Mixture-of-Graphs: Zero-shot Relational Learning for Knowledge Graph by Fusing Ontology and Textual Experts

Anonymous ACL submission

Abstract

Knowledge Graph Embedding (KGE) has been proposed and successfully utilized to knowledge Graph Completion (KGC). But dominant KGE models often fail in zero-shot relational learning because they cannot learn effective representations for unseen relations. Previous studies mainly separately utilize the textual description of relation and its neighbor relations to represent unseen relations. In fact, the semantics of a relation can be expressed by three kinds of graphs: factual graph, ontology graph, textual description graph, and they can complement and enhance each other. Therefore, to obtain a more accurate representation of relation in zero-shot learning, we propose the mixture-of-graphs (MoG) experts to improve the effectiveness of current KGE for unseen relations. We build multi-aspect associations between seen and unseen relations which will be used directly to guide previous KGE methods such as TransE and RotatE on zero-shot relational learning. The experiments on multiple public datasets verify the effectiveness of the proposed method, which improves the state-of-the-art zero-shot relational learning method by 12.84% in Hits@10 on average.

1 Introduction

Knowledge Graphs (KGs) such as Freebase (Bollacker et al., 2008), DBpedia (Lehmann et al., 2015) and YAGO (Mahdisoltani et al., 2014) contain large amounts of entities, relations and facts, but the incompleteness of those KGs is an urgent issue for its widespread utilization. Recently, knowledge graph embedding (KGE) represented by translation-based methods (Bordes et al., 2013; Yang et al., 2014; Sun et al., 2019) have been proposed and successfully applied to knowledge graph completion (KGC), which attempts to embed a KG into a low-dimensional continuous space with the observed triplet facts. And the numerical representations (e.g., vectors) of entities and relations can be used to predict potential triplet facts.

However, as a kind of transductive learning paradigm (Zhang et al., 2021), translation-based and other dominant KGE methods are struggling in predicting facts involving unseen entities and relations during training. That is, KGE models can only deal with entities and relations that have been observed in the training set. And the representations of unseen entities and relations cannot be learned by previous methods. For example, as illustrated in Figure 1, the unseen relation “academicAdvisor”, which do not appear in the observed facts (training set), is represented as a random initial tensor (e.g., vector) and cannot be used in KGC at all.

This paper focuses on zero-shot relational learning and deals with KGC on unseen relations, it receives less attention than zero-shot entity learning (Wang et al., 2019; Albooyeh et al., 2020; Teru et al., 2020). So far, the limited studies realize zero-shot generalization mainly by utilizing the textual...
description of the target relation and its neighboring relations (Qin et al., 2020; Geng et al., 2021; Zhang et al., 2020). ZSGAN-KG (Qin et al., 2020) leverages a generative adversarial network to generate representations of unseen relations based on their textual descriptions. And OntoZSL (Geng et al., 2021) designs several functions to learn and fuse textual features, and then adapt a text-aware encoder to represent zero-shot entities and relations. GRL (Zhang et al., 2020) designs a classifier to select an appropriate seen relation to replace the unseen relation. Although those methods can deal with unseen relations to some extent, they still have the following weaknesses: 1) Unstructured textual description is incomplete and can only cover part of the semantics of relations. 2) It is often inaccurate and even noisy to use neighbor relations to represent an unseen relation. Therefore, when making predictions about a fact that contains an unseen relation, the most challenge of zero-shot relational learning is how to obtain its rich and accurate semantic representations.

In fact, as shown in Figure 1, the semantics of a relation can be expressed by three different forms: ① **factual graph** includes concrete relationships between entities, ② **ontology graph** describes high-level abstract relationships among concepts and relations, and ③ **textual graph** contains textual descriptions of different relations. Those three graphs can complement and enhance each other. Firstly, the factual graph is wide and links large amounts entities by relations. The large-scale entity-relation networks enable the efficient propagation of representations. Secondly, the ontology is the precise specification of a KG, it contains a high-level definition of entities and relations. And the relations of a KG are constrained by concepts and properties through meta-relations such as “domain”, “range” and “subPropertyOf”. Finally, the textual descriptions are rich and hold massive semantic information by natural language. They can be built textual graph through word and sentence association. Therefore, we attempt to utilize the corresponding ontology and textual graphs of a KG to obtain rich and accurate semantic representations of unseen relations.

