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ABSTRACT

Evaluation of long-context Large Language Models (LLMs) has advanced rapidly.
However, most existing benchmarks are limited to the document level and focus
mainly on higher-resource languages, leaving many fine-grained challenges insuf-
ficiently evaluated. To address this gap, we present MGAL, the first multilingual,
granularity- and position-aware long-context benchmark. MGAL is constructed
from United Nations (UN) reports spanning 8K to 128K tokens across the six of-
ficial UN languages. It covers four coherent levels of linguistic granularity (word,
sentence, paragraph, and document) and further stratifies entries by their position
within the document (begin, middle, and end), indexed at both the document and
paragraph levels. This design enables systematic diagnosis of multilingual long-
context comprehension across different granularities.
Through extensive experiments and analyses on 12 long-context LLMs, we find
that: (1) LLMs perform well at word-level tasks but struggle with coarser-grained
ones; and (2) Closed-source models retain a clear performance advantage in lower-
resource languages, while open-source models, especially smaller ones, lag be-
hind. We further identify two new key challenges: (1) Under local semantic
crowding, where neighboring sentences share topics and entities, models tend to
follow surface cues (e.g., connectives like “however” or repeated entities) rather
than the discourse role of the sentence in the surrounding context (e.g., back-
ground, explanation, outcome); and (2) A persistent gap between fluency and
consistency in generated outputs, where models produce text that reads smoothly
but drifts from the source facts. In addition, we observe several patterns in line
with prior studies, including reliance on nearby evidence and reuse of options un-
der uncertainty. Together, these findings highlight specific weaknesses of current
LLMs and emphasize the need for multilingual, fine-grained, and position-aware
evaluation, offering guidance for developing future long-context LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable progress across a wide range of Natu-
ral Language Processing (NLP) tasks. An important frontier lies in long-context modeling, where
LLMs are required to process books, reports, and other extended documents spanning from thou-
sands to hundreds of thousands of tokens. Effective comprehension of such long-form inputs is es-
sential for applications like summarization, knowledge-intensive QA, and policy analysis. However,
it remains highly challenging, as models must capture fine-grained cues across multiple discourse
levels while maintaining robustness to positional variation.

To measure progress, several benchmarks have recently extended evaluation beyond short inputs.
LongBench assembles a broad multi-task suite for long contexts (Bai et al., 2024), M4LE expands
task and language coverage (Kwan et al., 2024), LV-Eval explores diverse long-sequence tasks (Yuan
et al., 2024), and ONERULER increases multilingual coverage (Kim et al., 2025b). While each of
these benchmarks provides valuable advances, they also share important limitations: evaluations
primarily focus on document-level in higher-resource languages, offer limited control over the posi-
tioning of evidence, and rarely examine fine-grained understanding across different discourse units.
This gap highlights a fundamental question: how well do LLMs perform across varying levels of
granularity in long-context, particularly in low-resource languages?
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To answer this question, we introduce MGAL, the first multilingual, granularity- and position-aware
long-context benchmark, sourced from United Nations Digital Library reports of 8K–128K tokens
across the six official languages. MGAL partitions tasks into closed-ended and open-ended groups.
Closed-ended tasks admit clear, objectively scorable answers; open-ended tasks allow multiple ac-
ceptable responses (e.g., paragraph filling, summarization). For every language, MGAL covers four
levels of linguistic granularity with seven tasks and 420 query–response pairs each (Table 2), includ-
ing word-level QA, sentence-level cloze, paragraph-level filling, and document-level summarization
and translation. All items are annotated from scratch to broaden coverage of domains, input lengths,
languages, and task types. Beyond granularity, MGAL incorporates position awareness by strati-
fying examples according to evidence location (beginning, middle, end), indexed at the paragraph
and document levels. Following data construction, we prioritize quality over quantity by manually
auditing every query–response pair and removing flawed samples.

MGAL uses position-aligned UN documents, where same-position sentences are semantically
matched across six languages, enabling consistent cross-lingual comparison. Building on this align-
ment, we evaluate with precision-oriented reference metrics such as Accuracy and ROUGE-L for
automatic scoring. To handle open-ended generation tasks, we further adopt LLM-as-a-judge, which
is proposed as a cost-effective alternative to human evaluation for open-ended tasks, following re-
cent best practices (Zheng et al., 2023c; Liu et al., 2023b; Kim et al., 2025a). This combination
allows MGAL to capture both objective overlap and higher-level discourse quality, ensuring robust
and comparable evaluation across granularities and languages. Upon comprehensive evaluation of
12 long-context LLMs on MGAL, we find that: (1) models excel on word-level tasks but struggle as
evaluation shifts to coarser-grained units. and (2) large open-source and closed-source models are
comparable on higher-resource languages, but closed-source systems maintain a clear advantage on
lower-resource languages, with the gap more evident for smaller open-source models.

Through empirical analysis, we reveal two new key challenges: (1) under local semantic crowding
where neighboring sentences contain overlapping words or repeated entities, models rely on shal-
low signals such as connectives (e.g., however, therefore) and repeated entities (e.g., country names,
years), preferring sentences with surface overlap instead of those that fulfill the correct functional
role in the paragraph (e.g., background, explanation, outcome); and (2) although outputs are often
fluent and stylistically appropriate, they are weakly anchored to the input, leading to factual drift
and unsupported claims. Additionally, we observe several patterns consistent with prior work. In
the sentence-cloze task, error rates are highest when blanks appear early in the text and decrease
toward the end, reflecting models’ tendency to favor recent context due to recency-biased attention
(Peysakhovich & Lerer, 2023; Hsieh et al., 2024b). We also find that models repeatedly pick ear-
lier answer options (e.g., “A” or “B”), showing an early-position bias and reliance on option-order
heuristics rather than carefully evaluating the evidence specific to each item (Pezeshkpour & Hr-
uschka, 2024b; Zheng et al., 2023a). Overall, our findings highlight the necessity of multilingual,
fine-grained, and position-aware evaluation. We position MGAL as a valuable benchmark for as-
sessment across languages and granularities, informing future long-context model development. In
summary, our contributions are threefold:

• We present MGAL, the first multilingual long-context benchmark that is both granularity-aware
(word, sentence, paragraph, document) and position-aware (begin, middle, end), covering all six
official UN languages with contexts up to 128K tokens.

• Through a fine-grained, multilingual, and position-controlled design, MGAL decomposes eval-
uation along two key dimensions, i.e., linguistic granularity and evidence position, across six
languages, enabling more rigorous diagnosis than existing document-level benchmarks.

• We conduct extensive evaluations of long-context LLMs on MGAL, where we not only derive key
insights but also provide a comprehensive analysis of their performance and limitations.

2 RELATED WORK

2.1 LONG-CONTEXT MODELING FOR LLMS

Long-context modeling has emerged as a key challenge for LLMs, driving innovations in both train-
ing and inference strategies. Building on rotary positional embeddings (RoPE) (Su et al., 2024),
methods such as Position Interpolation (PI) (Chen et al., 2023) have demonstrated effectiveness in
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extending the usable context length. In parallel, sparse attention approaches further enhance scala-
bility. For instance, LongLoRA (Chen et al., 2024) combines shifted sparse attention with LoRA,
enabling models to handle up to 100k tokens at a modest computational cost. SnapKV (Li et al.,
2024b) compresses the KV cache by selecting salient keys from an observation window without
requiring fine-tuning, while Squeezed Attention (Hooper et al., 2025) clusters keys from the fixed
portion of a prompt into centroids offline and subsequently filters the most relevant keys online,
thereby accelerating inference when contexts overlap across requests. Collectively, these methods
provide a practical toolbox for scaling LLMs to longer inputs while maintaining controllable cost
and quality.

2.2 BENCHMARKS FOR LONG-CONTEXT LLMS

Existing benchmarks for long-context LLMs primarily evaluate document-level comprehension and
reasoning. ZeroSCROLLS (Shaham et al., 2023) targets zero-shot long-text NLU, while Long-
Bench (Bai et al., 2023) introduces a bilingual, multi-task suite spanning single/multi-document QA
and query-based summarization. To better control sequence length and task difficulty, synthetic
benchmarks such as NeedleBench (Li et al., 2024a) and RULER (Hsieh et al., 2024a) have been
proposed. NeedleBench adds the Ancestral Trace Challenge (ATC) for multi-step logical tracing,
whereas RULER extends beyond vanilla NIAH to multi-hop tracing and aggregation. M4LE(Kwan
et al., 2024) expands task and language coverage. ONERULER(Kim et al., 2025b) further increases
multilingual coverage. However, Both remain limited in assessing discourse phenomena across
granularities. Moreover, LaRA (Li et al., 2025) offers a rigorous testbed for contrasting long-context
LLMs with RAG pipelines.

Despite these advancements, current benchmarks remain limited in assessing discourse phenom-
ena across granularities. In the parallel domain of machine translation, document-level evaluation
has long relied on datasets like Europarl (Koehn, 2005), TED (Qi et al., 2018), and News Com-
mentary (Tiedemann, 2012). Although the WMT document-level tracks (Barrault & et al., 2019)
standardized assessment for cross-sentence consistency, prior work largely focuses on high-resource
languages. Consequently, existing benchmarks provide limited insight into fine-grained discourse
understanding and fail to adequately capture disparities between high- and low-resource languages,
a gap that MGAL is specifically designed to address.

Table 1: Comparison to existing long-context benchmarks. “En”, “Zh”, “Es”, “Fr”, “Ru”, and “Ar”
refer to tasks in English, Chinese, Spanish, French, Russian, and Arabic,“Pos-Par.” and “Pos-Doc.”
indicate positional evaluation at the paragraph and document level. “Gran.” refers to Granularity.

Benchmark Max Len En Zh Es Fr Ru Ar Pos-Par. Pos-Doc. Gran.

LongBench(Bai et al., 2024) ∼10K ✓ ✓ × × × × × ✓ ×
ZeroSCROLLS (Shaham et al., 2023) ∼10K ✓ × × × × × × ✓ ×
NeedleBench (Li et al., 2024a) ∼10K ✓ ✓ × × × × ✓ × ×
RULER (Hsieh et al., 2024a) ∼10K ✓ × × × × × ✓ × ×
ONERULER(Kim et al., 2025b) ∼10K ✓ ✓ ✓ ✓ ✓ × ✓ × ×
LaRA (Li et al., 2025) ∼10K ✓ × × ✓ × × × ✓ ×
M4LE(Kwan et al., 2024) ∼10K ✓ ✓ × × × × ✓ × ×
LV-Eval (Yuan et al., 2024) 4K–60K ✓ ✓ × × × × × ✓ ×
ONERULER (Kim et al., 2025b) ∼20K ✓ ✓ ✓ ✓ ✓ × ✓ × ×
MGAL (ours) ∼128K ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 MGAL

We introduce MGAL, the first Multilingual Granularity-Aware Long-context benchmark, con-
structed from long-form reports in the United Nations (UN) Digital Library. MGAL covers all
six official UN languages (Arabic, Chinese, English, French, Russian, Spanish) with context lengths
ranging from 8K to 128K tokens. It spans four linguistically coherent levels of granularity (word,
sentence, paragraph, document) and stratifies instances by evidence position (beginning, middle,
end), enabling systematic diagnosis of multilingual long-context comprehension. We show an
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Table 2: Overview of MGAL task design across four levels of granularity.

Granularity Task Avg len Metric Language #Data
Word Single-QA 23887 Acc. En,Zh,Es,Fr,Ru,Ar 420
Word Multi-QA 29048 Acc. En,Zh,Es,Fr,Ru,Ar 420

Sentence Cloze 30838 Acc. En,Zh,Es,Fr,Ru,Ar 420
Paragraph Filling 33687 Rouge-L En,Zh,Es,Fr,Ru,Ar 420
Document Summarization 28189 Rouge-L En,Zh,Es,Fr,Ru,Ar 420
Document Translation 33294 BLEU En,Zh,Es,Fr,Ru,Ar 420

Word Sentence Paragraph Context

Input Input Input Input

LLM

LLM

LLM

Checker

Checker

Checker
Checker

Question: What is the intended relationship between 
gender reviews and country programmes according to 
the GAP strategy?

Answer: B. integral

Evidence: efforts are under way to embed them in 
midterm reviews and in the development of country 
programme documents, so that the gender reviews 
are not conducted or seen as a separate exercise, but 
rather as of country programmes. 



an integral part 

Check: 

   1. Evidence and Grounding Check


Evidence Grounding

Keyword Reflection


   2. Semantic and Consistency Check

Question Quality

Answer Support

Factual Consistency


Judge: Pass





Check: 

   1. Positional Correctness

   2. Semantic Role and Distribution

   3. Distractor Validation


Topic and Entity Fidelity

Clarity of Distinction


Judge: Pass





Check: 

   1. Semantic Role

   2. Positional Distribution

Judge: Pass





Check: 

   Cross-lingual Verify

Judge: Pass





Context: 

【Paragraph 1】The present report has been prepared 
in accordance with the provisions of Security Council 
resolutions 1612 (2005)......

【Paragraph 2】The year 2015 is a milestone one. The 
Millennium Development Goals expire in 2015 and will 
be succeeded by the new sustainable development 
goals. Intergovernmental negotiations on the 
sustainable development goals ran in parallel with the 
financing for development process, which focused on 
how to implement and achieve the goals. ......

【Paragraph 3】......

Summary:  【English】The United Nations has made 
considerable progress in achieving organizational 
and development goals through partnerships with the 
private sector. In its resolution 68/234, the General 
Assembly made a number of recommendations for 
taking advantage of the unique position of the United 
Nations to foster new forms of collaboration with  .....

【Chinese】 联合国在通过与私营部门的伙伴关系实现组
织目标和发展目标方面取得了长足进展。大会在第 
68/234 号决议中提出了若干建议，以利用联合国的独特
地位促进建立与私营部门的新型合作和克服关键业务挑
战。在落实这些建议方面所取得的进展有助于在接触工商
界伙伴和设计用于促进可持续发展和人道主义目的的更具
创新性、实效和影响力的伙伴关系方面采用更具......

【Spanish】Las Naciones Unidas han hecho avances 
considerables en el logro de objetivos institucionales 
y de desarrollo mediante asociaciones con el sector 
privado. En su resolución 68/234, la Asamblea 
General formuló un conjunto de recomendaciones

para aprovechar la posición singular de las Naciones 
Unidas para fomentar nuevas formas de ......

【Arabic】【French】【Russian】......

