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Abstract
Knowledge Graph Embedding (KGE) has been001
proposed and successfully utilized to knowl-002
edge Graph Completion (KGC). But dominant003
KGE models often fail in zero-shot relational004
learning because they cannot learn effective005
representations for unseen relations. Previous006
studies mainly separately utilize the textual de-007
scription of relation and its neighbor relations008
to represent unseen relations. In fact, the se-009
mantics of a relation can be expressed by three010
kinds of graphs: factual graph, ontology graph,011
textual description graph, and they can com-012
plement and enhance each other. Therefore,013
to obtain a more accurate representation of re-014
lation in zero-shot learning, we propose the015
mixture-of-graphs (MoG) experts to improve016
the effectiveness of current KGE for unseen017
relations. We build multi-aspect associations018
between seen and unseen relations which will019
be used directly to guide previous KGE meth-020
ods such as TransE and RotatE on zero-shot021
relational learning. The experiments on multi-022
ple public datasets verify the effectiveness of023
the proposed method, which improves the state-024
of-the-art zero-shot relational learning method025
by 12.84% in Hits@10 on average.026

1 Introduction027

Knowledge Graphs (KGs) such as Freebase (Bol-028

lacker et al., 2008), DBpedia (Lehmann et al., 2015)029

and YAGO (Mahdisoltani et al., 2014) contain large030

amounts of entities, relations and facts, but the in-031

completeness of those KGs is an urgent issue for032

its widespread utilization. Recently, knowledge033

graph embedding (KGE) represented by translation-034

based methods (Bordes et al., 2013; Yang et al.,035

2014; Sun et al., 2019) have been proposed and036

successfully applied to knowledge graph comple-037

tion (KGC), which attempts to embed a KG into038

a low-dimensional continuous space with the ob-039

served triplet facts. And the numerical representa-040

tions (e.g., vectors) of entities and relations can be041

used to predict potential triplet facts.042
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Figure 1: The semantics of a relation in a KG is ex-
pressed by three kinds of graphs: factual graph, on-
tology graph and textual graph. And the knowledge
graph completion involving unseen relations in factual
graph, which struggle in previous embedding methods,
could be alleviated by utilizing their ontology and tex-
tual graphs.

However, as a kind of transductive learning 043

paradigm (Zhang et al., 2021), translation-based 044

and other dominant KGE methods are struggling 045

in predicting facts involving unseen entities and 046

relations during training. That is, KGE models 047

can only deal with entities and relations that have 048

been observed in the training set. And the repre- 049

sentations of unseen entities and relations cannot 050

be learned by previous methods. For example, as 051

illustrated in Figure 1, the unseen relation “academ- 052

icAdvisor”, which do not appear in the observed 053

facts (training set), is represented as a random ini- 054

tial tensor (e.g., vector) and cannot be used in KGC 055

at all. 056

This paper focuses on zero-shot relational learn- 057

ing and deals with KGC on unseen relations, it 058

receives less attention than zero-shot entity learn- 059

ing (Wang et al., 2019; Albooyeh et al., 2020; Teru 060

et al., 2020). So far, the limited studies realize zero- 061

shot generalization mainly by utilizing the textual 062
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description of the target relation and its neighbor-063

