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Abstract

Knowledge Graph Embedding (KGE) has been
proposed and successfully utilized to knowl-
edge Graph Completion (KGC). But dominant
KGE models often fail in zero-shot relational
learning because they cannot learn effective
representations for unseen relations. Previous
studies mainly separately utilize the textual de-
scription of relation and its neighbor relations
to represent unseen relations. In fact, the se-
mantics of a relation can be expressed by three
kinds of graphs: factual graph, ontology graph,
textual description graph, and they can com-
plement and enhance each other. Therefore,
to obtain a more accurate representation of re-
lation in zero-shot learning, we propose the
mixture-of-graphs (MoG) experts to improve
the effectiveness of current KGE for unseen
relations. We build multi-aspect associations
between seen and unseen relations which will
be used directly to guide previous KGE meth-
ods such as TransE and RotatE on zero-shot
relational learning. The experiments on multi-
ple public datasets verify the effectiveness of
the proposed method, which improves the state-
of-the-art zero-shot relational learning method
by 12.84% in Hits@10 on average.

1 Introduction

Knowledge Graphs (KGs) such as Freebase (Bol-
lacker et al., 2008), DBpedia (Lehmann et al., 2015)
and YAGO (Mahdisoltani et al., 2014) contain large
amounts of entities, relations and facts, but the in-
completeness of those KGs is an urgent issue for
its widespread utilization. Recently, knowledge
graph embedding (KGE) represented by translation-
based methods (Bordes et al., 2013; Yang et al.,
2014; Sun et al., 2019) have been proposed and
successfully applied to knowledge graph comple-
tion (KGC), which attempts to embed a KG into
a low-dimensional continuous space with the ob-
served triplet facts. And the numerical representa-
tions (e.g., vectors) of entities and relations can be
used to predict potential triplet facts.
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Figure 1: The semantics of a relation in a KG is ex-
pressed by three kinds of graphs: factual graph, on-
tology graph and textual graph. And the knowledge
graph completion involving unseen relations in factual
graph, which struggle in previous embedding methods,
could be alleviated by utilizing their ontology and tex-
tual graphs.

However, as a kind of transductive learning
paradigm (Zhang et al., 2021), translation-based
and other dominant KGE methods are struggling
in predicting facts involving unseen entities and
relations during training. That is, KGE models
can only deal with entities and relations that have
been observed in the training set. And the repre-
sentations of unseen entities and relations cannot
be learned by previous methods. For example, as
illustrated in Figure 1, the unseen relation “academ-
icAdvisor”, which do not appear in the observed
facts (training set), is represented as a random ini-
tial tensor (e.g., vector) and cannot be used in KGC
at all.

This paper focuses on zero-shot relational learn-
ing and deals with KGC on unseen relations, it
receives less attention than zero-shot entity learn-
ing (Wang et al., 2019; Albooyeh et al., 2020; Teru
et al., 2020). So far, the limited studies realize zero-
shot generalization mainly by utilizing the textual



description of the target relation and its neighbor-
ing relations (Qin et al., 2020; Geng et al., 2021;
Zhang et al., 2020). ZSGAN-KG (Qin et al., 2020)
leverages a generative adversarial network to gen-
erate representations of unseen relations based on
their textual descriptions. And OntoZSL (Geng
et al., 2021) designs several functions to learn and
fuse textual features, and then adapt a text-aware
encoder to represent zero-shot entities and rela-
tions. GRL (Zhang et al., 2020) designs a classifier
to select an appropriate seen relation to replace the
unseen relation. Although those methods can deal
with unseen relations to some extent, they still have
the following weaknesses: 1) Unstructured textual
description is incomplete and can only cover part
of the semantics of relations. 2) It is often inac-
curate and even noisy to use neighbor relations to
represent an unseen relation. Therefore, when mak-
ing predictions about a fact that contains an unseen
relation, the most challenge of zero-shot relational
learning is how to obtain its rich and accurate se-
mantic representations

