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Abstract

In the private set union problem each user owns a bag of at most k items (from some
large universe of items), and we are interested in computing the union of the items
in the bags of all of the users. This is trivial without privacy, but a differentially
private algorithm must be careful about reporting items contained in only a small
number of bags. We consider differentially private algorithms that always report a
subset of the union, and define the utility of an algorithm to be the expected size of
the subset that it reports.

Because the achievable utility varies significantly with the dataset, we introduce
the utility ratio, which normalizes utility by a dataset-specific upper bound and
characterizes a mechanism by its lowest normalized utility across all datasets.
We then develop algorithms with guaranteed utility ratios and complement them
with bounds on the best possible utility ratio. Prior work has shown that a single
algorithm can be simultaneously optimal for all datasets when &k = 1, but we
show that instance-optimal algorithms do not exist when £ > 1, and characterize
how performance degrades as k grows. At the same time, we design a private
algorithm that achieves the maximum possible utility, regardless of k£, when the
item histogram matches a prior prediction (for instance, from a previous data
release) and degrades gracefully with the ¢, distance between the prediction and
the actual histogram when the prediction is imperfect.

1 Introduction

Consider a dataset where each entry is a set of items donated by a different user. The set union
problem is to output the union of all of the sets. This simple problem arises in many practical
scenarios, and when the items have the potential to be sensitive we may want privacy guarantees to
ensure that the result does not reveal personal data. For example, private set union can be used for
discovering n-grams in a corpus [[Gopi et al.| |2020], releasing keys in SQL queries [Wilson et al.,
2020], and in general for determining the domain of private aggregate statistics [Amin et al.| [2022].

Since the number of conceivable items (e.g., all possible n-grams) can be very large, it is often
necessary for the algorithm to restrict its output to a subset of the true union [Gopi et al., 2020,
Desfontaines et al., 2022[]. Motivated by this, |Cohen et al.| [2021]], |Desfontaines et al.| [2022]]
proposed an optimal (&, ¢)-differentially private algorithm when each user contributes exactly one
item. However, in many realistic settings users can contribute multiple items. This prompts a natural
question: can we design an optimal (e, 0)-differentially private algorithm when each user contributes
up to k items?

We begin with the definition of differential privacy.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



1.0 A
0.9
0.8 0.8
o
0.6 g 0.7
S o
< 206
0.4 =
D05
0.2 A 0.4
0.0 03 1/4
0 20 40 60 80 100 0 5 4 6 8
C
&

Figure 1: The maximum probability 7(c; e, d) of  Figure 2: Optimal utility ratios over datasets with

reporting an item with count c when e = 0.1 and  three users for § = 0.01 and various settings of

0 = 0.0001. ¢ and k. For intermediate values of ¢ the ratio
can be nearly as low as 1/k.

Definition 1.1 (Differential privacy [Dwork et al., [2000]). A randomized algorithm M satisfies
(e, 6)-differential privacy if for any two neighboring datasets D, D' and for any subset of the output
space S, it holds that

PriM(D) € 8] < e® - PriIM(D’) € S] + 6.

Two datasets D and D' are neighboring if and only if dpam(D, D') 2 |D\ D'| + |D'\ D| = 1.

We can now provide a formal definition of the differentially private set union problem.

Definition 1.2 (Differentially private set union). Fix a universe X of items and a contribution bound
k. Let D be a dataset consisting of bags B; C X, |B;| < k for i € [n]. A differentially private set
union algorithm M has to output a subset of U;cn) Bi, and its goal is to output a subset which is
as large as possible. We denote by UNIONg (g, 0) the set of all (e, §)-differentially private set union
algorithms.

We define the utility of algorithm M € UNION (¢, d) on dataset D to be the expected cardinality of
its output set, E [| M (D)|]. In the best-case scenario, the utility is equal to the cardinality of the full
union, i.e., E[|[M(D)|] = | U;e[n) Bil. However, the best-case utility is typically not achievable. For
example, consider a dataset in which each item is contained in the bag of a single user: any algorithm
in UNION (e, §) cannot report more than a ¢ fraction of the items in expectation, since for each item
there is a neighboring dataset in which it does not exist and hence is reported with probability zero.
In general, the achievable fraction of the best-case utility is highly dependent on the item frequencies,
making it difficult to compare algorithms across datasets when the goal is a naive maximization of
E[|M (D).

The work of |Cohen et al.| [2021]], Desfontaines et al.| [2022]] suggests an appropriate adjustment.
Let the number of times item x appears in dataset D be denoted by c¢(x, D) (or simply c(z) when
the underlying dataset is clear). They showed that the utility of any algorithm M € UNIONg(e, §)
satisfies
E|M(D)]| < T(D,e,6) = 3 m(c(w);e, ),
reX
where 7 is a sigmoid-like function given by

ecéz)jfl -0 if c(z) < ¢y
m(e(x):2,6) = § (1= e~ (c@e02) (14 B3} emele=ein(c,) if e < o(x) < o
1 otherwise

and ¢y and ¢y, are constants given by

1 £4+2—-1 1 cf-1
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In the special case ¢ = 0, we have 7(c(z); 0, ) = min(c(z)d, 1). See Figure|[I]for an illustration of
.

Cohen et al.| [2021]], Desfontaines et al.|[2022]] showed that the upper bound of TI(D, ¢, §) is achiev-
able, simultaneously for all datasets, when £ = 1. We will see later that this is not possible when
k > 1 (except under certain extreme values of ¢ and §). However, II(D, ¢, §) is achievable, re-
gardless of k, for any single dataset (see Theorem [I.3| below). This is not trivial since algorithms
in UNION (e, ) can only return items appearing in their input dataset, which rules out constant
algorithms that ignore their input and return a fixed result. (Such algorithms are differentially private
and, in other settings, can be used to trivially obtain optimality for any single dataset.)

The achievability of II(D, e, §) when k& = 1 motivates its use as a normalizer for the utility E[| M (D)]].
We introduce the following target measure, which we use to establish bounds on the performance of
algorithms in UNIONy (e, §).

Definition 1.3 (Utility ratio). The utility ratio of an algorithm M € UNIONg/(g,d) is
En[|M(D)]]
M) = —_,
we(M) = min =752 )
where Dy, is the collection of all nonempty datasets where each user contributes at most k items.
That ug (M) is generally less than one when k& > 1 is easily demonstrated numerically using a linear
program that finds the optimal mechanism for a finite collection of datasets. Figure [Z]shows that the

resulting behavior is complex, even considering only very small datasets, and the worst-case utility
ratio appears to be close to 1/k. Our aim is to characterize this behavior theoretically.

1.1 Main results

Theorem 1.1 (Informal impossibility results). Let § = O.(1/k?), where the subscript denotes an
unstated dependence on e. Then for any algorithm M in UNION(g,0) we have

wn =01 (1+15)). S——

In addition, even if D is restricted to “easy” datasets where I1(D, e, ) = Q(|X|), we still have
~ 1
up(M) = O, (/{:1/4> ) (Theorem 2.3)

where O hides logarithmic terms.

Theorem [I.1] shows that instance-optimal algorithms are not generally possible when k > 1, with the
bounds roughly matching the minimums in Figure 2] However, we can still construct algorithms with
meaningful utility guarantees.

Theorem 1.2 (Informal achievability results). There exists an algorithm M in UNIONg (g, 0) such
that for every dataset D,
1
BIM(D)] = 1 - TI(D,<',5),
where &' = Q(e) and &' = Q(6/e°) (see Theorem . In addition, when ¢ = 0 or € — 0o (holding
d constant), there exists an M such that uy, (M) =1 (see Lemmasand .

The results above raise an important question: can we ever do better than a utility ratio of O(1/k)?
Theorem [I.3]shows that, if we can predict the histogram of items in the dataset in advance, then there
exists a private set union algorithm achieving the optimal utility regardless of k.

Theorem 1.3 (Informal achievability with predictions). For any nonempty histogram over X and
privacy parameters € and J, there exists an algorithm M € UNIONg (g, 0) such that

E[[M(D)|] = I(D,e,9)
for any D matching the predicted histogram, regardless of the contribution bound k (Theorem{.1).
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The private algorithm M satisfying Theorem[I.3]also performs well on datasets that are “similar” to
the target dataset D, making it an appropriate algorithm for settings where some public prediction
regarding the union is available (see Section [ for more details).

A note about k: In some settings we may not have any a priori contribution bound &, in which case
we need to choose one and enforce it. This introduces a natural tradeoff: larger & retain more data,
but reduce the utility ratio (as indicated by our results). Similar contribution-bounding tradeoffs have
been explored in prior work [Amin et al., 2019, Epasto et al., 2020, |Amin et al., [2022]]. Although it is
not our main focus here, in Appendix[A]we show one way that & can be selected privately when no
contribution bound is known in advance.

1.2 Related work

The differentially private set union problem was implicitly introduced by Korolova et al.| [[2009]]
in the early days of differential privacy. Subsequent work by |Gopi et al.|[2020], |Carvalho et al.
[2022] improved utility by processing users sequentially and choosing contributions in a clever way,
minimizing waste on heavy items while maintaining low sensitivity. Swanberg et al.| [2023]], (Chen
et al.| [2024]] proposed multi-round mechanisms with careful budget-splitting across the rounds; this
allowed them to process users in parallel while retaining good utility. However, none of these works
provide worst case utility guarantees, and they primarily compare different approaches empirically.

The optimal reporting probabilities when k£ = 1 were introduced by |Desfontaines et al.|[2022]], Cohen
et al.|[2021]]. [Knop and Steinke, 2023 studied the related problem of estimating the size of the union
rather than the union itself. More distantly related work on privately finding the £ most frequent
items in a database was published by Bhaskar et al.|[2010]], [Durfee and Rogers| [2019], McKenna and
Sheldon| [2020], |Gillenwater et al.|[2022]].

2 Impossibility results

In this section we derive upper bounds on the utility ratio of any (e, §)-differentially private set union
mechanism when applied to datasets with contribution bound k. Our upper bounds all diminish with
k, showing that for datasets with large contribution bounds, no differentially private mechanisms can
meaningfully compete with the optimal utility simultaneously for all datasets. All omitted proofs are
given in Appendix

Our first result shows that there exist regimes for € and ¢ such that every set union mechanism has
utility ratio O(1/k). In particular, as the contribution bound & grows, no mechanism is competitive
with II( D) on every dataset D, despite the fact that Theorem establishes a mechanism matching
II(D) for any single D.

Theorem 2.1 (Warm-up). Letk > 2, ¢ > 0,5 < L, and let M be any (¢, §)-differentially private

ec+2’
set union mechanism. Then there exists a dataset D with contribution bound k such that
E||M
(Mo 1,k
II(D,e,0) — k e +k
In particular, for e = 21n(k) and § < k%ﬁ’ we have % < %

Proof sketch. Let the item universe X’ contain k items, and let D be the dataset with a single user
that contributes every item, i.e., By = X'. For each item = € X, construct a dataset D, by adding a
second user to D that contributes only item x, i.e., Bo = {x}. The privacy parameters ¢ and § are
chosen to ensure that 7(2) is much larger than (1), so a mechanism M is only competitive on D, if
it outputs item x with probability close to m(2). However, since D, neighbors a dataset containing
only item x (after removing user 1), the total probability mass of outputting any set containing an
item other than & must be at most 6. Thus, Pr(z € M(D,)) < Pr(M(D,) = {z}) + . And, since
M is DP, we further have Pr(z € M(D,)) < e Pr(M(D) = {z}) + 26. So, for M to compete
with TI(D,,), we require that M outputs the singleton set {2} with non-trivial probability when run on
the single-user dataset D. On the other hand, D neighbors the empty dataset, so the total probability

mass it assigns to non-empty outputs is at most J, implying that there exists an item y such that
Pr(M (D) = {y}) < 6/k. Therefore, Pr(y € M(D,)) < e°§/k + 26. By contrast, in the specified



parameter regime we have m(2) = de® 4+ §. When ¢ is sufficiently large that the e terms dominates,
the mechanism M is only able to output y with probability approximately 7(2)/k.