Context: [ Paragraph 10 ] .... efforts are under way to 
embed them in midterm reviews and in the 
development of country programme documents, so 
that the gender reviews are not conducted or seen 
as a separate exercise, but rather as 
of country programmes.  ......


an integral part 

Context: [ Paragraph 1 ] The present report is 
submitted in compliance with General Assembly 
resolution 68/234, in which the Assembly requested 
the Secretary-General to submit a report at its 
seventieth session on specific progress in terms of 
integrity measures, transparency, strengthening due 
diligence measures, improvement and implementation 
of the Guidelines on Cooperation between the United 
Nations and the Business Sector, partnership 
disclosure and strengthening the Global Compact

Local Networks. The report builds on previous reports 
of the Secretary-General on cooperation between the 
United Nations and relevant partners.  ......


Selected: The present 
report is submitted in compliance with General 
Assembly resolution 68/234, in which the Assembly 
requested the Secretary-General to submit a report at 
its seventieth session on specific progress in terms ...


<Sentence 1>[begin][begin]: 
Selected:  The year 2015 is a 
milestone one. The Millennium Development Goals 
expire in 2015 and will be succeeded by the new 
sustainable development goals. Intergovernmental 
negotiations on the sustainable development goals.

Intergovernmental negotiations on the sustainable 
development goals ran in parallel with the financing 
for development process, which focused on how to 
implement and achieve the goals. As a result...... .

[ Paragraph 2] [begin]:

Figure 1: Pipeline for MGAL generation and human verification.

overview of MGAL in Figure 2 and compare MGAL with existing long-context benchmarks in
Table 1.

3.1 PROBLEM DEFINITION

In MGAL, each task is defined as taking a long-document context together with task instructions as
input, and producing an output at the required granularity: word, sentence, paragraph, or document.
Appendix C provides representative examples for all task categories.

3.2 DATASET CONSTRUCTION

MGAL is built through a unified annotation and curation pipeline tailored to each granularity level.
In UN reports, all paragraphs are explicitly numbered. Each document maintains the same para-
graph count across all languages, and each corresponding paragraph contains the same number of
sentences. Moreover, paragraphs and sentences aligned at the same positions convey equivalent
semantics across language versions of the same report. All data is drawn from long-form UN re-
ports and verified to ensure cross-lingual consistency across the six languages. Dataset statistics are
summarized in Table 2, with the detailed construction process provided in Appendix D.

3.2.1 WORD

Word-level tasks evaluate whether LLMs can identify precise words and phrases in long-context
settings, probing their ability to locate and extract fine-grained evidence. We design two subtasks
for evaluation: Single-paragraph Question Answering (Single-QA) and Multi-paragraph Question
Answering (Multi-QA). For data construction, paragraphs are sampled from different positions in a
document (beginning, middle, end). We use GPT-4 (OpenAI, 2023) generates question–answering
(QA) pairs from these paragraphs, with answers annotated as word-level spans from the text. All
generated pairs are manually verified for correctness.

Single-QA We adopt a task format similar to extractive QA in reading comprehension benchmarks
in the Single-QA task which constructs word-level QA pairs from individual paragraphs, with ques-
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Chinese English French Russian SpanishArabic
(a) Multilingual  Long-context  Documents

QA Cloze Paragraph Filling TranslationGenerationSummarization

 Cloze Test Paragraph Filling

Word

Sentence Paragraph

Single-Paragraph QA Multi-Paragraph QA

(b)Multi-Task

Context Summarization Generation Translation

(c) Granularity-Aware Task d) Evaluation & Analysis

[ d.1 ] Granularity

[ d.2 ] Position

[ d.3 ] Six UN Official Languages

Documents

Word

Acc.

Sentence

Acc.

Paragraph

Rouge
LLM as a judge

Context

Rouge

Instruction-follow
LLM as a judge

Begin Paragraph

Middle Paragraph

End Paragraph

Paragraph in Context
Begin Sentence

Middle Sentence

End Sentence

Sentence in Paragraph

Figure 2: Overview of MGAL. From (a) multilingual UN long-context documents, we construct
(b) a multi-task setup, design (c) granularity-aware tasks, and analyze by (d.1) granularity, (d.2)
position, and (d.3) language.

tions categorized into three types: numerical, classification, and reference. Paragraphs are sampled
from different positions within the document to improve the positional diversity.

Multi-QA Multi-QA includes synthesis, comparison, and retrieval subtasks. Each QA pair spans
two position-controlled paragraphs from the same document, requiring models to integrate evidence
across both sources.

We provide additional details on the question types for both the Single-QA and Multi-QA subtasks
in Appendix D.1.3.

3.2.2 SENTENCE

Cloze The sentence-level task is designed to assess whether models can recognize sentence roles
and maintain coherence across neighboring sentences. To this end, we introduce a novel sentence-
level cloze task inspired by the ‘Insert Text’ question in TOEFL iBT Reading. Specifically, the
task requires LLMs to recover a masked sentence using its surrounding context, ensuring both lo-
cal coherence and global consistency within the document, thereby directly probing sentence-level
understanding. To construct the data, we divide each document by position at both the document
and paragraph levels (beginning, middle, and end). From these segments, salient sentences are ex-
tracted using GPT-4. For each instance, the selected sentence is removed and replaced with a blank.
The candidate set consists of the correct sentence along with several distractors generated by GPT-4
that carry similar meanings. The model must then identify the option that best restores the pas-
sage, maintaining local coherence with neighboring sentences while preserving alignment with the
broader discourse.

3.2.3 PARAGRAPH

Paragraph Filling Paragraph-level tasks probe whether models can generate coherent, contextu-
ally grounded paragraphs that extend beyond the sentence scale. At this granularity, the focus is
on both the understanding and generation abilities of LLMs. We design a paragraph filling task
to evaluate models’ capability to recover missing paragraphs using the surrounding context while
maintaining the coherence of the original document. Specifically, each document is divided into
position-based segments, and GPT-4 is used to identify paragraphs with clear functional roles (e.g.,
topic introduction, contrast, or conclusion) whose content can be inferred from neighboring text. For
each sample, the selected paragraph is removed and replaced with a blank. Unlike sentence-level
cloze tasks, this requires free-form generation rather than selecting from candidates. The model
is then tasked with generating a paragraph that restores local cohesion, preserves entity and event
continuity, and remains aligned with the global discourse theme.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2.4 DOCUMENT

Our document-level tasks are designed to evaluate holistic document comprehension under long-
context settings. Specifically, we design two tasks, summarization and translation, to assess LLMs’
ability to perform comprehensive understanding and generation at the document level.

Summarization Summarization evaluates whether models can condense long documents into
concise yet faithful summaries, testing their ability to capture salient content under extended con-
texts. We use human-written summaries from UN reports as reliable references. For each document,
the original summary is excluded from the input, and the remaining content is given to the model,
which is required to generate a faithful and informative summary under long-context conditions.

Translation Translation evaluates whether models can accurately preserve meaning across lan-
guages in full-document settings, probing both cross-lingual transfer and long-context comprehen-
sion. We construct six translation datasets using multilingual counterparts of the same UN doc-
uments. In each dataset, one language is fixed as the source and translated into the other five,
providing a systematic and balanced setup.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate long-context LLMs in a zero-shot setting on MGAL, without any fine-tuning. The
evaluation details are provided in Appendix E.

4.1.1 MODELS

To evaluate model performance across multilingual, fine-grained long-context tasks, we benchmark
12 LLMs, covering both open-source and proprietary models, with context windows exceeding
128k tokens. The set includes GPT-5 (OpenAI, 2025), Claude Sonnet 4 (Anthropic, 2025), Gem-
ini 2.5-Flash (Google DeepMind, 2025), Grok 4 (xAI, 2025), Doubao-Seed-1.6 (Volcengine, 2025;
ByteDance Seed Team, 2025), Qwen3-235B-A22B-Instruct (Alibaba Qwen Team, 2025a), Kimi-
K2-Instruct (Moonshot AI, 2025), DeepSeek V3.1 (DeepSeek, 2025), GLM-4.5 (Zhipu AI, 2025),
Qwen3-30B-A3B-Instruct (Alibaba Qwen Team, 2025b), Mistral-Small-3.2-24B-Instruct (Mistral
AI, 2025), and Gemma-3-27B (Google AI, 2025). This diverse selection ensures broad coverage
across model scales and architectures.

We locally deploy Qwen3-30B-A3B-Instruct (Alibaba Qwen Team, 2025b), Mistral-Small-3.2-24B-
Instruct (Mistral AI, 2025), and Gemma-3-27B (Google AI, 2025), while the remaining larger mod-
els are accessed via API.

4.1.2 EVALUATION METRICS

We adopt task-specific metrics aligned with each level of granularity. For Word-level QA and
Sentence-level Cloze, we report average accuracy to measure the proportion of predictions that
match the gold labels. For Paragraph Filling and Summarization, we use ROUGE-L (Lin, 2004).
For Translation, we report BLEU (Papineni et al., 2002) computed with sacreBLEUPost (2018). We
additionally employ LLM-as-a-judge to capture quality aspects not reflected in automatic metrics for
Paragraph Filling. Details on prompts and implementation are provided in Appendix E.4. Under the
same evaluation guidelines used in the LLM-as-a-judge setting, we instruct our human evaluators to
assess outputs in both English and Chinese.

4.2 MAIN RESULTS

Table 3 and Figure 3 summarize the average performance (%) of all models on MGAL (see Ap-
pendix G for complete results). On word- and sentence-level multiple-choice evaluations, GPT-5
achieves the highest average scores. At coarser granularities, Grok-4 leads on paragraph filling,
while GLM-4.5 delivers the best summarization scores and Gemini-2.5-flash excel in translation.
The results yield two key observations:
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Table 3: Results on word, sentence, paragraph and context tasks. Open-source and proprietary mod-
els are separated with a horizontal divider, and the top-performing LLM for each task is highlighted
in bold, second best results are underlined.

Word Sentence Paragraph Document
Model Single-QA Multi-QA Cloze Filling Summarization Translation

GPT-5 79.79 74.99 30.62 14.47 15.47 35.30
Claude Sonnet 4 72.75 73.76 21.53 12.81 22.09 14.96
Gemini-2.5-flash 77.01 75.49 26.00 15.97 23.89 36.17
Grok 4 78.49 72.64 21.58 19.90 18.93 31.05
Doubao-Seed-1.6 76.63 73.63 19.47 15.22 17.08 6.16

Qwen3-235B-A22B 71.84 73.63 20.29 14.72 24.27 9.54
Kimi-K2 74.41 75.17 12.00 13.69 18.51 4.46
DeepSeek-V3.1 75.56 72.50 17.31 14.54 26.15 28.52
GLM-4.5 68.44 69.39 14.79 16.15 26.88 21.48
Qwen3-30B-A3B 68.86 71.14 16.54 13.72 22.74 10.98
Mistral-Small-3.2-24B 69.17 70.91 32.35 15.13 6.08 1.63
Gemma-3-27B 66.7 67.88 20.37 14.67 5.91 1.95
Average Performance 73.09 72.59 21.07 15.08 19.00 16.85
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Figure 3: Performance of our evaluated models on MGAL. GPT-5 achieves the top average across
granularity tasks, whereas Gemini-2.5-Flash excels across languages.

(1) Fine vs. coarse performance. Across long-context LLMs, performance is consistently strong
on word-level tasks but weak at coarser granularities. Detailed analyses at each granularity are
provided in Appendix F.1.

(2) Higher- vs. lower-resource languages. In higher-resource languages, large open-source models
perform on par with closed-source systems. In lower-resource languages, however, closed-source
models retain a clear advantage, with the gap more evident for smaller open-source models.

The llm-as-a-judge and human evaluation results in Appendix G.3.2 show that all models still under-
perform on Topic Fidelity and Entity Consistency. Importantly, the scores from human evaluation
and the LLM-as-a-judge are highly correlated, with a high Spearman correlation, indicating strong
agreement between human and LLM assessments.

4.3 POSITIONAL RESULTS AT DIFFERENT GRANULARITIES

Prior work shows that long-context models often pay less attention to information placed in the
middle of a sequence for question answering and retrieval (Liu et al., 2023a). Similarly, as shown in
Figure 4(a) and (c), accuracy in MGAL peaks when the answer lies at the boundaries and is lowest
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Figure 4: Position Performance on MAGL. Performance dips in the middle for word and paragraph
tasks but peaks there for sentence-level tasks.

in the middle, with clear effects at the word- and paragraph-level tasks. This boundary preference
suggests that models struggle to sustain effective attention over the full sequence.

By contrast, most models achieve their highest accuracy on the sentence-cloze task when the target
sentence is positioned in the middle of the document as illustrated in Figure 4(b). To understand this
pattern, we conduct both human and model-based analyses in Appendix F.2. Our findings suggest
that, at this granularity, models tend to rely on surface overlaps and simple connectors rather than
on the discourse role a sentence plays within the paragraph. Boundary sentences at the beginning
and end often share framing or summary style and are easily confusable, whereas mid-paragraph
sentences typically convey concrete facts tied to nearby entities and references, which better align
with such surface cues. Therefore, the middle-position peak should not be interpreted as evidence of
robust mid-context comprehension; instead, it likely reflects shallow cue-following and insufficient
sensitivity to sentence-level roles. This insight motivates our deeper analysis of local semantic
crowding and cue reliance in Section 5.1.

4.4 CONTEXT MEMORIZATION

To examine whether models truly use the provided long-context rather than relying solely on pre-
training priors, we conduct a context ablation on the Single-QA task. Specifically, we compare
two settings: (1) the standard setting with access to the full document context, and (2) a no-context
setting where the document is withheld and the model must answer using only internal knowledge.
We adopt the same evaluation setup as the Single-QA task and report results averaged over 12 LLMs.

For evaluation, the model average accuracy drops sharply from 0.73 (with context) to 0.31 (without
context), demonstrating that performance is largely attributable to information drawn from the input
rather than memorization. A closer inspection reveals in Appendix F.3 that questions grounded in
commonsense or general policy remain moderately answerable without context, while those requir-
ing document-specific details degrade substantially.

4.5 ABLATION STUDIES

Effect of Instruction Placement We first investigate whether model performance in the sentence-
cloze task is affected by the distance between the instruction and the blank. By default, instructions
and candidate options are placed at the end of the document, which means blanks appearing near
the beginning are far away from the task description. To test positional sensitivity, we relocate the
instruction block while keeping all blanks and candidate answers unchanged. We compare three
configurations: (1) placing the instruction immediately after the beginning section (Begin), (2) plac-
ing it in the middle (Middle), and (3) the default baseline placement at the end (End). As shown
in Figure 5(a), relocating the instruction improves accuracy in the nearby document region but re-
duces performance at more distant positions. This indicates that long-context LLMs are sensitive to
instruction placement, with performance improving as the instruction moves closer to the blank.
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Figure 5: Ablation stduies on MAGL: (a) Accuracy rises as the instruction moves nearby to the
blank. (b) Accuracy drops when high-confusion distractors are positioned earlier.