In this paper, we propose mixture-of-graph experts for zero-shot relational learning, named ZRL-MoG, which could represent the unseen relations of the factual graph by fusing ontology and textual graph. Specifically, we collect different ontology graphs by official or build them by official dump data. We generate textual graph by language association between each ontology node. To achieve the interactive information between seen and unseen relations, we leverage RGCN (Schlichtkrull et al., 2018) to encode textual graph and GAT (Veličković et al., 2017) to encode ontology graph. And to aggregate different roles of knowledge, we consider the mixture of experts approach to design different expert modules and mixture mechanism for them (Jordan and Jacobs, 1994). We adapt TransE, RotatE and other mainstream translation-based methods as base models, and the proposed method can be used in combination with most dominant KGE models.

We conducted extensive experiments on multiple benchmark datasets from public KGs such DBpedia and Wikidata. The experiments are conducted mainly on zero-shot relation learning. And we also verify the proposed model of KGC on general and sparse data. The experimental results demonstrate that the proposed method can learn a better knowledge graph embedding, and it significantly improves the KGC performance on unseen relations. Moreover, it also performs better on general and sparse data. The proposed zero-shot relational learning method improves the state-of-the-art method by 15.66% in MRR and 12.84% in Hits@10 on average. The experimental codes can be accessed by https://github.com/AnonymousOne404/OntologyKGE. In short, our main contributions are as follows:

- We consider that relations expressed by factual graph, ontology graph and textual graph, they can complement and enhance each other. Based on these observations, we propose mixture-of-graph (MoG) experts for zero-shot relational learning, which can represent unseen relations accurately and richly.
- We construct and generate ontology and textual graph, and leverage different GNN to encode them. We also utilize a mixture of experts to aggregate information from ontology and textual graph representations.
- We implement our method with some mainstream methods such as TransE and RotatE. And the experimental results show that our method significantly improves the KGC performance on the setting of zero-shot, general and sparse data.
2 Related Work

2.1 Knowledge Graph Embedding

Recently, massive work focused on translation-based methods for knowledge graph completion (Zhang et al., 2021). The key issue of knowledge graph embedding is to learn low dimensional distributed embedding of entities and relations (Ji et al., 2021). The current KGE models can generally be categorized into translation-based models and similarity-based models. For translational models: the pioneering model TransE (Bordes et al., 2013) embeds entities and relations as d-dimension vectors in same space, and makes vectors follow the translational principle $h + r = t$. The subsequent work of TransE usually modifies the translational principle in different forms of relationship-specific spaces. And others translation-based models include TransR (Lin et al., 2015), TransD (Ji et al., 2015), TransAt (Qian et al., 2018) and RotatE (Sun et al., 2019) have been improved from the perspective of how entities can be better represented and translated. As for the similarity-based models, ComplEx (Trouillon et al., 2016) migrates DistMult in a complex space and offers comparable performance. However, Previous embedding methods struggle in knowledge completion involve unseen relations.

2.2 Zero-shot Learning for KGC

Zero-shot learning describes tasks that give the prior knowledge (seen classes) and then transfer features from seen classes to unseen classes. Most works focus on computer vision such as image classification. In the area of knowledge graph completion, more studies focus on zero-shot entity learning which is devoted to deal with unseen entity. Some works leverage text and other auxiliary features to learn the entity representation (Xie et al., 2016; Shah et al., 2019). Some works design different models or strategies to aggregate neighbor seen entities for unseen entities (Wang et al., 2019; Albooyeh et al., 2020). Currently, inductive reasoning (Teru et al., 2020) completely disregards the symbol of entities and it means that all entities can be unseen entities. While few works consider zero-shot relation learning and model unseen relations. The limited works take text-embedding spaces as semantic spaces of relation to represent unseen relations (Qin et al., 2020; Geng et al., 2021). And (Zhang et al., 2020) design a classifier-based method, which select an appropriate seen relation to replace the unseen relation. Our work focuses on unseen relations in knowledge graph completion, proposes a method that incorporates ontology graph and textual description to leaning the representations of unseen relations.

