91	12 740	0.125
			KSD-C	J - I - I - I - I - I	2.008	1./91	15.742	0.127
				0-1-1-1-1	2.094	1.855	15.298	0.125
			RSD-S	$3 \times 0$	2.283	1.9//	15.204	0.128
				σ×σ	2.274	2.015	17.290	0.127

Table 50: We summarize experiment results with OPT 13B target and 350M draft for the WMT task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	41.479	0.316
			SD	6	1.308	1.133	9.562	0.321
			<u>О</u> Т.	2×3	1.331	1.236	14.912	0.322
			Specir	$3 \times 2$	1.327	1.262	18.494	0.319
		6		2-1-1	1.356	1.259	15.159	0.318
		0	RSD-C	2-2	1.397	1.329	19.025	0.318
				3-1	1.379	1.311	18.864	0.320
			2000	2×3	1.379	1.280	15.313	0.315
			KSD-S	$3 \times 2$	1.399	1.330	19.321	0.320
			SD	10	1.313	1.044	6.306	0.317
			SpecTr	$2 \times 5$	1.340	1.187	10.872	0.321
			specifi	$5 \times 2$	1.345	1.279	18.768	0.315
		10		2-1-1-1-1	1.367	1.211	11.184	0.322
		10	RSD-C	2 - 2 - 1	1.384	1.285	15.366	0.322
				5-1	1.411	1.342	18.759	0.320
			200 6	2×5	1.391	1.232	11.165	0.318
			KSD-S	$5 \times 2$	1.447	1.376	19.953	0.319
			SD	14	1.308	0.961	4.752	0.322
			SmaaTr	$2 \times 7$	1.345	1.140	8.473	0.319
			Specifi	$7 \times 2$	1.356	1.289	18.334	0.321
OPT-350M-13B	WMT	14		2-1-1-1-1-1	1.414	1.198	8.830	0.314
		14	RSD-C	2 - 2 - 2	1.395	1.295	15.460	0.315
				7-1	1.429	1.359	19.081	0.314
				$2 \times 7$	1.397	1.184	8.920	0.319
			K2D-2	$7 \times 2$	1.480	1.408	19.201	0.319
			SD	21	1.311	0.851	3.315	0.321
			SpeaTr	3×7	1.363	1.155	8.567	0.318
			specifi	$7 \times 3$	1.415	1.314	15.697	0.320
		21		3-1-1-1-1-1	1.398	1.184	8.514	0.323
		21	RSD-C	3-2-2	1.442	1.339	15.717	0.319
				7-1-1	1.480	1.374	16.062	0.314
				3×7	1.439	1.219	8.938	0.322
			K2D-2	$7 \times 3$	1.509	1.401	16.265	0.324
			SD	30	1.310	0.739	2.363	0.319
			SpooT-	5×6	1.426	1.235	9.794	0.322
			spectr	6×5	1.390	1.231	11.136	0.318
		20		2-2-2-2	1.411	1.280	13.218	$\begin{array}{c} 0.322\\ 0.319\\ \hline 0.318\\ 0.318\\ 0.320\\ \hline 0.315\\ 0.320\\ \hline 0.315\\ 0.320\\ \hline 0.317\\ \hline 0.321\\ 0.315\\ \hline 0.322\\ 0.322\\ \hline 0.320\\ \hline 0.318\\ 0.319\\ \hline 0.322\\ \hline 0.319\\ \hline 0.321\\ \hline 0.314\\ \hline 0.322\\ \hline 0.318\\ \hline 0.320\\ \hline 0.323\\ \hline 0.319\\ \hline 0.322\\ \hline 0.318\\ \hline 0.320\\ \hline 0.313\\ \hline 0.320\\ \hline 0.319\\ \hline 0.321\\ \hline 0.316\\ \hline 0.319\\ \hline 0.321\\ \hline 0.314\\ \hline 0.322\\ \hline 0.318\\ \hline 0.320\\ \hline 0.313\\ \hline 0.320\\ \hline 0.319\\ \hline 0.316\\ \hline 0.3$
		30	RSD-C	5-1-1-1-1-1	1.470	1.273	10.229	0.313
				6-1-1-1-1	1.489	1.319	11.662	0.320
				5×6	1.493	1.293	10.522	0.319
			<b>V2D-2</b>	6×5	1.516	1.343	11.778	0.316

Table 51: We summarize experiment results with OPT 30B target and 350M draft for the XSum task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	20.127	0.125