In fact, as shown in Figure 1, the semantics
of a relation can be expressed by three different
forms: (Dfactual graph includes concrete rela-
tionships between entities, (2)ontology graph de-
scribes high-level abstract relationships among con-
cepts and relations, and Qtextual graph contains
textual descriptions of different relations. Those
three graphs can complement and enhance each
other. Firstly, the factual graph is wide and links
large amounts entities by relations. The large-scale
entity-relation networks enable the efficient propa-
gation of representations. Secondly, the ontology
is the precise specification of a KG, it contains a
high-level definition of entities and relations. And
the relations of a KG are constrained by concepts
and properties through meta-relations such as “do-
main”, “range” and “subPropertyOf”. Finally, the
textual descriptions are rich and hold massive se-
mantic information by natural language. They can
be built textual graph through word and sentence
association. Therefore, we attempt to utilize the
corresponding ontology and textual graphs of a KG
to obtain rich and accurate semantic representations
of unseen relations.

In this paper, we propose mixture-of-graph ex-
perts for zero-shot relational learning, named ZRL-
MoG, which could represent the unseen relations
of the factual graph by fusing ontology and textual
graph. Specifically, we collect different ontology

graphs by official or build them by official dump
data. We generate textual graph by language associ-
ation between each ontology node. To achieve the
interactive information between seen and unseen
relations, we leverage RGCN (Schlichtkrull et al.,
2018) to encode textual graph and GAT (Velickovié¢
et al., 2017) to encode ontology graph. And to
aggregate different roles of knowledge, we con-
sider the mixture of experts approach to design
different expert modules and mixture mechanism
for them (Jordan and Jacobs, 1994). We adapt
TransE, RotatE and other mainstream translation-
based methods as base models, and the proposed
method can be used in combination with most dom-
inant KGE models.

We conducted extensive experiments on multiple
benchmark datasets from public KGs such DBpe-
dia and Wikidata. The experiments are conducted
mainly on zero-shot relation learning. And we
also verify the proposed model of KGC on gen-
eral and sparse data. The experimental results
demonstrate that the proposed method can learn
a better knowledge graph embedding, and it sig-
nificantly improves the KGC performance on un-
seen relations. Moreover, it also performs better on
general and sparse data. The proposed zero-shot
relational learning method improves the state-of-
the-art method by 15.66% in MRR and 12.84%
in Hits@10 on average. The experimental codes
can be accessed by https://github.com/
AnonymousOne404/0OntologyKGE. In short,
our main contributions are as follows:

* We consider that relations expressed by fac-
tual graph, ontology graph and textual graph,
they can complement and enhance each other.
Based on these observations, we propose
mixture-of-graph (MoG) experts for zero-shot
relational learning, which can represent un-
seen relations accurately and richly.

* We construct and generate ontology and tex-
tual graph, and leverage different GNN to en-
code them. We also utilize a mixture of ex-
perts to aggregate information from ontology
and textual graph representations.

* We implement our method with some main-
stream methods such as TransE and RotatE.
And the experimental results show that our
method significantly improves the KGC per-
formance on the setting of zero-shot, general
and sparse data.
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2 Related Work
2.1 Knowledge Graph Embedding

Recently, massive work focused on translation-
based methods for knowledge graph comple-
tion (Zhang et al., 2021). The key issue of knowl-
edge graph embedding is to learn low dimensional
distributed embedding of entities and relations (Ji
et al., 2021). The current KGE models can gener-
ally be categorized into translation-based models
and similarity-based models. For translational mod-
els: the pioneering model TransE (Bordes et al.,
2013) embeds entities and relations as d-dimension
vectors in same space, and makes vectors follow
the translational principle h + r = t. The subse-
quent work of TransE usually modifies the transla-
tional principle in different forms of relationship-
specific spaces. And others translation-based mod-
els include TransR (Lin et al., 2015), TransD (Ji
et al., 2015), TransAt (Qian et al., 2018) and Ro-
tatE (Sun et al., 2019) have been improved from
the perspective of how entities can be better repre-
sented and translated. As for the similarity-based
models, ComplEx (Trouillon et al., 2016) migrates
DistMult in a complex space and offers compara-
ble performance. However, Previous embedding
methods struggle in knowledge completion involve
unseen relations.