2.3 Ontology and Textual Information in KGE

The ontology is the definition and meta-information of KG, it is a core part of KG construction (Stevens et al., 2000). The massive KG relation facts are subject to frequent conflicts in the absence of ontological boundaries (Pasternack and Roth, 2013). A few studies focus on embedding techniques of cross-domain ontology and encode ontology from different perspectives (Chen et al., 2018; Gutiérrez-Basulto and Schockaert, 2018). Currently, some studies try to adapt ontology to enhance the representation of knowledge base, JOIE (Hao et al., 2019) employs both cross-view and intra-view modeling that learn on multiple facets of the knowledge base. For textual information, (Yao et al., 2019) propose to use pre-trained language models for knowledge graph completion. However, there are significant differences in the ontology of the knowledge base and knowledge graph. And some popular knowledge graphs do not distinguish between KB and KG (Ehrlinger and Wöß, 2016). Our work focuses on learning ontology representation for KGE involving unseen relations.

3 Translation-based Models for KGC

KGC aims at scoring a triple (h, r, t) from KG $\mathcal{G} = (\mathcal{R}, \mathcal{E})$, where $r \in \mathcal{R}$ is relation and $h, t \in \mathcal{E}$ are entities. Traditional translation-based models usually learn embedding matrix to translate head entity h to tail entity t through relation r. And different models have been proposed by mainly changing translating strategies. For example, TransE focuses on adding head entity and relation should be close to the corresponding tail entity with the scoring function, minimizes the score of a triple as follows:

$$s(h, r, t) = \|h + r - t\|_2^2 \quad (1)$$

where $h, r, t \in \mathbb{R}^d$, and d is dimension of embedding.

Translation-based models usually use the hinge loss function to effectively minimize the score. The $\mathcal{L}(\theta)$ for a single batch of labeled triples are defined as follows:

3
Our method mainly utilizes three types of graphs: factual graph, ontology graph and textual graph. Factual graph is knowledge graph, following as the previous definition. Ontology is the backbone of KGs, which provide meta-descriptions for guiding the knowledge graph construction and completion. Ontology describe as directed graph $G_o = (R_o, E_o)$, which uses meta-relations to associate between ontology nodes (concepts and properties) (h_o, r_o, t_o). And the relations R and entities E of factual graph all find their own meta information in ontology. And relations have a directly mapping between the edges of factual graph and the nodes of ontology graph. Textual graph is undirected graph $G_t = (R_t)$, the nodes is textual descriptions of concept and property and the edge is semantic similarity between two nodes (h_t, r_t, t_t), and $0 < r_t < 1$.

4.2 Graph Construction

Ontology is stored in triples (head, relation, tail), we take head and tail as node (indicates concept and property of factual graph) and relation (indicate meta-relations among concepts and properties) as edge. Based on the official released ontology file or the dump data, we can directly construct or build ontology graph by simple data filtering and format conversion.

For textual descriptions, we generate textual graph from textual descriptions or full names of
concepts and properties, we want to find them associated as bellow:

\[A_t = \begin{cases} d(x_i, x_j), & \text{if } d(x_i, x_j) > \varepsilon \\ 0, & \text{otherwise} \end{cases} \]

\(A_t \) is adjacency matrix of textual graph \(G_t \), \(d(\cdot, \cdot) \) describes the cosine similarity function, \(\varepsilon \) is a threshold for connection nodes. \(x_i \) is the word embedding of each node. Following previous work (Qin et al., 2020), the Glove (Pennington et al., 2014) has higher performance than the pre-trained language model, and we use Glove to initialize word embedding. The representation of a sentence is obtained by averaging its word embeddings.

4.3 Graph Encoder

The ontology can be represented as a directed attribute graph. Identically, the text descriptions can be represented as an undirected graph. Our goal is to obtain the representation of unseen relations based on other seen nodes (entities, concepts, textual descriptions and relations) in different graphs. Therefore, we encode ontology and textual graph by graph neural network (GNN).