ing relations (Qin et al., 2020; Geng et al., 2021;064

Zhang et al., 2020). ZSGAN-KG (Qin et al., 2020)065

leverages a generative adversarial network to gen-066

erate representations of unseen relations based on067

their textual descriptions. And OntoZSL (Geng068

et al., 2021) designs several functions to learn and069

fuse textual features, and then adapt a text-aware070

encoder to represent zero-shot entities and rela-071

tions. GRL (Zhang et al., 2020) designs a classifier072

to select an appropriate seen relation to replace the073

unseen relation. Although those methods can deal074

with unseen relations to some extent, they still have075

the following weaknesses: 1) Unstructured textual076

description is incomplete and can only cover part077

of the semantics of relations. 2) It is often inac-078

curate and even noisy to use neighbor relations to079

represent an unseen relation. Therefore, when mak-080

ing predictions about a fact that contains an unseen081

relation, the most challenge of zero-shot relational082

learning is how to obtain its rich and accurate se-083

mantic representations084

In fact, as shown in Figure 1, the semantics085

of a relation can be expressed by three different086

forms: 1⃝factual graph includes concrete rela-087

tionships between entities, 2⃝ontology graph de-088

scribes high-level abstract relationships among con-089

cepts and relations, and 3⃝textual graph contains090

textual descriptions of different relations. Those091

three graphs can complement and enhance each092

other. Firstly, the factual graph is wide and links093

large amounts entities by relations. The large-scale094

entity-relation networks enable the efficient propa-095

gation of representations. Secondly, the ontology096

is the precise specification of a KG, it contains a097

high-level definition of entities and relations. And098

the relations of a KG are constrained by concepts099

and properties through meta-relations such as “do-100

main”, “range” and “subPropertyOf ”. Finally, the101

textual descriptions are rich and hold massive se-102

mantic information by natural language. They can103

be built textual graph through word and sentence104

association. Therefore, we attempt to utilize the105

corresponding ontology and textual graphs of a KG106

to obtain rich and accurate semantic representations107

of unseen relations.108

In this paper, we propose mixture-of-graph ex-109

perts for zero-shot relational learning, named ZRL-110

MoG, which could represent the unseen relations111

of the factual graph by fusing ontology and textual112

graph. Specifically, we collect different ontology113

graphs by official or build them by official dump 114

data. We generate textual graph by language associ- 115

ation between each ontology node. To achieve the 116

interactive information between seen and unseen 117

relations, we leverage RGCN (Schlichtkrull et al., 118

2018) to encode textual graph and GAT (Veličković 119

et al., 2017) to encode ontology graph. And to 120

aggregate different roles of knowledge, we con- 121

sider the mixture of experts approach to design 122

different expert modules and mixture mechanism 123

for them (Jordan and Jacobs, 1994). We adapt 124

TransE, RotatE and other mainstream translation- 125

based methods as base models, and the proposed 126

method can be used in combination with most dom- 127

inant KGE models. 128

We conducted extensive experiments on multiple 129

benchmark datasets from public KGs such DBpe- 130

dia and Wikidata. The experiments are conducted 131

mainly on zero-shot relation learning. And we 132

also verify the proposed model of KGC on gen- 133

eral and sparse data. The experimental results 134

demonstrate that the proposed method can learn 135

a better knowledge graph embedding, and it sig- 136

nificantly improves the KGC performance on un- 137

seen relations. Moreover, it also performs better on 138

general and sparse data. The proposed zero-shot 139

relational learning method improves the state-of- 140

the-art method by 15.66% in MRR and 12.84% 141

in Hits@10 on average. The experimental codes 142

can be accessed by https://github.com/ 143

AnonymousOne404/OntologyKGE. In short, 144

our main contributions are as follows: 145

• We consider that relations expressed by fac- 146

tual graph, ontology graph and textual graph, 147

they can complement and enhance each other. 148

Based on these observations, we propose 149

mixture-of-graph (MoG) experts for zero-shot 150

relational learning, which can represent un- 151

seen relations accurately and richly. 152

• We construct and generate ontology and tex- 153

tual graph, and leverage different GNN to en- 154

code them. We also utilize a mixture of ex- 155

perts to aggregate information from ontology 156

and textual graph representations. 157

• We implement our method with some main- 158

stream methods such as TransE and RotatE. 159

And the experimental results show that our 160

method significantly improves the KGC per- 161

formance on the setting of zero-shot, general 162

and sparse data. 163
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2 Related Work164