2.2 Zero-shot Learning for KGC

Zero-shot learning describes tasks that give the
prior knowledge (seen classes) and then transfer
features from seen classes to unseen classes. Most
works focus on computer vision such as image clas-
sification. In the area of knowledge graph comple-
tion, more studies focus on zero-shot entity learn-
ing which is devoted to deal with unseen entity.
Some works leverage text and other auxiliary fea-
tures to learn the entity representation(Xie et al.,
2016; Shah et al., 2019). Some works design dif-
ferent models or strategies to aggregate neighbor
seen entities for unseen entities (Wang et al., 2019;
Albooyeh et al., 2020). Currently, inductive rea-
soning(Teru et al., 2020) completely disregards the
symbol of entities and it means that all entities
can be unseen entities. While few works consider
zero-shot relation learning and model unseen re-
lations. The limited works take text-embedding
spaces as semantic spaces of relation to represent
unseen relations (Qin et al., 2020; Geng et al.,
2021). And (Zhang et al., 2020) design a classifier-
based method, which select an appropriate seen

relation to replace the unseen relation. Our work
focuses on unseen relations in knowledge graph
completion, proposes a method that incorporates
ontology graph and textual description to leaning
the representations of unseen relations.

2.3 Ontology and Textual Information in
KGE

The ontology is the definition and meta-information
of KG, it is a core part of KG construction (Stevens
et al., 2000). The massive KG relation facts are
subject to frequent conflicts in the absence of on-
tological boundaries (Pasternack and Roth, 2013).
A few studies focus on embedding techniques of
cross-domain ontology and encode ontology from
different perspectives (Chen et al., 2018; Gutiérrez-
Basulto and Schockaert, 2018). Currently, some
studies try to adapt ontology to enhance the rep-
resentation of knowledge base, JOIE (Hao et al.,
2019) employs both cross-view and intra-view
modeling that learn on multiple facets of the knowl-
edge base. For textual information, (Yao et al.,
2019) propose to use pre-trained language models
for knowledge graph completion. However, there
are significant differences in the ontology of the
knowledge base and knowledge graph. And some
popular knowledge graphs do not distinguish be-
tween KB and KG (Ehrlinger and W68, 2016). Our
work focuses on learning ontology representation
for KGE involving unseen relations.

3 Translation-based Models for KGC

KGC aims at scoring a triple (h,r,t) from KG
G = (R,E), where r € R is relation and h,t € £
are entities. Traditional translation-based models
usually learn embedding matrix to translate head
entity A to tail entity ¢ through relation r. And dif-
ferent models have been proposed by mainly chang-
ing translating strategies. For example, TransE fo-
cuses on adding head entity and relation should
be close to the corresponding tail entity with the
scoring function, minimizes the score of a triple as
follows:

s(h,r,t) =[h+r—t|3 (1)

where h,r,t € R? and d is dimension of embed-
ding.

Translation-based models usually use the hinge
loss function to effectively minimize the score. The
L(0) for a single batch of labeled triples are defined
as follows:
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Figure 2: Our method leverages different GNN to capture ontology graph and textual graph nodes information
and aggregate them by knowledge mixture of experts. By fusing ontology and textual features, MoG pools the

representation of the relation in predicting a triplet fact.

Z [y + f(h/7r’t/) -

(h,T’,t)Egb

f(h,?", t)]-i— (2)

where 7 is a fixed margin, (b, r,t') is the negative
fact which is commonly constructed by randomly
replacing the head or tail entities of the true fact
(hyr,t).

For evaluation, KGC is a link prediction task
that aims to predict the missing h or ¢ for a triple
(h,r,t). Given the query (h,r,?) and search the
entity £ who gets minimum score with scoring func-
tion.

However, the embeddings (e.g., vectors) of all
entities and relations must be initialized at the be-
ginning for previous translation-based models. If
some relations 7 miss in training but appear in test-
ing, they cannot be learned at all by the model.
Therefore, in order to represent the missing rela-
tions and conduct zero-shot relational learning, we
consider to leverage multi-aspects information.

4 Mixture-of-Graphs Experts

This section describes in detail our proposed ap-
proach. The framework is shown in Figure 2. Our
method directly improves effects of previous KGE
models for unseen relations by making rich and
accurate for their representation.

