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Abstract001

In exploratory search, users often submit vague002
queries to investigate unfamiliar topics, but re-003
ceive limited feedback about how the search004
engine understood their input. This leads to005
a self-reinforcing cycle of mismatched results006
and trial-and-error reformulation. To address007
this, we study the task of generating user-facing008
natural language query intent descriptions that009
surface what the system likely inferred the010
query to mean, based on post-retrieval evidence.011
We propose QUIDS, a method that leverages012
dual-space contrastive learning to isolate intent-013
relevant information while suppressing irrele-014
vant content. QUIDS combines a dual-encoder015
representation space with a disentangling de-016
coder that works together to produce concise017
and accurate intent descriptions. Enhanced018
by intent-driven hard negative sampling, the019
model significantly outperforms state-of-the-020
art baselines across ROUGE, BERTScore, and021
human/LLM evaluations. Our qualitative anal-022
ysis confirms QUIDS’ effectiveness in generat-023
ing accurate intent descriptions for exploratory024
search. Our work contributes to improving the025
interaction between users and search engines by026
providing feedback to the user in exploratory027
search settings.1028

1 Introduction029

In exploratory search (Palagi et al., 2017), users of-030

ten issue vague or underspecified queries to investi-031

gate unfamiliar topics through iterative refinement.032

This process gives rise to a persistent usability chal-033

lenge, which we call the dual-blind problem: Users034

are uncertain about how to express their informa-035

tion needs; as a result they formulate ambiguous036

queries; the system silently infers the user’s intent037

based on these ambiguous queries, without provid-038

ing explicit feedback and retrieves mixed-quality039

1Our code is available at https://anonymous.4open.
science/r/QID-6E00/

Freon-12

Information on Freon-12 as a refrigerant and its phase-out, 
including the timeline for its replacement with more eco-friendly 
alternatives.

Top-ranked Documents:

Pseudo Relevance Judgment

Dichlorodifluoromethane
Dichlorodifluoromethane (R-12) is a colorless gas usually sold under the brand 
name Freon-12, and a chlorofluorocarbon halomethane (CFC) used as a refrigerant ...

What is the difference between freon-11 and freon-12?
R11 is a low pressure refrigerant usually used in large centrifugal chillers. R11 is no 
longer produced …

The Next Phase in Refrigerants
All CFCs, including CFC-11 and R-12, were phased out of production on Jan. 1, 1996, 
and no longer are available for new equipment …

How the 2025 Refrigerant Change-Out Will Impact You
Reduced Maintenance Costs: Older HVAC systems that use phased-out refrigerants 
like R-22 or R-410A are becoming more expensive to maintain. As these ...

Home AC Refrigerant and Freon Phase-Outs
The refrigerant prices for Freon are at a record high since the EPA planned 
to phase it out. ... out, the production of banned refrigerants will be put to a halt.

Low-ranked Documents:

The search engine has understood the following search intent 
from your query:

…

Figure 1: A user-facing application of query intent gen-
eration in exploratory search. The system’s inferred
intent is generated by contrasting top-ranked (pseudo-
relevant) and low-ranked (pseudo-irrelevant) documents.
Key information contributing to the inferred intent is
shown in bold.

results at best. This leads to a self-reinforcing cy- 040

cle of the user receiving results that are misaligned 041

with their actual information need. This cycle is 042

difficult to break with traditional query understand- 043

ing methods (Li et al., 2023; Lu et al., 2024; Wang 044

et al., 2023) that operate in the pre-retrieval stage. 045

Their goal is to optimize ranking effectiveness, not 046

to provide feedback to the user. They offer little 047

transparency about how the system arrived at its 048

results, which is especially a problem when users 049

are unsure of their intent. 050

In this work, we study the task of generating a 051

natural-language query intent description (Zhang 052

et al., 2020) that reflects what the system likely 053

inferred the query to mean. The description is 054
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generated in the post-retrieval stage, incorporating055