2.1 Knowledge Graph Embedding165

Recently, massive work focused on translation-166

based methods for knowledge graph comple-167

tion (Zhang et al., 2021). The key issue of knowl-168

edge graph embedding is to learn low dimensional169

distributed embedding of entities and relations (Ji170

et al., 2021). The current KGE models can gener-171

ally be categorized into translation-based models172

and similarity-based models. For translational mod-173

els: the pioneering model TransE (Bordes et al.,174

2013) embeds entities and relations as d-dimension175

vectors in same space, and makes vectors follow176

the translational principle h + r = t. The subse-177

quent work of TransE usually modifies the transla-178

tional principle in different forms of relationship-179

specific spaces. And others translation-based mod-180

els include TransR (Lin et al., 2015), TransD (Ji181

et al., 2015), TransAt (Qian et al., 2018) and Ro-182

tatE (Sun et al., 2019) have been improved from183

the perspective of how entities can be better repre-184

sented and translated. As for the similarity-based185

models, ComplEx (Trouillon et al., 2016) migrates186

DistMult in a complex space and offers compara-187

ble performance. However, Previous embedding188

methods struggle in knowledge completion involve189

unseen relations.190

2.2 Zero-shot Learning for KGC191

Zero-shot learning describes tasks that give the192

prior knowledge (seen classes) and then transfer193

features from seen classes to unseen classes. Most194

works focus on computer vision such as image clas-195

sification. In the area of knowledge graph comple-196

tion, more studies focus on zero-shot entity learn-197

ing which is devoted to deal with unseen entity.198

Some works leverage text and other auxiliary fea-199

tures to learn the entity representation(Xie et al.,200

2016; Shah et al., 2019). Some works design dif-201

ferent models or strategies to aggregate neighbor202

seen entities for unseen entities (Wang et al., 2019;203

Albooyeh et al., 2020). Currently, inductive rea-204

soning(Teru et al., 2020) completely disregards the205

symbol of entities and it means that all entities206

can be unseen entities. While few works consider207

zero-shot relation learning and model unseen re-208

lations. The limited works take text-embedding209

spaces as semantic spaces of relation to represent210

unseen relations (Qin et al., 2020; Geng et al.,211

2021). And (Zhang et al., 2020) design a classifier-212

based method, which select an appropriate seen213

relation to replace the unseen relation. Our work 214

focuses on unseen relations in knowledge graph 215

completion, proposes a method that incorporates 216

ontology graph and textual description to leaning 217

the representations of unseen relations. 218

2.3 Ontology and Textual Information in 219

KGE 220

The ontology is the definition and meta-information 221

of KG, it is a core part of KG construction (Stevens 222

et al., 2000). The massive KG relation facts are 223

subject to frequent conflicts in the absence of on- 224

tological boundaries (Pasternack and Roth, 2013). 225

A few studies focus on embedding techniques of 226

cross-domain ontology and encode ontology from 227

different perspectives (Chen et al., 2018; Gutiérrez- 228

Basulto and Schockaert, 2018). Currently, some 229

studies try to adapt ontology to enhance the rep- 230

resentation of knowledge base, JOIE (Hao et al., 231

2019) employs both cross-view and intra-view 232

modeling that learn on multiple facets of the knowl- 233

edge base. For textual information, (Yao et al., 234

2019) propose to use pre-trained language models 235

for knowledge graph completion. However, there 236

are significant differences in the ontology of the 237

knowledge base and knowledge graph. And some 238

popular knowledge graphs do not distinguish be- 239

tween KB and KG (Ehrlinger and Wöß, 2016). Our 240

work focuses on learning ontology representation 241

for KGE involving unseen relations. 242

3 Translation-based Models for KGC 243

KGC aims at scoring a triple (h, r, t) from KG 244

G = (R, E), where r ∈ R is relation and h, t ∈ E 245

are entities. Traditional translation-based models 246

usually learn embedding matrix to translate head 247

entity h to tail entity t through relation r. And dif- 248

ferent models have been proposed by mainly chang- 249

ing translating strategies. For example, TransE fo- 250

cuses on adding head entity and relation should 251

be close to the corresponding tail entity with the 252

scoring function, minimizes the score of a triple as 253

follows: 254

s(h, r, t) =∥ h + r − t ∥22 (1) 255

where h, r, t ∈ Rd, and d is dimension of embed- 256

ding. 257

Translation-based models usually use the hinge 258

loss function to effectively minimize the score. The 259

L(θ) for a single batch of labeled triples are defined 260

as follows: 261
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Figure 2: Our method leverages different GNN to capture ontology graph and textual graph nodes information
and aggregate them by knowledge mixture of experts. By fusing ontology and textual features, MoG pools the
representation of the relation in predicting a triplet fact.