Intuitively, the only way for M to compete with II(D,.) is for M to have an output distribution on
the single-user dataset D that prioritizes x, and it is not possible for a single mechanism M to do this
simultaneously for all z € X. O

A weakness of Theorem is that the utility ratio bound of 2/k holds only when ¢ > 21In k. For
large k, this is an extremely low privacy regime. The next result extends the argument of Theorem [2.1]
and establishes a bound of O(%) on the utility ratio of any mechanism that holds in almost any
privacy regime. In particular, it holds for any ¢ as long as § decays like 1/k2.

Theorem 2.2. Letk >4, > 0,0 < 1%2 . 651/2 . Zz% and M be any (g, 0)-differentially private set

union mechanism. Then there exists a dataset D with contribution bound k such that

E|M(D)] _ 12 1
M(D,e,0) = k-1 <1+ slogk) '

Proof sketch. The proof follows a similar argument to the one for Theorem 2.1} but instead of adding
a single user to D, we add O(In(k)) users, each contributing a constant fraction of the previous
user’s items. The key advantage of this iterative construction is that the suboptimality incurred by the
mechanism is determined by its inability to output items with sufficiently large probability across a
range of item counts from 1 to In(k). In particular, rather than requiring € to be O(In(k)) to ensure
that 7r(2) is much larger than 7 (1), here we allow for constant ¢ and drive suboptimality from the
ratio between 7(ln(k)) and 7(1). O

The datasets that witness the utility ratio upper bound in Theorem [2.2] have the property that
II(D,€,0)/| Uieln) Bi| tends to zero as the contribution bound % grows. In other words, even
the optimal mechanisms for datasets D established by Theorem|[I.3]are only able to return a vanishing
fraction of the items contained in D as the contribution bound & grows. Our final impossibility result
shows that even on a class of datasets where I1(D) > | U;c[,) B;|/2, the utility ratio achievable by
any mechanism diminishes with k, albeit at a slower rate than for the previous results.

Theorem 2.3. Letk > 2, n > 2-cj, (so that 7(n/2) = 1), e > 1/n, and § < 1/(40e°n'/2k1/*).
Let M be any (g, §)-differentially private set union mechanism. Then there exists a dataset D with
contribution bound k such that

E|MD)] _ < (n2 102(%) ) 1/4> .

Proof sketch. The key idea is a reduction showing that a private set union mechanism M can be used
to construct a mechanism for estimating matrix marginals whose performance is related to the utility
ratio uy (M ). Combined with an impossibility result for privately estimating matrix marginals based
on robust fingerprinting codes (modified from the work of [Steinke and Ullman| [2015]]), this yields a
bound on the utility ratio.

The marginal problem we reduce from is the following: given a binary matrix C' € {0, 1}"*¥, the
mechanism aims to output a vector in {0, 1}* such that whenever a column of C is entirely 0 or 1,
the corresponding component of the output vector is also equal to 0 or 1 (respectively). On mixed
columns of C', the mechanism can output either 0 or 1. This is an easier problem than computing the
column marginals of C (i.e., the fraction of 1s per column), since the mechanism is only required to
identify “pure” columns. We are interested in mechanisms that are at most (3, )-inaccurate, which
requires that with probability at least -y their output is correct on all but at most Sk columns. [Steinke
and Ullman| [2015] upper bound f for differentially private mechanisms.

The reduction works as follows: view row i of the matrix C' as the indicator vector for user u;’s
bag of items from a universe of size k. Given a mechanism M for private set union, we obtain a
set U approximating the union of the contributed items. We then output the vector 7 € {0, 1}*
where m; = 1if j € U and m; ~ Bernoulli(1/2) if j ¢ U. Because M € UNION(e, §), every

index j € U must be a column of C that contains at least one 1, so we never make mistakes on those
columns. And for each pure column j ¢ U, we have a 1/2 chance of correctly guessing whether the



column was all Os or all 1s. It follows that the expected number of mistakes made by the reduction
mechanism is at most (k — ug (M) - II(D))/2, where D is the set union instance encoded by the
rows of C. To finish the proof, we construct C' to ensure that II(D) > k/2, which ensures the
expected fraction of marginal mistakes is bounded in terms of uy(M). Then we convert this to a high
probability bound that contradicts the impossibility result for the marginal problem when wy (M) is
too large. O

3 Algorithms with utility guarantees

3.1 A simple budget splitting algorithm

A straightforward approach when £ > 1 is to divide the budget by k and apply the optimal £ = 1 algo-
rithm, including each item x € X in the output independently with probability 7 (c(x, D);e/k,d/k).
Clearly the utility of this mechanism is II(D, e /k, 6 /k). The following lemma argues that it is private.
The proof is straightforward and included for completeness in Appendix [C}

Lemma 3.1. Let M, (D;¢,0, k) be the mechanism that works as follows: for each item x € X,
include x in the output with probability w(c(x, D);e/k,/k). Then M, is a (e, 6)-differentially
private set union mechanism when users contribute at most k items.

3.2 Bicriteria Approximation

The simple budget splitting algorithm achieves the II(D, €, §) bound of Theoremfor every dataset
D but with privacy parameters smaller by a factor of & than the target parameters. In the following
theorem we compete with this bound for a larger value of ¢, smaller than the “real” € by only a factor
of In(1/4). This gain comes with a multiplicative loss of 1/k over the II(D, ¢, §) bound.

Theorem 3.2. Let £,0 < 1 be small enough constants. There exists an (€, 9)-DP algorithm whose
expected number of identified items is

;.H<D,Q<m(1€/5)) Q(m(l(/;g)es>>

We refer to this result as “bicriteria” because our (g, §)-DP algorithm incurs a multiplicative loss of
% when compared not with the optimal reporting probabilities for parameters (e, §), but rather with

those for the relaxed parameters (m7 W) .

Our bicriteria algorithm, called Bicrit, is given below. We present an alternative construction of a
bicriteria algorithm in Appendix [C.1]

Algorithm 1 Bicrit

Notation: Let k£ denote the contribution bound, let X’ be a domain of items, and let Ay, = {BC
X : |B| < k} denote the set of all possible bags of size at most k from X’.

Input: Dataset D € (Ay )™ containing n bags, privacy parameters €, > 0.

1. Denote € = m and §
2. Foreachz € X:
(a) Let b, < Bernoulli (1)

(b) If b, = 1 then report = with probability 7(c(z); €, )

Note that Algorithm Bicrit does not need to explicitly traverse all x € X’; we can skip items to
which no user contributes since 7(0; €, ) = 0.

The next lemma captures the privacy guarantee of Algorithm Bicrit.
Lemma 3.3. Algorithm Bicritis (¢,0)-DP.

Proof. Fix two neighboring datasets D° and D' = D° U {B} for B = {x1,%2,...,2,} where
z < k.Letl¢ = |{x € B : b, = 1} be the random variable denoting the number of elements from B



that are sampled in Step Let E denote the event that £ < £, := 41n(2/6), and E its complement.

By the Chernoff bound we have Pr [E} < ¢/2. Now, by composition (and by our choice of £ and ¢
in Step[I), for any outcome event F' we have that

Pr[Bicrit(D°) € F] = Pr[E] - Pr[Bicrit(D°) € F|E] + Pr [E] - Pr [Bicrit(D°) € F|E]

< Pr[E] (eééo -Pr[Bicrit(D') € F|E] + foe(eo_l)ég) + g

< Pr[E] <6€ -Pr[Bicrit(D') € F|E] + g) + g

< e - Pr[Bicrit(D') € F] +4.

The utility analysis of the bicriteria algorithm is straightforward:

Lemma 3.4. The expected number of identified items in Algorithm Bicrit is

;'H(D’Q<ln(16/6)> ’Q<ln(1(/$6)es>) .

Proof. For any dataset D we have

B[jBicrit(D)]| = ¥ % r(e(2): £,8) =
zeEX

1 € 0

3.3 Optimal Mechanisms in Extreme Privacy Regimes

Finally, we describe some mechanisms that behave optimally when the privacy parameter ¢ is
extremely large or small.

Small ¢ regime. When ¢ = 0 the 7 function takes a particularly simple form: 7(¢; 0, 6) = min(cd, 1).
The following lemma gives a mechanism M,, that matches these output probabilities as long as
0 < 1/n, where n is the number of users. Its proof is straightforward and omitted.

Lemma 3.5. Let n be the number of users and assume that 6 < 1/n. Let My(D;8) be a mechanism
that with probability nd picks a user i uniformly at random and outputs the set of items in B; and
with probability 1 — né outputs the empty set. Then My is (0, 6) differentially private, and it outputs
each item x with probability c¢(x, D) - 6 = mw(c(z, D);0,9).

Large ¢ regime. We describe a mechanism that achieves the optimal utility II(D, ¢, §) as € — 0.
The mechanism composes the budget splitting mechanism of Section with a simple mechanism
M,y that outputs the full union with probability 6 and otherwise outputs the empty set. Importantly,
M,y outputs items that appear exactly once with the maximum possible probability 7(1;e,d) = 6.
Lemma|C.7)in Appendix [C.2|shows that M, is a (0, §)-differentially private.

The intuition underlying the combination of My and Mgy is as follows. For any dataset D,
Mpiic outputs each item with probability 7 (c(z, D);e/k, 6 /k) which is smaller than 7(c(z, D); €, 6).
However, for all items that appear at least twice, both probabilities converge to 1 in the limit as
€ — o0o. The only catch is that My outputs items appearing exactly once with probability 6 /&
instead of ¢ (regardless of €). To fix this, we compose M,; and My, spending most of our ¢ budget
on My to get the maximum output probabilities for items that appear once, and relying on the fact
that for any nonzero ¢ and count ¢ > 2, we have lim._, -, 7(¢;&,d) = 1. The final mechanism and
its properties are summarized in the following lemma, which we prove in Appendix



Lemma 3.6. Let M. (D; €, 6, k) be the following mechanism: let ' = § — min(0, 1/¢) and output
the union of My (D;0") and My (D;e,8 — &', k). Then Miar is an (¢, 6)-differentially private set
union mechanism. Furthermore, for any contribution bound k, dataset D with contributions bounded
by k, and privacy parameter §, we have that

. EHMlarge(D;gvéak)H

1
ELH;o H(D,E,&)

=1

4 Leveraging a prediction

Finally, in this section, we study whether predicted information about the underlying dataset D, e.g.,
based on historical runs, can improve the utility for private set union algorithms. In particular, we
consider the case where a predicted histogram H for the item counts is available. Our goal is to
perform well on datasets whose histogram is close to H.

The requirement in Definition [I.2]that the algorithm must output a subset of the input dataset excludes
the trivially successful algorithm that always outputs the union {z | H(z) > 0}. However, somewhat
surprisingly, we show that if the predicted histogram H is correct, it is possible to design a private
set union algorithm M that achieves the best possible expected utility II(D, €, §), regardless of the
contribution bound k. For any dataset D, let Hp, be its histogram where Va, Hp (x) = ¢(D, x). Note
that the optimal utility bound II(D, ¢, §) only depends on H . We abuse notation and define

(H,e,0) = Y n(H(x);e,0),
TEX
and we have VD, II(D, e,d) = II(Hp, ¢, §). Moreover, for any d > 0 and histogram H, we define
_4(H,e,0) =Y w(H(x)—d;c,0)
TEX
to be the II bound when all item counts have been reduced by d. The result is stated below.

Theorem 4.1. Let H be a predicted histogram. Then there exists an (g, §)-private set union mecha-
nism My such that
EHMH(D)H = H—KOO(HD,H)(H7 &, 6)7

where in particular we have E[| My (D)|] = II(D,¢,0) if Hp = H.

Proof. Given a predicted histogram H, we construct the mechanism M as follows. Compute
d="{x(Hp,H) =max, |[Hp(x) — H(x)| and sample p ~ U(0, 1). Then My outputs the set

Mg (D) ={z | m(H(z) — d;&,d) > p}.
The utility guarantee follows by noting that
E[|M(D)|] = Z Pr(p < 7(H(z) — d;e,0)) = Z m(H(x) —d;e,6) =U_y_ (g, m)(H,e,0).
zeX TEX

It remains to prove that the algorithm is private. Since 7(c —d; ¢, d) is a monotonically increasing
function of c, the output of the algorithm is determined by cp, defined as the smallest ¢ such that
m(c—d;e,d) > p. To see this, note that we can get My (D) by post-processing ¢p and outputting
the set {z | H(x) > cp}. Hence it is sufficient to prove that cp is a private statistic of D.