4.1 Framework

Our method mainly utilizes three types of graphs:
factual graph, ontology graph and textual graph.
Factual graph is knowledge graph, following as
the previous definition. Ontology is the back-
bone of KGs, which provide meta-descriptions
for guiding the knowledge graph construction and
completion. Ontology describe as directed graph
Go = (Ro, &,), which uses meta-relations to asso-
ciate between ontology nodes (concepts and proper-
ties) (ho, 70, to). And the relations R and entities £
of factual graph all find their own meta information
in ontology. And relations have a directly mapping
between the edges of factual graph and the nodes
of ontology graph. Textual graph is undirected
graph G, = (R;), the nodes is textual descriptions
of concept and property and the edge is seman-
tic similarity between two nodes (hy, ¢, t;), and
0<r <1

4.2 Graph Construction

Ontology is stored in triples (head, relation, tail),
we take head and tail as node (indicates concept
and property of factual graph) and relation (indicate
meta-relations among concepts and properties) as
edge. Based on the official released ontology file or
the dump data, we can directly construct or build
ontology graph by simple data filtering and format
conversion.

For textual descriptions, we generate textual
graph from textual descriptions or full names of



concepts and properties, we want to find them as-
sociated as bellow:

{d(Xi,Xj), Zf d(Xi,Xj)>E
Ay =

0, otherwise

A, is adjacency matrix of textual graph Gy, d(-, )
describes the cosine similarity function, € is a
threshold for connection nodes. x; is the word
embedding of each node. Following previous work
(Qin et al., 2020), the Glove (Pennington et al.,
2014) has higher performance than the pre-trained
language model, and we use Glove to initialize
word embedding. The representation of a sentence
is obtained by averaging its word embeddings.

4.3 Graph Encoder

The ontology can be represented as a directed at-
tribute graph. Identically, the text descriptions of
multiple relations can be represented as an undi-
rected graph. Our goal is to obtain the representa-
tion of unseen relations based on other seen nodes
(entities, concepts, textual descriptions and rela-
tions) in different graphs. Therefore, we encode
ontology and textual graph by graph neural network
(GNN).

In the textual graph G;, the weight w;; of each
edge is the similarity between nodes. We con-
sider the commonly used graph attention network
(Velickovi¢ et al., 2017), but the attention value is
replaced by edge weight w, the process as follow-

ing:

hio=0o( ) wi;Wsh;) 3)
JEN;
The o is sigmoid activation function. Wy is GAT
weight. A; denotes neighbor nodes of .

Similarly, ontology graph is undirected graph,
and each edge has its own type. Inspired by RGCN
(Schlichtkrull et al., 2018), a GNN model for rela-
tional (directed and labeled) multi-graph. To ob-
tain the representations of concepts and properties,
we use RGCN to get the representation of ontol-
ogy nodes by aggregating neighborhoods nodes
through different meta-relations, as follow:

WV = ReLU (Y] 37 W)
reRjeENT T 4)

W)

h'TY = Norm_Layerm{79) (5

0,1

where hglz € R? is hidden state of ontology node

ho i in the I-th layer of RGCN, and d is dimension
of layer’s representation. N, denotes the set of
neighbor indices of node ¢ under meta-relation r, €
Ro. Wff) is relation parameters of meta-relation r
which weight for node ¢ neighboring node in /-th
layer. W((Jl) is self-loop weight for encoding self-
node features. ¢; ;- is a normalization constant that
can either be learned or chosen in advance. ReLLU is
activate function. We also use layer normalization
to speed the training.