Effect of Option Order In this study, we aim to test whether LLMs in the sentence-cloze task are
biased by the order of candidate options rather than by their actual content. Prior analyses suggest
that models tend to repeatedly select earlier options, reflecting position bias rather than content
evaluation (Pezeshkpour & Hruschka, 2024a; Zheng et al., 2023a).To probe this, we conduct an
ablation where the same set of options is presented in different orders. Specifically, we test three
conditions: (1) placing high-confusion distractors at the beginning (Begin), (2) placing them in the
middle (Middle), and (3) placing them at the end, which corresponds to the default baseline (End).
Figure 5(b) shows that accuracy drops when distractors appear earlier (0.16 Begin, 0.21 Middle)
and improves when pushed later (0.24 End). This pattern suggests that models exploit option-
position heuristics, i.e., selecting answers based partly on their placement, rather than evaluating all
candidates purely by semantic fit, we analyze more in Section 5.2.

5 MORE ANALYSIS

We perform a detailed analysis based on task granularity, position, and multilingual factors, high-
lighting several novel challenges as well as patterns consistent with prior work.

5.1 NEW CHALLENGES REVEALED BY MGAL

Preference for Surface Cues Under Local Semantic Crowding At the sentence level, we ob-
serve that models tend to overweight surface cues such as explicit connectives (e.g., however, there-
fore), repeated entities, or overlapping lexical patterns under local semantic crowding, where neigh-
boring sentences discuss similar topics and share entities. In such cases, models often underutilize
the functional role a sentence plays within the paragraph (e.g., background, explanation, or out-
come), and instead follow shallow overlaps.

For example, given an opening sentence like “The Working Group on the Universal Periodic Review,
established in accordance with Human Rights Council resolution 5/1 of 18 June 2007, held its first
session from 7 to 18 April 2008.”, the correct next sentence should be “At its 15th meeting, the
Working Group adopted the present report on Algeria.” (a development sentence). However, models
often prefer a summary-style sentence such as “The review of Algeria was held at the 11th meeting
on 14 April 2008.”, which appears plausible due to repeated years and entities but serves the wrong
discourse role, redundantly restating rather than advancing the argument. This tendency shows
that models continue to rely heavily on shallow lexical overlap rather than accurately capturing
sentence-level discourse roles. Similar shortcomings were documented in earlier neural models,
and our findings suggest that long-context LLMs still struggle with this challenge (Kim et al., 2020;
Maekawa et al., 2024). We further examine failure modes with LLM- and human-based annotations,
identifying the most frequent error categories in model predictions. Specifically, we define three
main categories and eight subcategories to classify error types. Beyond human evaluation, we focus
on Cloze cases where more than 50% of models fail, using GPT-5 and Gemini-2.5-Flash to analyze
the underlying error reasons. The LLMs categorize the errors and provide supporting evidence for
their judgments, which are then examined and verified by human checkers. The final results support
our finding that under local semantic crowding, models tend to over-rely on surface cues while under
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utilizing discourse-role reasoning, leading to failures in filling role-slots in patterns such as “Given
α ⇒ β,” “Although α, still β,” or “β because α.”(more details are provided in Appendix F.2. )

Gap Between Fluency and Consistency in Generated Outputs In paragraph filling and sum-
marization tasks, model outputs often exhibit high fluency and stylistic alignment with the source
document, yet they frequently neglect reliable contextual grounding. As a result, models may in-
troduce unsupported entities or drift away from the intended explanation of the text. For example,
models may overlook concrete cues in the surrounding paragraphs and confidently assert that a pol-
icy has already been implemented when the source text only outlines actionable recommendations.
Similarly, they may hallucinate actors, dates, or institutions absent from the document. While the
generated text reads smoothly and appears stylistically consistent, it is factually inconsistent with the
document, highlighting a persistent gap between fluency and consistency in long-context generation.

5.2 ADDITIONAL OBSERVATIONS CONSISTENT WITH PREVIOUS STUDIES

In addition to the novel findings, our evaluation confirms several patterns widely reported in earlier
studies. Specifically, we observe well-documented tendencies such as reliance on nearby evidence
and option reuse under uncertainty. These observations not only align with prior research but also
complement our new insights, collectively offering a more comprehensive characterization of long-
context model behavior.

Reliance on Nearby Evidence In the sentence-cloze task, blank omissions peak when the blank
appears near the beginning of the document and decline toward the end (Apppendix F.1). This aligns
with prior work showing that long-context models underutilize distant evidence due to recency-
weighted attention, and that repositioning salient segments closer to the decoding point can mitigate
this limitation (Peysakhovich & Lerer, 2023). Related studies on positional calibration and con-
trolled placement also demonstrate that model performance is highly sensitive to the relative dis-
tance between evidence and the decision anchor (i.e., the instruction and candidate options) (Hsieh
et al., 2024b; Xu et al., 2024). In our setup, the anchor is appended after the document, effectively
anchoring the decision at the end of the input. As a result, blanks at the beginning correspond to
the greatest anchor–evidence distance, leading to more omissions. Following the ablation in Sec-
tion 4.5, we relocate instructions, and find that it reduces omissions at the corresponding position,
which further suggests our explanation.

Reuse of Options Under Uncertainty When uncertain, models tend to repeatedly select the same
options, disproportionately favoring those in earlier positions, such as A and B over C and D in
Appendix F.1. This behavior reflects an early-position bias, suggesting that models rely on option-
order heuristics and frequency priors rather than grounding their choices in item-specific evidence
(Pezeshkpour & Hruschka, 2024b; Zheng et al., 2023a). The option order shuffling ablation in Sec-
tion 4.5 shows that placing confusion distractors earlier degrades models’ accuracy, while placing
them later improves it.

6 CONCLUSION

We introduced MGAL, the first multilingual benchmark for evaluating long-context LLMs across
multiple levels of granularity and controlled positional settings. Built from UN reports spanning
8K–128K tokens in six official languages, MGAL covers four linguistic units (word, sentence, para-
graph, document) and systematically varies evidence positions, enabling multilingual fine-grained
and position-aware assessment. Through an extensive evaluation of 12 state-of-the-art LLMs, we
find that while models perform relatively well on fine-grained QA, their performance is weak on
coarser tasks such as paragraph filling and summarization. We further identify two new challenges
specific to long contexts: local semantic crowding, where models over-rely on surface cues in-
stead of recognizing discourse roles, and a fluency–consistency gap, where generated outputs re-
main stylistically fluent yet factually misaligned with the source. In addition, MGAL confirms
previously observed weaknesses such as recency bias and option-order heuristics. Overall, MGAL
highlights the limitations of current LLMs in multilingual long-context comprehension and estab-
lishes a rigorous testbed for guiding future work on training objectives and evaluation methodologies
that emphasize robust, fine-grained, and position-sensitive understanding.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

In line with the ICLR Code of Ethics and our commitment to research integrity, our benchmark
is constructed from publicly available reports from the United Nations (UN) Digital Library, used
with respect to their public licenses and without altering their substantive meaning; we credit the
UN as the original rightsholder. To ensure the ethical handling of these documents, we screened all
instances to avoid including sensitive personal data, do not attempt to infer protected attributes, and
directed human annotators to exclude content with offensive language or social biases. While the
potential for encountering sensitive content from the original sources persists, this risk is mitigated
as the benchmark’s primary focus is on evaluating the long-context capabilities of LLMs, not their
social biases. To further protect privacy, released artifacts contain only the minimum text necessary
for evaluation, with full documents remaining at their original sources. Furthermore, our methodol-
ogy considers environmental impact by evaluating existing models without additional pre-training
and reporting settings to facilitate energy-efficient replication. Finally, we will comply with any
takedown or correction requests from rights holders or affected parties and will promptly update
dataset documentation if legal interpretations change.

REPRODUCIBILITY STATEMENT

We ensure reproducibility in three aspects. (1) Dataset. All source documents are drawn from
the publicly accessible UN Digital Library. The data curation and annotation pipeline, including
sampling strategies for each granularity, is fully documented, and the processed benchmark will be
released upon publication with task splits. (2) Evaluation. We provide the exact prompts, scoring
scripts, and task definitions for all evaluations, covering classification, generation, and translation.
(3) Models and code. For open-source models, we will release configuration files and inference
scripts upon publication; for API-based models, we document request formats and parameters. All
preprocessing, annotation, and evaluation code will be released upon publication in an open reposi-
tory.
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A LIMITATION

Although MGAL broadens the evaluation scope for fine-grained long-context understanding, sev-
eral limitations remain. First, standard automatic, reference-based metrics (e.g., ROUGE-L for
summarization; token-level accuracy for QA; BLEU for translation) are coarse proxies for human
judgment and are sensitive to surface form, paraphrase, and length, which can underestimate or mis-
characterize quality (Novikova et al., 2017; Reiter, 2018; Lin, 2004). Second, using LLM-as-a-judge
improves semantic sensitivity but incurs nontrivial runtime cost and exhibits known biases (e.g., po-
sition and verbosity), requiring careful prompt design, calibration, and robustness checks (Zheng
et al., 2023b). Third, while our goal is to evaluate long-context modeling independently of instruc-
tion following, real-world task formulations inevitably intertwine the two, so measured performance
may partly reflect instruction adherence rather than pure context-modeling ability.

B THE USE OF LARGE LANGUAGE MODELS

To enhance the clarity and readability of this manuscript for a global audience, we utilized Large
Language Models (LLMs) as assistive tools. First, we employed them for language refinement, in-
cluding grammatical correction, stylistic improvements, and the rephrasing of complex sentences.
Second, we leveraged LLMs to support our data construction and evaluation pipeline. Specifically,
LLMs assisted in the initial generation, annotation, and cleaning of a word, sentence, and paragraph
level data set derived from public UN documents; these data subsequently underwent rigorous final
curation and validation by domain experts. We emphasize that the authors maintained full editorial
control throughout this process. All substantive contributions, including the research ideas, method-
ology, analyses, and conclusions, are the exclusive work of the authors, who bear full responsibility
for the final manuscript.
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C MGAL DATASET INSTANTIATION

Sentence

Input

Output

Sentence Cloze Test
Context: ......Summary......

 The report builds 
on previous reports of the Secretary-General on

cooperation between... . Moreover, the Conference 
of the Parties... . ... 
As areas of intersecting public-private interest 
continue to deepen, the need and demand for new 
... . 
......text......


... .The High-level 
Panel of Eminent Persons on the Post-2015 
Development... .
The confluence of the post-2015 and financing for 
development processes, the climate conference 
and... . 
......text......


... .Continuing efforts 
are needed to maintain and enhance transparency 
... .    ... . United 
Nations entities should adopt a holistic approach to 
private sector... 
......text......



Question: Given the input context C, select the 
most appropriate choice 


 ...... , 


for each sentence blank from the 
given options.

<Sentence 1>[begin][begin]. 

<Sentence 2>[begin][middle]. 

<Sentence 3>[begin][end].


<Sentence 4>[middle][begin].  

<Sentence 5> [middle][middle]. 

<Sentence 6> [middle][end]. 


<Sentence 7>[end][begin].  

<Sentence 8> [end][middle].

<Sentence 9> [end][end].  


<1>, <2>...., <9>

A.  A two-year consultation process is also ..., 

B.  The United Nations will need to have in ... ,


L.  The post-2015 development agenda and ... . 


1.A .  2.B .  3.C .  4. D .  ...... 7. G . 8. J .  9. K . 

Paragraph

Context: ......Summary......

[ Paragraph 1 ]The present report has been 
prepared in accordance with the provisions of 
Security Council resolutions 1612 (2005)......


【Paragraph 3】The Comprehensive Peace 
Agreement between the Government of the ...


......text......

【Paragraph 37】The Government has made 
efforts to reinforce the capacity of national 
security forces in the north-west, north-east and 
south-east of the country......


......text......


【Paragraph 70】The engagement of the Peace 
building Commission with the Central African 
Republic, in particular its support for the 
reintegration of children formerly associated with 
armed groups, is noted with appreciation......


Instruction: Given the input context,  generating 
appropriate paragraphs to fill in the blanks 

 in a text passage. 

[ Paragraph 2] [begin].


[ Paragraph 4] [begin].


[ Paragraph 38] [middle].

[ Paragraph 39] [middle].


[ Paragraph 69] [end].


[ Paragraph 71] [end].



[2], [4], 
......, [71]
 [ Paragraph 2 ] During the reporting period, the 
monitoring of and reporting on grave violations 
committed ...

......Other Generated Paragraphs......

[ Paragraph 71 ]Finally, I would like to express my 
appreciation for the service of my Special  ...

Output

Input

Paragraph Filling
Context

Input

Input

Output

Output

Summarization

Translation
Context: United Nation Retort text in english to 
be translated.

Instruction:Translate the following text into 
target language.


Generated Summary:

The United Nations has made considerable 
progress in achieving organizational and 
development goals through partnerships with 
the private sector. In its resolution 68/234, the 
General Assembly made a number of 
recommendations for taking advantage of the 
unique position of the United Nations to foster 
new forms of collaboration with the private 
sector and overcome key operational 
challenges. .....

Target Translated Language Context:



......联合国报告......



......Informe de la ONU......



......доклад ООН...........تقرير الأمم المتحدة......

 



......تقرير الأمم المتحدة......

......rapport de l'ONU......

Context: Full document text.

Instruction: Summarize the whole context.


Word

Input

Input

Output

Output

Single-Paragraph QA

Multi-Paragraphs QA

Context: ......text......

[ Paragraph 10 ] .... efforts are under way to embed 
them in midterm reviews and in the development of 
country programme documents, so that the gender 
reviews are not conducted or seen as a separate 
exercise, but rather as of country 
programmes.  ......

......text......

Question: What is the intended relationship 
between gender reviews and country programmes 
according to the GAP strategy?

an integral part 

Context: ......text......

[ Paragraph 6 ].... To develop a sound and practical 
plan, UNICEF has undertaken extensive internal and 

 throughout 2013, including 
the presentation of a ‘zero draft’ at the first regular 
session of the Executive Board in February 2014.  ....

......text......

[ Paragraph 62 ] ... 

 organized around specific 
programmatic activities and results are proving to be 
another effective means for building strategic and 
technical capacity on gender.  ......  

......text......

Question: When synthesizing the planning 
processes described in paragraphs 6, 62, which 
overarching principle links their separate yet parallel 
approaches? 

external consultations

Cross-sectoral task forces and 
working groups

B. integral

B. consultation

 Granularity-Aware Task 

Figure 6: MGAL dataset instantiation at each granularity.
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D DATASET CONSTRUCTION PIPELINE

This section describes the dataset construction pipeline for MGAL. We source documents from the
United Nations Digital Library and apply manual annotations without altering substantive content.
After generating candidate task data using an LLM, we performed a human quality assessment to
ensure benchmark reliability across all task granularities. Each item was independently evaluated by
two trained undergraduate annotators with backgrounds in linguistics and NLP-related coursework,
following a detailed guideline aligned with each task’s requirements. Only items approved by both
evaluators were retained in the final dataset.