system-inferred relevance of documents. These056

descriptions are not mechanistic explanations of057

the ranker, but instead serve as user-facing prox-058

ies of the system’s inferred intent. By contrasting059

top-ranked (pseudo-relevant) and low-ranked doc-060

uments, the intent descriptions provide feedback061

that helps users identify mismatches between their062

intended and inferred query meanings. This feed-063

back supports more effective query refinement and064

improves the overall search experience.065

Figure 1 illustrates an application scenario of066

query intent generation in exploratory search.067

Since the ground truth intent behind the query is068

unknown to the search system, it relies on the re-069

trieved documents to infer the query intent. From070

the top-ranked documents (considered relevant by071

the search engine), key terms like ‘Freon-12’, ‘re-072

frigerant’, and ‘phased out’ are captured and em-073

phasized in the intent description. In contrast, top-074

ics such as ‘costs’ and ‘prices’, which appear in075

both high-ranked and low-ranked documents, are076

excluded from the final intent description. The re-077

sulting description provides diagnostic feedback078

on how the system understood the query, helping079

users assess whether the retrieved results align with080

their latent intent.081

We introduced a novel dual-space modeling ap-082

proach, QUIDS, for the query intent generation083

task. It models query intent through dual-space con-084

trastive learning by performing contrastive learning085

in two complementary spaces, explicitly separat-086

ing intent-relevant and irrelevant semantic infor-087

mation. Specifically, the method consists of: (i)088

a representation space via dual encoders and (ii)089

a novel disentangling space in the decoder. This090

dual-space design enables the model to subtract091

irrelevant semantics from relevant ones, generat-092

ing concise and more accurate intent descriptions.093

Furthermore, we propose an intent-driven hard neg-094

ative sampling strategy to expand the irrelevant rep-095

resentation space and improve contrastive learning096

during training.097

Experiments on the Q2ID benchmark (Zhang098

et al., 2020), including TREC and SemEval099

datasets, show that our model significantly outper-100

forms strong baselines, including the prior Q2ID-101

specific method, LLM-based, and Query-focused102

Summarization methods, both in automatic and103

human evaluations. Qualitative analysis confirms104

that QUIDS effectively filters out distracting or105

misleading content and generates concise intent de-106

scriptions. Our contributions are: (i) Our model 107

generates high-quality intent descriptions, with per- 108

formance significantly enhanced by incorporating 109

hard negative data augmentation during training. 110

(ii) We introduce contrastive learning in both the 111

representation space and the disentangling space 112

of transformer models, effectively capturing con- 113

trasting information from relevant and irrelevant 114

documents. (iii) We perform a thorough evalua- 115

tion of our model, providing us with insights into 116

the model’s strengths and weaknesses, as well as 117

its potential application scenarios, especially for 118

exploratory search. 119

2 Related Work 120

2.1 Query Understanding 121

Our work is related to traditional query understand- 122

ing tasks such as classification (Broder, 2002; Ver- 123

berne et al., 2013), clustering (Wen et al., 2002; 124

Hong et al., 2016), and expansion (Wang et al., 125

2023; Mo et al., 2023; Jagerman et al., 2023). How- 126

ever, unlike these methods, which operate in the 127

pre-retrieval stage to optimize retrieval effective- 128

ness, Zhang et al. (2020) proposes the Query-to- 129

Intent-Description (Q2ID) task in the post-retrieval 130

stage that aims to generate search systems’ inferred 131

intent of a user query based on both relevant and 132

irrelevant documents. Unlike their method, we di- 133

rectly model a query-aware irrelevant intent space 134

via dual-space contrastive learning, and enhance 135

the performance with hard negative data augmenta- 136

tion, leading to a more precise intent description. 137

2.2 Query-focused Summarization 138

In settings where annotated intent descriptions are 139

available, a related task to Q2ID is query-focused 140

summarization (QFS) (Vig et al., 2022; Pagnoni 141

et al., 2023). QFS is a subtask of text summa- 142

rization that aims to generate a summary of one 143

or multiple documents, guided by a query. Tra- 144

ditional methods rely on unsupervised extraction, 145

ranking text segments by similarity and query rel- 146

evance (Wan and Xiao, 2009; Feigenblat et al., 147

2017). Recent QFS datasets (Kulkarni et al., 2020; 148

Fabbri et al., 2022; Zhong et al., 2021) have enabled 149

the rise of QA-driven approaches (Su et al., 2020, 150

2021). More advanced techniques model query 151

relevance through evidence ranking (Xu and Lap- 152

ata, 2021), latent query optimization (Xu and Lap- 153

ata, 2022), or pipeline architectures like the coarse- 154

to-fine model in (Xu and Lapata, 2020). To han- 155
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dle long documents, extract-then-abstract strategies156

(Vig et al., 2022) use sparse attention and segment157

scoring. Other innovations include question-driven158

pretraining (Pagnoni et al., 2023), contrastive learn-159

ing (Sotudeh and Goharian, 2023), and joint token-160

utterance modeling with query-aware attention (Liu161

et al., 2023a).162

We use QFS models as baselines for the Q2ID163

task, but there is a fundamental difference between164

QFS and Q2ID: QFS aims to compress the con-165

tent of retrieved documents to help users consume166

information, whereas Q2ID aims to generate a de-167

scription of what the system likely inferred about168

the query intent, based on retrieval results. We169

provide a comparison table with related tasks in170

Appendix A.171

3 Methods172

3.1 Pipeline Framework173

We define the contrastive intent generation task as174

follows. Given a dataset D = {(q,R, I, y)j} with175

L samples, where j ∈ {0, 1, ..., L}: q is a query,176

R = {r1, r2, ..., r|R|} is a collection of relevant177

documents for the query, I = {i1, i2, ..., i|I|} is178

a collection of irrelevant documents and y is the179

human-annotated ground truth query intent. The180

modeling goal is to learn the distinctions between181

relevant and irrelevant inputs based on a query,182

while generating a system-inferred intent descrip-183

tion that exclusively highlights the relevant aspects184

related to the query. To achieve this, our training185

pipeline consists of 2 steps: (1) Intent-Driven Neg-186

ative Augmentation (IDNA) and (2) Dual Space187

Modeling (DualSM).188

3.2 Intent-Driven Negative Augmentation189

(IDNA)190

The purpose of IDNA is to mine hard negative191

documents as irrelevant documents from the entire192

dataset D based on the query, its relevant document193

collections, and the ground truth intent, i.e.,194

IDNA(q,R, y,D) = I ′195

where I ′ = {i′1, i′2, ..., i′h} with h the expected196

number of irrelevant documents. Inspired by Liu197

et al. (2022) on choosing in-context sample strate-198

gies for in-context learning, we design a method to199

choose intent-aware hard negative samples based200

on semantic similarity. Specifically, we use a Sen-201

tence Transformer model (Reimers and Gurevych,202

Algorithm 1 Intent-Driven Negative Augmentation (IDNA)

Require: query q, relevant document collectionR, irrelevant
document collection I, whole dataset document corpus
D, target size S, threshold τ

Ensure: augmented irrelevant documents I′ for q
1: hq;y ← Encode(Concatenate(q; y))
2: R∗ ← SortR descending by cos(hq;y,Encode(r)),
∀r ∈ R

3: hR∗ ← Encode(Concatenate(R∗))
4: I∗ ← Sort I descending by cos(hR∗ ,Encode(I)),
∀i ∈ I

5: I′ ← top-|I∗| ranked docs
6: while |I′| < S do
7: Sample a document d from D
8: if cos(hR∗ ,Encode(d)) > τ then
9: Add d to I′

10: end if
11: end while

2019) to represent both positive and negative sam- 203

ples from the training data in a vector space. Then 204

we choose negative samples close to the positive 205

ones in this space. The negative sample augmen- 206

tation makes the task more challenging for the 207

model, hence improving its discriminative capa- 208

bilities. As shown in Figure 2 (a), we augment hard 209

negative samples for each training query using Al- 210

gorithm 1. For encoding, we use a Sentence Trans- 211

formers model pre-trained on the MSMARCO Pas- 212

sage Ranking dataset (Nguyen et al., 2016). In 213

practice, we set 0.8 to the similarity threshold with 214

an analysis of its effect in subsection 5.4.3. 215

3.3 Dual Space Modeling (DualSM) 216

Dual Space Modeling aims to contrastively gener- 217

ate a descriptive intent for the query by modeling 218

query-aware relevant and irrelevant intent spaces: 219

DualSM(q,R, i′) = ŷ 220

We use a Transformer-based encoder-decoder 221

architecture, with the BART-large model (Lewis 222

et al., 2020) and the T5-large model (Raffel et al., 223

2020a) as backbones, as illustrated in Figure 2(b). 224

To capture the relationship between a query and its 225

relevant and irrelevant documents, we implement 226

a Siamese dual encoder architecture. Based on the 227

encoder outputs, contrastive learning is performed 228

in the representation space to differentiate between 229

embeddings for relevant and irrelevant documents. 230

Correspondingly, we design a contrastive decoder 231

to model query-aware relevant and irrelevant intent 232

spaces in a disentangled manner. 233

3.3.1 Representation Space Modeling (RSM) 234

We design a dual cross-encoder architecture to 235

distinguish relevant and irrelevant documents for 236
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Figure 2: Overview of our proposed pipeline. From left to right, we show (a) Intent-Driven Negative Augmentation
method, (b) Contrastive decoder structure with dual cross-attention layers, (c) and (d) Contrastive learning via dual
space modeling.