∑
(h,r,t)∈Gb

[γ + f(h′, r, t′)− f(h, r, t)]+ (2)262

where γ is a fixed margin, (h′, r, t′) is the negative263

fact which is commonly constructed by randomly264

replacing the head or tail entities of the true fact265

(h, r, t).266

For evaluation, KGC is a link prediction task267

that aims to predict the missing h or t for a triple268

(h, r, t). Given the query (h, r, ?) and search the269

entity t who gets minimum score with scoring func-270

tion.271

However, the embeddings (e.g., vectors) of all272

entities and relations must be initialized at the be-273

ginning for previous translation-based models. If274

some relations r miss in training but appear in test-275

ing, they cannot be learned at all by the model.276

Therefore, in order to represent the missing rela-277

tions and conduct zero-shot relational learning, we278

consider to leverage multi-aspects information.279

4 Mixture-of-Graphs Experts280

This section describes in detail our proposed ap-281

proach. The framework is shown in Figure 2. Our282

method directly improves effects of previous KGE283

models for unseen relations by making rich and284

accurate for their representation.285

4.1 Framework 286

Our method mainly utilizes three types of graphs: 287

factual graph, ontology graph and textual graph. 288

Factual graph is knowledge graph, following as 289

the previous definition. Ontology is the back- 290

bone of KGs, which provide meta-descriptions 291

for guiding the knowledge graph construction and 292

completion. Ontology describe as directed graph 293

Go = (Ro, Eo), which uses meta-relations to asso- 294

ciate between ontology nodes (concepts and proper- 295

ties) (ho, ro, to). And the relations R and entities E 296

of factual graph all find their own meta information 297

in ontology. And relations have a directly mapping 298

between the edges of factual graph and the nodes 299

of ontology graph. Textual graph is undirected 300

graph Gt = (Rt), the nodes is textual descriptions 301

of concept and property and the edge is seman- 302

tic similarity between two nodes (ht, rt, tt), and 303

0 < rt < 1. 304

4.2 Graph Construction 305

Ontology is stored in triples (head, relation, tail), 306

we take head and tail as node (indicates concept 307

and property of factual graph) and relation (indicate 308

meta-relations among concepts and properties) as 309

edge. Based on the official released ontology file or 310

the dump data, we can directly construct or build 311

ontology graph by simple data filtering and format 312

conversion. 313

For textual descriptions, we generate textual 314

graph from textual descriptions or full names of 315
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concepts and properties, we want to find them as-316