D.1 WORD

For the referenced single- or multi-paragraph inputs, the LLM is prompted to generate a question,
an answer, and the corresponding evidence from each specified paragraph according to the category-
specific instructions. The human checkers evaluate each generated question–answer pair following
a two-stage guideline. First, they verify whether the provided evidence is grounded in the input
paragraph, rather than being hallucinated by the LLM. Second, the checkers assess the quality of
the question–answer pairs. They begin by examining the semantic correctness and clarity of the
generated question, ensuring that it is unambiguous and aligned with the predefined categories. They
then evaluate whether the answer is supported by the evidence within the paragraph and whether the
question–answer pair is consistent and factually correct.

D.1.1 SINGLE QA

We partition each document’s main body into three position-indexed regions: begin, middle, and
end. From each region, we robustly extract complete paragraphs. One paragraph is uniformly
sampled per region.

For each sampled paragraph, we prompt an LLM to generate a single question that includes cited
paragraph-bounded evidence, and requires a word or phrase answer sourced from the original para-
graph. We categorize three generated question templates as: (1) Numerical for exact counts and
quantitative mentions; (2) Classification for topic, sentiment, or functional category; and (3) Refer-
ence for pronoun or coreference resolution with local inference.

Each question is formatted as a four-choice question with a single-answer option. The options
distractors are constructed to be semantically plausible under partial reading yet inconsistent with
the anchored evidence. At evaluation time, models are given the full document and the question that
instructs them to answer.

You need to analyze the following paragraph and create a question that tests the ability to find specific numerical information.



Paragraph {paragraph_id}: {source_text}



Step-by-step process:

        1. Identify all numerical data, statistics, measurements, or quantitative information in paragraph {paragraph_id}

        2. Select the most significant or central numerical value

        3. Create a question that requires locating this specific number

        4. Ensure the question cannot be answered through general knowledge

        5. Extract 1-2 grounded evidence summaries that support the numerical answer



Requirements: ......



CONCRETE EXAMPLES:  Few shot examples......



Output format:

  "question": "Based on paragraph {paragraph_id}, what [numerical aspect] is mentioned/reported/indicated?",

  "correct_answer": "number",

  "evidence": 

    {{"paragraph_id": {paragraph_id}, "evidence": "concise grounded summary supporting the numerical answer"}}


Figure 7: Prompt template for the Numerical type question generation.
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You need to analyze the following paragraph and create a question that tests deep understanding and reference resolution.



Paragraph {paragraph_id}: {source_text}



Step-by-step process:

        1. Identify pronouns, implicit relationships, or logical connections in paragraph {paragraph_id}

        2. Determine what interpretation or inference is needed to understand these relationships

        3. Create a question that tests this understanding and reference resolution

        4. Ensure the answer requires non-trivial understanding, not just surface reading

        5. Extract 1-2 grounded evidence summaries that support the interpretation and inference



Requirements: ......



CONCRETE EXAMPLES:  Few shot examples......



Output format:

  "question": "Based on paragraph {paragraph_id}, what does [pronoun/concept] refer to or what can be inferred about [logical 
relationship]?",

  "correct_answer": "inferred_concept",

  "evidence": [

    {{"paragraph_id": {paragraph_id}, "evidence": "concise grounded summary supporting the interpretation/reference resolution"}}


Figure 8: Prompt template for the Reference type question generation.

You need to analyze the following paragraph and create a question that tests classification or categorization abilities.



Paragraph {paragraph_id}: {source_text}



Step-by-step process:

        1. Analyze the overall tone, theme, and characteristics of paragraph {paragraph_id}

        2. Identify what category, sentiment, or classification best describes this paragraph

        3. Create a question that tests recognition of this classification

        4. Ensure the classification is specific to this paragraph's content

        5. Extract 1-2 grounded evidence summaries that support the classification



Requirements: ......



CONCRETE EXAMPLES:  Few shot examples......



Output format:

  "question": "Based on paragraph {paragraph_id}, what [category/theme/sentiment/approach] does this paragraph represent?",

  "correct_answer": "classification",

  "evidence": [

    {{"paragraph_id": {paragraph_id}, "evidence": "concise grounded summary supporting the classification"}}


Figure 9: Prompt template for the Classification type question generation.

D.1.2 MULTI QA

We adopt the same position segmentation as Single-QA, partitioning each document’s main body
into begin, middle, and end regions. We sample the anchor paragraph pairs for one question-answer
pair to test the models’ ability to integrate contextual evidence. The sampled paragraph pairs’ posi-
tions are both within regions (eg, Begin and Begin) and across regions (eg, Begin and Middle). Each
question references exactly two paragraphs.

Before composing the question, the LLM produces the selected paragraph evidence summaries for
each of the two selected paragraphs. These summaries anchor subsequent question wording and
option construction. We categorize three cross-paragraph question templates: (1) Comparison that
contrasts methods, perspectives, or claims across the two paragraphs; (2) Retrieval that locates where
a specific fact resides with fixed options: first paragraph, second paragraph, both, or neither; and
(3) Synthesis that derives a concept or conclusion that emerges only when the two paragraphs are
considered together.

At evaluation time, models are given the full document, and the instructions for the model to answer
with respect to those paragraphs questions.
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You need to analyze the following two paragraphs and create a high-comprehension question about their combined meaning or 
conclusion.



Content from paragraphs {para1_id} and {para2_id}: {paragraph_text}



Step-by-step process:

        1. Identify the main concept or theme in each paragraph

        2. Determine how they relate to each other or what they collectively demonstrate

        3. Find the synthesized conclusion that emerges from both paragraphs

        4. Create a question that tests this integrative understanding

        5. Extract 2-3 grounded evidence summaries with paragraph ids that best support the synthesized conclusion



Requirements: ......



CONCRETE EXAMPLES:  Few shot examples......



Output format:

  "question": "Based on {para_desc} together, what [conclusion/concept/pattern] emerges?",

   "correct_answer": "synthesis_concept",

  "evidence": 

            {{"paragraph_id": {paragraph_ids[0] if len(paragraph_ids)>0 else 1}, "evidence": "concise grounded summary supporting 
the conclusion"}},

            {{"paragraph_id": {paragraph_ids[1] if len(paragraph_ids)>1 else 2}, "evidence": "concise grounded summary supporting 
the conclusion"}}

Figure 10: Prompt template for the Synthesis type question generation.

You need to create a COMPREHENSION question that tests the ability to understand information and identify which paragraph 
contains the answer to a specific question.You are provided with Paragraph {para1_id} and Paragraph {para2_id}. The question 
MUST explicitly mention both paragraph numbers.



Content from paragraphs {para1_id} and {para2_id}: {paragraph_text}



Step-by-step process:

        1. Analyze both paragraphs thoroughly

        2. Decide which answer location type to use (A, B, C, or D)

        3. Based on the type:

           - For Type A/B: Find unique information in that specific paragraph

           - For Type C: Identify something plausible but NOT mentioned in either paragraph

           - For Type D: Find information that spans or requires synthesis from both paragraphs

        4. Create a question that CONTAINS the answer/statement and asks for its location

        5. The question must explicitly reference both paragraph numbers



ANSWER LOCATION TYPES (choose one):

        - Type A: Information found ONLY in Paragraph {para1_id}

        - Type B: Information found ONLY in Paragraph {para2_id}  

        - Type C: Information found in NEITHER paragraph (ask about something NOT mentioned)

        - Type D: Information requiring BOTH paragraphs to answer completely



Requirements: ......



CONCRETE EXAMPLES:  Few shot examples......



Output format:

  "question": "Between Paragraph {para1_id} and Paragraph {para2_id}, [rest of question with specific fact/answer]",

   "correct_answer": "Paragraph {para1_id}|Paragraph {para2_id}|Neither|Both",

  "evidence": 

           {{"paragraph_id": {para1_id}, "evidence": "concise summary showing relevant content (or lack thereof)"}},

            {{"paragraph_id": {para2_id}, "evidence": "concise summary showing relevant content (or lack thereof)"}}

Figure 11: Prompt template for the Retrieval type question generation.
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You need to analyze the following two paragraphs and create a high-comprehension question about their differences or 
contrasts.



Content from paragraphs {para1_id} and {para2_id}: {paragraph_text}



Step-by-step process:

        1. Analyze the main approach, method, or perspective in each paragraph

        2. Identify the key difference or contrast between them

        3. Create a question that tests recognition of this difference

        4. Ensure the difference is significant and not superficial

        5. Extract 2-3 grounded evidence summaries with paragraph ids that best support the identified difference



Requirements: ......



CONCRETE EXAMPLES:  Few shot examples......



Output format:

  "question": "Based on {para_desc}, what is the main difference in their [approach/method/perspective]?",

  "correct_answer": "difference_concept",

  "evidence": 

            {{"paragraph_id": {paragraph_ids[0] if len(paragraph_ids)>0 else 1}, "evidence": "concise grounded summary from this 
paragraph supporting the difference"}},

            {{"paragraph_id": {paragraph_ids[1] if len(paragraph_ids)>1 else 2}, "evidence": "concise grounded summary from this 
paragraph supporting the difference"}}

Figure 12: Prompt template for the Comparision type question generation.
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D.1.3 INSTANTIATIONS OF DIFFERENT QA TASK SAMPLE

Task Name Single-QA

Type Numerical

Paragraph_id 84

Question: Which year in paragraph 84 represents the culmination 

of UNDP's efforts to address changing gender norms?

Options: A.2025 B.2030 C. 2040 D. 2020

Finally, as changing gender norms and stereotypes takes

considerable time, UNDP needs longer-term, multisectoral

interventions with predictable financing. To significantly

contribute to the achievement of the 2030 Agenda, UNDP must

work more closely with partner agencies across the United

Nations system to advocate for new and sustained funding models.

Source_text:

Figure 13: Numerical Type Sample Question.

Task Name Single-QA

Type Classification

Paragraph_id 80

Question: What conclusion can be drawn from paragraph 80's emphasis on actions 

for improvement?

Options: A. observations B. conclusions C. suggestions D. recommendations

The Special Rapporteur recommends that the Government of Eritrea:

Put an immediate end to human rights violations documented by the

Special Rapporteur and the commission of inquiry on human rights

in Eritrea, including the ongoing violations highlighted in the present

report; ..… Investigate the allegations of human rights and

humanitarian law violations by Eritrean armed forces in the context

of the conflict in Ethiopia since November 2020 and take measures

to bring perpetrators to justice; (l) Refrain from subjecting

Indigenous communities to discriminatory practices, including

arbitrary arrests, and respect and protect their traditional ways of life

and means of livelihood;

Source_text:

Figure 14: Classification Type Sample Question.
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Task Name Single-QA

Type Reference

Paragraph_id 22

Question: What role does paragraph 22 suggest the ACO takes in relation to the 

Anti-Fraud program?

Options: A. directive B. adversarial C. indifferent D. supportive

The IEAS continued to support work led by management on the

Anti-Fraud program at UN-Women. Among others, it prepared a

lessons-learned memorandum on red-flags/potential fraud risks

related to managing implementing partners. It also initiated a lessons

learned/integrity review of vehicle management, facilitated reporting

on potential allegations to OIOS, and continued to support OIOS on

its reports and referrals. IAS also assisted management in preparing

the fraud assessment and fraud prevention training. The ACO is

pleased to see the increased focus on anti-fraud awareness raising

and training to improve the low-level maturity rating of this capacity

as reported in the 2021 ACO report to the EB.

Source_text:

Figure 15: Reference Type Sample Question.

Task Name Multi-QA

Type Comparison

Paragraph_id 88,92

Question: Which cross-paragraph concept in 88, 92 illustrates the necessary steps

towards enhancing child protection?

Options: A. prevention B. implementation C. negotiation D. observation

88. Given continued grave violations against children in Somalia, I

call upon all responsible United Nations bodies to ensure that the

protection of children is addressed as a priority in the ongoing peace

process child protection advisers should be incorporated in the

United Nations Political Office for Somalia, and in any future

deployment of a United Nations peacekeeping operation, to serve as

interlocutors with child protection actors.

92. My Special Representative for Children and Armed Conflict is

requested to undertake a mission to Somalia in the near future to

assess first-hand the situation for children and the implementation of

the recommendations in my reports and those of the Security Council

Working Group on Children and Armed Conflict."

Source_text:

Figure 16: Comparision Type Sample Question.
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Task Name Multi-QA

Type Synthesis

Paragraph_id 16,18

Question: Which synthesis element across paragraphs 16, 18 demonstrates their 

interconnected approach to achieving goals?

Options: A. innovation B. independence C. collaboration D. competition

16. At its second regular session of 2015, CEB endorsed the global

initiative on\ndecent jobs for youth. Prepared through an inter-

agency consultative process under the leadership of the International

Labour Organization … on the promotion of sustained, inclusive and

sustainable economic growth, full and productive employment and

decent work for all.

18. One initiative that gained particular momentum in 2015 was the

United Nations system data catalogue project, the aim of which is to

maximize the benefits of making United Nations system data open

and accessible to the public and other key stakeholders,…As of the

end of 2015, the catalogue comprised nearly 4,000 data sets. An

initial public launch of the data catalogue in 2016 is foreseen. III.

Promoting system-wide preparation for and follow-up to United

Nations conferences and summits.

Source_text:

Figure 17: Synthesis Type Sample Question.

Task Name Multi-QA

Type Retrieval

Paragraph_id 4,28

Question: Comparing Paragraph 4 and Paragraph 28, and noting that Paragraph 28

focuses on UN system climate coordination, in which paragraph

(Paragraph 4 or Paragraph 28) is the explicit statement found that the

General Assembly welcomed efforts to increase effectiveness and

accountability?

Options: A. Paragraph 4 B. Paragraph 28 C. Neither D. Both paragraphs

4.In the same resolution, the General Assembly welcomed efforts to

increase theeffectiveness, accountability and credibility of the United

Nations system, includingby reducing administrative and procedural

burdens. …The Assembly made additional requests relating to a

coordinatedapproach to multilingualism, the mainstreaming of

support for South-Southcooperation and the continuation of dialogue

between CEB and Member States.

28. At the session, the collective engagement of the United Nations

system was\ncoordinated and streamlined with a view to making the

climate-related knowledge …… Enhancing the effectiveness,

efficiency, coherence and impact of United Nations operational

activities for development.

Source_text:

Figure 18: Retrieval Type Sample Question.
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D.2 CLOZE

We partition each document’s main body into three position-indexed regions, and identify para-
graphs and select key sentences stratified by paragraph-level position within each region by LLM.
For documents of 8K–16K tokens, we select nine target sentences to cover both document-level and
paragraph-level positions; for documents over 16K tokens, we select twelve target sentences.