		-	SD	6	2.220	2.082	13.680	0.123
			SmaaTr	2×3	1.999	1.934	16.896	0.126
			Specifi	$3 \times 2$	1.872	1.831	18.900	0.124
		6		2-1-1	2.104	2.037	18.212	0.124
		0	RSD-C	2-2	1.952	1.910	19.635	0.122
				3-1	1.872	1.831	18.623	0.124
			RSD-S	2×3	2.171	2.101	18.713	0.122
			K5D-5	$3 \times 2$	1.972	1.929	19.967	0.122
			SD	10	2.307	2.077	9.925	0.121
			SpecTr	$2 \times 5$	2.220	2.104	14.424	0.124
			Specifi	$5 \times 2$	1.893	1.852	18.996	0.122
		10		2-1-1-1-1	2.313	2.192	14.995	0.122
		10	RSD-C	2 - 2 - 1	2.190	2.120	18.528	0.121
				5-1	1.950	1.908	19.789	0.124
			RSD-S	$2 \times 5$	2.399	2.273	15.656	0.121
			KOD 0	$5 \times 2$	2.035	1.991	20.671	0.125
			SD	14	2.345	2.031	7.754	0.126
			SpecTr	$2 \times 7$	2.387	2.215	12.547	0.125
			opeen	$7 \times 2$	1.913	1.872	19.244	0.124
OPT-350M-30B	XSum	14		2 - 1 - 1 - 1 - 1 - 1 - 1	2.311	2.145	12.336	0.126
			RSD-C	2 - 2 - 2	2.082	2.015	17.433	0.124
				7-1	1.974	1.931	19.812	0.129
			RSD-S	$2 \times 7$	2.416	2.243	12.801	0.121
				7×2	2.046	2.002	20.472	0.120
			SD	21	2.414	1.960	5.608	0.125
			SpecTr	$3 \times 7$	2.505	2.325	13.243	0.123
			speen	7×3	2.134	2.065	17.884	0.124
		21		3-1-1-1-1-1	2.546	2.364	13.544	0.125
			RSD-C	3-2-2	2.193	2.123	18.659	0.122
				7-1-1	2.137	2.068	18.110	0.123
			RSD-S	$3 \times 7$	2.437	2.262	12.969	0.123
			22	7×3	2.251	2.179	18.787	0.121
			SD	30	2.496	1.875	4.309	0.118
			SpecTr	5×6	2.500	2.345	14.386	0.121
				<u>6×5</u>	2.399	2.274	15.473	0.124
		30		2-2-2-2	2.292	2.195	16.656	0.123
			RSD-C	5 - 1 - 1 - 1 - 1 - 1	2.275	2.134	13.027	0.128
				0-1-1-1-1	2.318	2.197	14.832	0.122
			RSD-S	5×6	2.571	2.411	14.623	0.123
				6×5	2.420	2.294	15.142	0.125

Table 52: We summarize experiment results with OPT 30B target and 350M draft for the WMT task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder;  $K \times L$  means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C;  $K \times L$  means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	20.127	0.341
			SD	6	1.307	1.226	8.167	0.338
			CT.	2×3	1.401	1.356	12.387	0.340
			Specir	$3 \times 2$	1.324	1.295	13.946	0.342
		6		2-1-1	1.363	1.319	11.974	0.341
		0	RSD-C	2-2	1.378	1.348	14.204	0.350
				3-1	1.400	1.370	14.558	0.340
			RSD-S	2×3	1.382	1.338	12.350	0.342
			K3D-3	$3 \times 2$	<b>1.407</b>	1.376	14.464	0.345
			SD	10	1.313	1.183	5.757	0.338
			SpecTr	$2 \times 5$	1.340	1.270	9.075	0.341
			Specifi	$5 \times 2$	1.376	1.346	14.347	0.344
		10		2-1-1-1-1	1.372	1.301	9.373	0.346
		10	RSD-C	2 - 2 - 1	1.425	1.380	12.533	0.344
				5-1	1.417	1.386	14.496	0.344
			RSD-S	$2 \times 5$	1.390	1.317	9.241	0.345
			KOD 0	$5 \times 2$	1.480	1.448	14.966	0.346
			SD	14	1.305	1.130	4.367	0.344
			SpecTr	$2 \times 7$	1.387	1.287	7.614	0.341