In the textual graph \(G_t \), the weight \(w_{ij} \) of each edge is the similarity between nodes. We consider the commonly used graph attention network (Veličković et al., 2017), but the attention value is replaced by edge weight \(w \), the process as following:

\[h_{i,s} = \sigma \left(\sum_{j \in N_i} w_{ij} W_s h_{j,s} \right) \]

The \(\sigma \) is sigmoid activation function. \(W_s \) is GAT weight. \(N_i \) denotes neighbor nodes of \(i \).

Similarly, ontology graph is undirected graph, and each edge has its own type. Inspired by RGCN (Schlichtkrull et al., 2018), a GNN model for relational (directed and labeled) multi-graph. To obtain the representations of concepts and properties, we use RGCN to get the representation of ontology nodes by aggregating neighborhoods nodes through different meta-relations, as follow:

\[h_{o,i}^{(l+1)} = \text{ReLU} \left(\sum_{r \in R} \sum_{ij \in N_i} \frac{1}{C_{i,r}} W_r h_{o,j}^{(l)} + W_o^{(l)} h_{o,i}^{(l)} \right) \]

\[h_{t,i}^{(l+1)} = \text{Norm_Layer} \left(h_{o,i}^{(l+1)} \right) \]

where \(h_{o,i}^{(l)} \in \mathbb{R}^d \) is hidden state of ontology node \(h_{o,i} \) in the \(l \)-th layer of RGCN, and \(d \) is dimension of layer’s representation. \(N_i ^ r \) denotes the set of neighbor indices of node \(i \) under meta-relation \(r_o \in R_o \), \(W_r^{(l)} \) is relation parameters of meta-relation \(r \) which weight for node \(i \) neighboring node in \(l \)-th layer. \(W_0^{(l)} \) is self-loop weight for encoding self-node features. \(c_{s,r} \) is a normalization constant that can either be learned or chosen in advance. ReLU is activate function. We also use layer normalization to speed the training.

4.4 Mixture of Graph Experts

The core issue of this paper is how to obtain the effective representation of the relation \(r \) from ontology space and textual space, especially for the triple involving unseen relations. For each factual triple \((h, r, t)\), we can find ontology representation \((h_o, r_o, t_o)\) and textual representation \((h_t, r_t, t_t)\) from their space. Based on the previous node representations, we design aggregating strategies with mixture-of-graph experts to represent relations. Recently, the mixture of experts (Jordan and Jacobs, 1994; Shazeer et al., 2017; Fedus et al., 2021) has been widely used to capture features by different experts’ views, and it can efficiently merge different features. For different knowledge roles (head, relation, tail), MoG can capture each role representation through ontology and textual space. We define different expert networks \(E_h, E_r, E_t \) for the head, relation, tail, and a gating network \(M \), process as follows:

\[p_i = M(x) \]

\[r = \sum_{i \in \{h,r,t\}} p_i E_i(x) \]

where \(x \in \{[h_o : h_t], [r_o : r_t], [t_o : t_t] \} \) each input \(x \) concats corresponding representation of ontology and textual description. The expert networks and gating network are single-layer MLPs, and same dimension between input and output for expert networks. Experts analysis tree roles individually and voting for final results.

Following previous KGE models, we train our model with the margin-based ranking loss, and use a negative sampling loss function for effectively
We conduct extensive experiments with KGC task on several public datasets, and mainly evaluate the performance of the proposed framework on zero-shot relational learning. We also verify the effectiveness of the proposed method for KGC on general and sparse data.

5 Experiments

We conduct extensive experiments with KGC task on several public datasets, and mainly evaluate the performance of the proposed framework on zero-shot relational learning. We also verify the effectiveness of the proposed method for KGC on general and sparse data.

5.1 Dataset

We select datasets from four public knowledge graphs, DBpedia, NELL, YAGO, and Wikidata, to evaluate the effectiveness of KGC on zero-shot relational learning. The current benchmark datasets contain only factual graph and not ontology graph. Therefore, we extract ontology from their origin websites\(^1\). Generally, we collect series ontology: DBpedia have human-created high-quality ontology, their meta-relations and statistics are shown in Table 2. The ontology of NELL has 1,494 nodes, 6,907 triples and 14 meta-relations (e.g. antisymmetric, mutexpredicates). And ontology of YAGO has 654 nodes, 2,452 triples and 28 meta-relations (e.g. causes, synonym). It should be noted that Wikidata has no publish ontology by official, we collect 20,899 triples including 8,907 nodes and 604 meta-relations (e.g. instance of (P31), see also (P1659)) as their ontology from the released dump data\(^2\).