For each selected sentence, we use an LLM to generate confusion sentences that are locally topical
yet inconsistent with the exact entailment required at the blanked location. We then assemble a fixed-
size option set: 10 choices (9 gold + 1 confusion) for 8K–16K-token documents and 14 choices (12
gold + 2 confusion) for documents over 16K tokens. Outputs are post-processed by human check.

For chapter-level inputs divided into beginning, middle, and ending sections at both the paragraph
and document levels, the LLM is prompted to identify key sentences (e.g., core or turning points) at
the specified positions. Based on these selected sentences, the LLM then generates distractors that
alter certain details while remaining topically consistent with the original content.

To verify quality, human evaluators first visualize each LLM-selected sentence in the original UN
PDF to support precise inspection. They begin by checking the positional correctness of the ex-
tracted sentences using both programmatic and manual methods. Since UN reports provide explicit
paragraph numbering and sentences are segmented by periods, the evaluators can automatically con-
firm the sentence index and its exact location within the document. After confirming the position,
the evaluators examine the semantic role of each selected sentence by inspecting the PDF visualiza-
tion to determine whether it functions as a core, transitional, or summary statement. They also verify
that the selected sentences are evenly distributed across positional categories within the document
to avoid bias.

For distractor validation, the evaluators assess topic fidelity and entity consistency to ensure that
each distractor remains aligned with the referenced sentence while introducing incorrect or altered
details relative to the ground truth. They then compare every distractor with all correct answer
options in the cloze-style task to guarantee a clear and unambiguous distinction between the correct
choice and the distractors.

At the evaluation, the input is the full document with the target sentence replaced by a blank marker
at its original location, the corresponding option set, and an instruction prompting LLM to select the
sentence that best aligns with the local context.

You are a helpful assistant for extracting sentences from UN reports.Please extract exactly [n_this] important sentences from 
the [PARAGRAPH_POS] paragraphs of the text below. Within those paragraphs, focus specifically 
on [SENTENCE_POS] sentences. 



Text: [CONTENT]

Paragraph_Postion: [PARAGRAPH_POS]

Sentence_Postion:  [SENTENCE_POS] 



Requirements: ......


Figure 19: Prompt for selecting key sentences.

You will generate NEW sentences based on the themes of the provided seed sentences.



Original_Sentences: {sentences}

Count: {Count}



Requirements: ......


Figure 20: Prompt for generation confusion sentences.

D.3 PARAGRAPH FILLING

We partition each document into the Begin, Middle, and End regions. Within each region, we use
LLM to extract key paragraphs. For 8K–16K-token documents, we select two target paragraphs
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per region; for documents over 16K tokens, we select three per region, ensuring balanced coverage
across regions.

Human evaluators then examine each LLM-selected paragraph by visualizing it directly in the
original UN PDF. Using this visualization, the evaluators verify the semantic role of the para-
graph—assessing whether it functions as a core, transitional, or summary element, and additionally
confirm that the selected paragraphs are evenly distributed across positions within each document to
avoid positional bias.

At evaluation time, we remove the paragraph and insert a blank marker at its original location. The
model receives the document replaced by blank marker and an instruction to reconstruct the missing
paragraphs using surrounding context.

You are tasked with selecting [target_count] Arabic-numbered paragraphs from the [position] part of a document. The text 
contains Arabic-numbered paragraphs (e.g., 1., 2., 3., etc.). You need to select exactly [target_count] paragraphs that are most 
representative and important for understanding this [position] section.



TEXT FROM [POSITION_UPPERCASE] SECTION: [text_content]



Requirements: ......


Figure 21: Prompt for selecting key paragraphs.

D.4 CONTEXT

For the summarization task, we programmatically extract the original summary from each document
and perform cross-lingual verification by matching it against the corresponding summary section in
the UN PDF across all six language versions.
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E EXPERIMENTAL SETUP

This section describes the experimental setup for MGAL, covering output controls, context man-
agement, tool-use constraints for agentic models, the judging protocol for generative tasks, and the
evaluation prompts.

E.1 INTERPRETING METRICS ACROSS GRANULARITIES

Tasks at different granularities in MGAL adopt different evaluation metrics: accuracy for word- and
sentence-level QA, ROUGE-L for paragraph filling, and ROUGE-L or BLEU for document-level
summarization and translation. Since these metrics are not directly comparable in absolute value,
we emphasize relative performance trends rather than raw scores when analyzing results across
granularities.

Specifically, we interpret higher accuracy on word- and sentence-level QA as evidence that fine-
grained comprehension is easier for current LLMs, while substantially lower ROUGE-L scores on
paragraph filling and summarization indicate persistent difficulty in generating coherent and fac-
tually grounded outputs at larger units. This rationale allows us to compare trends across tasks
without conflating metric scales, and ensures that our conclusions about fine- versus coarse-grained
performance reflect relative difficulty rather than absolute score magnitudes.

E.2 MAXIMUM OUTPUT LENGTH CONTROLS

To prevent non-stop generation, we cap the model’s maximum output length per task/dataset. For
classification-style tasks (e.g., Cloze, Single-QA, Multi-QA), we enforce single-token or single-
word answers via explicit instructions and post-hoc normalization.

E.3 TOOL-USE CONTROL FOR AGENT-BASED LLMS

For models with agent capabilities (e.g., tool calls, browsing, retrieval), we disable external tools
and explicitly instruct the model to rely solely on the provided text. This prevents access to outside
knowledge sources or caches and yields a fair cross-model comparison under identical evidence
exposure.

E.4 LLM-AS-A-JUDGE FOR PARAGRAPH-FILLING

For paragraph filling, we adopt LLM-as-a-judge for evaluation. The judge is given the previous
and next paragraphs of the paragraphs that need to be generated, the gold reference, and the system
output, and is instructed to ground every decision in the provided text rather than using external
knowledge or chain-of-thought rationales.

Motivated by Kim et al. (2025a), we perform scoring on five dimensions: Topic Fidelity, Local
Coherence, Entity Consistency, Instruction Following, and Format Compliance. Each dimension is
scored as an integer from 0 to 20, and the overall score is the sum 0 to 100. We prompt LLMs’
judgment should be justified with brief, text-grounded reasons that cite evidence from the original
document and include a short quote from a previous paragraph, ground truth, and the next paragraph.

In Topic Fidelity, the judge verifies that the generation preserves the central topic and key claims of
the reference without improperly narrowing or expanding its scope, and without introducing unsup-
ported assertions. Local Coherence assesses logical and temporal continuity between the generation
and its neighbors, including transitions, pronoun and tense alignment, and causal or contrastive links.
Entity Consistency checks that subjects, events, times, locations, organizations, numbers, and coref-
erence match the reference and the constraints implied by the surrounding context, with no invented
attributes. Instruction Following evaluates adherence to the task constraints (e.g., style, perspective,
length, prohibited content) as specified to the judge. Format Compliance evaluates whether the out-
put conforms exactly to the required schema or template, including structure, headings, bulleting,
tags, field ordering, and length limits.

We use advanced closed-source models GPT-5, Gemini-2.5, and Grok-4 as judges and report the
average evaluation score. For the LLM-as-a-judge setting in the paragraph-filling task, the judges
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evaluate each generated paragraph using the ground-truth paragraph and its surrounding context.
The detailed inputs and prompts are provided in Appendix F.4. Each LLM judge outputs both a
score and explanatory evidence. Human evaluators then verify the score and the accompanying
evidence against the generated paragraph and the ground truth to ensure that the LLM’s judgment is
faithful, well-grounded, and free from hallucinated evidence.

We report the mean score using GPT-5, Gemini-2.5-flash and Grok 4 as a judge and note robustness
checks by humans. The exact prompt and field-level instructions used by the judge are shown in the
Figure 22.

"You are an impartial academic evaluator. Your task is to judge the GENERATED paragraph ("gen") against the REFERENCE 
paragraph ("ref") with access to its immediate context ("prev" and "next"). Rely ONLY on the provided text (no external 
knowledge). Do not rewrite anything; just evaluate.



prev: {prev}

ref: {ref}

next: {next}

gen: {gen}



Score each dimension as an INTEGER from 0 to 20. Give clear, text-grounded reasons with quotes (≤30 words) from prev/
ref/next whenever deducting points.



1) Topic Fidelity (0–20)

   - Measures whether gen preserves the central topic and key claims of ref without narrowing/expanding scope improperly 
or introducing unsupported assertions.



2) Local Coherence w.r.t. Context (0–20)

   - Checks logical/temporal continuity and discourse flow between gen and its neighbors (prev, next): transitions, pronoun/
tense alignment, causal/contrast links.



3) Entity Consistency (0–20)

   - Verifies that subjects, events, time, locations, organizations, numbers, and coreference in gen match ref (and constraints 
implied by prev/next). No invented attributes.



4) Instruction Following (0–20)

   - Evaluate gen against the task instructions and constraints below. Penalize any ignored or violated requirement (e.g., 
style, perspective, length, prohibited content).

   - Task Instructions: {task_instructions}



5) Format Compliance (0–20)

   - Check whether gen matches the required output format/schema/template exactly (structure, headings, bulleting, tags, 
fields, ordering, length constraints, etc.).

   - Expected Format Rules: {expected_format_rules}



OUTPUT:"""

Figure 22: The prompt for LLM-as-a-judge.

E.5 HUMAN EVALUATION FOR PARAGRAPH-FILLING

Under the same evaluation guidelines used in the LLM-as-a-judge setting, we instructed our human
evaluators to assess outputs in both English and Chinese.

We calculated the relationships between different indicators in the Average row using the Pearson
Correlation Coefficient, comparing the score sequences of all indicators across the LLM-as-a-judge
and human evaluation tables. From the average scores of all models, there is a strong positive
correlation (r = 0.871) between the LLM-as-a-judge indicators and the corresponding human as-
sessment indicators. Consistently, both evaluations reveal the same fluency–consistency gap that
models achieve high fluency scores but exhibit low consistency.

The complete human evaluation results are provided in the Appendix ??.

E.6 EVALUATION PROMPTS

We standardize task prompts across languages and granularities; all prompts are multilingual with
explicit answer-format constraints.
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You are tasked with answering a multiple-choice reading comprehension question based on the provided document. You 
need to carefully read and understand the document, then select the most appropriate answer from the given options.





DOCUMENT:


{document_body}





QUESTION:


{question}





OPTIONS:


{opts_joined}





INSTRUCTIONS:


1. Read the document thoroughly and understand its content


2. Analyze the question carefully to understand what is being asked


3. Review all four options (A, B, C, D) and evaluate which one best answers the question based on the document


4. Consider the context, details, and specific information mentioned in the document


5. Select the option that is most accurate and directly supported by the document content


6. Provide ONLY the single capital letter (A, B, C, or D) as your answer


7. Do not include any explanation, reasoning, or additional text





OUTPUT FORMAT:


[Single letter: A, B, C, or D]





ANSWER:"""






Figure 23: An example prompt for the QA task.

You are tasked with filling in the blanks in a text passage. The text contains numbered blanks marked as <1>, <2>, <3>, etc. 
You need to select the most appropriate choice for each blank from the given options.



TEXT WITH BLANKS:

{original_text}



ANSWER CHOICES:

{choices_formatted}



INSTRUCTIONS:

1. Read the text carefully and understand the context

2. For each numbered blank <1>, <2>, <3>, etc., select the most appropriate choice from the given options

3. Fill the blanks in sequential order (<1> first, then <2>, then  <3>, etc.)

4. Do not use any web search tools or output thought chains, only answer based on the knowledge of the model itself.

5. Output ONLY the answers in the format: number:letter, separated by commas. Do not output the thinking chains.

6. Example output format: 1:A, 2:B, 3:C



OUTPUT:"""

Figure 24: An example prompt for the Cloze task.

You are tasked with generating appropriate paragraphs to fill in the blanks in a text passage. The text contains numbered 
blanks marked as [1], [2], [3], etc. You need to generate coherent and contextually appropriate paragraphs for each blank 
based on the surrounding context.



TEXT WITH BLANKS:

{original_text}



BLANKS TO FILL: {blanks_list}



INSTRUCTIONS:

1. Read the text carefully and understand the context around each blank

2. For each numbered blank [1], [2], [3], etc., generate a coherent paragraph that fits naturally with the surrounding text

3. Each generated paragraph should be substantive (at least 2-3 sentences) and maintain the style and tone of the original 
text

4. Consider the logical flow and continuity of the entire document

5. Output your generated paragraphs in the exact format shown below

6. Do not include any additional text, explanations, or comments



OUTPUT FORMAT:

1: [Generated paragraph for blank [1]]

2: [Generated paragraph for blank [2]]

3: [Generated paragraph for blank [3]]

(continue for all blanks)



OUTPUT:"""

Figure 25: An example prompt for the Paragraph filling task.
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You are a professional translator who can accurately preserve the meaning, tone, style, and facts of the source text when 
translating into English (EN). You must strictly follow English punctuation and formal written expression norms. You will keep 
the original formatting, paragraph structure, numbering, quotations, mathematical formulas, code snippets, and any 
placeholders or tags (such as [1], {VAR}, <tag>). You will not add explanations, annotations, or subjective opinions, nor will 
you paraphrase, expand, or omit factual information. For proper nouns such as names of people, places, or organizations, you 
should either use their commonly accepted English equivalents or keep the original if no standard translation exists. Do not 
create phonetic transliterations arbitrarily.





Please translate the following text into English (EN).


Full text: {src_text}


Target language: English (EN)


Style and rules: 


	- Preserve the meaning, tone, and level of formality of the source text; follow English writing conventions and punctuation 
rules.


	- Keep paragraph breaks, lists, numbering, quotations, mathematical formulas, code, and any inline markers.


	- Retain and output all placeholders or tags exactly as they are (e.g., [1], {VAR}, <tag>).


	- Ensure consistency and accuracy for proper nouns, dates, numbers, and terminology; only localize units or formats when 
there is a clear English standard.


	- Do not add or remove factual information, invent content, or include annotations or explanations.





Instructions: 


	1) Read the entire text carefully to understand the context and meaning.


	2) Translate the content into natural, fluent, and accurate English strictly following the rules above.


	3) Keep the original paragraphing and formatting; placeholders and tags must be preserved verbatim.


	4) Output only the translated text itself, without any additional content.





Output format: [Paste your English translation here]


Figure 26: An example prompt for the Translation task.

You are an expert summarizer who writes faithful, concise, and well-structured summaries that preserve the original text’s 
key claims, evidence, and conclusions without adding new information.





Summarize the following document.





FULL TEXT:{full_text}


SUMMARY REQUIREMENTS:


        - Faithfulness: No new facts; keep numerical values and named entities accurate.


        - Coverage: Include the central thesis, 3–5 most important supporting points, and any conclusions/implications.


        - Clarity: Prefer unambiguous, non-redundant sentences.