Note that ¢ only depends on D through d = ¢, (Hp, H), and by the definition of ¢, we have
Pr(cp =m)=n(m—d) —n(m—d—1).
We denote the distribution of ¢p when d = £, (Hp, H) as Py. For all neighboring datasets D and
D', by the reverse triangle inequality we have
[lo(Hp,H) — b (Hpr,H)| < loo(Hp,Hpr) < 1.

Hence it is sufficient to prove that Vd > 0, P and Py are (g, §)-indistinguishable. More precisely,
we want to prove that for d > 0, we have

Prmdi (Pd(m) < eEPd_H(m)) > 1-96 (2)



and Propy.y (Pay1(m) < e“Py(m)) > 1 —06. 3)
By the definition of Py, for all m’ > 0, we have
Pimy (m+m') = Py(m).
This implies
Pri~p, (Pi(m) < € Pyr1(m)) = Pry~p, (Po(m —d) < e*Pi(m —d))

and
Pryp, (Pi1(m —d) <e*Py(m —d)) =Pryup, (P1(m—d) <e"Py(m—d)).
Hence it is sufficient to prove Equation (Z) and Equation (3) for d = 0.

By [Desfontaines et al., 2022, Lemma 1], we have that there exist c, and c;, such that

0, if c<0
em(c,e,0) + 0, if 0 < ¢ < ¢y,
1,,0) =
m(et1,e,9) 1—e (1 —m(c,e,d)—=9), ifco<c<ecp,
1, if c>c¢y.

Moreover, the above implies 7(1,¢,d) = §, m(cp,€,d) € [1 —6,1).
We start by proving Equation (2). We show that
Ym > 2, Py(m) < e*Pi(m). (€))
Since, in addition, Pr,,,~.p,(m < 1) = Py(1) = n(1,¢,9) — 7(0,¢,0) = 0, Equation (2) holds.
To see Equation (EI), when 0 < m — 2 < ¢y, we have
Py(m) = mw(m,e,d) —m(m —1,¢,9)
=m(m,e,d) — (e*m(m — 2,¢,8) + 6)

< (efm(m —1,¢,0) +9) — (e*m(m — 2,¢,9) + ) %)
<ef(m(m—1,g,6) — w(m — 2,¢,9))
=e*Pi(m),

where Equation (5)) is due to the (¢, §)-DP guarantee of 7.
If c, > m — 2 > ¢y, we have
Py(m) = w(m,e,8) — m(m —1,¢,9)
=m(m,e,0) — (1 —e (1 —m(m — 2,&,9) — 9))
<(l-e*(1l—=am(m—-1,60)—0)—(1—e (1 —n(m—2,6,0) —9)) (6)
<e f(m(m—1,¢,0) — m(m — 2,¢,9))
=e P (m),

where Equation (6)) follows since, by the (e, §)-DP guarantee of 7, we have 1 — 7(m — 1,¢,6) <
ef(1 —m(m —1,¢,0)) + d. Form — 2 > ¢y, we have Py(m) = w(m,e,8) — w(m — 1,¢,8) = 0.
Combining the three cases completes the proof of Equation (2).

To prove Equation (3), we similarly need to show that
vm < ¢ +1, Pi(m) < e Py(m), (N

and then since Pr,,, . p, (m > cp +2) = Pi(cp +2) = w(cp +1,e,8) —7(cp,e,0) <1—(1-0) =0,
Equation (3) will follow. The proof of Equation (7) follows the proof of Equation (@) and is omitted
here. O
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction provide accurate summaries of the major claims
made in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of the results are captured in the formal theorem statements,
and we emphasize the differences between various analyses and the settings they apply to in
the text of the paper.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All nontrivial proofs are provided in the appendices.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The paper and its underlying research conform to the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The paper is not expected to have any immediate societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendices

A Cap Estimation

Suppose that each user contributes an arbitrary number of items to the dataset. A simple way to
compute a differentially private set union in this case is to fix a cap k, enforce the cap by random
selection (that is, if a user contributes more than k items, retain k of them uniformly at random and
discard the rest), and finally apply the simple budget splitting mechanism Mgy,;;;.

But how should we choose k? If k is too large, the budget will be overly subdivided,; if k is too small,
then we will discard a large portion of the dataset. In either case we are likely to get poor utility.
However, the ideal value of &£ depends on the dataset, so we must consider the privacy implications of
trying to find it. In this section we suggest a method to select k that will not consume a substantial
fraction of our privacy budget.

The idea is simple. For each value of k£ we compute the expected utility of Mgy,;;; on the randomly
capped dataset, and then we run the exponential mechanism |Dwork et al.| [2014]] (or some private
noisy maximum algorithm) to pick the value of & that maximizes the expected utility. This will be
successful if the sensitivity of the expected utility remains small even as k grows. On the one hand,
as k increases, individual users can make more contributions to the capped dataset, which will tend
to increase sensitivity. On the other hand, the per-item budget shrinks, reducing the effect of each
contributed item. We will show that these effects cancel out such that the sensitivity can be bounded
independently of k.

We first establish an upper bound on the increase in ™ when the count of an item grows by one.

Lemma A.1. Forc >0, 7(c+ 1;¢,0) — 7(c;e,0) < 652,1 s

Proof. Recall the recursive definition of 7 from [Desfontaines et al.| [2022]:
7(0;¢,6) =0
m(c+1;¢,0) = min {e°n(¢;e,8) + 6,1 — e (1 — m(c;¢,8) — 6),1} ®
We have
m(c+ 1;¢,0) — m(c;e,8) < min{em(c;e,0) + 6,1 — e (1 — w(c;¢,0) — 6)} — 7(c)
=min {(e* — 1)7(c;e,0) + 6,1+ (e~ ° — L)m(c;e,0) —e *(1 —4)} .

As a function of 7(c; €, §), the left term in the minimum is increasing and the right term is decreasing.
Therefore the minimum is bounded by the value of the two terms when they agree:

(ef = )m(c;e,0) +d =14 (e = 1)m(c;€,0) —e (1 —9), )
which implies
1
Plugging this back into the left term, we obtain the bound
et —1 e —1

1; —7(c; < 1-— < . 11
w(c+ 1;¢€,0) 7r(c,€,5)_e€+1( ) +6< +0 (11)
O

Let U(D, k) denote the expected utility of M,,;;; on a dataset D after users are restricted to k items
by uniform random selection. The following result shows that the sensitivity of U (D, k) can be
bounded independently of k.

Lemma A.2. For for all neighboring datasets D' ~ D we have |U(D', k) — U(D, k)| < <51 + 4.

Proof. Let Dy, denote the randomly capped version of D where the bound of k items per user has
been enforced using uniform random selection. We have

U(D, k) = E[I(Dy;e/k, 0/k)] = E | > w(c(x, De)ie/k, 5/k)| - (12)

reX
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Assume without loss of generality that D’ contains a user that D does not. Let Sy, denote the random
set of items contributed by the new user in Dj.. Because the k bound is enforced independently for
each user, we can couple D}, and Dy, using the pair (D, Si). Then U(D’, k) — U(D, k) is equal to

E | > mlcle Di)ie/ko/k)| = E | 37 w(c(x,Dw;s/k,é/k)]
= DES;C L;( (m(c(z, Dg) +1(z € Sk);e/k,0/k) — w(c(z,Dk);s//{,é/k))] . (13)

Because |Sk| < k, at most k of the terms in the sum are nonzero, and we can apply Lemmato

conclude that Ik
€ -1 e _1
U(D', k)~ U(D,k) < k (2+2) <

+6. (14)
O

If £ is small, then (e® —1)/2+ 0 is about €/2+ ¢, and therefore the sensitivity of U (D, k) is also small.
In this case we can run the exponential mechanism (or an approximate noisy maximum algorithm) to
pick the cap k that approximately maximizes U (D, k). Concretely, let A = (e —1)/2+ ¢ denote our
upper bound on the sensitivity. Then the exponential mechanism with privacy parameter ¢’ obtains a
cap k such that

2A ||
U(D,k) > max U(D,k') — — log (B)
with probability 1 — 3, where KC denotes the set of possible caps we are optimizing over. (The utility
guarantees of approximate noisy maximum algorithms are similar.)

B Impossibility Results

This section contains complete proofs for the results stated in Section[2] Appendix [B.T] contains
proofs of Theorem [2.1)and Theorem [2.2] while Appendix [B.2]contains the proof of Theorem [2.3]

B.1 Bounds from Tower Datasets

In this section we prove Theorem [2.T]and Theorem [2.2] which are our strongest upper bounds on
mechanism utility ratios, but only demonstrate difficulty on datasets that are very difficult (i.e.,
on these datasets, I1(D) is small compared to the size of the non-private union). The proofs are
organized slightly differently compared to the sketches provided in the main body. In particular,
rather than explicitly constructing the datset D on which a mechanism M has low utility, we construct
a distribution over datasets and show that the mechanism’s average utility on that distribution is low.
This will imply that there exists a dataset in the support of the distribution for which the utility ratio
of the mechanism is low, but the distributional approach simplifies a number of arguments when
moving to the more involved construction used in the proof of Theorem[2.2]

> g Pu(S|D)|S|

Recall that our goal is to bound max s minpep, D) since minimum is smaller than the
average, we have the following lemma.
Lemma B.1. For any distribution P over datasets,
. 25 Pu(S|D)[S| s Pu(S|D)|S]
LS MAPIZ ML - Ep_p | &S MWTIE/PL
N T (D, e 0) SN PP (D, e, 0)

We will choose P to be a uniform distribution over a set of datasets with the same value of II( D, ¢, §).
To define the class of datasets, we need a few definitions.

Definition B.1 (Tower dataset). A dataset D = {Bi}?:l is a tower dataset of height h if there is
an ordering o : [h] — [h] such that Bo;y C Boit1)) for each i < h — 1. Furthermore, we call

b(D) = (|Bo1)ls |Bo2)l, - - - » [ Bo(ny|) the shape of the dataset D. We denote b; = | By, (;)|. We omit
D and denote the shape by b = (b1, ..., by,) when appropriate.
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Bs | Bs | By | B; | Bs B3
123 123 123 123 123 123

Figure 3: All possible tower datasets with three users with by = 1, by = 2, and b3 = 3.

Notice that the datasets constructed in the proof sketch of Theorem [2.1| were tower datasets of shape
(1,k). In the rest of the section, unless otherwise stated all datasets are tower datasets and the
elements are {1,2,...,k}. In Flgurelwe illustrate all possible tower datasets for a simple shape b.

When D is a tower dataset, the following result shows that II(D) depends only on the shape of D:

Lemma B.2. For a tower dataset D with shape b and height h, if h <1+ E In (86“5_1”, then

(es+1)0
h
D)=5-3 belh
r=1

Proof. Note that there are b, elements that appear / times and bo — b; elements that appear h — 1
times and so on. Furthermore, all the counts are smaller than the bound ¢, in Equation (E]) Hence,

h—1

H( = b17T' + Z r+1 — T)

:5<me

-1 < elh=me 1
E] +;(br+l_br) e —1 )
h
=53 byethne
r=1

where the last equality follows by algebraic manipulation. O

We now provide a complete proof for Theorem 2.1} Compared to the proof sketch in the main body
of the paper, we adopt a proof technique that relies on the same key insights, but is slightly more
aligned with the proof of Theorem 2.2]to help introduce the key ideas.

Theorem 2.1 (Warm-up). Letk >2,¢>0,6 < — +2, and let M be any (g, 0)-differentially private
set union mechanism. Then there exists a dataset D with contribution bound k such that

(M) _1, *

II(D,e,0) — k e +k
In particular, for e = 2In(k) and § < k21+2, we have % < %

Proof. We choose a uniform prior over all datasets of shape (1, k) denoted by unif(1, k). Note
that there are k such datasets. For notational simplicity, let D[i] denote the dataset containing
two users, one contributing the singleton element {i} and other contributing all k items. Every
dataset D[i] has a single item that appears twice and (k — 1) items that appear once. Therefore,
II(D[i]) = n(2) + (k — 1)7(1). The bound on ¢ ensures that 2 < ¢, from (I}, which implies that
m(2) = €0 + 0. Together with the fact that 7(1) = § (regardless of parameters), we have that

7(DI[i]) = 6(e° + k), (15)

for all ¢ < k. Now consider the dataset D[0] containing a single user u whose bag of items
B(u) ={1,2,3,...,k}. This dataset is neighbor to all the datasets of shape (1, k), hence for each

such dataset D3]
P{i}|D[i]) < e*P({i}|D[0]) + 4, (16)
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and for all non-empty sets S # {i},

S PSIDE) < e [ > P(SIDi]) | +6 =4, (17)
S#{i} S#{i}
where D[i] is a dataset with one user contributing only element {i}. Recall that unif(1, k) is the

uniform distribution over all datasets of shape (1, k) over elements {1,2,3,...,k}.