a given query by jointly encoding each query-237

document pair. Relevant documents, which often238

share similar topics tied to the query’s intent, are239

concatenated based on their ranking (Section 3.2,240

Step 1) and encoded together. In contrast, irrel-241

evant documents can be irrelevant to a query in242

diverse ways, making it impractical to model a243

meaningful and comprehensive irrelevant feature244

representation space. Therefore, we focus on a245

single irrelevant document i′ at each training step,246

using a hard negative sample from the augmented247

irrelevant document collection I ′.248

To model the feature space, we project the en-249

coder’s final hidden states through a linear layer.250

Document embeddings are obtained via average251

pooling over token representations. We optimize252

the representation space by pulling relevant embed-253

dings closer and pushing the irrelevant one away254

(Figure 2(c)). The objective is to minimize:255

Lrel =
∑k

m=1

∑k
n=m+1 d(em, en) (1)256

where e is the embedding of each relevant docu-257

ment, k is the number of relevant documents, and258

d is a distance function. We use cosine distance for259

d in this work. For irrelevant feature representation260

space, we optimize the margin loss function:261

Lirrel =
∑k

m=1max(t− d(em, ē), 0) (2)262

where ē is the embedding of the irrelevant docu-263

ment, and t is a margin parameter, set to 1 in our264

case. We combine the relevant and irrelevant loss 265

to obtain the encoder contrastive loss as follows: 266

Lencoder = Lrel + Lirrel (3) 267

3.3.2 Disentangling Space Modeling (DSM) 268

In decoding, we aim to generate intent descrip- 269

tions based on the encoded relevant and irrelevant 270

document features. To achieve this, we design a 271

contrastive decoder with an added cross-attention 272

layer that attends to both sources. To further dis- 273

entangle relevant from irrelevant information, we 274

apply contrastive learning in a separate disentan- 275

gling space. As shown in Figure 2(d), this helps the 276

model focus on relevant intent while minimizing 277

influence from irrelevant content, enabling more 278

precise and nuanced intent generation. 279

Our decoder adopts a Transformer architecture, 280

composed of N identical decoder layers. In the 281

l-th decoder layer, at the z-th decoding step, we 282

obtain hidden states hlself,z by employing masked 283

self-attention layers, to make sure the prediction of 284

position z depends only on the predictions before 285

z. Based on hlself,z , we compute relevant docu- 286

ment hidden states hlrel,z by applying multi-head 287

attention with cross-attention (MHAtt) to relevant 288

encoder output: 289

hlrel,z = MHAtt(hlself,z, hR∗) (4) 290
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Similarly, we get the irrelevant document hidden291

states by attending to irrelevant encoder output:292

hlirrel,z = MHAtt(hlself,z, hi′) (5)293

From preliminary results, we found that a simple294

linear combination of hlself,z , hlrel,z , and hlirrel,z295

works well to serve as the decoder hidden state to296

produce the distribution over the target vocabulary:297

hlcombine,z = hlself,z + hlrel,z − hlirrel,z (6)298

299
P vocab
z = Softmax(W (hNcombine,z)) (7)300

where W indicates a linear transformation. We301

optimize the model with the negative log likelihood302

(NLL) objective to predict the target words:303

LNLL = −
∑|y|

z=1 logP
vocab
z (yz) (8)304

Corresponding to the representation space con-305

trastive learning, we perform another contrastive306

learning in the newly proposed disentangling space307

using hidden states from the last decoder layer. We308

apply an additional linear layer to hNself , hNrel, and309

hNirrel, projecting them into a new representation310

space. We then obtain the embeddings fc, fr, fi′311

by pooling these projected vector representations.312

We follow the approach of SimCLR (Chen et al.,313

2020) and use from-batch negative samples B in314

the InfoNCE loss (He et al., 2020):315

Ldecoder = −log
exp(cos(fc, fr)/τ)∑

i′∈B exp(cos(fc, fi′)/τ)
(9)316

where τ is the temperature and cos(·, ·) defines317

cosine similarity.318

Finally, we combine the original NLL loss to-319

gether with encoder and decoder loss to obtain the320

overall loss L to update all learnable parameters in321

an end-to-end learning setting:322

LNLL = λ0LNLL + λ1LEncoder + λ2LDecoder

(10)323

where the λ parameters control the balance between324

the three losses, with their total sum equal to 1.325

4 Experimental Settings326

4.1 Data327

We conduct experiments on the Q2ID dataset328

(Zhang et al., 2020), a benchmark for query-to-329

intent description derived from existing TREC and330

SemEval collections. Specifically, it comprises:331

TREC: Including the Dynamic Domain tracks332

(2015–2017) and the 2004 Robust Track, which 333

focus on dynamic, exploratory search and consis- 334

tency of retrieval technology. SemEval: Includ- 335

ing the English SemEval-2015 and SemEval-2016 336

Task 3 tracks on Community Question Answering. 337

Q2ID contains a total of 5,358 entries. Each entry 338

is structured as a quadruple: <query, relevant doc- 339

uments, irrelevant documents, intent description>, 340

where the intent descriptions are human-written 341

narratives. The statistics and more details are pro- 342

vided in Appendix B.1. 343

4.2 Baselines 344

To reflect the shared focus on user queries and 345

the extraction of relevant content, we compare our 346

model with baselines from four categories: (i) Pre- 347

trained Seq2Seq Models: We fine-tune T5-large 348

(Raffel et al., 2020b) and BART-large (Lewis et al., 349

2020) on the Q2ID dataset. BART also serves as 350

the backbone of our QUIDS model. (ii) Q2ID 351

Baseline: CtrsGen (Zhang et al., 2020) lever- 352

ages contrastive generation using a bi-GRU en- 353

coder and contrast-weighted attention mechanism. 354

(iii) LLM Baseline: We evaluate LLaMA3.1-8B 355

(AI, 2024) in zero-shot and two-shot settings. For 356

the latter, examples are drawn from TREC and Se- 357

mEval. (iv) QFS Baselines: We include extractive- 358

abstractive models RelReg, RelRegTT (Vig et al., 359

2022), the segment-based model SegEnc (Vig et al., 360

2022), the question-driven Socratic (Pagnoni et al., 361

2023), and the contrast-enhanced Qontsum (So- 362

tudeh and Goharian, 2023). Detailed descriptions, 363

training configurations, and reproduction settings 364

for baselines are in Appendix B.3 and B.4. 365

4.3 Implementation Details 366

Our method is implemented based on the BART- 367

large model (Lewis et al., 2020) using the Hug- 368

gingface Transformers library (Wolf et al., 2019). 369

CrossRel and CrossIrrel attention layers in the 370

decoder are initialized with pre-trained BART 371

weights. We optimize the weighted training loss us- 372

ing coefficients (λ0 = 0.2, λ1 = 0.2, λ2 = 0.6) to 373

balance multiple objectives. The model is trained 374

with the Adam optimizer, and the final checkpoint 375

is selected based on average ROUGE-{1, 2, L} 376

scores on the validation set. We provide additional 377

training details in Appendix B.2. 378

4.4 Evaluation Metrics 379

We conduct three types of evaluations using dif- 380

ferent evaluator resources: automatic evaluation, 381
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LLM-based evaluation and human evaluation. For382

automatic evaluation, we report recall scores on383

ROUGE-{1, 2, L} following Zhang et al. (2020),384

along with BERTScore (Zhang et al., 2019), which385

assesses semantic and syntactic similarity beyond386

exact word matches. We also conduct a human387

evaluation study using 50 (Sotudeh and Goharian,388

2023) randomly selected test samples. Five PhD389

students in Computer Science scored intent descrip-390

tions from our model and the best baseline, without391

knowing which model produced them. They rated392

both models on four customized qualitative crite-393

ria with scores ranging from 1 (worst) to 5 (best).394

Four criteria are: (1) Fluency: to what extent the395

generated query intent description reads naturally,396

understandably, and without noticeable errors or397

disruptions. (2) Factual Alignment: to what extent398

the generated query intent description is factually399

aligned with the ground truth intent. (3) Inclusion400

score: how well the generated query intent includes401

important details from the query and relevant doc-402

uments. (4) Exclusion score: how well the gener-403

ated query intent description excludes information404

present in the irrelevant documents that is not rele-405

vant to the query and relevant documents. Inspired406

by Liu et al. (2023b), we also adopt LLM-based407

evaluation (LLaMa3.1 8B and GPT-4o) by prompt-408

ing instruction-tuned models to assess generations409

across the same four qualitative metrics. Details on410

the prompt formats, and scoring computation are411

provided in Appendix F.412

5 Experimental Results413

5.1 Overall Results414

We compare model performance between QUIDS415

and baselines in Table 1. The results show that: (1)416

QUIDS outperforms all other baselines; (2) Our417

approach is compatible with both T5 and BART418

architectures. Notably, BART-large outperforms419

T5-large despite having nearly half the model size.420

(3) The QFS models that we implemented for the421

query intent generation task outperform the Q2ID-422

specific baseline, CtrsGen. QUIDS further signif-423

icantly outperforms the best QFS model, SegEnc;424

(4) The two-shot setting with the LLaMa3.1 8B425

model significantly outperforms the zero-shot set-426

ting in ROUGE scores, while showing only minor427

improvements in BERTScore. This suggests that428

without fine-tuning, generated intents may be lexi-429

cally similar but semantically misaligned.430

Models RG-1 RG-2 RG-L BS

CtrsGen† 24.76 4.62 20.21 -
T5-large 28.87 13.91 23.85 61.64
BART-large 30.70 13.91 24.63 62.07