			speen	7×2	1.355	1.326	13.878	0.343
OPT-350M-30B	WMT	14		2 - 1 - 1 - 1 - 1 - 1 - 1	1.369	1.271	7.458	0.343
		11	RSD-C	2 - 2 - 2	1.403	1.358	12.124	0.349
				7-1	1.437	1.406	14.461	0.342
			RSD-S	$2 \times 7$	1.393	1.293	7.487	0.341
				7×2	1.489	1.456	14.794	0.346
			SD	21	1.313	1.066	3.213	0.345
			SpecTr	$3 \times 7$	1.359	1.262	7.408	0.343
				7×3	1.387	1.342	12.095	0.344
		21		3-1-1-1-1-1	1.406	1.305	7.805	0.343
			RSD-C	3-2-2	1.444	1.398	12.481	0.344
				7-1-1	1.456	1.409	12.513	0.343
			RSD-S	$3 \times 7$	1.446	1.342	7.829	0.341
			~~~	7×3	1.517	1.468	12.755	0.342
			SD	30	1.311	0.984	2.273	0.346
			SpecTr	5×6	1.428	1.339	8.510	0.344
				<u>6×5</u>	1.388	1.315	9.105	0.345
		30		2-2-2-2	1.413	1.353	10.584	0.344
			RSD-C	5 - 1 - 1 - 1 - 1 - 1	1.484	1.392	8.946	0.345
				6-1-1-1	1.456	1.380	9.474	0.341
			RSD-S	5×6	1.500	1.407	8.849	0.343
				6×5	1.517	1.438	9.978	0.342

Table 53: We summarize experiment results with OPT 66B target and 350M draft for the XSum task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
		1	AR	-	1.000	1.000	9.537	0.123
			SD	6	2.512	2.438	9.748	0.118
			CT.	2×3	2.228	2.195	11.842	0.126
			Specifi	3×2	1.932	1.913	11.880	0.124
		6		2-1-1	2.217	2.184	11.746	0.125
		0	RSD-C	2-2	2.020	1.999	11.982	0.125
				3-1	2.038	2.018	11.603	0.123
			2000	2×3	2.291	2.257	12.140	0.126
			KSD-S	3×2	2.070	2.049	11.694	0.126
			SD	10	2.704	2.574	7.749	0.122
			SpecTr	2×5	2.452	2.392	10.203	0.125
			specifi	5×2	2.005	1.985	12.062	0.121
		10		2-1-1-1-1	2.627	2.563	10.912	0.123
		10	RSD-C	2 - 2 - 1	2.194	2.161	10.804	0.122
				5-1	2.001	1.981	11.154	0.121
			2000	2×5	2.583	2.520	10.279	0.125
			K2D-2	5×2	2.098	2.077	12.364	0.123
			SD	14	2.616	2.443	5.912	0.127
			SpecTr	2×7	2.734	2.640	9.562	0.121
			specifi	7×2	2.045	2.025	12.290	0.121
OPT-350M-66B	XSum	14		2-1-1-1-1-1-1	2.865	2.768	10.029	0.122
		14	RSD-C	2 - 2 - 2	2.325	2.290	11.967	0.126
				7-1	2.022	2.002	12.235	0.123
			DCD C	2×7	2.609	2.520	9.184	0.122
			K2D-2	7×2	2.160	2.139	12.650	0.125
			SD	21	2.938	2.656	4.894	0.124
			SpecTr	3×7	2.580	2.492	8.900	0.124
			specifi	7×3	2.375	2.340	12.345	0.121
		21		3-1-1-1-1-1	2.770	2.675	9.639	0.116
		21	RSD-C	3-2-2	2.364	2.328	12.068	0.128
				7-1-1	2.256	2.222	11.705	0.123
			DCD C	3×7	2.627	2.538	9.164	0.125
			K2D-2	7×3	2.527	2.489	12.944	0.123
			SD	30	3.185	2.767	3.802	0.126
			SpecTr	5×6	2.828	2.745	10.633	0.120
			specifi	6×5	2.652	2.586	10.857	0.123 0.118 0.126 0.125 0.125 0.125 0.125 0.125 0.126 0.125 0.126 0.127 0.121 0.125 0.121 0.125 0.121 0.125 0.121 0.122 0.121 0.122 0.123 0.121 0.122 0.123 0.124 0.125 0.124 0.125 0.124 0.125 0.124 0.125 0.124 0.125 0.123 0.125 0.123 0.126 0.120 0.123 0.127 0.123 0.124 0.127
		30		2-2-2-2	2.544	2.494	10.990	0.127