Now fix any mechanism M and for any item set S C X and dataset D, let P(S | D) denote the
probability that M outputs S when run on D. Then we have

>sP(S|D)- S| > s P(S| D)9
<
M D2 0) = pewsian | (D, 2,0)

ORI
5(65 + k) DNunlf(l k)

k
Y (,ﬁZZP@ | D) S|)

—

ZPS|D K

—~

k
1
:5(65—|—k kZ(P{HD ZPS\D 18]
=t S#(i}
(c) L
S 518 EZ P({i} | D)+ > Pu(S| D)) -k
(e+ £ 2
(d) 1
<7 - e
= 6(es + k) kz::( ({7} | D[O])e + & + 6k)
(2 ! etk + 6+ 0k
—m%e/ + 6+ 0k)
kiR
o ke + k2
I
ko e+ k

where (a) follows by Equation (I3)), (b) follows by the definition of expectation (c) uses the fact
that the size of each set is at most k. (d) follows by Equations (16) (I7). (e) uses the fact that

Zle P({i}|D[0]) < § as D]0] has only one user. O

Before moving on to the proof of Theorem [2.2] let us reexamine the techniques we used in this proof
of Theorem 2.1]

1. We imposed a uniform prior over all datasets of shape (1, k) to use Lemma

2. We divided the sets into two groups and for each particular group, we used differential
privacy constraint w.r.t. a different neighboring dataset obtained by removing certain user
from the dataset (e.g., Equations (I6) (T7)).

(a) For nonempty sets S # {i}, we used DP constraint w.r.t. neighboring dataset D[i] and
used the fact that it assigns zero probability to all these sets.

(b) For sets {i}, we used DP constraint w.r.t. neighboring dataset D[0] and then summed
over all such sets {i} and finally used the fact that D[0] has an empty neighboring
dataset and hence the sum of probability it assigns to all such sets is at most .

Our main upper bound follows a similar technique, but slightly more involved. We again impose

a uniform prior on tower datasets of a certain shape with many users and we divide the sets into
several groups and for each particular group, we use differential privacy constraint w.r.t. a different
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neighboring dataset obtained by removing a certain user from the dataset. However, for the second
step, we need to recursively remove several users to get to a neighboring dataset that assigns zero
probability to that set. To formalize this intuition, we need the following two definitions. The first
definition is that of a partial dataset, which is obtained by removing ¢ users from the dataset D as
follows:

Definition B.2 (Partial dataset). Let r and i be non-negative integers such that r +1¢ < h. For a
tower dataset D = {B1, Bs, ..., Bp} of height h, let

Dy ={Bu, B2, By, Brtit1, Briit2, ..., Br}.
Note that height of D is h — 1.

Notice that using this definition, we can start with D and remove B,.;; to get D] which is a neighbor
of D, then we can continue and remove B, to get D7, which is at distance 2 from D and so on. In
our proof, we note that we remove users in this particular order i.e., we start at a particular user  and
remove all users larger than r.

To get to a database for which we output .S with zero probability we have to remove all users that
contain S. To this end, we define the rank of a set as follows.

Definition B.3 (Rank of a set). For a tower dataset D of height h and a set S, let rank(D, S) denote
the number of users i such that set S is not contained in B; i.e.,

rank(D,S) =h —|{i: S C B;}|.
For example, if D = {(1),(1,2),(1,2,3),(1,2,3,4),(1,2,3,4,5)} and S = {1,3}, then
rank(D, S) = 2. For a dataset of height h, the rank ranges from 0 to h.

Note that because the user item sets are nested, we have that
rank(D, S) = max{i € [h] | S ¢ B;},

since if S is a subset of user ¢’s bag, it must also be a subset of B; for all j > . In other words,
rank(D, S) is the index of the last user in D that does not contain every item in S. We have defined
rank of a set w.r.t. a dataset as the number of users not containing the set, as opposed to number
of users containing the set for notational simplification, since it ensures that the rank of .S does not
change if we remove users containing S in the particular order mentioned above.

To summarize, Definition [B.2]allows us to discuss neighboring datasets where we remove user bags
Byt1,Bry9,...,Bry;and Deﬁnitionallows us to discuss how many users do we need to remove
to get a dataset for which there is zero probability to output .S. We state the following set of properties
for these partial datasets and rank, which will be useful in our proofs.

Lemma B.3 (Properties of the rank and partial datasets).

1. Foranyr < h,
Dy =D. (18)

2. D} and D}, | are neighboring datasets.
3. Ifrank(D, S) =, then foranyi < h —r
rank(D}, S) =r. (19)

4. Ifrank(D,S) = r, then |S| < by41.

5. Ifrank(D,S) = r, then
P(S|D;_,) =0.

Proof. (1) follows from the fact that we have not removed any users. (2) uses the fact that D] and
Dy, differ only in user r 4 i + 1. (3) follows from observing that if the rank of a set is r, then
removing users B;1; for ¢ > 1 does not change its rank. (4) uses the fact that S C B,.1 and (5)
follows by the fact that D} _ does not contain any sets that contain S as the rank of S is r. O

23



Suppose we have a uniform distribution over all datasets of a certain shape b = (b1, b, ..., by,). We
draw a database from this distribution and then remove a user of particular size say b;. Then we get

a database of shape B{_l = (b1,...,bj_1,bj41,...,by) with all datasets of these shape having the
same probability to be the outcome. This is formalized by the following lemma.

Lemma B.4. Let unif(b) denote the uniform distribution over all datsets of shape b. If D ~ unif (b)
then for any r,1 B
D; ~ unif(b7), (20)

where B: £ (bh b27 br; br+1’+1a br+i+Qa RS bh)

Proof. To simplify boundary cases, we let By = () and Bj,1 = X. We will argue that when we
sample D ~ unif(b) and obtain D’ by removing a single user from D, say user B;, then D’ is a
sample from unif (5 ') where & " = (b1, ...,bj_1,bj41,...,bs). Then the claim about removing
several users follows by induction: We get D} by removing ¢ users from D, and each removal results
in a uniform distribution over tower datasets of the relevant shape.

We now turn to proving the claim for removing a single user. Let D ~ unif(b) and D_; denote the
dataset obtained by removing user j. Similarly, for a concrete dataset d, let d_; denote the dataset
obtained by removing user j and for a shape b, Recall that &' = (by,...,b;_1,bj41,...,bp)
denote the shape vector after removing the jth component. Let p be the probability such that for every

datset d of shape b, we have Pr(D = d) = p. Now fix any dataset d’ of shape b} " and consider
Pr(D_; = d’). By the Law of Total Probability, we have that

Pr(D_j=d)= Y Pr(D_j=d|D=d)Pr(D=d)

d of shape b
=p- >, Hd=d}
d of shape b

In other words, the probability that D_; = d’ is proportional to the number of datasets of shape b
such that removing user j from d produces d’. We will count the number of such datasets. A datset d
has shape b and satisfies d_; = d’ if and only if d contains all the users of d’ together with a new
user B; such that | B;| = b; (so that the shape of d is b) and Bj_1 C Bj C Bj41 (sothatd is a tower
dataset). The number of distinct choices for B; depends only on the shape b: B; must contain b
distinct items selected from the b;, items in B;4 1. And, it must include the b;_, items in B;_;. So,
the only freedom we have is to select b; — b;_; items from B; \ B;_; to include in B; in addition

to B;_1. There are (bggj’il) ways to choose those items, giving

b1 — by
P =d = ( by b-]11>'
J J—

Since this is true for all d’ of shape b_, it follows that D_; is uniform over datasets of shape b_;. [

Consider a set S that has rank r in dataset D. There is at least one item in .S that appears at most
h — r times in D, since otherwise the rank would be larger. This implies that the set S can only
be output by any private set union mechanism M with probability at most w(rank(D, .S)), since
otherwise we would output at least one item with too high probability.

Consider a set S for which we have to remove h — r items to get a dataset which assigns zero
probability to it. For items in this set, we expect the 7 bound to be of the order of de("—"—1)=,
However, we show that a single mechanism cannot assign a probability proportional to Je("~—"—1)<
for all such sets. To prove this, we use use the following contraction lemma.

Lemma B.5. Let unif(b) denote the uniform distribution over all datsets of shape b. If D ~ unif (b),
then for any set S and rank r > 0 and i > 0 such thatr + i+ 2 < h,

T bryit1
IE[lramk(D';',S):r|Di.|_1] S - 1rank(D{+1,S):r . (21)
r+i14+2

In other words, for any instantiation of the dataset D], ,, say dj ,,

- - bryit1
E[lrank(DT,S):r|Di+1 = di+1} < SEAS lrank(dT+1,S):r . (22)
' briito '
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Proof. Fix arealization dj ; for the dataset D], ; and rewrite the left hand side of (22)) as

E[lrank(D{,S):r | D:;‘Jrl = derl] = Pr(rank(D{, S) =7 | DiTJrl = d;Jrl)'

We will consider three cases based on the rank of S in dJ ;. First, suppose that rank(d;, ;,5) < 7.
Then we know that S C B, (since only at most the smallest  — 1 users in dj , ; do not contain \S).
But then from the tower dataset definition, we must have that B, ;11 D B, D S, which means
we have added a new user to df, ; that also contains .S, which does not change the rank of .S and
we have rank (D7, S) < r. In particular, both sides of are zero and the inequality holds. Next,
suppose that rank(d;, ;,S) > r. Then we know that .S is not contained in B,y 2, (since at most
the r smallest users in d;, ; do not contain S). But again by the tower dataset definition, we have that
Bryit1 C Bryjq2, which implies that S ¢ B, ;11 and so the rank of S in D] can only increase, so
rank(D?,S) > r. In particular, both sides of (22)) are zero and the inequality holds. It remains to
handle the case when rank(dj, ;, S) = 7.

When rank(d;, ;,S) = r, the right hand side of (22)) is equal to Ztﬁ, so we need to argue that this
is an upper bound on the probability that rank (D, S) = r conditioned on D}, ; = dj, ;. Observe
that in this case, rank(D}) = r iff S C B, 1,41, s0 we need to determine the conditional probability
of this event given D}, ; and rank(S, Dy, ;) = r. From Lemmatogether with the fact that D is
uniform over tower datasets of shape b, we have that D] is uniform over datasets of shape b]. After
conditioning on D}, = d, ,, the only randomness left is the draw of u,;;11’s bag. Say that an
item bag R C X is valid for user w, 4,11 if |[R| = by4,41 and B,4; C R C By4;49 sothat D] isa
tower dataset of shape b} iff B, ;1 is valid. Conditioned on D7, ,, the item bag for user ;411 is
drawn uniformly random from the set of valid bags. So, we can calculate the probability of the event
S C ur4i4+1 by counting the fraction of valid bags that contain S.

First, let’s count the total number of valid bags. We need to choose o = b,;1+1 — b, items from the
B = byyit2 — b, items in B4 that are not already in B, to obtain B, ;11 of the right size that

does not violate the tower constraints. There are (g ) = g(g j) ways to do that.

Next, we upper bound the number of valid choices that contain the set S. Let « be any item in S that
is not present in B,.. Then every valid choice that contains .S must also contain x, so it is sufficient to
upper bound the number of valid bags that contain the single item z. The number of ways to choose

a subset of B, ;5 that contains x is (gj)

Taken together, we have shown that for any dj, ; for which rank(S, d;, ;) = r, we have

-1
Pr(S C Brgit1 | DIy =diy ) < (5—1) _ bryit1 — br < briit1
r+1i i+1 i+1) = g(ﬁfl) ﬁ br+i+2 _ br = br+i+27

a—1

where the final inequality follows from the fact that if 2 /y < 1 then z/y < (x 4 2)/(y + z) for any
non-negative ., y, z.