LLaMa3.1 (0) 29.28 7.42 20.90 57.26
LLaMa3.1 (2) 32.75 9.54 24.34 57.89

RelReg 26.67 12.83 21.99 59.24
RelRegTT 27.21 12.77 22.25 59.60
SegEnc 31.83 14.29 25.18 62.15
+ SOCRATIC Pret. 31.38 13.88 24.91 62.26
QONTSUM 31.18 14.26 24.87 62.03

QUIDS_T5 29.40 13.95 24.23 62.00
QUIDS_BART 34.47∗ 14.86∗ 26.77∗ 63.55∗

Table 1: Performance between our model and baselines
in terms of automatic evaluation (%). † indicates re-
ported performance from previous work. ‘-’ means the
result is inaccessible. ∗ indicates the model outperforms
the best baseline significantly with paired t-test at p-
value < 0.05 level. Results are averaged over 5 random
seeds. The best results are highlighted in bold, while
the best baseline results are underlined.

Model RG-1 RG-2 RG-L BS

QUIDS w/o IDNA 33.48 14.20 25.95 63.17
QUIDS w/o RSM 34.57 14.39 26.38 63.62
QUIDS w/o DSM 33.45 13.46 25.88 63.33

QUIDS 35.95 14.80 27.21 64.33

Table 2: Ablation study of our QUIDS model with its
variants under automatic evaluation (%).

5.2 Ablation Study 431

We perform an ablation study based on the BART- 432

Large model to evaluate the contribution of key 433

components in our approach under three settings: 434

(1) without the IDNA module (w/o IDNA), (2) with- 435

out contrastive learning in the encoder (w/o RSM), 436

and (3) without contrastive learning in the decoder 437

(w/o DSM). Results are shown in Table 2. Exclud- 438

ing contrastive learning from the decoder leads to 439

the largest performance drop, underscoring its role 440

in modeling a discriminative intent space. Remov- 441

ing it from the encoder results in a smaller decline, 442

suggesting that representation space modeling still 443

contributes to relevance awareness. 444

5.3 Human and LLM Evaluation 445

We assess the quality of generated intents from 446

QUIDS and the best baseline SegEnc using both hu- 447

man and LLM-based evaluations. Inter-annotator 448

agreement, measured by weighted Cohen’s κ, and 449
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Figure 4: Boxplot of human and LLM evaluation scores on 4 metrics of our model on different intent types.

Method Model Fluen. Align. Inclu. Exclu.

Human
SegEnc 4.75 3.90 3.94 4.77
QUIDS 4.80 3.80 4.06 4.80

GPT-4o
SegEnc 3.70 2.64 2.67 3.83
QUIDS 3.71 2.79 2.69 4.00

LLaMa3.1
SegEnc 3.25 2.91 3.17 4.07
QUIDS 3.48 3.17 3.42 4.11

Table 3: Comparison of human evaluation and LLM
evalaution in terms of Fluency, Factual Alignment, In-
clusion score and Exclusion score.

LLM-human correlations, measured by Spearman450

and Kendall τ , indicate fair to moderate consis-451

tency across metrics (Table 6, Appendix C). As452

shown in Table 3, QUIDS outperforms SegEnc453

on all metrics except Factual Alignment, where454

humans prefer SegEnc. Further analysis (subsec-455

tion 5.4.1) shows this stems from the dominance of456

informational queries, on which SegEnc performs457

better. QUIDS, by contrast, performs better on458

less exploratory queries. Figure 3 further illustrates459

score distributions, revealing three key insights:460

(1) Human scores are generally higher than LLM461

scores, especially for Fluency and Exclusion. The462

larger variability for fluency scores suggests hu-463

mans may tolerate minor fluency issues. (2) Human464

evaluations show broader and lower score distribu-465

tions for Factual Alignment and Inclusion, aligning466

more with LLaMa (Table 6). In contrast, they mir-467

ror GPT-4o’s narrower distribution for Fluency and468

Exclusion, where correlation is higher. This sug-469

Intent RG-1 RG-2 RG-L BS

Informational 35.69 14.51 26.82 63.88
Exploratory 41.55 23.24 38.28 76.65

Table 4: Comparison of automatic evaluation on our
model for different intent types.

gests that evaluators differ in how they assess each 470

metric. (3) Fluency and Factual Alignment show 471

stronger alignment between LLM and human eval- 472

uations, likely due to being less context-dependent. 473

In contrast, Inclusion and Exclusion scores exhibit 474

weaker correlations, indicating inconsistencies in 475

evaluating context-sensitive criteria. 476

5.4 In-depth Analysis 477

5.4.1 Analysis of Intent Types 478

We classify the queries according to their underly- 479

ing search intent into two categories: (1) Informa- 480

tional Intent: Natural language questions seeking 481

detailed information or solutions, typically longer 482

and contextual. Queries from the SemEval dataset 483

fall under this category. (2) Exploratory Intent: 484

Term-based queries aimed at broad exploration 485

with minimal context or structure. Queries from the 486

TREC datasets are categorized here. Our automatic 487

and human evaluation by intent type indicates that 488

QUIDS is indeed more successful for exploratory 489

tasks than for informational intent tasks. Results 490

are shown in Table 4 and Figure 4. See Appendix D 491

for detailed analysis. 492
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Generated Intent 1: I am thinking of moving to Doha in September and was 
wondering if the cost of living is expensive compared to other places I have 
lived in. I have heard that petrol and cigarettes are much higher in Doha than in 
the UK. Is this true? What about accommodation is also expensive? Is the price 
of food and other household items high? Thanks

Ground Truth Intent:   I haven't moved there yet and was wondering how it compares to most European cities... eating out; supermarket 
shopping; clothes; cosmetics; etc.

Irrelevant Document: 
…compare to other middle east 
specially dubai and kuwait doha 
is less expensive.rent is 
affordable according to the 
people's standard.…

Generated Intent 2: 
Hi; I am thinking about moving to Doha and was wondering if the cost of living is expensive compared to other 
places I have lived in. I have heard that petrol and cigarettes are much cheaper in Doha than in Dubai. Is this 
true? What about accommodation is it also cheap? Can anyone help. Thanks

(c) (d)

Query: is Doha expensive?