4.4 Mixture of Graph Experts

The core issue of this paper is how to obtain the
effective representation of the relation r from on-
tology space and textual space, especially for the
triple involving unseen relations. For each factual
triple (h, 7, t), we can find ontology representation
(ho,To,to) and textual representation (h¢,7,t:)
from their space. Based on the previous node rep-
resentations, we design aggregating strategies with
mixture-of-graph experts to represent relations. Re-
cently, the mixture of experts (Jordan and Jacobs,
1994; Shazeer et al., 2017; Fedus et al., 2021) has
been widely used to capture features by different
experts’ views, and it can efficiently merge differ-
ent features. For different knowledge roles (head,
relation, tail), MoG can capture each role repre-
sentation through ontology and textual space. We
define different expert networks E},, E., E; for the
head, relation, tail, and a gating network M, pro-
cess as follows:

pi = M(x) (6)

r= Y piBi(x) @)

i€(h,r,t)

where x € {[ho : h¢l, [ro : 1¢], [to : t¢]} each in-
put x concats corresponding representation of on-
tology and textual description. The expert networks
and gating network are single-layer MLPs, and
same dimension between input and output for ex-
pert networks. Experts analysis tree roles individu-
ally and voting for final results.

Following previous KGE models, we train our
model with the margin-based ranking loss, and use
a negative sampling loss function for effectively



Model NELL-ZS Wiki-ZS DB100K-ZS
UNSEEN UNSEEN*  UNSEEN SEEN

MRR H@10 MRR H@10 MRR H@10 MRR H@10

DistMult® 2350 32.60 18.90 23.60 553 1044 10.13 22.97

TransE* 970 2030 530 1190 2.64 9.18 17.55 43.34
ZSGANkc(DistMul)® (Qin et al., 2020) 25.30 37.10 20.80 29.40 - - - -
ZSGANkc(TransE) * (Qin et al., 2020) 24.00 37.60 18.50 26.10 - - - -
OntoZSL(DistMult) * (Geng et al., 2021) 25.60 38.50 21.10 2890 - - - -
OntoZSL(TransE) ®* (Geng et al., 2021)  25.00 39.90 18.40 26.50 - - - -

GRL(TransE) (Zhang et al., 2020) - - - - 442 1272 1672 4048

MoG(DistMult) 2572 39.65 21.42 29.56 11.33 27.91 14.90 36.08

MoG(TransE) 31.29 4991 27.67 38.42 27.08 45.60 28.49 53.50

Table 1: Zero-shot relational learning results on NELL-ZS, Wiki-ZS and DB100K-ZS. Seen relations is that relation
of triples exist in training. The results of & consider candidate sets to filter, which are constructed by the entity type
(Qin et al., 2020; Toutanova et al., 2015). The other results search the whole entity set in testing. Bold numbers

denote the best results.

Meta Relation Count
dense#sameDomain 11,668
22-rdf-syntax-ns#type 5,004
dense#sameRange 3,136
rdf-schemat#range 2,588
rdf-schema#domain 2,421
rdf-schemat#subPropertyOf 975
rdf-schema#subClassOf 769
owl#disjointWith 25
ALL 26,586

Table 2: The DBpedia ontology contains 8§ meta-
relations and 3,937 nodes. To increase the density
of the ontology graph, we add two new meta-relation
dense#tsameRange and dense#sameDomain, which con-
nect two properties (relations) who has same range or
domain.

optimizing ranking loss :

L =—loga(y — f(hW",r, tWF))

=3 Hogo (7P, r W) )
i=1

where W¥ indicates entity embedding, ~ is a
fixed margin value, o is the sigmoid function, and
(h%,r,t) is the corresponding negative triple. The
loss function can sample multiple negative triples
for each positive triple at once.

5 Experiments

We conduct extensive experiments with KGC task
on several public datasets, and mainly evaluate
the performance of the proposed framework on
zero-shot relational learning. We also verify the
effectiveness of the proposed method for KGC on
general and sparse data.

5.1 Dataset

We select datasets from four public knowledge
graphs, DBpedia, NELL, YAGO, and Wikidata,
to evaluate the effectiveness of KGC on zero-shot
relational learning. The current benchmark datasets
contain only factual graph and not ontology graph.
Therefore, we extract ontology from their origin
websites'2®. Generally, we collect series ontology:
DBpedia have human-created high-quality ontol-
ogy, their meta-relations and statistics are shown in
Table 2. The ontology of NELL has 1,494 nodes,
6,907 triples and 14 meta-relations (e.g. antisym-
metric, mutexpredicates). And ontology of YAGO
has 654 nodes, 2,452 triples and 28 meta-relations
(e.g. causes, synonym). It should be noted that
Wikidata has no publish ontology by official, we
collect 20,899 triples including 8,907 nodes and
604 meta-relations (e.g. instance of (P31), see also
(P1659)) as their ontology from the released dump
data 4.