sociated as bellow:317

At =

{
d(xi, xj), if d(xi, xj) > ε

0, otherwise

At is adjacency matrix of textual graph Gt, d(·, ·)318

describes the cosine similarity function, ε is a319

threshold for connection nodes. xi is the word320

embedding of each node. Following previous work321

(Qin et al., 2020), the Glove (Pennington et al.,322

2014) has higher performance than the pre-trained323

language model, and we use Glove to initialize324

word embedding. The representation of a sentence325

is obtained by averaging its word embeddings.326

4.3 Graph Encoder327

The ontology can be represented as a directed at-328

tribute graph. Identically, the text descriptions of329

multiple relations can be represented as an undi-330

rected graph. Our goal is to obtain the representa-331

tion of unseen relations based on other seen nodes332

(entities, concepts, textual descriptions and rela-333

tions) in different graphs. Therefore, we encode334

ontology and textual graph by graph neural network335

(GNN).336

In the textual graph Gt, the weight wij of each337

edge is the similarity between nodes. We con-338

sider the commonly used graph attention network339

(Veličković et al., 2017), but the attention value is340

replaced by edge weight w, the process as follow-341

ing:342

hi,s = σ(
∑
j∈Ni

wijWshj,s) (3)343

The σ is sigmoid activation function. Ws is GAT344

weight. Ni denotes neighbor nodes of i.345

Similarly, ontology graph is undirected graph,346

and each edge has its own type. Inspired by RGCN347

(Schlichtkrull et al., 2018), a GNN model for rela-348

tional (directed and labeled) multi-graph. To ob-349

tain the representations of concepts and properties,350

we use RGCN to get the representation of ontol-351

ogy nodes by aggregating neighborhoods nodes352

through different meta-relations, as follow:353

h(l+1)
o,i = ReLU(

∑
r∈R

∑
j∈Nr

i

1

Ci,r
W(l)

r h(l)
o,j

+W(l)
0 h(l)

o,i)

(4)354

355

h(l+1)
o,i = Norm_Layer(h(l+1)

o,i ) (5)356

where h(l)
o,i ∈ Rd is hidden state of ontology node 357

ho,i in the l-th layer of RGCN, and d is dimension 358

of layer’s representation. N r
i denotes the set of 359

neighbor indices of node i under meta-relation ro ∈ 360

Ro. W(l)
r is relation parameters of meta-relation r 361

which weight for node i neighboring node in l-th 362

layer. W(l)
0 is self-loop weight for encoding self- 363

node features. ci,r is a normalization constant that 364

can either be learned or chosen in advance. ReLU is 365

activate function. We also use layer normalization 366

to speed the training. 367

4.4 Mixture of Graph Experts 368

The core issue of this paper is how to obtain the 369

effective representation of the relation r from on- 370

tology space and textual space, especially for the 371

triple involving unseen relations. For each factual 372

triple (h, r, t), we can find ontology representation 373

(ho, ro, to) and textual representation (ht, rt, tt) 374

from their space. Based on the previous node rep- 375

resentations, we design aggregating strategies with 376

mixture-of-graph experts to represent relations. Re- 377

cently, the mixture of experts (Jordan and Jacobs, 378

1994; Shazeer et al., 2017; Fedus et al., 2021) has 379

been widely used to capture features by different 380

experts’ views, and it can efficiently merge differ- 381

ent features. For different knowledge roles (head, 382

relation, tail), MoG can capture each role repre- 383

sentation through ontology and textual space. We 384

define different expert networks Eh, Er, Et for the 385

head, relation, tail, and a gating network M , pro- 386

cess as follows: 387

pi = M(x) (6) 388

389

r =
∑

i∈(h,r,t)

piEi(x) (7) 390

where x ∈ {[ho : ht], [ro : rt], [to : tt]} each in- 391

put x concats corresponding representation of on- 392

tology and textual description. The expert networks 393

and gating network are single-layer MLPs, and 394

same dimension between input and output for ex- 395

pert networks. Experts analysis tree roles individu- 396

ally and voting for final results. 397

Following previous KGE models, we train our 398

model with the margin-based ranking loss, and use 399

a negative sampling loss function for effectively 400
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Model NELL-ZS Wiki-ZS DB100K-ZS
UNSEEN UNSEEN ♣ UNSEEN SEEN

MRR H@10 MRR H@10 MRR H@10 MRR H@10
DistMult♣ 23.50 32.60 18.90 23.60 5.53 10.44 10.13 22.97
TransE♣ 9.70 20.30 5.30 11.90 2.64 9.18 17.55 43.34

ZSGANKG(DistMult)♣ (Qin et al., 2020) 25.30 37.10 20.80 29.40 - - - -
ZSGANKG(TransE) ♣ (Qin et al., 2020) 24.00 37.60 18.50 26.10 - - - -
OntoZSL(DistMult) ♣ (Geng et al., 2021) 25.60 38.50 21.10 28.90 - - - -
OntoZSL(TransE) ♣ (Geng et al., 2021) 25.00 39.90 18.40 26.50 - - - -

GRL(TransE) (Zhang et al., 2020) - - - - 4.42 12.72 16.72 40.48
MoG(DistMult) 25.72 39.65 21.42 29.56 11.33 27.91 14.90 36.08
MoG(TransE) 31.29 49.91 27.67 38.42 27.08 45.60 28.49 53.50

Table 1: Zero-shot relational learning results on NELL-ZS, Wiki-ZS and DB100K-ZS. Seen relations is that relation
of triples exist in training. The results of ♣ consider candidate sets to filter, which are constructed by the entity type
(Qin et al., 2020; Toutanova et al., 2015). The other results search the whole entity set in testing. Bold numbers
denote the best results.