O

The next theorem gives an upper bound on the utility ratio for any mechanism M by its utility ratio

on tower datasets. In the subsequent results, we optimize over b to get the best bounds for a given
k,e, 0.

. S 1 ef+26—1
Lemma B.6. Fora given e, 9, let hpax = 1+ {E In ( IS )J

h h b'r' S§—Tr)e
Y PulSIDIS| _ b (Sl )
maxmin —=—=—————— < min min .
M D H<D7 & 5) h<hmax b:h(b)=h,bp=k ZLI belh—r)e

Proof. By Lemma|B.1] for any distribution P,

max min —ZS PM(SlD)|S|

>s Pu(S|ID)|S]
< _ .
M D II(D,e,0) _H}\%XEDNP[

II(D,e,0)
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Let P be the uniform distribution over all tower datasets of shape b with height h < hyyax over the
elements {1,2, ..., k}. Since any dataset generated by this distribution has shape b, we can compute
their IT value by Lemma [B.2] Hence, combining it with above equation, we get

Py (S|D)|S 1
max min 2s Pu(SID)|S] < -maxEp niep)
M D I(D,¢,4) 5 Zﬁzl brelh-m)e M

ZPM<S|D)ISI] . (23)
S

In the rest of the proof, we prove the following bound

ZPM (S|D) |5|} ) (i (2_: " o(s— r)s)) (24)

max ]ED~umf(b

combining the above two equations and taking the minimum over all shapes b such that b, = k
and h(b) < hyax yields the theorem. To prove Equation (24), we divide sets based on their rank as
follows. For notational simplicity, we drop the subscript M.

h
ZP(S|D)|S|‘| :EDNunif(l;) [Zzlrank(D,S)—TP(S|D)S|‘|
S

S r=0

EDNunif(l;)

- Z EDwumf(b) [Z 1rank D,S)= (S|D)‘S|

= ZED’~umf (®) lz Lyank(Dg,8)=r (S|Do)|5|]

r=0
( )
: ZED,NW [z bt 51r P(10) |S|]
(b) =1
< ZED’“Numt(b) [Z Liank(py,5)=rP(S|Dg) r+1]
r=0
h—1

= Z bT+1ED6~unif(6) [Z 1rank(Dg,S)—TP(S|D6)] ’
r=0 S

where (a) follows by Lemma|[B.3|item (5) and (b) follows by Lemma|[B.3|item (4). We are now going
to bound E pr uni(5) > 1rank(Dg,S):rP(S|D6)] for a given value of 7.

EDgwunif(E) [Z lrank(D(’;,S):TP(S|D6>
S

< EDgwunif(B)

0+ Z lrank(Dg,S)—TeEP(S|DI)‘|
S

=0+ Z ¢ Epr ounit(®) [P(S1D7) Lrank(Dg.5)=r)
5

@5y Z ¢“E pyunit(s) [P(SID)ED; [Luank(p,5)=r|D}]]

b. 1 ,
<o+ ﬁes > Eprunit@) [PSID]) Lrank(py,5)=1] » (25)
r S

where the first inequality follows by noting that D and D7 are neighboring datasets and applying
differential privacy constraint to the event of outputting a set of rank r and the last inequality follows
from Lemma (a) follows by law of total expectation and Lemma B.4]
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Figure 4: Example of the tower dataset in Theoremwith k=8 h=4,¢s=1,and = 1.

Similarly, we can get Vi < h —r — 2, we have

IEDir ~unif (b)

Z 1rank(DiT,S)—TP(S|D;)‘|

S

T+2+1 5
<0+ —— br+z+2 ZED’_HNumf(b) |: (S|Dz+1) rank(DL+1,S)=r:| ) (26)

Substituting Equation 26)) fori = 1,...,h — r — 2 into Equation (23), we get that

Epr ~unit (5) lz Liank(Dy,8)=rP(S|Dg)
S

<6 <1 + bT+1 e + bT+1 625 +... bT+1 e(h—T—l)e) )
br+2 br+3 bh

Summing over all values of r yields

IEDNunlf(b)

h—1
bri1 bri1 o bri1 (h—r—1
E P(S|D)|S <E bpy10 1+ — €+76€+...76( r—1)e
(S1D)] |] = i < bri2 brys bn

T

b b b
bed |1+ —e + e* 4+ ... Te(h_T)E)
( br+1 br+2 bh

(h bT (sr)e)
b0 Zb—e .

S
S=T

5 <
uMw I Mv
— —

Combining the above equation with Equation (23) yields Equation (24) and hence the theorem.
O

Next we move on to prove Theorem We do this by finding a suitable value of b that provides the
desirable upper bound.

Leth =1+ [2logk]. Forr > 1,letb, = [e(r=Dee] (see Figurefor an example). Let « be such
that b;, = k. Note that
k=b, = |‘€(h 1) ae" > e(h 1)ae > k—

Hence, o < =) h 7 log k < 5. Note that the size of each set grows from b; = 1 to by = k in the
tower with b; 1 /b; /= e®c. Furthermore,

1 ef+20—1 1 e —1 2 2
1 —1 _— 1 i [ > 1 —logk+1| >1 —logk| > h
*L‘l< (c+ 1) >J % n<<ee+1>5>J *L ogk J *h o W ’

where the first inequality uses the fact that > 0 and the second inequality uses the upper bound on §
in the assumption of the theorem.

Using Lemma[B.6] we get
h h b, (s—71)e
Py (S|D)|S Zzbr(i e )
maxminzs w (SD)] |§ r=1 s=r D, . o
M D II(D,e,0) Z?:lbre(h’r)a
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With b, = [e""De] and 2 < [z] < 22 for z > 1, we get

h h r—1)o
Zl s—T)e _ Z [_6( b 8~I e(sfr)a
— b — [e(sfl)as]
26(7‘—1)045
(s—r)e
= e(s—1)ae ¢

h
92 Z e(s—r)(l—a)s

e(h—r+1)(1—a)8 -1

=2 e(l—a)e _ 1
(h—r+1)(1—a)e
e
<o
<2 e(l—a)e _ 1
Recall that b, ES , br (577 ypper bounds the contribution of outputs of rank r — 1,7 = 1,...,h
to the expected utility over D ~ unif(b). We see that Z T e(s )¢ decreases geometncally with

r. But b, = [e(’“_l)o‘g] increases geometrically with . So 1ntu1t1vely, since « is close to 1/2, we get
similar contribution from each rank. Plugging the above back into the ratio in Equation (27), we have

> g Pu(S|D)|S| - 2 S bpethmrrD-a)e

T

max min

Mo D I(D,ed) T et —1 5 g e(her)e
(2) 4 Z:}:l e(r=1)ac o(h—r+1)(1-a)e
e(l—a)e _ 1 Z?:l e(r—Daeg(h—r)e
4 e(h+)(1-a)e Zﬁ:l erace—r(l—a)e
- e(l—a)e _ 1 ehe Z?:l erage—re

4 e(l—a)s Z?:l er(2a—1)s
e(l—a)e _ 1 eche 27}}:1 er(a=1)e
(b) 46(1—a)5 he(Za—l)s

e(l—a)e _ 1 eche Zf::l er(a—1)e

4h6(2a71)5 1— 6(ocfl)s
T 1 = ela=1)e eahep(a—1)e (1 _ eh(a—l)s)
- 4h
- ea(h—1)e (1 _ eh(a—l)e)
(9 12h
<
T k-1

12
=logk
< 2y (14 diogr).
where (a) follows from z < [2]| < 2z since b, = {e(’“_l)as], (b) follows since o < 1/2 implies that

erPa—De < e(2a=1)e for 1 > 1, and (c) follows since e~ > k — 1, and e(h~Dozehla—De <

e <Vk<2(k—1)/3.
B.2 Bounds from Fingerprinting Codes

In this section we prove Theorem [2.3]

Theorem 2.3. Letk > 2,n > 2 ¢y, (so that 7(n/2) = 1), ¢ > 1/n, and § < 1/(40e*n/2k1/4).
Let M be any (e, §)-differentially private set union mechanism. Then there exists a dataset D with
contribution bound k such that

W:()((nlimm)/)

28



Note that Theorem.requlres that we have at least n = Q(2 In 1) users to ensure that (2; £, 6) =
and the contribution bound k£ must be relatively large compared to the number of users: k =
Q(n%lnn).

Remark B.7. Theorem [2.3|would hold even if we somewhat relax the definition of utility ratio. For
example we can allow a small constant fraction (< 1/2) of the skI1(D, ¢, §) items that we report to
be mistakes. I.e. items that do not appear in the union. (Proving this will require a slight adaptation
of Lemma(B.8)). We do not pursue this in this paper and leave investigating possible relaxations of the
definition of utility ratio for future work.

The key idea in the proof of Theorem [2.3]is a reduction showing that a private set union mechanism
A can be used to construct a mechanism for estimating the marginals of a matrix (see Definition [B.4)
whose performance can be bounded in terms of the utility ratio u(A). Combined with an impossibil-
ity result for computing column-marginals based on robust fingerprinting codes, due to|Steinke and
Ullman| [2015]], we obtain our upper bound on the utility ratio.

Definition B.4. Let C € {0,1}"*¢ be a matrix and A : {0,1}"** — {0,1} be a possibly
randomized algorithm. We say that A is (3,7)-inaccurate for computing marginals of C' if the
following holds with probability at least y: Except on at most 3¢ coordinates i € [{), if the i" column
of C is all ones or zeros then M (C); = 1 or M(C); = 0, respectively. In other words, M must
identify the columns of C' that are all zeros or all ones, making a mistake on at most a 3 fraction of
the columns.

Roughly speaking, our reduction views the matrix C' € {0, 1} as the description of a private set

union instance where each column corresponds to an item and each row corresponds to a user. The
i row of C'is an indicator vector for the items in user i’s bag. The (non-private) union of the bags
descrlbed above is exactly the set of columns for which outputting “1” is not a mistake. Given that
we only start from a private set union mechanism that estimates the union imperfectly, the reduction
outputs 1 for all columns in the approximate union, and outputs 0 or 1 with equal probability for each
of the remaining columns. The following lemma connects between the utility ratio of the private set
union mechanism and the (3, v)-inaccuracy of the resulting matrix marginal mechanism.
Lemma B.8. Let M € UNION(g,d) be an (g, d)-private set union mechanism with contribution
bound ¢ and utility ratio k = uy(M). Then for any n large enough such that w(n/2;e,6) = 1 and
¢ € N, there exists an (¢, 0)-differentially private matrix marginal mechanism A : {0,1}"*¢ —
{0, 1}* that uses M as a subroutine such that the following holds: For every matrix C' € {0,1}™**
such that at least half the columns of C have at least n/2 ones, the mechanism A is (8, ~)-inaccurate

for computing the marginals of C with § = 5 — & + \/1’1(40/'{) (53— %) and~y = 4.

Proof. Fix any matrix C' € {0, 1}"** where at least half the columns have at least n/2 ones. We can
transform a realization of C into a private set union problem as follows: the item universe is X' =
{1,...,¢} and the dataset is D has n users, where user ¢ contributes bag B; = {j € X' | C;; = 1} is
determined by interpreting row 4 of C' as an indicator vector.

The matrix marginal mechanism A works as follows: first, let U=M (D) be the private union output
by M when run on the dataset described by C. Then A outputs a vector y € {0, 1} defined as
follows: For each coordinate j € U, set y; = 1. For the remaining coordinates j ¢ U, choose y; to
be 0 or 1 with equal probability. Since A post-processes the output of M, it is (e, §)-differentially
private, so it remains to bound the inaccuracy.

First, observe that the union U* = J;_, B is exactly the set of columns that are not entirely zeros,
which means that if A outputs 1 for any column ¢ € U¥, it is not a mistake. Due to the subset

requirement of prlvate set union mechanisms, we are guaranteed that U C U* and, since A outputs 1
for the columns in U, it never errs on columns in U. On the other hand, for columns jé¢ U, A flips a

coin and will err with probability at most 1/2, so we need to argue that \U | is large compared to £.
By assumption, with probability one, at least half of the columns of C contain at least n/2 ones, and

m(n/2;e,6) = 1. This implies that in the private set union instance D derived from C, at least ¢/2 of

the items appear at least /2 times, and therefore I1(D) = Z§:1 mw(c(j, D)) > £/2.