Current zero-shot relational benchmarks are totally inference for unseen relations. However, the seen and unseen relations should be considered together. It requires that the model must be effective for unseen relations and maintain seen relation performance. Therefore, we propose DB100K-ZS from DB100K, which contains 383 seen relations and 77 unseen relations. We move 77 relations

\(^1\)https://www.dbpedia.org/resources/ontology/

\(^2\)http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoSchema.tsv.7z

\(^3\)http://rtw.ml.cmu.edu/resources/results/08m/NELL.08m.1115.ontology.csv.gz

\(^4\)https://www.wikidata.org/wiki/Wikidata:Database_download
from training set to validation set and testing set base on DB100K. We select relations by frequency of appearing k, $k > 60$ and $k < 300$. Considering that the ontology is a fix schema, we reserve the entire ontology graph in training.

5.2 Evaluation Metrics

Triples in training data are utilized to learning KGE model, while those of validation and test dataset are respectively used to tune (hyper-parameters selection) and evaluate model. The most typical KGC task is link prediction which aims to predict the missing h or r for a triple (h, r, t). We follow the setting (Sun et al., 2019) and create the query $(h, r, ?)$, and then find the ranking entities assigned by our proposed method and other KGE methods. We also apply bi-direction prediction that evaluate query $(h, r, ?)$ and $(?, r, t)$ for a test triple. The mean reciprocal rank (MRR) is computed as:

$$\frac{1}{2N_{test}} \sum_{(h,r,t)\in \text{Test}} \left(\frac{1}{M_{R(h,r,?)}} + \frac{1}{M_{R(?,r,t)}} \right)$$ \hspace{1cm} (9)

5.3 Implementation Details

In our experiments, we adopt the following translation-based methods because of their efficiency and effectiveness on link predictions: DistMult, Complex, TransE, and RotatE. Our codes are based on (Sun et al., 2019) and adopt the PyTorch (Paszke et al., 2017) framework. For graph encoder, we used the implementation in the deep graph library (DGL). The initial word embedding is come from GloVe (Pennington et al., 2014) and we set a similar threshold ϵ to 0.85. The entity embedding size is set to 100 for all translation-based methods. The GNN hidden size is set to 100, the number of layers is set to 2, and use self-loop for each node. We selected the hyperparameters corresponding to learning rate and batch size from {0.0001, 0.0005, 0.001} and {128, 256, 512, 1024}. And we use Adam to optimize all the parameters.

5.4 Results

The unseen relations denote that relation of the triples in the test set but do not appear in the training set. Previous translation-based models are transductive inference methods, and cannot deal with those relations. Table 1 shows the experimental results on NELL-ZS, WiKi-ZS and DB100K-ZS. The testing set of NELL-ZS and WiKi-ZS are all unseen relations (Qin et al., 2020), DB100K-ZS mix seen and unseen relations. Comparatively speaking, the newly constructed DB100K-ZS is more suitable for real-world applications.

To verify our method for zero-shot relational learning, we chose the latest proposed models for comparison. The GRL (Zhang et al., 2020) is the classifier-based method and hard to solve massive unseen relation and only unseen relation in the test dataset. ZSGAN (Qin et al., 2020) and OntoZSL (Geng et al., 2021) always generate a representation for relation, therefore it is hard to keep traditional translation-based method performance in the seen dataset, and they do not work in DB100K-ZS which match has no candidate sets.