Meta Relation Count
dense#sameDomain 11,668
22-rdf-syntax-ns#type 5,004
dense#sameRange 3,136
rdf-schema#range 2,588
rdf-schema#domain 2,421
rdf-schema#subPropertyOf 975
rdf-schema#subClassOf 769
owl#disjointWith 25
ALL 26,586

Table 2: The DBpedia ontology contains 8 meta-
relations and 3,937 nodes. To increase the density
of the ontology graph, we add two new meta-relation
dense#sameRange and dense#sameDomain, which con-
nect two properties (relations) who has same range or
domain.

optimizing ranking loss :401

L =− logσ(γ − f(hWE , r, tWE))

−
n∑

i=1

1

k
logσ(f(h′iW

E , r, t′iW
E)− γ)

(8)402

where WE indicates entity embedding, γ is a403

fixed margin value, σ is the sigmoid function, and404

(h′i, r, t
′
i) is the corresponding negative triple. The405

loss function can sample multiple negative triples406

for each positive triple at once.407

5 Experiments408

We conduct extensive experiments with KGC task409

on several public datasets, and mainly evaluate410

the performance of the proposed framework on411

zero-shot relational learning. We also verify the412

effectiveness of the proposed method for KGC on413

general and sparse data.414

5.1 Dataset 415

We select datasets from four public knowledge 416

graphs, DBpedia, NELL, YAGO, and Wikidata, 417

to evaluate the effectiveness of KGC on zero-shot 418

relational learning. The current benchmark datasets 419

contain only factual graph and not ontology graph. 420

Therefore, we extract ontology from their origin 421

websites123. Generally, we collect series ontology: 422

DBpedia have human-created high-quality ontol- 423

ogy, their meta-relations and statistics are shown in 424

Table 2. The ontology of NELL has 1,494 nodes, 425

6,907 triples and 14 meta-relations (e.g. antisym- 426

metric, mutexpredicates). And ontology of YAGO 427

has 654 nodes, 2,452 triples and 28 meta-relations 428

(e.g. causes, synonym). It should be noted that 429

Wikidata has no publish ontology by official, we 430

collect 20,899 triples including 8,907 nodes and 431

604 meta-relations (e.g. instance of (P31), see also 432

(P1659)) as their ontology from the released dump 433

data 4. 434

Current zero-shot relational benchmarks are to- 435

tally inference for unseen relations. However, the 436

seen and unseen relations should be be considered 437

together. It requires that the model must be effec- 438

tive for unseen relations and maintain seen relation 439

performance. Therefore, we propose DB100K-ZS 440

from DB100K, which contains 383 seen relations 441

and 77 unseen relations. We move 77 relations 442

1https://www.dbpedia.org/resources/
ontology/

2http://resources.mpi-inf.mpg.de/
yago-naga/yago3.1/yagoSchema.tsv.7z

3http://rtw.ml.cmu.edu/resources/
results/08m/NELL.08m.1115.ontology.csv.
gz

4https://www.wikidata.org/wiki/
Wikidata:Database_download

6

https://www.dbpedia.org/resources/ontology/
https://www.dbpedia.org/resources/ontology/
 http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoSchema.tsv.7z
 http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoSchema.tsv.7z
http://rtw.ml.cmu.edu/resources/results/08m/NELL.08m.1115.ontology.csv.gz
http://rtw.ml.cmu.edu/resources/results/08m/NELL.08m.1115.ontology.csv.gz
http://rtw.ml.cmu.edu/resources/results/08m/NELL.08m.1115.ontology.csv.gz
 https://www.wikidata.org/wiki/Wikidata:Database_download
 https://www.wikidata.org/wiki/Wikidata:Database_download