INSTRUCTIONS:


	1. Identify main objective and top supporting arguments/evidence.


	2. Compress without losing essential meaning or key qualifiers.


	3. Keep the style and register requested.


	4. Do not include meta commentary.





OUTPUT FORMAT (plain text only):[Generated summary here]

Figure 27: An example prompt for the Summarization task.
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F COMPREHENSIVE ANALYSIS

F.1 GRANULARITY

Word In the Single-QA task, models exhibit uniformly high performance. Multi-Paragraph QA
also achieves consistently high accuracy, for several models it even surpasses the single-paragraph
setting, indicating that LLMs can aggregate cues across paragraphs to more reliably select the correct
answer.

Sentence Blank omissions are a major source of error. Rates peak when the blank appears near
the beginning of the document and decline monotonically toward the end shown in Figure 28. In
our evaluation setting, the instruction and sentence candidate options are appended after the docu-
ment, placing the decision anchor at the end. Prior work shows that long-context language models
underweight distant evidence due to recency-weighted attention, and that moving salient segments
closer to the decoding point mitigates this effect (Peysakhovich & Lerer, 2023). Moreover, studies
on positional calibration and controlled placement indicate that performance is sensitive to where
the relevant evidence sits relative to the anchor (Hsieh et al., 2024b; Xu et al., 2024). Therefore,
Early blanks maximize the anchor–evidence distance that makes LLMs error. Following the abla-
tion in Section 4.5, we relocate instructions, and find that it significantly reduces omissions at the
corresponding position, which further confirm our explanation.

begin middle end

begin

middle

end
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Figure 28: Blank omissions heatmap by position across models.

Most sentence-level errors in the generated options arise from local semantic crowding around the
blank. Under local semantic crowding, where neighboring sentences share topics and entities, mod-
els preferentially follow surface cues(e.g., connectives or repeated entities) over the discourse role
that the sentence plays in the surrounding argument, such as background, explanatory, or outcome.

For example, given an opening sentence like “The Working Group on the Universal Periodic Review,
established in accordance with Human Rights Council resolution 5/1 of 18 June 2007, held its first
session from 7 to 18 April 2008.”, the correct next sentence should be “At its 15th meeting held on 16
April 2008, the Working Group adopted the present report on Algeria.” (a development sentence).
However, models often prefer a summary-style sentence such as “The review of Algeria was held
at the 11th meeting on 14 April 2008.”, which appears plausible due to repeated years and entities
but serves the wrong discourse role, redundantly restating rather than advancing the argument. The
position choices heatmap with the ground truth and model predictions are in Figure 29.
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We further analyze failure modes using LLM and human annotations to identify the most common
error categories in model predictions in Appendix F.2.
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Figure 29: Position choices heatmap with the ground truth and model predictions.

Beyond aggregate accuracy, we observe systematic option reuse illustrated in Figure 30. Within a
same cloze task, some models repeatedly select the same choice, with selections concentrated on
early position: A and B more than C and D, and far more than later options. This pattern indicates
an early-position bias and suggests reliance on option-frequency priors (Pezeshkpour & Hruschka,
2024b; Zheng et al., 2023a) rather than item-specific evidence under uncertainty. An ablation that
shuffles option order to test in Section4.5.
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Figure 30: Repetition letter distribution.

Paragraph Across models, generated paragraphs show a systematic bias relative to the reference:
they mimic the document’s surface register while underweighting diagnostic cues in adjacent para-
graphs, yielding unsupported entity assertions and drift from the source’s explanatory trajectory.
Faithful reconstruction relies less on global paraphrase and more on local entailment with neighbor-
ing paragraphs and selective aggregation of proximal evidence(Maynez et al., 2020).
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We also observe brittle local coherence: entity states and temporal anchors are not consistently
propagated across adjacent context, producing continuations that read fluently yet remain locally
ungrounded. For example, models may overlook concrete cues in the surrounding paragraphs and
confidently assert that a policy has already been adopted when the source text only outlines action-
able recommendations; they may also hallucinate on generating actors, dates, or institutions that are
not present in the document. The generated text is stylistically consistent and reads smoothly, but it
is factually inconsistent with the document. This illustrates the gap between fluency and consistency
in long-context generation.

Document Models underperform on MGAL summarization: expert summaries serve as scoping
prefaces that set the mandate, framing, and outline-level topic coverage while constraining claims
to verifiable source content. By contrast, model outputs drift into substantive synthesis, reorder
themes, enumerate cases, and import extra textual detail. The generated summaries assert trends or
policy shifts without in-context support, resulting in abstractive drift and hallucinations. These pat-
terns explain why LLM-generated summaries, though superficially fluent, align poorly with expert
references, revealing a persistent gap between fluency and consistency in generated outputs.

In translation, most models show a higher-resource advantage, scoring consistently higher on En-
glish and other higher-resource languages than on lower-resource ones. Moreover, the GPT-5 and
Gemini-2.5-flash exhibit strong performance in the Translation task among all models evaluated,
significantly outperforming the average translation score of 16.85.

Cross-granularity synthesis and implications From a layered analysis across four coherence-
aligned linguistic granularities, we find that long-context LLMs perform well in word-level, but
struggle in coarser-grained tasks. Long-context LLMs capture global semantics but struggle to rec-
ognize and exploit fine-grained discourse roles. While errors at finer units accumulate and propagate
to sentences, paragraphs, and documents, yielding outputs that are superficially fluent yet weakly
consistent: intra-paragraph organization is loose, and sentence-level commitments are unstable, ul-
timately depressing overall performance.

F.2 GENERATED OPTIONS ANALYSIS

We use GPT-5 and Gemini-2.5 to categorize sentence-level option-selection errors in Cloze with a
single shared, reference-aware prompt. Each judge reads the local paragraph context and the two
candidate sentences: the paragraph immediately before the target sentence; the current paragraph
containing the correct sentence; and the paragraph immediately after, then returns a strict verdict.
The taxonomy has three mutually exclusive classes:

• Discourse-role underuse (M1). In local semantic crowding, the sentence chosen from the model
does not fill the reasoning role implied by the surrounding chain (e.g., “Given α ⇒ β,” “Although
α, still β,” “β because α”). It functions as a parallel, rephrasing, or background statement, whereas
the gold sentence uniquely completes the required role.

• Surface-cue and heuristic overuse (M2). The model-picked sentence is better explained by sur-
face signals—explicit connectives (e.g., “however,” “therefore”), repeated entities, high lexical
overlap, length, or format than by context fit or entailment from the local context.

• Context or knowledge deficit (M3). The model-picked sentence conflicts with constraints evident,
such as topic, entities, time, causal direction, or presupposes knowledge unsupported by the given
context.

We also record secondary facets to aid diagnosis: S1 discourse-role misidentification (reserved for
M1), S2 coreference drift, S3 connective or overlap lure, S4 temporal or ordinal misread, S5 negation
or scope error, S6 locally coherent but globally incoherent, S7 world-knowledge gap, and S8 format
or fluency bias.

Each case receives exactly one main class; secondary tags may be added. In a single pass, the judge
prioritizes M1 if the gold uniquely fills the role, defaults to M2 when the choice is best explained
by surface cues, and otherwise assigns M3. Ambiguity is resolved conservatively with reduced
confidence.
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The results are illustrated in Figure 31. We categorize the Cloze errors using the LLMs judging pro-
tocol and find a highly skewed distribution in which M1 dominates, especially in the S3 subset. This
suggests our finding that under local semantic crowding—adjacent sentences sharing topics and en-
tities—models over-follow surface cues (connectives, lexical overlap, formatting) while underusing
discourse-role reasoning, failing to fill the role-slot in patterns such as “Given α ⇒ β”, “Although
α, still β”, or “β because α”. This cue-following induces systematic mislabeling that mid-paragraph
background or result sentences are treated as openings, and post-development summaries are mis-
read as first sentences, because neighboring sentences share topic and register, forming deceptively
plausible decoys.
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Figure 31: Sentence analysis results heatmap.

F.3 CONTEXT MEMORIZATION ANALYSIS

To investigate the model’s reliance on parametric knowledge versus contextual information, we con-
ducted an context memorization study in Section 4.4. The model average accuracy drops sharply
from 0.73 (with context) to 0.31 (without context), demonstrating that performance is largely at-
tributable to information drawn from the input rather than memorization.

We find that the model successfully answers questions related to well-known public facts, such as
the ”2030” timeline for malaria targets and the specific designation of a widely-known UN docu-
ment. However, performance collapses when questions require information specific to the text. For
instance, the model failed to identify ”2016” as the starting point for a strategic guidance initiative,
defaulting instead to the more commonly known ”2030 Agenda”. Similarly, without the text explic-
itly stating ”educational and financial obstacles,” the model incorrectly generalized the number of
obstacles as ”many” instead of the correct answer ”two” in the original document.

The findings show that questions grounded in commonsense or general policy remain moderately
answerable without context, while those requiring document-specific details degrade substantially.
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G FULL RESULTS ON MGAL

G.1 MULTILINGUAL PERFORMANCE

Table 4: Model Performance Across All Tasks and Languages

Task Model English Chinese Spanish French Russian Arabic

Single-QA

GPT5 81.25 78.33 80.83 82.29 77.50 78.54
Claude Sonnet 4 72.75 78.95 70.00 74.38 66.88 71.88
Gemini-2.5-flash 79.16 75.42 78.54 78.54 73.75 76.67
Grok 4 78.75 76.25 78.75 79.17 62.5 77.29
Doubao-Seed-1.6 78.54 75.83 78.75 81.46 68.75 76.46
Qwen3-235B-A22B 82.29 53.75 77.71 77.71 66.04 73.54
Kimi-K2 78.95 73.33 78.54 73.13 67.08 75.42
DeepSeek-V3.1 79.79 74.79 76.04 79.79 66.04 76.88
GLM-4.5 76.04 68.96 75.42 78.75 61.25 53.33
Qwen3-30B-A3B 73.33 53.54 75.42 78.75 67.00 70.63
Mistral-Small-3.2-24B 74.79 60.42 73.33 73.75 61.25 71.46
Gemma-3-27B 72.29 66.88 67.92 67.92 59.79 65.42

Multi-QA

GPT5 82.71 56.88 62.5 60.42 54.17 67.29
Claude Sonnet 4 79.38 53.75 56.25 57.92 47.08 60.21
Gemini-2.5-flash 77.08 56.67 59.58 62.29 53.75 59.58
Grok 4 78.54 55.00 37.71 54.79 39.58 40.21
Doubao-Seed-1.6 72.29 57.08 56.67 58.96 45.83 52.92
Qwen3-235B-A22B 82.29 44.58 45.83 59.58 56.67 50.83
Kimi-K2 83.33 49.58 53.75 52.71 46.04 49.58
DeepSeek-V3.1 78.96 50.21 52.08 45.00 53.75 53.75
GLM-4.5 72.08 48.96 56.67 50.21 61.25 70.83
Qwen3-30B-A3B 78.54 44.58 52.08 52.08 47.08 52.5
Mistral-Small-3.2-24B 80.21 73.13 75.42 72.92 53.33 70.42
Gemma-3-27B 78.33 71.25 67.08 68.13 59.38 63.13

Cloze

GPT5 52.89 26.39 26.14 26.56 25.34 26.38
Claude Sonnet 4 25.47 19.91 20.48 20.82 21.61 20.88
Gemini-2.5-flash 52.87 20.70 20.01 20.10 20.80 21.49
Grok 4 29.17 19.93 20.29 20.89 17.66 21.54
Doubao-Seed-1.6 47.25 14.59 14.24 13.78 13.81 13.13
Qwen3-235B-A22B 43.92 16.49 16.06 15.87 13.47 15.98
Kimi-K2 27.27 8.33 9.32 9.32 7.78 9.95
DeepSeek-V3.1 37.75 13.83 14.59 14.03 9.40 14.28
GLM-4.5 34.79 33.18 12.27 11.25 9.48 10.83
Qwen3-30B-A3B 37.76 11.36 12.84 12.69 11.55 13.04
Mistral-Small-3.2-24B 40.57 21.90 42.90 42.57 6.78 39.35
Gemma-3-27B 24.09 13.52 25.43 25.33 10.11 23.73

Filling

GPT5 17.84 14.39 17.92 18.79 3.46 14.43
Claude Sonnet 4 20.23 15.23 3.63 20.60 1.68 15.49
Gemini-2.5-flash 20.05 16.70 19.65 20.76 2.90 15.76
Grok 4 28.82 15.88 25.85 24.23 4.10 20.51
Doubao-Seed-1.6 19.67 16.36 18.75 19.22 2.76 14.59
Qwen3-235B-A22B 18.43 15.00 18.63 18.98 3.60 13.67
Kimi-K2 17.26 13.03 17.09 18.40 3.13 13.23
DeepSeek-V3.1 18.23 15.28 16.72 19.40 3.77 13.86
GLM-4.5 20.95 16.61 19.49 20.76 3.64 15.44
Qwen3-30B-A3B 17.54 13.89 17.33 17.92 3.33 12.28
Mistral-Small-3.2-24B 18.72 15.98 19.11 19.95 3.25 13.76
Gemma-3-27B 17.20 15.08 18.57 19.25 4.14 13.76

Summary

GPT5 13.17 16.73 15.92 16.29 16.04 14.64
Claude Sonnet 4 16.56 27.36 20.82 21.65 20.43 25.72
Gemini-2.5-flash 17.64 33.06 22.66 23.51 20.95 25.55
Grok 4 16.42 23.94 22.92 22.7 12.61 14.97
Doubao-Seed-1.6 16.51 29.5 18.43 18.74 11.07 8.21
Qwen3-235B-A22B 19.13 35.53 22.24 23.15 21.39 24.17
Kimi-K2 16.41 24.02 19.36 20.53 14.78 15.93
DeepSeek-V3.1 22.14 36.61 24.05 24.47 23.12 26.53
GLM-4.5 21.13 35.34 26.6 28.71 21.19 28.3
Qwen3-30B-A3B 17.63 30.32 23.56 23.44 17.33 24.16
Mistral-Small-3.2-24B 21.8 2.69 4.76 3.37 1.55 2.28
Gemma-3-27B 21.48 2.9 4.03 2.91 1.57 2.54

Translation

GPT5 36.57 37.16 36.65 32.03 33.98 35.44
Claude Sonnet 4 21.58 23.07 9.83 10.97 12.49 11.86
Gemini-2.5-flash 38.92 31.97 39.65 35.32 34.25 36.92
Grok 4 35.52 39.32 35.85 32.52 11.05 32.04
Doubao-Seed-1.6 5.88 4.55 12.82 5.93 1.64 6.14
Qwen3-235B-A22B 24.25 13.51 7.23 4.37 3.04 4.86
Kimi-K2 4.47 5.36 5.47 5.78 1.62 4.09
DeepSeek-V3.1 17.46 36.96 35.23 30.61 17.40 33.46
GLM-4.5 25.34 23.19 25.32 22.99 10.41 21.65
Qwen3-30B-A3B 29.98 14.32 8.21 6.90 3.94 2.52
Mistral-Small-3.2-24B 1.12 0.59 2.63 2.91 0.14 2.38
Gemma-3-27B 4.66 0.28 1.97 2.12 0.77 1.89
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G.2 POSITIONAL PERFORMANCE

Table 5: Model Performance in Single-QA Task at Document-Level.Accuracy on the Single-QA
task, categorized by the position (Begin, Middle, End) of the single answer-bearing paragraph.