Since k = (M) is the utility ratio of the private set union mechanism M, we are guaranteed
that E[|U|] > &II(D) > k{¢/2. Note that since |[U| < ¢ with probability one, we also have
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E[|U?] < ¢-E[|U|] Next we use Paley—Zygmund inequality to lower bound the probaiblity that

|U | > Ke/4.

Lemma B.9 (Paley-Zygmund Inequality). If Z > 0 is a random variable with finite variance, then
for 0 < 0 <1, we have

L E[Z]?

Pr(Z2 0EIZ) 2 (1 = 0 5.

By Paley-Zygmund inequality, we have
- K
> > —.
PH-(KI\A,KZ/4) > 2

For a fixed U , the number of errors n. the algorithm makes is a Binomial random variable with
¢ — |U] trials and success probability 1/2. We use Heoffding’s inequality to prove the following
concentration result on 7.

Lemma B.10 (Heoffding’s Inequality). Let X ..., X,, be independent random variables between 0
and 1. Consider the sum of these random variables, S, = >__; X;, we have

Pr(S, — E[S,] > 1) < exp (2;)

By Heoffding’s inequality, we have

oo [ o 2101, \/<E|U|>log<40/n> <0

2 2

Hence by union bound on the complements of the events |U/| > xf/4 and n, < 6_2“]' +

(¢—|U]) log(40/x)
2

, we upper bound their intersection as follows

Pr<’26<;—g+\/m(4§/“)-<;—g>> > /8 — /40 = 5 /10,

completing the proof.

O

The following hardness result for the problem of computing marginals follows from work on robust
fingerprinting code |Steinke and Ullman|[2015]. We include its proof at the end of this section for
completeness.

Lemma B.11. There is no (e,6)-DP algorithm with ¢ = O(1),§ < ~/(4en) which is (3,7)-
inaccurate for computing ¢-marginals on n. X £ matrices with at least n/2 ones in the majority of the

columns for
5§;—O<Cﬁ®QM+?+bgUw»Uj.

Equipped with this hardness result for privately computing marginals, we are ready to prove Theo-
rem

Proof. of Theorem From Lemma B.8] it follows that an (e, §)-private algorithm for set union
with utility ratio  gives us an (e, §)-private algorithm for ¢ marginals which is (3, v)-inaccurate

where
1k In(40/k) (1 &
5_2_8+\/z'(2_8)

and v = /10 on inputs matrices with n rows, such that the majority of the columns contain at least
n/2 ones, where n is large enough such that 7(n/2) = 1.
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If § > v/(4e°n) = k/(40e°n), by the assumption that § < 1/(40en'/2k/*), we already have
1/4
k=0 ((W) ) . When § < ~/(4e°n), it follows from Lemma [B.11{that

1 n? (log(n) + 2¢ +log(1/YN\ "\ _ 1 «  [In(40/k) (1 &
2‘O<< 7 ) >§2_8+\/£'(2_8>'

Rearranging the terms and substituting v = /10, we get

()l o ()

_ 1/4
This implies that kK = O ((W) ) . We conclude the proof by noting that the contribution

bound &k < / in the construction. O

Finally, we turn to the proof of Lemma|[B.T1] which is a variation on the bound provided by [Steinke
and Ullman|[2015].

Proof. of Lemma|B.11

We use the robust fingerprinting codes from |Steinke and Ullman|[2015]] defined as follows (Definition
2.20 in|Steinke and Ullman|[2015])).

Definition B.5. A n-collusion resilient fingerprinting code of length { for m users robust to a 3
fractions of errors, with failure probability (, and false accusation fraction n, is a pair of random
variables C € {0,1}Y"*¢ and Trace : {0,1}* — 20" such that the following holds. For all
adversaries Ad : {0,1}"** — {0,1}* and S C [m] with |S| = n we have

lPC,Trace,Ad[ (‘{1 SJ < 14 ‘El S [m],Ad(Cs)j = le}) < ﬂﬁ)
A (Trace(Ad(Cs)) =0)] <¢ (28)

where Cs € {0,1}"*¢ contains the rows of C indexed by S, and the superscript j is used to index
the entries in vectors of length ¢, and

Pc,Tmce,AdUTrace(Ad(Cs)) N ([m]\ S)| > n(m — n)] <( (29)

Intuitively, Equation (28) says that if the adversary answers most columns correctly then Trace should
accuse some users. More specifically, the first event in the intersection happens if the number of
all ones columns j on which the adversary says 0 (Ad(Cs)? = 0) or vice versa is smaller than /.
The second event happens if Trace does not accuse a user. So we require that with probability 1 — ¢
either the adversary makes more than 3¢ mistakes or Trace accuses some users. (Note the stronger
condition ¢ ¢ [m] rather i ¢ [n] in Equation (28), this means that Trace is committed to answer on
a larger set of responses of the adversary.) Equation (29) requires that Trace will not accuse more
than 7 fraction of the innocent users (that are not contained in .S). Specifically, we require that with
probability smaller than ¢ Trace (wrongly) accuses more than 7 fraction of the users who are not in S.

Steinke and Ullman|[2015] constructed codes as specified in the following theorem (Theorem 2.21 in
Steinke and Ullman! [2015]]).

Theorem B.12. Forevery1 <n <m, 0< 8 <1/2,and 0 < n < 1, there is a n-collusion-resilient
fingerprinting code of length { for m users robust to a B-fraction of errors with some fixed failure

probability
¢ < min{n(m — n), Q—Q(n(m—n))} + pf2((/2=B)m)

and false accusation fraction 1 for

-o(THER).
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For lower bounds on DP algorithm we use such code with m = n + 1 users, and accusation fraction
n = O(1/n), since we want failure probability ( = O(1/n). We call such a code a S-robust,
fingerprinting code for n users with failure probability ( (although the code is in fact for n + 1 users,
n of them colliding).

For our puprpose, we need to modify the code of Theorem [B.12]as follows.

Theorem B.13. There exists a code with the same parameters as the code of Theorem such that
the support of its matrices consists only of matrices in which the majority of the columns contain a
majority of one and failure probability at most twice larger.

Proof. We define a code C’ and T'race’ satisfying the requirements as follows. We generate C' and
Trace from the distribution of the code of Theorem[B.12} Then if C instantiates to a matrix in which
less than half the columns contains more than half 1’s we instantiate C’ to the complement of C' and
instantiate Trace’ to flip its input before applying Trace. Otherwise we instantiate C’ and T'race’
to be equal to C' and T'race, respectively.

We claim that this new code C’ and T'race’ satisfies Conditions and of Definition
with failure probability at most 2¢ where ( is the failure probability of original code C, Trace. We
prove this by contradiction. Suppose there is an Ad’ that breaks C’, Trace’. That is it either satisfies
Condition or Condition with probability larger than 2(.

We construct an adversary Ad for C, T'race as follows. The adversary Ad gets a set S of n row of
C' and then flips a coin and with probability 1/2 simply applies Ad’ to these n rows and returns the
same vector that Ad’ returns. Otherwise, it applies Ad’ to the complements of the n rows that it got
and returns the complement of what Ad’ returned. Let S’ be the set of rows to which we apply Ad’ (
S" = S with probability 1/2 and otherwise S’ = S).

It follows from the definition of C’, T'race’, that with probability 1/2 Ad applies Ad’ to aset S” of n
row from the codebook C’ (the same distribution). Conditioned on this event, by our assumption,
Trace’ would satisfy either Condition or Condition with probability at least 2(. When C’,
Trace’ satisfy Condition with respect to Ad’, then C,Trace satisfy Condition with respect
to Ad. Similar claim holds for Condition (29).

This implies that Ad fails with probability larger than ( in its attack on C, Trace, which is a
contradiction. O

The existence of fingerprinting codes rules out DP algorithms which accurately compute marginals,
described in the theorem below.

Theorem B.14. If a S-robust, fingerprinting code of length { for n users with failure probability
exists, then for any € and § such that
e+ ef5+6 < 1=¢
n
there is no (g, 0)-private, (8, )-inaccurate algorithm for computing the marginals of (-attributes of
n-users. Furthermore, such a DP algorithm does not exists even if we require that it is 3-inaccurate
only onn x { matrices in which the majority of the columns contain more than n/2 ones.

Proof. Let M be a (g, §)-private S-inaccurate algorithm for computing ¢ marginals of n users. Define
Ad(Cs) := M(Cs) to be an adversary for the fingerprinting codes in Theorem B.13]that computes
the marginals of the codewords of the users in .S (this is an n x £ matrix) and responds with the result.

Consider the set of users S = [n + 1] \ {1}. Since Ad(Cys) is correct on (1 — )¢ marginals with
probability -, and the complement of the event in Equation holds with probability 1 — ¢, it
follows that

Po.rrace,ad|(Trace(Ad(Cs)) #0)] >~ —¢.

It follows that there exists some i* € [n + 1] \ {1} such that

W—C.

’PquceAd[(i* € Trace(Ad(Cs)))] > -
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Opening this up using the total probability formula, we get that

Z PTrace,Ad [(Z* S TTaC@(Ad(Bs)))] - Pe [B = C} > v ; C ' (30)
Be{0,1}mx¢t
Now consider the set of users S’ = [n + 1] \ {i*}. By Equation we get that
Pe,Trace,ad|(i* € Trace(Ad(Cg:)))] <¢.
and again by the total probability formula we can write this as follows
Z ’PTmce,Ad[(i* € Trace(Ad(BS,)))] -Pe [B = C} <C. (31)

Be{0,1}mxt

Note that (1) Trace(Ad()) = Trace(M()) is (&, J)-DP (Trace postprocess the output of the adver-
sary, Ad, which is private), and (2) | SAS’| = 2, so for every B in the summations in Equations (30)
and (31), the databases Bg and By differ by two users. It follows that for every such pair Bg, B/

Prrace,aa|(i* € Trace(Ad(Bs)))] < € (€*Prrace,aa[(i" € Trace(Ad(Bs)))] +6) + & (32)

We use Equation and to upper bound the left hand side of Equation by ef(e¢+6)+ 46

so we get that
E(,€ ’77{
(e C+0)+o> 15
n

If £ and § do not satisfy this condition then we get a contradiction so M cannot exist and the lemma
follows. H

Taking ¢ = 4Lz, ) = 2( = 555z, and m = n + 1 in Theorem|B.13| we have that there exist robust

2ne2c?

fingerprinting codes with code length

o (nPlog(1/n)\ . (n® (log(n) + 2¢ 4 log(1/7))
5‘0(0/2—5)4)‘0( (12— p) )

When § < 7/(4en), we have e® (e + ) + 06 < 7,—74 and Lemma then follows from Theorem
B.14 O

C Algorithms with utility guarantees — missing proofs

We prove Lemma 3.1}

Lemma 3.1. Let My, (D;¢, 0, k) be the mechanism that works as follows: for each item x € X,
include x in the output with probability 7(c(z, D);ec/k,0/k). Then Mgy is a (e, 0)-differentially

private set union mechanism when users contribute at most k items.

Proof. Since w(0;¢/k,0/k) = 0, items that do not appear in the input dataset are output with
probability 0. It remains to check that Mgy is (e, §)-differentially private.

The key idea is to think of Mgy; as the composition of |X'| simpler mechanisms, one for each item
x € X. In particular, for each item x € X, let M,, : D — {0, 1} be the mechanism that outputs 1
with probability 7(c(z, D), e/k, d/k) and 0 otherwise. Then My post-processes the output of the
mechanisms M, by including the items whose mechanisms output 1 when run on D. Therefore, it is
sufficient to prove that the composition of the mechanisms (M,,).c v is (¢, §)-differentially private.

Fix any pair of neighboring datasets D and D’. Since each user contributes at most k items, we know
that for all but at most k of the items x, the mechanism M, has exactly the same output distribution
on D and D’, since c¢(z, D) = ¢(x, D’). Intuitively, it follows that when we apply a composition
theorem to the collection (M) x that we only need to “pay” for k of the mechanisms (instead of all
|X|). This is formalized in Lemma|C.1} Finally, prior work establishes that, due to the definition of ,
each mechanism M, is (¢/k, § /k)-differentially private. It follows that My is (¢, §)-differentially
private, as required. O
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The following easy lemma is needed in the proof of Lemma [3.1}

Lemma C.1. Let My : D — Y1,..., M, : D — Y, be a collection of (g, 0)-differentially private
mechanisms with each ); being finite. Say that M, ..., M, are k-aligned if for every pair of
neighboring datasets D and D’ we have that M;(D) has the same distribution as M;(D") except
for at most k indices i € [n]. Then the composite mechanism M (D) = (My(D), ..., M, (D)) is
(ke, ko)-DP.