DB100K YAGO26K DB111K
MRR MR Hits@10 MRR MR Hits@10 MRR MR Hits@10

DistMult 13.16 9915 28.84 6.12 1142 30.74 13.79 11870 29.57
Complex 14.46 11443 30.32 7.32 1428 29.55 15.22 9231 36.21
TransE 17.23 1611 41.75 12.37 421 31.90 16.6 2217 40.80
RotatE 21.40 1052 47.50 13.28 409 36.12 21.35 1600 48.82

MoG(RotatE) 29.64 445 54.99 16.94 401 42.01 30.00 981 56.28

Table 3: The KGC results on DB100K (Ding et al., 2018), YAGO26K and DB111K (Hao et al., 2019). The effect
of previous KGE models is shown at the top of the table. MoG represent relations for RotatE. Bold numbers denote
the best results.

from training set to validation set and testing set443

base on DB100K. We select relations by frequency444

of appearing k, k> 60 and k< 300. Considering445

that the ontology is a fix schema, we reserve the446

entire ontology graph in training.447

5.2 Evaluation Metrics448

Triples in training data are utilized to learning KGE449

model, while those of validation and test dataset450

are respectively used to tune (hyper-parameters451

selection) and evaluate model. The most typical452

KGC task is link prediction which aims to predict453

the missing h or t for a triple (h, r, t). We follow454

the setting (Sun et al., 2019) and create the query455

(h, r, ?), and then find the ranking entities assigned456

by our proposed method and other KGE methods.457

We also apply bi-direction prediction that evaluate458

query (h, r, ?) and (?, r, t) for a test triple. The459

mean reciprocal rank (MRR) is computed as:460

1

2NTest

∑
(h,r,t)∈Test

(
1

MR(h,r,?)
+

1

MR(?,r,t)
) (9)461

5.3 Implementation Details462

In our experiments, we adopt the following463

translation-based methods because of their effi-464

ciency and effectiveness on link predictions: Dist-465

Mult, Complex, TransE, and RotatE. Our codes are466

based on (Sun et al., 2019) and adopt the PyTorch467

(Paszke et al., 2017) framework. For graph encoder,468

we used the implementation in the deep graph li-469

brary (DGL). The initial word embedding is come470

from GloVe (Pennington et al., 2014) and we set a471

similar threshold ε to 0.85. The entity embedding472

size is set to 100 for all translation-based methods.473

The GNN hidden size is set to 100, the number of474

layers is set to 2, and use self-loop for each node.475

We selected the hyperparameters corresponding to476

learning rate and batch size from {0.0001, 0.0005,477

0.001} and {128, 256, 512, 1024}. And we use478

Adam to optimize all the parameters.479

5.4 Results 480

The unseen relations denote that relation of the 481

triples in the test set but do not appear in the train- 482

ing set. Previous translation-based models are 483

transductive inference methods, and cannot deal 484

with those relations. Table 1 shows the experimen- 485

tal results on NELL-ZS, WiKi-ZS and DB100K- 486

ZS. The testing set of NELL-ZS and WiKi-ZS are 487

all unseen relations (Qin et al., 2020), DB100K- 488

ZS mix seen and unseen relations. Comparatively 489

speaking, the newly constructed DB100K-ZS is 490

more suitable for real-world applications. 491

To verify our method for zero-shot relational 492

learning, we chose the latest proposed models for 493

comparison. The GRL (Zhang et al., 2020) is the 494

classifier-based method and hard to solve massive 495

unseen relation and only unseen relation in the 496

test dataset. ZSGAN (Qin et al., 2020) and On- 497

toZSL (Geng et al., 2021) always generate a repre- 498

sentation for relation, therefore it is hard to keep tra- 499

ditional translation-based method performance in 500

the seen dataset, and they do not work in DB100K- 501

ZS which match has no candidate sets. 502

From Table 1, we can find that our method per- 503

forms better than other comparative methods in all 504

evaluation metrics and on all three datasets. Our 505

method increases MMR and Hits@10 by 15.66% 506

and 12.84% for the previous state-of-the-art zero- 507

shot method on NELL-ZS and Wiki-ZS. And our 508

method can deal with seen and unseen relations at 509

same time. On DB100K, MoG not only improves 510

the performance of unseen relations but beyond the 511