Relevant Document: …I have lived in Europe briefly; and of course my native 
Australia…In comparison to Abu Dhabi - much the same for groceries; cheaper 
for accomodation…petrol and cigarettes; and consumer durable products are 
much cheaper here than Australia & Europe. Groceries are much more 
expensive...Doha is the most expensive city in the GCC (atleast more expensive 
than Dubai these days). House rents; car rentals; groceries…"

Relevant Document: …I have lived in Europe briefly; and of course my native 
Australia…In comparison to Abu Dhabi - much the same for groceries; cheaper 
for accomodation…petrol and cigarettes; and consumer durable products are 
much cheaper here than Australia & Europe. Groceries are much more 
expensive...Doha is the most expensive city in the GCC (atleast more expensive 
than Dubai these days). House rents; car rentals; groceries…"

Relevant Document: …Nevertheless, as R-12 
becomes more scarce and costly, auto executives say 
the conversions will increasingly become the more 
economical choice. Mr. Oulouhojian said most 
conversion kits had not yet been developed; their 
prices are estimated at $200 to $800. He said costs 
were likely to be lower for newer cars with more 
modern cooling systems. The cost of completely 
converting an older car may not make economic 
sense, he said…

Generated Intent 1: How will the price of Freon-12 
be impacted by the phasing out of this refrigerant?

Query: Freon-12 Ground Truth Intent: Information is needed on the phase-out of Freon-12, the coolant used in auto air conditioners and most refrigerators.

Relevant Document: …Nevertheless, as R-12 
becomes more scarce and costly, auto executives say 
the conversions will increasingly become the more 
economical choice. Mr. Oulouhojian said most 
conversion kits had not yet been developed; their 
prices are estimated at $200 to $800. He said costs 
were likely to be lower for newer cars with more 
modern cooling systems. The cost of completely 
converting an older car may not make economic 
sense, he said…

Irrelevant Document: …One alternative for cars is a non-CFC-12 refrigerant, but the 
only chemical combinations discovered so far would require $1,000 or more in 
modifications to existing air-conditioners. All auto manufacturers are developing 
conversion kits so that systems designed for R-12 can be modified to use R-134a. 
Some will be relatively simple, others more complicated and expensive. Nevertheless, 
as R-12 becomes more scarce and costly, auto executives say the conversions will 
increasingly become the more economical choice. Mr. Oulouhojian said most 
conversion kits had not yet been developed; their prices are estimated at $200 to $800. 
He said costs were likely to be lower for newer cars with more modern cooling 
systems…

Generated Intent 2:
Identify documents that discuss the effects of the international agreement to phase out Freon-12 as a refrigerant.

(a) (b)

Figure 5: Case study indicating the role of contrastive examples in the decoder stage. Token-level decoder cross-
attention weights are shown for a generated intent token (red) are shown with (a) and without (b) an irrelevant
document in the model input. Deeper color indicates a higher value.

(a) (b)

Figure 6: Robustness analysis on (a) input length and
(b) IDNA threshold.

5.4.2 Analysis of Document Length493

In real-world scenarios, relevant documents associ-494

ated with a query can vary in length. Documents495

over 1024 tokens are truncated in our architecture.496

To assess robustness to input length, we group497

test documents into short (<512 tokens), medium498

(512–1024), and long (>1024). In the test dataset,499

204 are short, 25 medium, and 29 long. Figure 6(a)500

shows that the overall differences in performance501

among all the input length categories are minimal502

across all metrics, suggesting that 1024-token in-503

puts are sufficient for inferring the underlying query504

intent. This may explain why long-document QFS505

models offer limited gains in this task.506

5.4.3 Sensitivity Analysis of IDNA threshold507

Intent-driven negative augmentation (IDNA) se-508

lects irrelevant documents with high similarity to509

relevant ones as hard negatives for contrastive510

learning. We noticed that most document simi-511

larity scores fall between 0.6 and 0.9, making the512

method robust even with lower thresholds (e.g.,513

<0.6). Performance improves as the threshold in-514

creases within this range, with 0.8 yielding the best515

results, which we use in our experiments.516

5.5 Case Study 517

Figure 5 illustrates how the model uses cross- 518

attention in the decoder stage to identify irrelevant 519

semantics from a low-ranked document. When gen- 520

erating ‘impacted’ without an irrelevant document 521

(Figure 5(a)), the model focuses on economic ef- 522

fects on cars, indicated by ‘price’ in Intent 1. With 523

an irrelevant document in Figure 5(b), while similar 524

economic attentions are observed across both rele- 525

vant and irrelevant documents when generating the 526

word ‘effects’ in Intent 2, the model successfully 527

identifies tokens related to prices and cars in rel- 528

evant documents as irrelevant. This demonstrates 529

the model’s ability to filter out irrelevant content us- 530

ing contrastive learning in the decoder. We include 531

another failure case study in Appendix E. 532

6 Conclusions 533

We introduced a novel dual-space modeling ap- 534

proach for the query intent generation task. Our ap- 535

proach implements contrastive learning in both en- 536

coding and decoding phases, combined with intent- 537

driven hard negative augmentation during data pre- 538

processing, to automatically generate detailed and 539

precise intent descriptions, surfacing what the sys- 540

tem likely inferred the query to mean. Experi- 541

mental results show that our model can effectively 542

filter out irrelevant information from the relevant 543

intent space, leading to more accurate intent de- 544

scriptions than all baselines, including models for 545

Query-Focused Summarization. In future work, we 546

plan to improve contextual understanding in distin- 547

guishing relevant from irrelevant information and 548

extend our approach to conversational search by 549

mining exploratory needs and explaining the under- 550

standing of query intents. Our long-term aim is to 551

improve the transparency in the retrieval process, 552

in particular for exploratory search needs. 553
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Limitations554

Training Efficiency Trade-offs. Augmenting555

irrelevant documents enhances robustness but556

linearly increases training time. We therefore557

limited negative documents to three per query,558

which partially alleviates this trade-off but remains559

suboptimal. To fundamentally resolve this560

efficiency bottleneck, two promising directions561

are: (1) adaptive dynamic sampling that prioritizes562

high-impact negatives through real-time gradient563

analysis, and (2) curriculum-based augmentation564

progressively introducing harder negatives as565

training stabilizes.566

Dataset Imbalance. Informational queries567

dominate the training data over exploratory ones.568

While our model shows promising performance569

in exploratory search scenarios, this bias limits570

deeper intent analysis. Future work should expand571

out experiments to more datasets, focusing on572

exploratory queries. One option would be to use573

LLM-generated synthetic data, specifically creat-574

ing pseudo-documents that mimic multi-faceted575

exploratory intents. This approach maintains576

intent modeling consistency while enabling577

systematic investigation of query complexity,578

without requiring manual annotation efforts.579

580
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A Detailed Comparison with Related786