Proof. Fix a pair of datasets D and D’ and suppose without loss of generality that the mechanisms are
numbered so that M (D) has the same distribution as M;(D’) for all i > k (i.e., all of the mechanisms
with different distributions are in the first k). Let B= Y1 X ... X Yy and A = V41 X ... X Y, and
let IT4 and I denote the projections from Y; X ... x ), to A and B, respectively.

For any output set O C Y1 X ... x ), of the composite mechanism and any value ¢ € A let O4—,
denote the set {(b,a) | b € B and (b,a) € O}, which is the “slice” of O where the components in A
are equal to a. Then we have

Pr(M(D) € 0) = Y Pr(M(D) € O | ILy(M(D)) = a) - Pr(Il4(M(D)) = a)

acA
=Y Pr(llp(M(D)) € Oa—y) - Pr(Ila(M(D)) = a)
a€A
<) (*Pr(TIp(M(D')) € Opza) + kd) - Pr(TLo(M(D')) = a)
a€cA
= <efk‘ > Pr(lip(M(D')) € Oazq) - Pr(lla(M(D')) = a)) + ko
a€A

=eFPr(M(D') € O) + kd,

where the inequality follows from the fact that IT 5 (M (D)) is the composition of & (&, 0)-mechanisms
and, by assumption, IT4 (M (D)) has the same distribution as IT14 (M (D’)). O

C.1 An alternative bicriteria algorithm

In this section, we present an alternative construction of a bicriteria algorithm. This algorithm achieves
weaker guarantees compared to the one presented in Section but it leverages different ideas,
some of which might be useful in other applications. Before describing this alternative algorithm, we
introduce tools from prior work that are needed for the construction.

Sparse vector with individual charging. Recall the celebrated sparse vector technique introduced
by Dwork et al.|[2009]: Given a dataset D and a threshold ¢, the goal is to privately identify the first
query g; out of a sequence of queries whose value on the dataset D is “significant”, i.e., ¢;(D) = t.
Following [Dwork et al.| [2009]], this technique was extended by [Bun et al.| [2017]] to allow for
identifying the first query that whose value is “close” to the threshold ¢. More specifically, they
introduced an algorithm called BetweenThresholds with the following properties: In each round
1=1,2,3,..., when getting the next query ¢;, algorithm BetweenThresholds guarantees that:

1) If ¢;(D) < t then the algorithm returns L and continues to the next round.
2) Else if ¢;(D) > t then the algorithm returns H and continues to the next round.
3) Else (i.e., ¢;(D) ~ t) then the algorithm returns T and halts.

The surprising aspect here, as was first shown by |Dwork et al.| [2009], is that the privacy parameters
of BetweenThresholds do not scale with the number of queries. That is, the algorithm maintains
(e,9)-DP no matter how many queries it received before halting. What if we need to identify more
than 1 query, say the first £ queries whose value on D is roughly ¢? The textbook approach for this
would be to re-execute algorithm BetweenThresholds after every T answer, paying in composition.

Kaplan et al.|[2021]] showed that this can be significantly relaxed. They introduced a variant of the
sparse vector technique called individual charging. Instead of halting after the first T answer, the
algorithm deletes from D all elements that “contributed” to this answer (at most ~ ¢ elements) and
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continues. More specifically, the algorithm of |[Kaplan et al.| [2021] processes the next query g; as
BetweenThresholds with item (3) replaced by:

3) Else (i.e., ¢;(D) =~ t) then the algorithm returns T, deletes from D all users u such that g; (u) = 1,
and continues to the next roundﬂ For the sake of this informal presentation, let us interpret
qi(D) =~ tas ¢;(D) € t £ A for some error parameter A.

In other words, like with the standard BetweenThresholds algorithm, answers of type L and H are
obtained “for free”. But now a T answer does not halt the algorithm altogether; instead we only “pay”
for it by deleting some of the items from the data (at most ~ ¢), and continue. For example, if there
are k queries with value = ¢ that involve different elements in D, then the algorithm of |[Kaplan et al.
[2021]) identifies all of these queries at the price of one execution of BetweenThresholds (instead
of k executions), thus avoiding the cost of composition. The algorithm of |Kaplan et al.| [2021]] was
later optimized by (Cohen and Lyu| [[2023]]; we will use their optimized version.

Overview of our bicriteria approximation. At a high level, the algorithm works as follows. Let
t = 2A, where A is as defined in Step [3)]above. With this choice of ¢, the algorithm only returns
T on queries whose value is between A and 3A. Now, given a dataset D containing items from a
universe X we do the following: For every x € X, issue the counting query ¢, to the algorithm of
Cohen and Lyu! [2023]] (this query simply counts the number of occurrences of x in D). We then
report all items x for which we got an answer of H or T. We show that this algorithm obtains the
aforementioned approximation bound. This includes overcoming three main obstacles:

1. The algorithms of |[Kaplan et al. [2021]], Cohen and Lyu|[2023]] do not operate with the optimal
reporting probabilities . That is, for an item x with count ¢(z), the probability that the algorithm
returns T or H on the query g, is strictly smaller than 7(c(x); €, §), since it operates using Laplace
noise and thresholding. To overcome this, we bound the optimal reporting probabilities in terms of
the Laplace reporting probabilities.

2. In the analysis we need to argue about the effect of elements that the algorithm deletes from
D at during runtime. We do this via a charging argument, showing that if r elements are deleted
throughout the execution, then the algorithm must have reported at least ~ ;5 elements.

3. The algorithm of [[Cohen and Lyul 2023]] can return H or T even if ¢(z) = 0 (with very small
probability). Therefore, we refrain from applying this algorithm to items with count zero. Furthermore,
to compete with TI(D, &, §") we have to deterministically report items 2 such that 7(c(z),&’,d’) = 1.
Thus we refrain from applying the algorithm to these items as well. These exclusions require some
care in our privacy analysis.

We now formally introduce the algorithm of [Kaplan et al.,|2021} |Cohen and Lyu, [2023]].

Algorithm 2 BetweenThresholds with Charging [Kaplan et al., 2021} |Cohen and Lyu, [2023]]
Input: Dataset D, “hit” budget 7 > 0, privacy parameter ¢ > 0, thresholds ¢, < .

1. Foreveryuser j € DsetC; =0
2. Forround: =1,2,... do:

(a) Receive a counting query f;

(b) fi < fi(D) + Lap(})

(c) If f < t; then return L. If f > ¢, then return H. Otherwise:
* Foreach j € D such that f;(B;) = 1 do:

- Cj — Cj + 1.
- If C; = 7 then remove B; from D.
* Return T.

Theorem C.2 (Cohen and Lyu|[2023])). Let & < § and let t; < t, be such that t, —t; > 2. Algo-
rithm@is (6e7,e~7/4)-DP. In particular, for T = 41n(%) we get that Algorithmis (24e1n(3), 6)-
DP.

"Here we think of ¢ as a counting query, meaning that it is a predicate defined over the data domain X, and
for a dataset S € X ™ we define ¢(S) = > 5 q().
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We are now ready to formally present our bicriteria approximation algorithm.

Algorithm 3 Bicriteria

Notation: Let £ denote the contribution bound, let X’ be a domain of items, and let Ay , = {BC
X :|B] < k} denote the set of all possible bags of size at most k from X.

Input: Dataset D € A%, privacy parameter € > 0.

1. Instantiate BetweenThresholds (Algorithm [2) on D with parameters 7 = 4In(}),
privacy parameter £ = m, and thresholds ¢, = % In(4) and t, =t + g

2. For each x € X do:

(a) If ¢(x, D) = 0 then do not report  and proceed to the next iteration.
(b) Elseif c(z, D) > t, + % In(5) then report = and proceed to the next iteration.
(c) Otherwise:
* Feed the counting query c(x, D) to Algorithm BetweenThresholds and obtain
an answer a.
 If a = L then do not report = and proceed to the next iteration.
» Ifa € {T,H} then report z and proceed to the next iteration.

Similarly to Algorithm Bicrit (presented in Section [3.2)), Algorithm [3] does not really need to
explicitly traverse all x € X" as we can skip items to which no user contributes.

The next lemma captures the privacy guarantees of Algorithm[3] This mostly follows from the privacy
guarantees of BetweenThresholds, as captured by Theorem|[C.2] The proof does require some care,
however, in order to handle the fact that in Steps [2a] and [2b] of Algorithm [3]we make a deterministic
decision (without issuing any query to algorithm BetweenThresholds). This is necessary in order
to allow us to later relate the reporting probabilities of our algorithm with the optimal reporting
probabilities.

Lemma C.3. Algorithm Bicriteriais (e,0 (ke®d))-DP.

Proof. Fix two neighboring datasets D° and D' = D° U {B} for B = {x1,%2,...,7,} where
z < k. Our goal is to show that

Bicriteria(D") ~ Bicriteria(D?)

For the sake of the analysis, consider a modified variant of Algorithm Bicriteria, denoted
as Bicriteriapo p: and defined as follows. Algorithm Bicriteriapo p: is identical to
Bicriteria, except that in iterations on items x such that v € B, Algorithm Bicriteriapo p:
does not perform Steps @ and [2;5} Note that Algorithm Bicriteriapo p1 “knows” the two datasets
DU, D', and it is being applied to one of them. Also note that we only modify iterations corresponding
toitems z € B.

We first argue that
Bicriteriapo pi(D") & s Bicriteriapo pi(D").

This follows as the outcome of BicriteriaDo,Dl(Db) can be viewed as a post-processing of
the outcome of BetweenThresholds(D?). To see this, we design an algorithm A that knows
D° D', but not D?, and after interacting with BetweenThresholds(D?) it generates an outcome
that is distributed exactly as the outcome of BetweenThresholds(D’). Algorithm A attempts to
perform as much of the computation of Bicriteriapo p: (DY) by itself, and only interacts with
BetweenThresholds(D®) when necessary. Specifically, Algorithm A mimics the loop of Step
and behaves differently on iterations where z € B and where « ¢ B: If x € B then A queries
BetweenThresholds(D’) and proceeds according to Step [2¢| (recall that in such iterations we
do not perform Steps [2al and 2b). If z ¢ B then A can perfectly simulate this iteration without
accessing the data holder BetweenThresholds(DP). In both cases A maintains the counts C;,
and excludes rows j from the computation once they have reached their cap of 7. This shows that
Bicriteriapo pi(DP) can be written as a post-processing of BetweenThresholds(DP).
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Next, note that the outcome distributions of Bicriteria(D’) and Bicriteriapo pi (D)
are within statistical distance kde. To see this, note that throughout the execution of
Bicriteriapo pi(DP) there are at most z < k iterations of Stepin whichBicriteriapo pi(DP)
issues a query to Algorithm BetweenThresholds even though Bicriteria(D®) would not have
queried it (because it makes a deterministic decision in Stepsor , which Bicriteriapo ps (Db)
skips over). Recall that whenever BetweenThresholds is queried, it samples one RV from the
Laplace distribution. Define the good event E stating that during all of these (at most z) queries
to BetweenThresholds, the Laplace noises that are sampled are bounded in absolute value by
é ln(%) — 1. By the properties of the Laplace distribution and by a union bound, this event occurs
with probability at least 1 — kde®. When this event happens, in all of these (at most z) iterations,
the answer reported by Bicriteriapo p1 (Db) is identical to the (deterministic) answer reported
by Bicriteria(D?). Furthermore, none of these queries to BetweenThresholds results in T, and
thus do not change the internal state of BetweenThresholds. This shows that Bicriteria(D?)
and Bicriteriapo pi(DP) are within statistical distance kde®.

Overall,
Bicriteria(D") (0, kde?) Bicriteriapo pi (DY)
R (e,0) BicriteriaDo7D1(D1)
N (0,ke?) Bicriteria(D'),
showing that Bicriteriais (¢, 6(1 + ke® + kes*¢))-DP. O

We now proceed with the utility analysis of Algorithm[3] As we mentioned, the first step here is to
relate the optimal reporting probabilities with the reporting probabilities that arise from our algorithm,
which we refer to as the Laplace reporting probabilities, defined as follows.