Current zero-shot relational benchmarks are to-
tally inference for unseen relations. However, the
seen and unseen relations should be be considered
together. It requires that the model must be effec-
tive for unseen relations and maintain seen relation
performance. Therefore, we propose DB100K-ZS
from DB100K, which contains 383 seen relations
and 77 unseen relations. We move 77 relations

1https://www.dbpedia.orq/resources/
ontology/

2http://resources.mpi—inf.mpg.de/
yago-naga/yago3.1l/yagoSchema.tsv.7z

*http://rtw.ml.cmu.edu/resources/
results/08m/NELL.08m.1115.0ontology.csv.
gz

‘https://www.wikidata.org/wiki/
Wikidata:Database_download
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DB100K YAGO26K DB111K
MRR MR Hits@l0 MRR MR Hits@10 MRR MR Hits@10
DistMult 13.16 9915 28.84 6.12 1142 30.74 13.79 11870 29.57
Complex 1446 11443 30.32 7.32 1428 29.55 15.22 9231 36.21
TransE 17.23 1611 41.75 12.37 421 31.90 16.6 2217 40.80
RotatE 21.40 1052 47.50 13.28 409 36.12 21.35 1600 48.82
MoG(RotatE)  29.64 445 54.99 16.94 401 42.01 30.00 981 56.28

Table 3: The KGC results on DB100K (Ding et al., 2018), YAGO26K and DB111K (Hao et al., 2019). The effect
of previous KGE models is shown at the top of the table. MoG represent relations for RotatE. Bold numbers denote

the best results.

from training set to validation set and testing set
base on DB100K. We select relations by frequency
of appearing k, k> 60 and k< 300. Considering
that the ontology is a fix schema, we reserve the
entire ontology graph in training.

5.2 Evaluation Metrics

Triples in training data are utilized to learning KGE
model, while those of validation and test dataset
are respectively used to tune (hyper-parameters
selection) and evaluate model. The most typical
KGC task is link prediction which aims to predict
the missing h or ¢ for a triple (h, r,t). We follow
the setting (Sun et al., 2019) and create the query
(h,r,7), and then find the ranking entities assigned
by our proposed method and other KGE methods.
We also apply bi-direction prediction that evaluate
query (h,r,?) and (7,7,t) for a test triple. The
mean reciprocal rank (MRR) is computed as:

1 1 1
( + ) )
2N7est (h,r,tz)e:Test MR(h,r,?) MR(?,r,t)

5.3 Implementation Details

In our experiments, we adopt the following
translation-based methods because of their effi-
ciency and effectiveness on link predictions: Dist-
Mult, Complex, TransE, and RotatE. Our codes are
based on (Sun et al., 2019) and adopt the PyTorch
(Paszke et al., 2017) framework. For graph encoder,
we used the implementation in the deep graph li-
brary (DGL). The initial word embedding is come
from GloVe (Pennington et al., 2014) and we set a
similar threshold ¢ to 0.85. The entity embedding
size is set to 100 for all translation-based methods.
The GNN hidden size is set to 100, the number of
layers is set to 2, and use self-loop for each node.
We selected the hyperparameters corresponding to
learning rate and batch size from {0.0001, 0.0005,
0.001} and {128, 256, 512, 1024}. And we use
Adam to optimize all the parameters.

5.4 Results

The unseen relations denote that relation of the
triples in the test set but do not appear in the train-
ing set. Previous translation-based models are
transductive inference methods, and cannot deal
with those relations. Table 1 shows the experimen-
tal results on NELL-ZS, WiKi-ZS and DB100K-
ZS. The testing set of NELL-ZS and WiKi-ZS are
all unseen relations (Qin et al., 2020), DB100K-
ZS mix seen and unseen relations. Comparatively
speaking, the newly constructed DB100K-ZS is
more suitable for real-world applications.