Work787

A detailed comparison between our task—Query in-788

tent description generation —and related tasks such789

as Query Understanding (QU), Query-Focused790

Summarization (QFS), and Pseudo-Relevance791

Feedback (PRF) is provided in Table 5.792

B Experimental Setting Details793

B.1 Dataset Details794

In constructing the Q2ID dataset, documents with795

multi-graded relevance labels were converted into796

binary labels, indicating whether each document is797

relevant to the query. The dataset is composed of:798

• 510 entries from TREC tracks (Dynamic Do-799

main 2015–2017, Robust 2004)800

• 4,878 entries from SemEval-2015/2016 Task801

3 on Community Question Answering802

Each data point is formatted as a quadruple:803

<query, relevant documents, irrelevant documents,804

intent description>.805

The average query length is 7.2 tokens, and the806

average intent description length is 45.5 tokens. We807

follow the original split of Q2ID: 5,000 queries for808

training, 100 for validation, and 258 for testing.809

B.2 Implementation810

To balance efficiency and effectiveness during811

IDNA augmentation, we set the expected number812

of irrelevant documents per query to three for train-813

ing. This results in augmenting 1,984 queries with814

at least three irrelevant documents each. Training is815

conducted for 10 epochs using the Adam optimizer816

with a learning rate of 0.0001. During decoding, 817

we set a maximum sequence length of 256 tokens 818

and apply beam search with a beam size of 4. We 819

also set a no-repeat n-gram size of 3 to reduce re- 820

dundancy. 821

B.3 Baselines 822

Pretrained sequence-to-sequence model baselines: 823

T5 (Raffel et al., 2020b): a Transformer-based 824

encoder-decoder (Vaswani et al., 2017) model 825

trained on a diverse and extensive dataset. We use a 826

pretrained T5-large model that we finetuned on the 827

original Q2ID training dataset. BART (Lewis et al., 828

2020): also a transformer-based encoder-decoder 829

model, trained by corrupting documents and then 830

optimizing a reconstruction loss. The BART model 831

serves as the backbone of our QUIDS model. 832

Query-to-intent description (Q2ID) baseline: 833

CtrsGen (Zhang et al., 2020): a Q2ID model using 834

a bi-directional GRU as encoder architecture. Dur- 835

ing decoding, it computes contrast scores by consid- 836

ering irrelevant documents to adjust sentence-level 837

attention weights in the relevant documents. 838

Large Language Model (LLM) baseline: 839

LLama3.1 (AI, 2024): We use the Llama3.1-8B 840

instruction-tuned text-only model in both zero-shot 841

and two-shot settings and conduct five experimen- 842

tal runs for each setting. For two-shot setting, 843

we randomly using two different examples per 844

run – one sourced from TREC and the other from 845

SemEval. 846

Query Focused Summarization (QFS) baselines: 847

RelReg (Vig et al., 2022) and RelRegTT (Vig et al., 848

2022): two-step approaches for QFS consisting 849

of an score-and-rank extractor and an abstractor. 850

The extractor is trained to predict ROUGE rele- 851

vance scores and then the ranked results based on 852

ROUGE are passed to the abstractor. SegEnc (Vig 853

et al., 2022): an end-to-end approach tailored for 854

handling longer input texts. SegEnc splits a long 855

input into fixed-length overlapping segments and 856

encodes them separately. The encoding sequences 857

are concatenated so that the decoder can attend to 858

all encoded segments jointly. Socratic (Pagnoni 859

et al., 2023): an unsupervised, question-driven pre- 860

training approach designed to tailor generic lan- 861

guage models for controllable summarization tasks. 862

Qontsum (Sotudeh and Goharian, 2023): an ab- 863

stractive summarizer that applied Generative Infor- 864

mation Retrieval (GIR) techniques. It builds on 865

SegEnc by adding a segment scorer and contrastive 866

learning modules. We train the QFS baselines on 867
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Task Query Understanding
(Classification / Clus-
tering / Expansion)

Query-Focused Sum-
marization (QFS)

Pseudo-Relevance
Feedback (PRF)

Our Task: Query In-
tent Generation (QIG)

Goal Predict query intent
classes, discover latent
topics, or expand
queries for better
retrieval performance.

Summarize relevant
documents to help
users consume content.

Refine or reformulate
queries to improve re-
trieval performance.

Generate a natural lan-
guage description of
the search system’s in-
ferred intent behind a
query.

Output Form Labels (e.g., informa-
tional/navigational),
clusters, or expanded
query terms.

Natural language sum-
mary (abstractive or ex-
tractive).

Modified query or re-
weighted terms.

Natural language expla-
nation of inferred query
intent.

Use of Irrelevant
Documents

Not used. Focus is
on query-only or top-
ranked documents.

Rarely used; mainly
uses pseudo-relevant
documents.

Not used; PRF assumes
top-ranked documents
are relevant.

Explicitly contrasts rel-
evant and irrelevant doc-
uments for intent disen-
tanglement.

Application Stage Pre-retrieval; typically
before document scor-
ing.

Post-retrieval summa-
rization.

Interleaved or pre-
retrieval (used for
re-ranking or expan-
sion).

Post-retrieval; support-
ing user query refine-
ment and retrieval de-
bugging

User Utility Improves ranking ac-
curacy and personal-
ization; not visible to
users.

Helps users consume
content more effi-
ciently.

Improves recall or rele-
vance through backend
query rewriting.

Helps users understand
potential mismatches
between their intended
query meaning and
the system’s inferred
intent.

Table 5: Comparison between Query Understanding (QU) tasks, Query-Focused Summarization (QFS), Pseudo-
Relevance Feedback (PRF), and our Query Intent Generation (QIG) task.

the Q2ID dataset using the original code provided868

by the authors, except for Qontsum, which we in-869

dependently reproduced.870

B.4 Implementation Details for Baselines871

RelReg and RelRegTT share the same abstractor, a872

BART-large model, which also serves as the back-873

bone model for SegEnc, Socratic, and Qontsum.874

For RelReg and RelRegTT, we use an input seg-875

ment length of 1024, whereas SegEnc-based mod-876

els utilize an input segment length of 512, with877

a total input length of 4096. For Socratic train-878

ing, we use the checkpoint pretrained on Books3879

(Csaky and Recski, 2020) from the Huggingface880

Model Hub2 and fine-tune it on Q2ID dataset using881

SegEnc mechanism. We reproduce the work of882

Qontsum with the segment length of 512 tokens,883

temperature of 0.6 and (λ0 = 0.6, λ1 = 0.2, λ2 =884

0.2) in joint learning. For all models that divide885

input text into segments, we apply a 50% overlap886

between each segment and its adjacent one.887

C Correlation with Human Evaluation888

We assess the correlation between human and LLM889

evaluators across four qualitative evaluation crite-890

2https://huggingface.co/Salesforce/socratic-books-30M

ria, presenting the Spearman (ρ) and Kendall-Tau 891

(τ ) correlations for the best SOTA model SegEnc 892

and our QUIDS model in Table 6. Overall, our 893

model demonstrates significantly higher human 894

correspondence across all metrics compared to 895

SegEnc, with the exception of the Exclusion score. 896

Correlation performance varies by metric; for Flu- 897

ency and Factual Alignment—criteria requiring 898

less contextual information—there is a relatively 899

higher degree of agreement with human evalua- 900

tions. In contrast, the Inclusion and Exclusion 901

scores, which depend on diverse and contextual 902

sources, show lower correlation, suggesting that 903

humans and LLM evaluators adopt different eval- 904

uation strategies for more complex criteria. Ad- 905

ditionally, we observe that different LLM evalua- 906

tors exhibit human-like evaluation behaviors across 907

various metrics: LLaMa3.1 shows greater human 908

correspondence in Factual Alignment and Inclu- 909

sion scores, whereas GPT-4o aligns more closely 910

with human evaluations in Fluency and Exclusion 911

scores. 912

D Evaluation on Intent Types 913

In Table 3, we observe a human preference over the 914

SegEnc model on metric Factual Alignment, which 915
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Correlation Model Fluency Alignment Inclusion Exclusion Average
ρ τ ρ τ ρ τ ρ τ ρ τ

Corr (Human, GPT-4o)
SegEnc 0.320 0.252 0.387 0.295 0.158 0.121 0.375 0.309 0.310 0.244
QUIDS 0.476 0.375 0.495 0.386 0.265 0.199 0.361 0.286 0.399 0.312

Corr (Human, LLaMa3.1)
SegEnc 0.224 0.173 0.434 0.329 0.153 0.116 0.343 0.272 0.289 0.223
QUIDS 0.373 0.294 0.557 0.424 0.365 0.262 0.158 0.126 0.363 0.276

Table 6: Spearman (ρ) and Kendall-Tau (τ ) correlations between Human evaluation and LLM evaluation of different
metrics.