From Table 1, we can find that our method performs better than other comparative methods in all evaluation metrics and on all three datasets. Our method increases MMR and Hits@10 by 15.66% and 12.84% for the previous state-of-the-art zero-shot method on NELL-ZS and Wiki-ZS. And our method can deal with seen and unseen relations at same time. On DB100K, MoG not only improves the performance of unseen relations but beyond the base model on seen relations. We believe that the proposed model more suitable in real-world scenes. In fact, Graph encoder effectively represents nodes from ontology graph and textual graph. And MoG fully mixes different roles to extract the representation of unseen relations. The above two reasons are the key factors for our approach to achieve better results.
Figure 3: The four figures provide results of DB100K sparse relations. They show the number of appearing in training (on the x-axis). The results in testing (on the y-axis) for MMR and MR. “RA” (Relation Aggregating) considers properties of relation in ontology nodes. “CA” (Concept Aggregating) considers entity in ontology nodes. “TA” (Triple Aggregating) considers relation node and entity in ontology nodes.

<table>
<thead>
<tr>
<th>Model</th>
<th>DB100K-ZS</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UNSEEN</td>
<td>SEEN</td>
<td>UNSEEN</td>
<td>SEEN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRR H@10</td>
<td>MRR H@10</td>
<td>MRR H@10</td>
<td>MRR H@10</td>
<td></td>
</tr>
<tr>
<td>TransE</td>
<td>2.64</td>
<td>9.18</td>
<td>17.55</td>
<td>43.34</td>
<td></td>
</tr>
<tr>
<td>MoG-T(TransE)</td>
<td>16.23</td>
<td>30.21</td>
<td>21.57</td>
<td>45.56</td>
<td></td>
</tr>
<tr>
<td>MoG-O(TransE)</td>
<td>23.12</td>
<td>40.43</td>
<td>27.96</td>
<td>52.09</td>
<td></td>
</tr>
<tr>
<td>MoG(TransE)</td>
<td>27.08</td>
<td>45.60</td>
<td>28.49</td>
<td>53.50</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: The table shows the ablation experiment for using different information. “-T” denote only textual graph. “-O” denote only ontology graph.

5.5 Ablation Experiment

In order to further evaluate the effect of each module of the model, we design an ablation experiment for different graphs. The experimental results are shown in Table 4, from which we can see that both ontology and textual graphs are helpful to KGC. MoG fusing ontology and textual graph into relations to enhance representation quality of relations and improves 4.3 and 1.93 MMR for single information. Further analysis showed that ontology graph is better than textual graph, formal language describe knowledge more accurate than natural language.

5.6 KGC on General and Sparse Data

In order to verify whether the incorporation of ontology graph has conducted to normal and sparse data (relations), We conducted KGC experiments on several benchmark datasets. We calculate sparsity by the number of occurrences of entities and relationships in facts. We retrain all base models in our environment.

According to the results on datasets reported in Table 3, we can observe that all models were significantly improved by strengthening our proposed method. Our method consistently improves four base models (DistMult, Complex, TransE, RotatE) on MMR, MR and Hits@10. Our method improves the previous state-of-the-art zero-shot method by 36.67% in MMR, 15.73% in Hist@10 and 40.13% MR. And we leverage different parts of the triple base on TransE to represent relations. We believe the most reason is the ontology and textual graph are naturally fit for our graph encoder to obtain relations’ representation.

The sparse learning main focus on the sparse relations in training. Figure 3 show the sparse information result on DB100K. Our method improves the base model by average 12.0, 28.8 and 19.5 Hits@10 scores for sparse relations. Our method obtains high performance in sparse relations. For sparse data, as the information of ontology nodes increases, our method becomes more effective for sparse data. We believe the most reason is more nodes serve as the representation of the relation can carry more information from other properties and concepts.

6 Conclusion

This paper focuses on zero-shot relational learning for knowledge graph. We propose to utilize three different kinds of graphs (factual graph, ontology graph and textual graph) to obtain a more accurate representation of relation in zero-shot learning. By a mixture-of-graphs (MoG) experts, the proposed method will be used directly to guide previous KGE methods such as TransE on zero-shot relational learning. Experimental results demonstrate that our method significantly outperforms the existing state-of-the-art method on unseen relation learning.
References

Wei Qian, Cong Fu, Yu Zhu, Deng Cai, and Xiaofei He. 2018. Translating embeddings for knowledge graph completion with relation attention mechanism. In IJCAI, pages 4286–4292.