		30	RSD-C	5-1-1-1-1-1	2.742	2.662	10.176	0.117
				6-1-1-1-1	2.587	2.523	10.119	0.124
			200 6	5×6	2.723	2.643	9.942	0.124
			120-2	6×5	2.937	2.865	11.984	0.119

Table 54: We summarize experiment results with OPT 66B target and 350M draft for the WMT task with various target computational budgets. Target Complexity (Comp.) means the number of tokens parallelly evaluated at the target model. For decoders (Dec.), we consider Auto-Regressive sampling (AR), Speculative Decoding (SD), SpecTr, Recursive Speculative Decoding with Constant branching factors (RSD-C), Recursive Speculative Decoding with Stochastic Beam Search (RSD-S). The contents in decoder specification (Spec.) have different meanings for each decoder; $K \times L$ means the number K of draft paths and draft length L for SpecTr; it describes constant branching factors for each level of the tree (from root to leaf) for RSD-C; $K \times L$ means the beamwidth K and draft length L for RSD-S. Block efficiency (Eff.), Memory Bound Speed Up (MBSU), Token Rate (TR), and Accuracy (Acc.) are given for each algorithm. For each group of rows having the same complexity, we highlight the best values for all columns except accuracy.

					Eff.	MBSU	TR	Acc.
Model	Task	Comp.	Dec.	Spec.				
OPT-350M-66B	WMT	1	AR	-	1.000	1.000	9.422	0.355
		6	SD	6	1.297	1.259	5.151	0.359
			SpecTr	2×3	1.316	1.296	7.060	0.363
				3×2	1.313	1.300	8.007	0.358
				2-1-1	1.348	1.328	7.230	0.357
			RSD-C	2 - 2	1.353	1.339	8.227	0.358
				3-1	1.358	1.344	8.403	0.358
			RSD-S	2×3	1.359	1.339	7.294	0.362
				3×2	1.390	1.376	8.621	0.361
		10	SD	10	1.298	1.236	3.737	0.357
			SpecTr	2×5	1.327	1.295	5.608	0.358
				5×2	1.329	1.315	8.155	0.358
			RSD-C	2-1-1-1-1	1.355	1.322	5.700	0.353
				2 - 2 - 1	1.374	1.353	7.336	0.361
				5-1	1.399	1.385	8.365	0.357
			RSD-S	2×5	1.373	1.339	5.778	0.355
				5×2	1.434	1.420	8.757	0.359
		14	SD	14	1.297	1.211	2.974	0.360
			SpecTr	2×7	1.324	1.278	4.695	0.360
				7×2	1.365	1.351	8.347	0.355
			RSD-C	2-1-1-1-1-1-1	1.354	1.308	4.761	0.360
				2 - 2 - 2	1.384	1.364	7.417	0.357
				7-1	1.416	1.402	8.420	0.356
			RSD-S	2×7	1.381	1.334	4.904	0.357
				7×2	1.464	1.450	8.682	0.360
		21	SD	21	1.296	1.172	2.122	0.360
			SpecTr	3×7	1.343	1.297	4.702	0.355
				7×3	1.367	1.346	7.242	0.359
			RSD-C	3-1-1-1-1-1-1	1.389	1.341	4.840	0.362
				3 - 2 - 2	1.425	1.404	7.545	0.358
				7-1-1	1.435	1.413	7.484	0.358
			RSD-S	3×7	1.426	1.378	4.991	0.357
				7×3	1.490	1.467	7.702	0.360
		30	SD	30	1.293	1.123	1.577	0.363
			SpecTr	5×6	1.362	1.322	5.169	0.357
				6×5	1.373	1.340	5.756	0.360
			RSD-C	2-2-2-2	1.396	1.369	6.424	0.363
				5-1-1-1-1-1	1.423	1.381	5.402	0.353
			RSD-S	6-1-1-1-1	1.431	1.396	5.981	0.359
				5×6	1.477	1.434	5.591	0.360
				6×5	1.489	1.453	6.230	0.360