Method Intent Fluen. Align. Inclu. Exclu.

Human
Info. 4.78 3.71 4.04 4.80
Expl. 4.89 4.19 4.14 4.81

GPT-4o
Info. 3.64 2.70 2.63 3.95
Expl. 4.02 3.17 2.96 4.20

LLaMa3.1
Info. 3.33 2.96 3.35 3.99
Expl. 3.72 4.11 3.72 4.64

Table 7: Comparison of Human and LLM evaluation
on informational and exploratory intent types on our
model.

measures how well the generated query intent de-916

scription is factually aligned with the ground truth917

intent. We guess it is due to the model performance918

difference on different sub-datasets, or on differ-919

ent intent types. And hence we further analyse the920

evaluations on different intent types.921

Automatic Evaluation In the 258 test samples,922

there are 20 queries with exploratory intents and923

238 with informational intents. As shown in Ta-924

ble 4, queries with exploratory intents substan-925

tially outperform those with informational intents,926

achieving 60% higher ROUGE-2 scores and 20%927

higher BERTScores. This indicates that our model928

is better suited for exploratory queries. This finding929

contrasts with the results of (Zhang et al., 2020),930

where the CtrsGen model performed slightly better931

on the informational SemEval queries than on the932

exploratory TREC queries. A potential explana-933

tion is that the backbone language model used in934

our approach more freely generates text than the935

GRU model used in (Zhang et al., 2020), partic-936

ularly when reconstructing complex scenarios for937

informational intents. This is an aspect that makes938

our approach more suitable for exploratory search939

rather than informative search.940

Human and LLM Evaluation Table 7 presents941

human and LLM evaluations on our model regard-942

ing two intent types. In general, exploratory in-943

tents consistently outperform informational intents 944

across all metrics. This finding, derived from 50 945

test samples, aligns with automatic evaluation re- 946

sults on the full test dataset (Table 4). Figure 4 947

shows the evaluation score distribution by intent 948

type on our model, compared to the overall model 949

performance in Figure 3. The informational in- 950

tent distribution closely mirrors the overall per- 951

formance, suggesting that informational queries 952

dominate the dataset and largely influence per- 953

formance. However, exploratory queries, despite 954

being less frequent, demonstrate superior perfor- 955

mance in this task. When diving into the factual 956

alignment in Figure 3, while humans prefer our 957

model for exploratory intent with 4.19 (QUIDS) vs. 958

3.94 (SegEnc), SegEnc is favored for informative 959

intent with 3.71 (QUIDS) vs. 3.89 (SegEnc). Since 960

informative intent queries dominate, this leads to 961

a lower average score for our model on this met- 962

ric. These findings indicate that our model is well- 963

suited for exploratory search. 964

E Failure Case Study 965

Figure 7 illustrates a failure example of filtering 966

irrelevant information when an irrelevant docu- 967

ment is provided. The token-level decoder cross- 968

attention weights are compared when generating 969

a content word in the intent, with (c) and without 970

(d) an irrelevant document. When generating the 971

keyword ‘UK’ and ‘Dubai’, the model mainly fo- 972

cuses on ‘petrol’ and ‘cigarettes’ in the relevant 973

documents for both (c) and (d), which are also con- 974

textually important in the generated intent. How- 975

ever, the model fails to recognize the relationship 976

between ‘middle east’ in the irrelevance document 977

and ‘Dubai’, leading to the unwanted inclusion of 978

‘Dubai’ in the intent 2. This highlights that our 979

model may struggle with excluding information 980

that requires commonsense reasoning or domain- 981

specific knowledge. A direction for future work 982

is to develop advanced approaches that enhance 983
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Generated Intent 1: I am thinking of moving to Doha in September and was 
wondering if the cost of living is expensive compared to other places I have 
lived in. I have heard that petrol and cigarettes are much higher in Doha than in 
the UK. Is this true? What about accommodation is also expensive? Is the price 
of food and other household items high? Thanks

Ground Truth Intent:   I haven't moved there yet and was wondering how it compares to most European cities... eating out; supermarket 
shopping; clothes; cosmetics; etc.

Irrelevant Document: 
…compare to other middle east 
specially dubai and kuwait doha 
is less expensive.rent is 
affordable according to the 
people's standard.…

Generated Intent 2: 
Hi; I am thinking about moving to Doha and was wondering if the cost of living is expensive compared to other 
places I have lived in. I have heard that petrol and cigarettes are much cheaper in Doha than in Dubai. Is this 
true? What about accommodation is it also cheap? Can anyone help. Thanks

(c) (d)

Query: is Doha expensive?

Relevant Document: …I have lived in Europe briefly; and of course my native 
Australia…In comparison to Abu Dhabi - much the same for groceries; cheaper 
for accomodation…petrol and cigarettes; and consumer durable products are 
much cheaper here than Australia & Europe. Groceries are much more 
expensive...Doha is the most expensive city in the GCC (atleast more expensive 
than Dubai these days). House rents; car rentals; groceries…"

Relevant Document: …I have lived in Europe briefly; and of course my native 
Australia…In comparison to Abu Dhabi - much the same for groceries; cheaper 
for accomodation…petrol and cigarettes; and consumer durable products are 
much cheaper here than Australia & Europe. Groceries are much more 
expensive...Doha is the most expensive city in the GCC (atleast more expensive 
than Dubai these days). House rents; car rentals; groceries…"

Relevant Document: …Nevertheless, as R-12 
becomes more scarce and costly, auto executives say 
the conversions will increasingly become the more 
economical choice. Mr. Oulouhojian said most 
conversion kits had not yet been developed; their 
prices are estimated at $200 to $800. He said costs 
were likely to be lower for newer cars with more 
modern cooling systems. The cost of completely 
converting an older car may not make economic 
sense, he said…

Generated Intent 1: How will the price of Freon-12 
be impacted by the phasing out of this refrigerant?

Query: Freon-12 Ground Truth Intent: Information is needed on the phase-out of Freon-12, the coolant used in auto air conditioners and most refrigerators.

Relevant Document: …Nevertheless, as R-12 
becomes more scarce and costly, auto executives say 
the conversions will increasingly become the more 
economical choice. Mr. Oulouhojian said most 
conversion kits had not yet been developed; their 
prices are estimated at $200 to $800. He said costs 
were likely to be lower for newer cars with more 
modern cooling systems. The cost of completely 
converting an older car may not make economic 
sense, he said…

Irrelevant Document: …One alternative for cars is a non-CFC-12 refrigerant, but the 
only chemical combinations discovered so far would require $1,000 or more in 
modifications to existing air-conditioners. All auto manufacturers are developing 
conversion kits so that systems designed for R-12 can be modified to use R-134a. 
Some will be relatively simple, others more complicated and expensive. Nevertheless, 
as R-12 becomes more scarce and costly, auto executives say the conversions will 
increasingly become the more economical choice. Mr. Oulouhojian said most 
conversion kits had not yet been developed; their prices are estimated at $200 to $800. 
He said costs were likely to be lower for newer cars with more modern cooling 
systems…

Generated Intent 2:
Identify documents that discuss the effects of the international agreement to phase out Freon-12 as a refrigerant.