To verify our method for zero-shot relational
learning, we chose the latest proposed models for
comparison. The GRL (Zhang et al., 2020) is the
classifier-based method and hard to solve massive
unseen relation and only unseen relation in the
test dataset. ZSGAN (Qin et al., 2020) and On-
toZSL (Geng et al., 2021) always generate a repre-
sentation for relation, therefore it is hard to keep tra-
ditional translation-based method performance in
the seen dataset, and they do not work in DB100K-
ZS which match has no candidate sets.

From Table 1, we can find that our method per-
forms better than other comparative methods in all
evaluation metrics and on all three datasets. Our
method increases MMR and Hits@10 by 15.66%
and 12.84% for the previous state-of-the-art zero-
shot method on NELL-ZS and Wiki-ZS. And our
method can deal with seen and unseen relations at
same time. On DB100K, MoG not only improves
the performance of unseen relations but beyond the
base model on seen relations. We believe that the
proposed model more suitable in real-world scenes.
In fact, Graph encoder effectively represents nodes
from ontology graph and textual graph. And MoG
fully mixes different roles to extract the representa-
tion of unseen relations. The above two reasons are
the key factors for our approach to achieve better
results.
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Figure 3: The four figures provide results of DB100K sparse relations. They show the number of appearing in
training (on the x-axis). The results in testing (on the y-axis) for MMR and MR. “RA” (Relation Aggregating)
considers properties of relation in ontology nodes. “CA” (Concept Aggregating) considers entity in ontology nodes.
“TA” (Triple Aggregating) considers relation node and entity in ontology nodes.

Model DB100K-ZS
UNSEEN SEEN
MRR H@10 MRR H@I10
TransE 2.64 9.18 17.55 4334
MoG-T(TransE)  16.23 3021  21.57 45.56
MoG-O(TransE)  23.12 4043 2796  52.09
MoG(TransE) 27.08 4560 2849 53.50

Table 4: The table shows the ablation experiment for
using different information. “-T” denote only textual
graph. “-O” denote only ontology graph.

5.5 Ablation Experiment

In order to further evaluate the effect of each mod-
ule of the model, we design an ablation experiment
for different graphs. The experimental results are
shown in Table 4, from which we can see that both
ontology and textual graphs are helpful to KGC.
MoG fusing ontology and textual graph into rela-
tions to enhance representation quality of relations
and improves 4.3 and 1.93 MMR for single in-
formation. Further analysis showed that ontology
graph is better than textual graph, formal language
describe knowledge more accurate than natural lan-

guage.

5.6 KGC on General and Sparse Data

In order to verify whether the incorporation of on-
tology graph has conducted to normal and sparse
data (relations). We conducted KGC experiments
on several benchmark datasets. We calculate spar-
sity by the number of occurrences of entities and
relationships in facts. We retrain all base models in
our environment.

According to the results on datasets reported in
Table 3, we can observe that all models were sig-
nificantly improved by strengthening our proposed

method. Our method consistently improves four
base models (DistMult, Complex, TransE, RotatE)
on MMR, MR and Hits@10. Our method improves
the previous state-of-the-art zero-shot method by
36.67% in MMR, 15.73% in Hist@10 and 40.13%
MR. And we leverage different parts of the triple
base on TransE to represent relations. We believe
the most reason is the ontology and textural graph
are naturally fit for our graph encoder to obtain
relations’ representation.

The sparse learning main focus on the sparse re-
lations in training. Figure 3 show the sparse infor-
mation result on DB100K. Our method improves
the base model by average 12.0, 28.8 and 19.5
Hits@10 scores for sparse relations. Our method
obtains high performance in sparse relations. For
sparse data, as the information of ontology nodes
increases, our method becomes more effective for
sparse data. We believe the most reason is more
nodes serve as the representation of the relation can
carry more information from other properties and
concepts.

6 Conclusion

This paper focuses on zero-shot relational learning
for knowledge graph. We propose to utilize three
different kinds of graphs (factual graph, ontology
graph and textual graph) to obtain a more accurate
representation of relation in zero-shot learning. By
a mixture-of-graphs (MoG) experts, the proposed
method will be used directly to guide previous KGE
methods such as TransE on zero-shot relational
learning. Experimental results demonstrate that
our method significantly outperforms the existing
state-of-the-art method on unseen relation learning.
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