Definition C.1. The reporting probability of the Laplace mechanism with parameters €, are

07 lfn =0
mrap2,0) = 3 Pr [t Lap(H) > 2n(h) +1], i1 <n < [2n(k)] +1
1, else

Remark C.4. The parameters in Definition [C.1| were chosen such that for n = 1 we have
TLap(1;€,0) = & and for n' = [21n(35)] + 1 we have Trap(n';e,0) = 1 — 6. The choice
Jor n’ could be slightly improved by tuning it to (1 — &)e™¢ rather than (1 — §), which we did not do
for simplicity.

Lemma C.5. Lere < % and 6 < ﬁ. For every n it holds that

TLap (nv 257 2;5) > ’/T(?’L;57 5)

Proof. We prove the lemma for the following definition of 7., Which for our choice of €, is
point-wise smaller (for every n) compared to Definition [C.1]

0, ifn=20
TLap(n;€,0) = Prn+Lap(2) > 11In(3)], if1<n < 2In(gs)
1, else
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The proof proceeds by case analysis based on the value of n. We begin with the case that n <

vap o2 2 In(£). In this case we have that
20 e
TLap | N;26, — | = € - exp(—2ex) dx
c —n-+ 3z In(55)
1 €
— ~exp(2en — In(=
L exp(2en — ()
5 exp(2en)
B €
en _q
> 5 eea — = (nie,0)
Let us now consider 7 in the range n € [nS2" | 0% 1, where no, . =1+ E ln(e(geji‘sl)‘él )J In
this range we have
26\ 1 [°
TLap (m 2¢, > == —|—/ e - exp(2ex)dx
€ 2 —n+4 In(%)
1 €
=1- §exp(—2€n + 1n(2—6))
=1- 4%; - exp(—2en).
Recall that n2®, . is the first crossover point of 7, and that for n smaller than this we have that
m(n;e,8) = § - 2L Thus, we need to show that for n € [nL2% , n%P% | 1t holds that
€ e —1
1—B~exp(—2€n) >4 =1

Simplifying the above inequality, it suffices to show that

f(n) 2 e*n (iesn — 1> + % <0.

. ) 3 P . . 36 . . .
Note that the function 2z° —z* is increasing on (—o0, 0], decreasing on (0, 52), and increasing again

on (22, 00). So the maximum of f(n) for n € [n22% ., n2P% | ] must be taken at the endpoints. We
calculate:

Lap y_ € (0 e e_1(]e _e)\_
f(nswitch)_26 (5 26 1>+4§_2< 20 26)_0,

where the last inequality holds whenever § < £. Similarly,

2
opt 20 (B 1N (0 (21N YL e
f(Nggieen) <€ e +1)6 € € e +1)6 L +45
(es+ 1) (e +1)

()

It can be verified that the expression denoted by () is at most —% whenever € < % and 6 < ﬁ, in
which case
2e € §—1\? €
opt €7 (e H20-1N" €
J(aviven) < =75 ( e+ ) B

il I S
6 \(es+1)d 46

IA
|



. opt Lap Lap & 1
We now proceed to study values for n in the range n € [ngy; 1., Neng]» Where nod = 2 1In(55 52)

As before, the reporting probability of Laplace in this range (and actually for every n > nsw1tch) is

20 €
TLap (n;Ze, 5) =1- o exp(—2en).

As for 7 in that range first observe that the second crossover point of the optimal reporting probabili-

ties, denoted ngy d, is larger than n;fg . Indeed, when ¢ < 1/2,

ngg&_,l <m)+iln<1+esé_1.(I_Ziif))—l
%1 (%) 11 <1+5 ;)—1
iln(éz—;)—l

éln (2222) = nlefg.

opt Lap
switch? Tend

| we have

Thus, for every n € [n
. = —ne | e niniy, —en | =il opt .
7'('(’(1,6,(5)—(1—8 e H)-( 1>—|—e e th-w(nswitch,s,d)

© o ¢ )
< (1 —e e 65'”2\3“@) . ( ) +e . 66%2‘?"“}‘ . +
- e —1

e +1
opt 5 e +6
= 1 — e & € Mswitch
* e — ‘ ¢ ( -1 e+ 1)
1+ — e TE™ . o n(’ptt " J 1-0
N ef —1 ee—1 e +1
<14 Cen € +20-1 ) 1-96
—e .
es — (e +1)d ee—1 e +1
) ec+20—-1 1
<1 _ ,—En |
- +e’5—1 ‘ (ef+1)0 4
—E&n i . 1
e 51
So it suffices to verify that
1
1_E exp(—2en) > 14+ —— —65"-%~Z
which holds whenever 5 )
74%5 - exp(—2en) > - e " % T

i.e., whenever,

Note that § — " > 1 in our current range. Thus, it suffices to verify that

—en € > 6
e S
246
which holds for every n < n>*» = 1 ln(%).

All in all, for all n < ngjg we have that

2
TLap (n; 2¢, :) > m(n;e, 0).
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Finally, for n > ncnd we have that

20
TLap <n; 2¢e, ) =12>m(n;e,0).
€

We are now ready to analyze the utility of our bicriteria algorithm.
Lemma C.6. The expected number or identified items in Algorithm Bicriteria is

(rup) (24 (m) * (witm)

Proof. Let us consider a variant of Algorithm Bicriteria, called BicriteriaNoDel, which
is identical to Bicriteria except that in Step [I] we initialize Algorithm BetweenThresholds
with parameter 7 = oo. This means that rows are never deleted from D during the execution of
BetweenThresholds in BicriteriaNoDel.

The resulting algorithm BicriteriaNoDel is not DP (with satisfactory privacy parameters), but its
utility is high, in the sense that it achieves the Laplace reporting probabilities. Specifically, for every
dataset D we have

E[|BicriteriaNoDel(D)|] > M, (D,Q (ln(i/é ) ) Z TLap ( );Q <1n(1€/5)> ,5) .

zeD

We begin by showing that the utility of Bicriteria is comparable to that of BicriteriaNoDel.
To this end, let 7 € RI*! denote the internal randomness of Bicriteria (or BicriteriaNoDel),
which we represent as a vector consisting of |X'| samples from the Laplace distribution. We write
Bicriteria, or BicriteriaNoDel, to denote these algorithms after fixing r. We next argue that
for every r and D it holds that

|Bicriteria,(D)| > —— - |BicriteriaNoDel, (D),

QA

where A = ¢, + 2In(5) = © (1 In? (1)) is the maximal possible value for ¢(z, D) with which we
might issue a query to BetweenThresholds during an iteration of Step 2] To see this, let A C X
denote the set of all points that are reported by BicriteriaNoDel, (D). During the execution of
Bicriteria,(D), some of the items in A might not get reported. Specifically, an item a € A might
not get reported if previous iterations of the algorithm deleted rows from D that involve a. Otherwise,
a would be reported just as in the execution of BicriteriaNoDel, (D).

Definition C.2. We say that an item a € A is compromised if previous iterations of Bicriteria,(D)
(before the iteration on a) deleted rows that involve the item a.

Let R C A denote the set of compromised items. Note that all items ¢ € A\ R (which are not
compromised) are reported by Bicriteria, (D). We now show at least ;x| R| of the items in A are
reported by Bicriteria, (D).

To this end, recall that every row in the dataset contains at most k items. Thus, in order to have |R)|

compromised items we must delete at least % rows from the dataset. In order for this to happen, the
\R\T
t

sum of the counters maintained by algorithm BetweenThresholds must be at leas (because
we delete a row only once its counter reaches 7). In order for this to be the happen, we must observe

at least |R|T iterations in which algorithm BetweenThresholds returns T. (This is because the
counters are only increased during iterations with a T answer, and at most A counters are increased).
Finally recall that in iterations with a T answer we report the corresponding item. Thus, if there are

|R| compromised items, then Algorithm Bicriteria, (D) reports at least ‘ ‘T items.

Now, if |R| > “21' then the number of items reported by Bicriteria, (D) is at least |R| > %,

and otherwise this number is at least ‘Qﬁ (as all non compromised items get reported). So in any case
we have that
|A\T T

| > SAL — AL |BicriteriaNoDel,(D)|.

|Bicriteria, (D)
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Overall,
-

20k
T g

> . _ -

= 9Ag ar <D’Q (111(1/5)) ’5)

> i I (D,Q <ln(i/5)> . (111(516/6)))
=2 () 1 (22 () (7))

where the second-to-last inequality follows from Lemma|[C.3]

E[|Bicriteria(D)|] > -E[|BicriteriaNoDel(D)|]

Bl

C.2 Extreme privacy regimes — omitted proofs

We start with the following straightforward lemma about My,.

Lemma C.7. Let M;(D; 6) be the mechanism that returns the union of items in D with probability
d and the empty set otherwise. Then My is a (0, §)-differentially private set union mechanism.

Proof. Tt is clear that the output of M, (D) is always a subset of the union of D, so it remains to
check that My, is (0, §)-differentially private. Fix any pair of neighboring datasets D and D’ (in fact,
the proof works for any pair of datasets, even if they are not neighbors) and let U and U’ be their
unions, respectively. Then for any output set O, we have that
Pr(Muy(D) € O)=I{0 € O}(1 - 0) + {U € O}
=0 e O}(1 -6 +{U' € O}§ + (I{U € O} —{U' € O})d
< PI‘(Mall(D/) S O) + 6,

as required. O

We now restate and prove Lemma 3.6

Lemma 3.6. Let My (D; €, 9, k) be the following mechanism: let §' = 6 —min(d, 1/¢) and output
the union of My (D; ") and Mgy (D;e,8 — 0', k). Then Mg is an (e, 0)-differentially private set
union mechanism. Furthermore, for any contribution bound k, dataset D with contributions bounded
by k, and privacy parameter §, we have that

i ElMiure (D, 8, B)]

=1.
% N(Die,)

Proof. From basic composition together with the privacy guarantees from Lemma|C.7jand Lemma[3.1]
it follows that Mg is (e,9)-DP. Next, since M, and Mp1ic both output subsets of their input dataset,
the union of their outputs is also a subset of the input. It remains to prove the utility guarantee.

Let D; = {z € X' | c(z, D) = 1} be the set of items that appear in D exactly once, and D~ =
{z € X | ¢(x, D) > 1} be the set of items that appear in D two or more times. Then we have that

(Dse,8) = Y w(c(x, D);e,0)

reX
> Z w(1l;e,0) + Z (2;¢€,0)
€D €D~

=06-|D1| +min(1,e*6 + d,1 — e (1 — 20)) - |D>1],

where the inequality follows from the fact that 7 is non-decreasing and the last equality follows from
the fact that (1; €, 6) = ¢ and the recursive definition of 7(2; ¢, ¢). (i.e. we have that 7(2) < e®m(1)+
dand (1—7(2))ef+d < (1—m(1))) Taking the limit as ¢ — oo we have that lim._, o II(D; e, ) =
d - |D1| 4+ |Ds1)-
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Since we are interested in the utility of Mj,e. Only when € — oo if suffices to determine the expected
output size of Miee When e > 1/6. In this case, we have that ' = § — 1/e and § — &’ = 1/¢, which
gives:

E[|Miarge(D; €,0, k)] = Z Pr(z € Mg (D;¢,0,k)).
TEX
For any item x € D, we have that
Pr(z € Mg (D;e,0,k)) > Pr(x € My (D;0 —1/e)) =6 —1/e.
Next, for any item « € D~ 1, we have that
Pr(z € Mg (D;e,0,k)) > Pr(xz € Mgy (D;e,1/€)) > w(2;¢e/k,1/e)
=min(1, e/ /e + 1/e,e7/*(1 — 2/¢)).
Putting it together, we have that
E[|Miuge(D;€,8,k)[] > (6 — 1/¢) - |D1| + min(1,e¥/* /e + 1/, e=/%(1 — 2/¢)) - | Ds1].
Taking the limit as ¢ — oo gives that lim._, oo E[|Miaee(D; €, 0,k)|] = 6 - |D1| + |D>1].
Since both limits exist and are equal, it follows that

. EHMlarge(D;Ev(Sv k)l] _
elggo II(D;e, 6) =5

as required. [
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