base model on seen relations. We believe that the 512

proposed model more suitable in real-world scenes. 513

In fact, Graph encoder effectively represents nodes 514

from ontology graph and textual graph. And MoG 515

fully mixes different roles to extract the representa- 516

tion of unseen relations. The above two reasons are 517

the key factors for our approach to achieve better 518

results. 519
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(a) (b)

Figure 3: The four figures provide results of DB100K sparse relations. They show the number of appearing in
training (on the x-axis). The results in testing (on the y-axis) for MMR and MR. “RA” (Relation Aggregating)
considers properties of relation in ontology nodes. “CA” (Concept Aggregating) considers entity in ontology nodes.
“TA” (Triple Aggregating) considers relation node and entity in ontology nodes.

Model DB100K-ZS
UNSEEN SEEN

MRR H@10 MRR H@10
TransE 2.64 9.18 17.55 43.34

MoG-T(TransE) 16.23 30.21 21.57 45.56
MoG-O(TransE) 23.12 40.43 27.96 52.09

MoG(TransE) 27.08 45.60 28.49 53.50

Table 4: The table shows the ablation experiment for
using different information. “-T” denote only textual
graph. “-O” denote only ontology graph.

5.5 Ablation Experiment520

In order to further evaluate the effect of each mod-521

ule of the model, we design an ablation experiment522

for different graphs. The experimental results are523

shown in Table 4, from which we can see that both524

ontology and textual graphs are helpful to KGC.525

MoG fusing ontology and textual graph into rela-526

tions to enhance representation quality of relations527

and improves 4.3 and 1.93 MMR for single in-528

formation. Further analysis showed that ontology529

graph is better than textual graph, formal language530

describe knowledge more accurate than natural lan-531

guage.532

5.6 KGC on General and Sparse Data533

In order to verify whether the incorporation of on-534

tology graph has conducted to normal and sparse535

data (relations). We conducted KGC experiments536

on several benchmark datasets. We calculate spar-537

sity by the number of occurrences of entities and538

relationships in facts. We retrain all base models in539

our environment.540

According to the results on datasets reported in541

Table 3, we can observe that all models were sig-542

nificantly improved by strengthening our proposed543

method. Our method consistently improves four 544

base models (DistMult, Complex, TransE, RotatE) 545

on MMR, MR and Hits@10. Our method improves 546

the previous state-of-the-art zero-shot method by 547

36.67% in MMR, 15.73% in Hist@10 and 40.13% 548

MR. And we leverage different parts of the triple 549

base on TransE to represent relations. We believe 550

the most reason is the ontology and textural graph 551

are naturally fit for our graph encoder to obtain 552

relations’ representation. 553

The sparse learning main focus on the sparse re- 554

lations in training. Figure 3 show the sparse infor- 555

mation result on DB100K. Our method improves 556

the base model by average 12.0, 28.8 and 19.5 557

Hits@10 scores for sparse relations. Our method 558

obtains high performance in sparse relations. For 559

sparse data, as the information of ontology nodes 560

increases, our method becomes more effective for 561

sparse data. We believe the most reason is more 562

nodes serve as the representation of the relation can 563

carry more information from other properties and 564

concepts. 565

6 Conclusion 566

This paper focuses on zero-shot relational learning 567

for knowledge graph. We propose to utilize three 568

different kinds of graphs (factual graph, ontology 569

graph and textual graph) to obtain a more accurate 570

representation of relation in zero-shot learning. By 571

a mixture-of-graphs (MoG) experts, the proposed 572

method will be used directly to guide previous KGE 573

methods such as TransE on zero-shot relational 574

learning. Experimental results demonstrate that 575

our method significantly outperforms the existing 576

state-of-the-art method on unseen relation learning. 577
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