Task Model Begin Middle End

Single-QA

GPT5 80.42 78.85 80.21
Claude Sonnet 4 75.44 77.43 71.75
Gemini-2.5-flash 77.4 75.94 77.71
Grok 4 77.19 78.75 80.31
Doubao-Seed-1.6 76.88 76.62 76.88
Qwen3-235B-A22B 72.4 69.27 71.35
Kimi-K2 76.67 74.17 72.4
DeepSeek-V3.1 76.67 74.27 75.73
GLM-4.5 72.08 64.38 66.88
Qwen3-30B-A3B 71.75 67.29 70.18
Mistral-Small-3.2-24B 72.17 69.51 70.26
Gemma-3-27B 70.04 63.75 68.03

Table 6: Model Performance on Multi-QA Task at Document-Level.Rows indicate the position of
the first paragraph and columns indicate the position of the second, with each cell representing the
performance for the corresponding positional pair (e.g., ’Begin-Middle’).

Task Position Model Begin Middle End

Multi-QA

Begin

GPT5 76.54 78.79 84.18
Claude Sonnet 4 77.88 72.86 79.52
Gemini-2.5-flash 75.12 77.8 70.69
Grok 4 72.79 66.08 69.71
Doubao-Seed-1.6 66.93 57.44 74.54
Qwen3-235B-A22B 70.21 72.15 75.02
Kimi-K2 76.58 68.04 84.04
DeepSeek-V3.1 73.43 70.65 79.63
GLM-4.5 72.67 70.68 79.34
Qwen3-30B-A3B 67.25 68.56 72.12
Mistral-Small-3.2-24B 54.73 72.24 73.02
Gemma-3-27B 64.08 76.52 71.21

Middle

GPT5 78.79 79.64 85.23
Claude Sonnet 4 72.86 70.35 82.19
Gemini-2.5-flash 77.80 80.22 82.93
Grok 4 66.08 66.78 72.12
Doubao-Seed-1.6 67.44 70.75 69.68
Qwen3-235B-A22B 72.15 73.31 74.12
Kimi-K2 68.04 79.31 80.41
DeepSeek-V3.1 70.65 71.56 68.79
GLM-4.5 70.68 73.59 75.68
Qwen3-30B-A3B 68.56 69.23 64.35
Mistral-Small-3.2-24B 72.24 67.28 66.94
Gemma-3-27B 76.52 75.61 71.4

End

GPT5 84.18 85.23 74.19
Claude Sonnet 4 79.52 82.19 77.47
Gemini-2.5-flash 70.69 82.93 71.39
Grok 4 69.71 72.12 66.5
Doubao-Seed-1.6 74.54 69.68 67.83
Qwen3-235B-A22B 75.02 74.12 65.07
Kimi-K2 84.04 80.41 75.62
DeepSeek-V3.1 79.63 68.79 63.25
GLM-4.5 79.34 75.68 61.25
Qwen3-30B-A3B 72.12 64.35 57.98
Mistral-Small-3.2-24B 73.02 66.94 65.43
Gemma-3-27B 71.21 71.4 71.15
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Table 7: Model performance on the Cloze task, evaluated by hierarchical position. We measure
performance at the beginning (Begin), middle (Middle), and end (End) of the document, and for
each of these sections, we further evaluate at the beginning, middle, and end of the target paragraph.
Scores are reported in accuracy.Best results are marked inbold, second best results are underlined.

Task Document-level Model

Paragraph-level

Begin Middle End

Cloze

Begin

GPT5 30.17 21.34 25.79
Claude Sonnet 4 27.15 19.72 17.50
Gemini-2.5-flash 26.74 24.54 21.73
Grok 4 28.52 22.83 20.92
Doubao-Seed-1.6 30.31 21.32 14.77
Qwen3-235B-A22B 27.69 21.43 18.80
Kimi-K2 22.01 14.87 11.93
DeepSeek-V3.1 26.65 18.52 15.48
GLM-4.5 24.37 18.11 13.23
Qwen3-30B-A3B 30.03 18.15 14.12
Mistral-Small-3.2-24B 38.11 30.85 26.30
Gemma-3-27B 31.97 22.19 17.78

Middle

GPT5 35.79 34.55 31.07
Claude Sonnet 4 23.97 22.28 20.90
Gemini-2.5-flash 31.10 28.31 27.50
Grok 4 19.79 18.43 17.24
Doubao-Seed-1.6 22.79 19.36 17.68
Qwen3-235B-A22B 22.48 20.87 20.38
Kimi-K2 12.55 11.02 10.09
DeepSeek-V3.1 21.03 19.10 17.11
GLM-4.5 17.45 15.51 12.22
Qwen3-30B-A3B 16.10 15.57 14.86
Mistral-Small-3.2-24B 40.60 37.96 33.97
Gemma-3-27B 27.15 20.01 17.49

End

GPT5 34.35 30.99 28.84
Claude Sonnet 4 22.97 22.78 19.75
Gemini-2.5-flash 27.56 26.20 23.21
Grok 4 2.31 22.66 20.79
Doubao-Seed-1.6 19.18 15.95 14.18
Qwen3-235B-A22B 18.88 16.49 15.84
Kimi-K2 8.77 8.17 7.26
DeepSeek-V3.1 13.71 13.04 11.65
GLM-4.5 11.30 10.89 9.80
Qwen3-30B-A3B 13.79 12.83 11.72
Mistral-Small-3.2-24B 29.21 27.43 23.33
Gemma-3-27B 18.65 13.94 12.51
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Table 8: Model performance on the Filling task, evaluated by position. We measure performance
at the beginning (Begin), middle (Middle), and end (End) of the document. Scores are reported in
Rouge-L and via an LLM-based judge (“LLM”).Best results are marked inbold, second best results
are underlined.

Task Model

Begin Middle End

Rouge-L LLM Rouge-L LLM Rouge-L LLM

Filling

GPT5 14.55 43.64 13.15 44.64 14.13 46.43
Claude Sonnet 4 13.77 43.57 12.87 50.39 15.49 49.34
Gemini-2.5-flash 16.04 46.26 14.66 52.96 15.26 52.18
Grok 4 19.58 44.27 19.28 51.34 19.34 56.14
Doubao-Seed-1.6 15.21 44.47 14.35 48.91 14.26 48.69
Qwen3-235B-A22B 14.85 44.88 13.89 48.86 13.55 48.56
Kimi-K2 13.89 42.39 12.84 43.08 12.66 46.27
DeepSeek-V3.1 14.74 42.68 13.42 45.01 13.32 45.91
GLM-4.5 16.46 43.24 14.95 48.12 14.98 47.07
Qwen3-30B-A3B 12.69 41.45 12.19 44.95 11.99 46.52
Mistral-Small-3.2-24B 15.16 39.61 14.42 45.43 14.49 47.04
Gemma-3-27B 14.48 41.71 13.65 44.49 14.03 45.93
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G.3 GRANULARITY TASK DETAILS PERFORMANCE

G.3.1 WORD-LEVEL SUBTASK

Table 9: Performance of various models on different types of word-level question-answering
tasks.On word-level question-answering tasks, GPT-5 achieves the highest scores in Numerical, Ref-
erence, and Synthesis. Gemini-2.5-flash leads in Classification, Qwen3-30B-A3B excels in Com-
parison, and Kimi-K2 delivers the best performance in Retrieval.Best results are marked inbold,
second best results are underlined.

Single-QA Multi-QA
Granularity-Tasks Numerical Classification Reference Comparison Retrieval Synthesis
GPT-5 73.44 80.73 85.31 62.66 76.52 87.01
Claude Sonnet 4 62.89 80.64 81.05 66.77 73.84 82.71
Gemini-2.5-flash 67.29 81.56 82.19 63.9 68.72 84.64
Grok-4 72.5 80.00 83.75 48.23 79.66 67.77
Doubao-Seed-1.6 69.12 78.75 82.5 55.91 65.73 74.77
Qwen3-235B-A22B 57.38 76.38 75.25 65.34 81.79 82.29
Kimi-K2 63.85 79.06 80.31 61.15 83.65 83.35
DeepSeek V3.1 63.23 79.17 84.27 59.33 73.25 79.87
GLM-4.5 61.33 78.24 80.35 60.97 65.76 77.08
Qwen3-30B-A3B 60.11 78.93 77.86 68.12 59.65 81.32
Mistral-Small-3.2-24B 55.23 77.26 79.45 64.17 72.29 72.29
Gemma 3-27B 52.93 75.81 73.09 56.24 67.59 77.48

G.3.2 PARAGRAPH FILLING USING LLM-AS-A-JUDGE AND HUMAN EVALUATION

Table 10: Model Performance Across Different Metrics. Headers are abbreviated as follows: Topic
Fid. (Topic Fidelity), Local Coh. (Local Coherence), Entity Cons. (Entity Consistency), Instr.
Foll. (Instruction Following), and Format Comp. (Format Compliance).Across various performance
metrics, Gemini-2.5-flash achieves the highest overall score, also leading in Entity Consistency and
Instruction Following. Grok-4 delivers the best Topic Fidelity, while Qwen3-235B-A22B is the
strongest in Local Coherence.Best results are marked inbold, second best results are underlined.

Model Topic Fid. Local Coh. Entity Cons. Instr. Foll. Format Comp. Overall

GPT-5 4.58 10.51 4.39 5.36 19.96 44.81
Claude Sonnet 4 4.83 12.03 5.24 5.74 19.81 47.65
Gemini-2.5-flash 5.90 11.27 6.37 6.91 19.93 50.38
Grok-4 5.94 11.83 5.89 6.70 19.86 50.22
Doubao-Seed-1.6 5.08 11.29 5.11 5.90 19.92 47.29
Qwen3-235B-A22B 4.67 12.07 4.91 5.74 20.00 47.39
Kimi-K2 4.14 10.51 3.94 5.19 20.00 43.79
DeepSeek V3.1 4.46 9.64 4.62 5.71 20.00 44.43
GLM-4.5 4.61 11.03 4.82 5.64 19.95 46.05
Qwen3-30B-A3B 3.79 10.34 4.59 5.11 19.98 43.80
Mistral-Small-3.2-24B 3.79 10.34 4.59 5.11 19.98 43.80
Gemma 3-27B 4.12 9.79 4.75 5.38 19.96 44.00
Average 4.68 10.90 4.93 5.70 19.95 46.08
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Table 11: Model Performance Across Different Metrics. Headers are abbreviated as follows: Topic
Fid. (Topic Fidelity), Local Coh. (Local Coherence), Entity Cons. (Entity Consistency), Instr.
Foll. (Instruction Following), and Format Comp. (Format Compliance).Across various performance
metrics, DeepSeek V3.1 achieves the highest overall score, also leading in Instruction Following.
Qwen3-235B-A22B delivers the best Topic Fidelity, Local Coherence and Entity Consistency, while
GPT-5 also lead in Entity Consistency and Qwen3-30B-A3B also delivers the best Local Coherence.
Grok-4 and Mistral-Small-3.2-24B are the strongest in Local Coherence. Best results are marked
inbold, second best results are underlined.

Model Topic Fid. Local Coh. Entity Cons. Instr. Foll. Format Comp. Overall

GPT-5 5.32 12.73 6.78 6.51 19.88 51.22
Claude Sonnet 4 5.26 12.42 6.54 6.63 19.84 50.69
Gemini-2.5-flash 5.93 11.89 6.32 6.28 19.85 50.27
Grok-4 5.14 11.96 5.87 5.74 20.00 48.71
Doubao-Seed-1.6 5.07 11.78 5.21 5.47 19.93 47.46
Qwen3-235B-A22B 6.15 12.86 6.78 5.83 19.83 51.54
Kimi-K2 4.72 12.36 4.62 5.86 19.82 47.38
DeepSeek V3.1 6.09 12.81 5.98 6.85 19.89 51.62
GLM-4.5 4.53 10.73 4.26 5.11 19.79 44.42
Qwen3-30B-A3B 4.67 12.86 4.28 4.89 19.84 46.54
Mistral-Small-3.2-24B 3.86 10.39 3.88 5.12 20.00 43.25
Gemma 3-27B 4.07 10.43 3.94 5.26 19.87 43.57
Average 5.00 11.70 5.39 5.72 19.90 48.02
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G.3.3 MODEL PERFORMANCE ON TRANSLATION TASKS USING BLEU

Table 12: Translation tasks on English to Other languages. En-Ch
means English translate to Chinese.In translation tasks, Gemini-2.5-
flash delivers the best performance for English to Chinese, Spanish,
French, and Russian, while Grok-4 achieves the highest score for
English to Arabic.Best results are marked inbold, second best results
are underlined.

Model En-Zh En-Es En-Fr En-Ru En-Ar

GPT-5 26.73 57.71 51.44 40.14 6.82
Claude Sonnet 4 19.37 32.61 30.12 23.31 2.48
Gemini-2.5-flash 29.36 59.58 54.05 44.63 6.99
Grok-4 28.17 53.38 51.76 36.60 7.68
Doubao-Seed-1.6 12.86 5.80 5.13 4.20 1.41
Qwen3-235B-A22B 16.53 40.35 38.21 21.01 5.12
Kimi-K2 12.49 4.00 2.98 2.23 0.65
DeepSeek V3.1 18.33 17.56 6.82 37.28 7.34
GLM-4.5 26.41 35.25 37.41 22.94 4.68
Qwen3-30B-A3B 21.83 47.30 42.03 32.70 6.05
Mistral-Small-3.2-24B 3.84 0.11 0.11 0.55 0.98
Gemma3-27B 9.69 0.08 0.06 13.33 0.12

Table 13: Translation tasks on Chinese to Other languages. Zh-
En means Chinese translate to English.In Chinese to other language
translations, Grok-4 achieves the highest scores for English (Zh-En)
and Arabic (Zh-Ar). Gemini-2.5-flash leads in translations to Span-
ish (Zh-Es) and Russian (Zh-Ru), while GPT-5 delivers the best per-
formance for French (Zh-Fr).Best results are marked inbold, second
best results are underlined.