(a) (b)

Figure 7: Failure case study. Token-level decoder cross-attention weights for a generated intent token (red) are
shown with (c) and without (d) an irrelevant document. Deeper color indicates a higher value.

contextual understanding for complex scenarios.984

F LLM-based Evaluation Details985

Following the method of (Liu et al., 2023b), we use986

LLaMa3.1-8B3 and GPT-4o4 as instruction-tuned987

evaluators to assess the generated intent across four988

qualitative metrics. Specifically, we define the eval-989

uation task and criteria, prompting the LLM to990

generate chain-of-thoughts (CoT) for the ‘Evalua-991

tion Steps’. For LLaMa3.1-8B, we use the output992

token probabilities from the LLMs to normalize993

the scores and take their weighted summation as994

the final results:995

score =
n∑

i=1

p(si)× si (11)996

where S = {s1, s2, ..., sn} represents the prede-997

fined score set from the prompt, with a maximum998

value of 5 in our case. For the close-sourced GPT-999

4o, we sample 20 times to estimate the token prob-1000

abilities. An example prompt for each model is1001

presented below, and is also included in our code1002

repository.1003

F.1 General Evaluation Prompt1004

You will be given a query, relevant and irrelevant1005

documents with respect to the query. You will also1006

be given a generated query intent description based1007

on the query and documents. The ground truth1008

query intent description will also be provided.1009

Your task is to rate the query intent description on1010

one metric.1011

Please make sure you read and understand these1012

instructions carefully. Please keep this document1013

open while reviewing, and refer to it as needed.1014

3https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct.

4https://openai.com/index/hello-gpt-4o/.

Evaluation Criteria: 1015

«MetricCriteria» 1016

Evaluation steps: 1017

«EvaluationSteps» 1018

1019

Query: 1020

{{Query}} 1021

Relevant documents: 1022

{{Relevant documents}} 1023

Irrelevant documents: 1024

{{Irrelevant documents}} 1025

Generated Intent: 1026

{{Generated intent}} 1027

Ground Truth Intent: 1028

{{Gound truth intent}} 1029

Evaluation Form (scores ONLY): 1030

- «MetricName»: 1031

F.2 Evaluation Prompt on Fluency 1032

Evaluation Criteria: 1033

Fluency Score (1-5) - This metric measures if the 1034

generated query intent description reads naturally, 1035

understandably, and without noticeable errors or 1036

disruptions. 1037

Evaluation steps: 1038

1. Carefully review the provided query, relevant, 1039

and irrelevant documents to understand the context 1040

and content. 1041

2. Read the ground truth query intent description 1042

to understand the ideal response. This serves as 1043

a benchmark for evaluating the fluency of the 1044

generated description. 1045

3. Carefully read the generated query intent 1046
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description. Focus on the fluency aspect, consid-1047

ering factors such as grammatical correctness,1048

naturalness, clarity, coherence, and readability.1049

Assign a rating from 1 to 5 based on the level of1050

fluency.1051

1052

Evaluation Form (scores ONLY):1053

- Fluency:1054

F.3 Evaluation Prompt on Factual Alignment1055

Evaluation Criteria:1056

Factual Alignment (1-5) - This metric measures if1057

the generated query intent description is factually1058

aligned with the ground truth intent. Ensuring the1059

facts presented in the generated description are1060

correct and match those in the ground truth de-1061

scription. Verifying that all key facts and points1062

mentioned in the ground truth are covered in the1063

generated description without omission. Any hallu-1064

cination that diverges from the ground truth should1065

be flagged.1066

Evaluation steps:1067

1. Review the ground truth intent description for1068

the central facts and points that convey the query’s1069

purpose.1070

2. Read the generated intent description and list1071

the main facts and points it conveys.1072

3. Compare the lists from the ground truth1073

and generated descriptions for consistency in1074

content. Look for alignment in terms of content,1075

completeness, and accuracy.1076

4. Identify any key facts or points from the1077

ground truth that are missing in the generated1078

description (omissions) and note any information1079

in the generated description that is not present or1080

diverges from the ground truth (hallucinations).1081

Assign a rating from 1 to 5 based on the level of1082

factual alignment.1083

1084

Evaluation Form (scores ONLY):1085

- Factual Alignment:1086

F.4 Evaluation Prompt on Inclusion Score1087

Evaluation Criteria:1088

Inclusion Score (1-5) - This metric measures how1089

well the generated query intent includes important1090

details from the query and relevant documents. As-1091

sessing whether the generated description captures1092

key elements that are directly relevant to the query.1093

Evaluating if the generated description thoroughly1094

includes significant points from the relevant doc-1095

uments. Ensuring that the included details are 1096

integrated in a way that maintains the context and 1097

importance as presented in the relevant documents. 1098

Evaluation steps: 1099

1. Review the query and relevant documents to 1100

extract the main facts, significant points, and key 1101

elements that directly address the query. 1102

2. Read the generated query intent description and 1103

list the key details it includes. 1104

3. Compare the key details and elements from the 1105

generated description with those identified from 1106

the query and relevant documents, checking for 1107

inclusion and alignment. 1108

4. Assess how well the included details are 1109

integrated into the generated description, ensuring 1110

they maintain the context and importance as 1111

presented in the relevant documents. 1112

Assign a rating from 1 to 5 based on the thorough- 1113

ness and relevance of the included details. 1114

1115

Evaluation Form (scores ONLY): 1116

- Inclusion Score: 1117

F.5 Evaluation Prompt on Exclusion Score 1118

Evaluation Criteria: 1119

Exclusion Score (1-5) - This metric measures if the 1120

generated query intent description excludes infor- 1121

mation present in the irrelevant documents that is 1122

not relevant to the query and relevant documents. 1123

Evaluating whether the description effectively fil- 1124

ters out information that is irrelevant to the query. 1125

Ensuring that the description does not include mis- 1126

leading or incorrect information found in the irrel- 1127

evant documents. Evaluating whether the descrip- 1128

tion effectively filters out information present in the 1129

irrelevant documents but focus on topics different 1130

from those in relevant documents. 1131

Evaluation steps: 1132

1. Carefully read through the irrelevant documents 1133

to pinpoint details, facts, or topics that are not 1134

relevant to the query and relevant documents. 1135

2. Read the generated query intent description and 1136

extract the key details and points included in the 1137

description. 1138

3. Compare the extracted content from the gener- 1139

ated description with the irrelevant information 1140

identified in the irrelevant documents to check for 1141

the presence of any irrelevant details. 1142

4. Assess how effectively the generated description 1143

filters out irrelevant information, ensuring it 1144

focuses only on the query and relevant documents. 1145
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Assign a rating from 1 to 5 based on the level of1146

exclusion of irrelevant details.1147

1148

Evaluation Form (scores ONLY):1149

- Exclusion Score:1150
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