Model Zh-En Zh-Es Zh-Fr Zh-Ru Zh-Ar

GPT-5 57.30 42.67 46.91 31.56 7.35
Claude Sonnet 4 44.65 24.00 30.12 11.86 3.34
Gemini-2.5-flash 16.95 50.68 45.11 39.38 7.73
Grok-4 62.40 46.86 45.02 33.40 8.89
Doubao-Seed-1.6 13.00 2.34 4.62 1.83 0.96
Qwen3-235B-A22B 14.96 15.93 31.30 3.52 1.81
Kimi-K2 10.22 6.65 8.66 0.92 0.37
DeepSeek V3.1 56.59 46.30 39.69 35.37 6.87
GLM-4.5 28.69 33.47 31.45 19.58 2.74
Qwen3-30B-A3B 13.16 29.43 24.00 3.04 1.96
Mistral-Small-3.2-24B 1.00 0.40 0.40 0.53 0.61
Gemma3-27B 0.49 0.18 0.16 0.30 0.27

Table 14: Translation tasks on Spanish to Other languages. Es-En
means Spanish translate to English.For Spanish to other language
translations, GPT-5 is the top performer for Chinese (Es-Zh) and
French (Es-Fr). Gemini-2.5-flash leads in translations to Russian
(Es-Ru) and Arabic (Es-Ar), while Grok-4 achieves the best score
for English (Es-En).Best results are marked inbold, second best re-
sults are underlined.

Model Es-En Es-Zh Es-Fr Es-Ru Es-Ar

GPT-5 25.20 33.23 57.56 36.32 7.86
Claude Sonnet 4 16.19 15.79 11.92 10.05 0.87
Gemini-2.5-flash 35.91 31.13 52.11 48.58 8.88
Grok-4 38.02 28.62 49.08 38.15 8.73
Doubao-Seed-1.6 11.89 11.89 4.52 11.36 0.39
Qwen3-235B-A22B 8.81 5.10 3.37 2.97 1.58
Kimi-K2 14.08 12.32 0.93 1.15 0.39
DeepSeek V3.1 25.52 32.70 56.46 31.11 7.29
GLM-4.5 17.22 27.86 46.32 16.01 7.53
Qwen3-30B-A3B 13.46 13.46 4.51 2.60 0.47
Mistral-Small-3.2-24B 1.08 11.27 0.54 0.64 1.01
Gemma3-27B 0.14 10.13 0.04 0.07 0.22

Table 15: Translation tasks on French to Other languages. Fr-En
means French translate to English.Based on the provided table for
French translation tasks, Grok-4 achieves the highest score for En-
glish (Fr-En) and GPT-5 leads for Spanish (Fr-Es). Gemini-2.5-flash
is the top performer for Chinese (Fr-Zh) and Russian (Fr-Ru), while
DeepSeek V3.1 delivers the best results for Arabic (Fr-Ar).Best re-
sults are marked inbold, second best results are underlined.

Model Fr-En Fr-Zh Fr-Es Fr-Ru Fr-Ar

GPT-5 56.59 26.41 57.21 35.97 7.06
Claude Sonnet 4 21.32 15.24 7.58 4.38 0.64
Gemini-2.5-flash 56.81 35.86 51.38 43.92 10.29
Grok-4 59.44 25.3 50.06 35.40 9.04
Doubao-Seed-1.6 11.84 6.25 4.68 40.83 0.48
Qwen3-235B-A22B 13.99 13.44 4.75 2.92 1.07
Kimi-K2 11.25 11.68 2.79 1.22 0.42
DeepSeek V3.1 56.59 33.17 43.07 31.61 11.70
GLM-4.5 37.73 19.47 21.06 39.06 9.28
Qwen3-30B-A3B 12.14 20.93 4.41 2.48 1.10
Mistral-Small-3.2-24B 0.54 11.27 0.09 0.41 0.86
Gemma3-27B 0.20 9.37 0.07 0.10 0.11

Table 16: Translation tasks on Russian to Other languages. Ru-
En means Russian translate to English.For the Russian translation
tasks, Grok-4 achieves the highest scores for English (Ru-En), Span-
ish (Ru-Es), and Arabic (Ru-Ar). Gemini-2.5-flash leads in Chinese
(Ru-Zh) and French (Ru-Fr).Best results are marked inbold, second
best results are underlined.

Model Ru-En Ru-Zh Ru-Es Ru-Fr Ru-Ar

GPT-5 52.65 23.70 47.94 46.12 6.78
Claude Sonnet 4 30.42 16.80 5.50 4.78 1.78
Gemini-2.5-flash 47.46 29.23 49.39 50.72 7.80
Grok-4 56.28 27.78 49.93 44.48 9.51
Doubao-Seed-1.6 8.81 14.36 3.12 3.64 0.79
Qwen3-235B-A22B 11.40 7.34 1.91 2.64 1.00
Kimi-K2 10.06 9.09 3.12 1.13 0.18
DeepSeek V3.1 55.47 26.64 41.32 34.73 9.14
GLM-4.5 36.70 20.25 25.70 23.47 2.14
Qwen3-30B-A3B 9.43 6.48 6.25 2.44 0.74
Mistral-Small-3.2-24B 0.51 9.16 0.78 0.91 1.12
Gemma3-27B 0.16 9.03 0.08 0.04 0.12

Table 17: Translation tasks on Arabic to Other languages. Ar-En
means Arabic translate to English.On Arabic translation tasks, GPT-
5 leads in translations to English (Ar-En) and Spanish (Ar-Es), while
Gemini-2.5-flash achieves the highest scores for Chinese (Ar-Zh),
French (Ar-Fr), and Russian (Ar-Ru).Best results are marked inbold,
second best results are underlined.

Model Ar-En Ar-Zh Ar-Es Ar-Fr Ar-Ru

GPT-5 49.41 19.63 32.97 39.01 28.89
Claude Sonnet 4 44.04 5.19 4.71 3.52 4.97
Gemini-2.5-flash 35.42 22.87 32.57 46.95 33.43
Grok-4 11.83 12.47 11.13 10.82 9.01
Doubao-Seed-1.6 0.81 3.98 1.18 1.65 0.6
Qwen3-235B-A22B 7.63 3.80 0.55 1.85 1.38
Kimi-K2 4.56 2.62 0.11 0.44 0.35
DeepSeek V3.1 42.12 13.95 4.57 9.65 16.7
GLM-4.5 26.41 15.14 0.77 6.06 2.81
Qwen3-30B-A3B 7.39 6.94 0.77 2.77 1.82
Mistral-Small-3.2-24B 0.28 0.19 0.10 0.01 0.10
Gemma3-27B 0.18 3.11 0.24 0.01 0.31
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G.3.4 MODEL PERFORMANCE ON TRANSLATION TASKS USING CHRF++

Table 18: Translation tasks on English to Other languages. En-Ch
means English translate to Chinese.In translation tasks, Gemini-2.5-
flash delivers the best performance for English to Chinese, Spanish,
French, and Russian, while Grok-4 achieves the highest score for
English to Arabic.Best results are marked inbold, second best results
are underlined.

Model En-Zh En-Es En-Fr En-Ru En-Ar

GPT-5 46.83 82.51 79.25 72.27 3.49
Claude Sonnet 4 37.47 59.70 58.33 50.36 2.19
Gemini-2.5-flash 53.13 83.21 81.58 74.79 3.43
Grok-4 47.33 79.73 80.37 62.53 3.92
Doubao-Seed-1.6 27.80 23.34 25.67 22.83 1.72
Qwen3-235B-A22B 45.09 66.23 67.48 42.99 2.65
Kimi-K2 27.88 22.37 20.85 17.54 1.41
DeepSeek V3.1 37.27 40.51 28.54 63.67 3.78
GLM-4.5 48.94 61.55 64.93 46.26 2.90
Qwen3-30B-A3B 42.34 70.20 73.32 66.72 2.55
Mistral-Small-3.2-24B 2.54 7.18 6.92 5.76 1.43
Gemma3-27B 7.66 6.75 6.09 5.90 1.33

Table 19: Translation tasks on Chinese to Other languages. Zh-
En means Chinese translate to English.In Chinese to other language
translations, Grok-4 achieves the highest scores for English (Zh-En)
and Arabic (Zh-Ar). Gemini-2.5-flash leads in translations to Span-
ish (Zh-Es) and Russian (Zh-Ru), while GPT-5 delivers the best per-
formance for French (Zh-Fr).Best results are marked inbold, second
best results are underlined.

Model Zh-En Zh-Es Zh-Fr Zh-Ru Zh-Ar

GPT-5 84.14 71.48 78.39 62.44 3.40
Claude Sonnet 4 63.05 61.42 53.53 35.08 6.76
Gemini-2.5-flash 43.17 79.85 77.00 72.02 3.98
Grok-4 85.64 77.14 77.42 58.48 9.31
Doubao-Seed-1.6 37.47 22.68 29.95 18.23 1.24
Qwen3-235B-A22B 39.33 38.97 63.32 21.30 1.75
Kimi-K2 32.98 23.24 27.46 11.39 1.01
DeepSeek V3.1 82.07 73.93 68.80 65.48 4.44
GLM-4.5 51.13 57.79 61.48 21.30 2.14
Qwen3-30B-A3B 38.64 61.00 53.57 20.37 2.61
Mistral-Small-3.2-24B 9.99 7.84 7.72 6.14 1.41
Gemma3-27B 9.43 6.69 5.92 6.72 1.40

Table 20: Translation tasks on Spanish to Other languages. Es-En
means Spanish translate to English.For Spanish to other language
translations, DeepSeek V3.1 is the top performer for French (Es-
Fr). Gemini-2.5-flash leads in translations to Chineses (Es-Zh) and
Russian (Es-Ru), while Grok-4 achieves the best score for English
(Es-En) and Arabic (Es-AR).Best results are marked in bold, second
best results are underlined.

Model Es-En Es-Zh Es-Fr Es-Ru Es-Ar

GPT-5 43.05 44.57 84.04 65.10 4.24
Claude Sonnet 4 25.54 26.16 35.95 30.78 4.22
Gemini-2.5-flash 55.72 47.49 80.87 76.97 3.84
Grok-4 61.93 43.75 79.35 64.12 4.40
Doubao-Seed-1.6 24.83 20.88 39.91 18.93 0.89
Qwen3-235B-A22B 23.36 20.65 18.89 20.01 1.65
Kimi-K2 21.66 19.68 10.08 13.41 0.99
DeepSeek V3.1 41.33 47.01 84.32 58.44 4.22
GLM-4.5 31.69 46.30 75.14 36.94 3.75
Qwen3-30B-A3B 22.07 21.77 25.03 19.57 1.60
Mistral-Small-3.2-24B 8.99 7.10 6.62 5.54 1.37
Gemma3-27B 7.80 7.35 5.65 5.41 1.30

Table 21: Translation tasks on French to Other languages. Fr-En
means French translate to English.Based on the provided table for
French translation tasks, Grok-4 achieves the highest score for En-
glish (Fr-En). Gemini-2.5-flash is the top performer for Chinese (Fr-
Zh), Spanish (Fr-Es) and Russian (Fr-Ru), while DeepSeek V3.1 de-
livers the best results for Arabic (Fr-Ar).Best results are marked in
bold, second best results are underlined.

Model Fr-En Fr-Zh Fr-Es Fr-Ru Fr-Ar

GPT-5 80.66 41.82 72.77 70.50 2.86
Claude Sonnet 4 46.83 21.46 30.33 23.68 2.16
Gemini-2.5-flash 82.98 49.55 79.35 74.02 6.93
Grok-4 84.32 38.82 79.01 64.69 5.60
Doubao-Seed-1.6 36.17 20.48 25.97 72.94 1.22
Qwen3-235B-A22B 38.96 22.65 26.40 21.67 1.46
Kimi-K2 33.58 22.59 17.07 13.56 1.03
DeepSeek V3.1 82.96 45.42 70.93 58.54 7.98
GLM-4.5 61.86 32.57 45.30 70.71 6.90
Qwen3-30B-A3B 37.16 23.72 25.75 19.83 1.61
Mistral-Small-3.2-24B 8.98 7.29 7.15 5.94 1.41
Gemma3-27B 8.05 7.29 6.76 5.83 1.28

Table 22: Translation tasks on Russian to Other languages. Ru-En
means Russian translate to English.For the Russian translation tasks,
Grok-4 achieves the highest scores for English (Ru-En). DeepSeek
V3.1 leads in Arabic (Ru-Ar), while Gemini-2.5-flash performs best
in Chinese (Ru-Zh), Spanish (Ru-Es) and French (Ru-Fr).Best re-
sults are marked in bold, second best results are underlined.

Model Ru-En Ru-Zh Ru-Es Ru-Fr Ru-Ar

GPT-5 79.72 39.73 77.12 73.54 4.01
Claude Sonnet 4 56.28 22.24 24.48 26.43 3.95
Gemini-2.5-flash 73.30 46.33 80.83 81.01 4.18
Grok-4 83.95 43.75 80.14 77.48 5.45
Doubao-Seed-1.6 34.61 32.67 21.81 22.47 0.91
Qwen3-235B-A22B 33.57 21.27 19.29 19.79 0.89
Kimi-K2 32.06 22.19 17.11 13.33 1.00
DeepSeek V3.1 83.54 42.38 68.01 64.66 6.84
GLM-4.5 63.25 32.38 50.36 50.84 1.83
Qwen3-30B-A3B 20.82 9.77 13.92 10.25 1.69
Mistral-Small-3.2-24B 8.68 6.64 7.01 6.84 1.36
Gemma3-27B 7.58 7.10 6.54 5.37 1.29

Table 23: Translation tasks on Arabic to Other languages. Ar-En
means Arabic translate to English.On Arabic translation tasks, GPT-
5 leads in translations to English (Ar-En), while Gemini-2.5-flash
achieves the highest scores for Chinese (Ar-Zh), Spanish (Ar-Es),
French (Ar-Fr), and Russian (Ar-Ru).Best results are marked in bold,
second best results are underlined.

Model Ar-En Ar-Zh Ar-Es Ar-Fr Ar-Ru

GPT-5 78.37 40.30 62.50 72.35 59.28
Claude Sonnet 4 73.20 19.40 18.32 21.16 20.78
Gemini-2.5-flash 59.20 43.31 63.49 83.23 64.35
Doubao-Seed-1.6 12.43 11.31 13.56 14.94 8.78
Grok-4 34.14 20.14 33.17 33.51 38.39
Qwen3-235B-A22B 31.05 18.70 1.28 14.12 16.67
Kimi-K2 23.82 12.22 0.87 11.47 9.33
DeepSeek V3.1 67.61 33.41 5.03 5.84 40.26
GLM-4.5 57.19 33.95 1.52 42.13 10.99
Qwen3-30B-A3B 32.65 16.05 1.53 21.19 17.06
Mistral-Small-3.2-24B 6.37 1.68 2.74 3.88 2.44
Gemma3-27B 3.85 2.98 0.48 0.31 2.03
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