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Abstract001

Large language model (LLM) based multi-002
agent systems offer promising capabilities in003
social simulation and complex task solving, yet004
face key challenges in system design, general-005
izability, and scalability. We introduce AGENT-006
GROUPCHAT-V2 , a novel framework featur-007
ing: (1) a fully parallel divide-and-conquer008
architecture for efficient task decomposition009
and distributed processing; (2) an adaptive col-010
laboration engine that dynamically selects het-011
erogeneous LLMs and interaction strategies;012
(3) agent organization optimization for effec-013
tive problem breakdown. Experiments show014
that AGENTGROUPCHAT-V2 achieves state-015
of-the-art results across several benchmarks,016
with substantial improvements on tasks such as017
GSM8K, AIME, and HumanEval, especially as018
task complexity increases. Our results demon-019
strate that AGENTGROUPCHAT-V2 enables020
the construction of robust and general-purpose021
LLM multi-agent systems, excelling in com-022
plex reasoning scenarios.023

1 Introduction024

Interest in multi-agent systems based on large lan-025

guage models (LLMs) has grown rapidly (Guo026

et al., 2024; Li et al., 2023; Xi et al., 2023; Liang027

et al., 2024), driven by their promise in domains028

such as social simulation (Gao et al., 2024; Park029

et al., 2023; Gu et al., 2024b) and complex task030

resolution (Hong et al., 2023; Wu et al., 2023). In031

social simulations, LLM agents provide new ways032

to model human-like interactions and study collec-033

tive behavior (Gu et al., 2024b; Lee et al., 2023);034

for problem-solving, collaborative multi-agent net-035

works enhance reasoning and planning capabili-036

ties through distributed intelligence (Huang et al.,037

2024; Wei et al., 2022; Du et al., 2023). Compared038

to single-agent systems, multi-agent architectures039

foster emergent strategies and superior collective040

intelligence (Ferber and Weiss, 1999; Dafoe et al.,041

2021; Gu et al., 2024b).042

Despite their progress, current LLM multi-agent 043

frameworks face major barriers regarding general- 044

izability, scalability, and real-world utility (Ouyang 045

et al., 2022; Cemri et al., 2025). Many popular 046

systems target either social simulation (Gao et al., 047

2023; Gu et al., 2024b) or specific tasks such as 048

software development (Hong et al., 2023; Wu et al., 049

2023), lacking methods to support diverse, complex 050

problem types (Shoham and Leyton-Brown, 2008). 051

Furthermore, they frequently adopt sequential exe- 052

cution patterns, or to say workflow (Sapkota et al., 053

2025; Zhang et al., 2025), resulting in inefficient 054

computation and high resource overhead (Kumar, 055

2025). Notably, increased computational resources 056

do not always yield better performance, and multi- 057

agent approaches may sometimes underperform 058

compared to single-agent baselines (Zhang et al., 059

2023; Cemri et al., 2025; Sapkota et al., 2025). 060

To overcome these limitations, it is important to 061

design general and efficient collaboration mecha- 062

nisms among agents. A promising direction is to 063

rethink the organization of both tasks and agent 064

interactions to fully exploit the benefits of multi- 065

agent collaboration. In this context, we identify that 066

the divide-and-conquer paradigm—which system- 067

atically decomposes complex tasks and distributes 068

subtasks among specialized agents—is fundamen- 069

tal for improving both efficiency and adaptability in 070

multi-agent systems (Shoham and Leyton-Brown, 071

2008; Ferber and Weiss, 1999). Through struc- 072

tured decomposition, responsibilities are clearly as- 073

signed, concurrency are maximized, and emergent 074

behaviors are managed more effectively, enabling 075

scalable and robust multi-agent intelligence. 076

To this end, we propose AGENTGROUPCHAT- 077

V2 , centered on three innovations: (1) a fully par- 078

allel architecture with hierarchical manager mod- 079

ules supporting scalable, distributed operation; (2) 080

dynamic task-level divide-and-conquer via hierar- 081

chical task decomposition and dependency man- 082

agement; and (3) execution-level specialization 083
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Figure 1: Upper: The performance of AGENTGROUPCHAT-V2 powered by Qwen2.5-72B. Downer: The per-
formance of AGENTGROUPCHAT-V2 powered by Llama3.1-70B. Both models are evaluated across five diverse
reasoning domains: commonsense reasoning, domain-specific knowledge, structural text understanding, mathemat-
ics, and code generation. AGENTGROUPCHAT-V2 consistently outperforms existing multi-agent approaches and
baseline methods across both models and all benchmark categories, demonstrating the effectiveness, robustness and
promising of multi-agent approach.

through adaptive role assignment to heterogeneous084

LLM agents. Our experiments confirm that AGENT-085

GROUPCHAT-V2 significantly boosts performance086

and generalizability, especially on high-difficulty087

reasoning and generation tasks (see Figure 1).088

2 Related Work089

LLM-based multi-agent systems have demon-090

strated transformative potential in two key do-091

mains (Li et al., 2023; Wooldridge, 2009):092

2.1 Social Dynamics Simulation093

Recent advances integrate cognitive architectures094

with behavioral economics principles (Bates et al.,095

1994).Xie et al. (Xie et al., 2024a) and Han et096

al. (Han et al., 2023) develop game-theoretic frame-097

works capturing trust dynamics and market com-098

petition through iterative belief-updating mecha-099

nisms (Dafoe et al., 2021).Sociological simulations100

leverage event-driven architectures, with Park et101

al. (Park et al., 2023) modeling opinion evolution102

through social interaction cascades, while Zhang103

et al. (Zhang et al., 2024) employ hierarchical104

Bayesian networks for electoral behavior predic-105

tion (Lee et al., 2023). Emerging platforms like106

Gu’s group chat simulator (Gu et al., 2024b) and107

Liu’s rumor-control Twitter emulator (Liu et al.,108

2024) demonstrate practical applications in digital 109

social dynamics (Gao et al., 2023). 110

2.2 Collaborative Problem-Solving 111

Cutting-edge systems employ structured debate 112

protocols and knowledge fusion mechanisms (Du 113

et al., 2023).Xiong’s FORD framework (Xiong 114

et al., 2023) enhances reasoning through tri- 115

phase argumentation processes, complemented 116

by Du’s knowledge graph-based consensus for- 117

mation (Du et al., 2023).Software engineering 118

innovations like Qian’s dialogue-driven develop- 119

ment (Qian et al., 2024) and Hong’s documentation- 120

centric workflow (Hong et al., 2023) establish new 121

paradigms for AI-assisted programming (Wang 122

et al., 2023).Domain-specific implementations 123

showcase methodological cross-pollination, from 124

Sun’s legal argumentation system with adversar- 125

ial validation (Sun et al., 2024) to Yu’s cognitive 126

conflict-driven MOOC platform (Yu et al., 2024), 127

demonstrating versatile problem-solving architec- 128

tures (Ferber and Weiss, 1999). 129

Although impressive progress has been made in 130

both social simulation and collaborative problem- 131

solving, previous LLM-based multi-agent systems 132

still lack solutions that are truly effective and 133

broadly applicable for general-purpose tasks. In 134
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Figure 2: Illustration of AgentGroupChat-V2 framework, which composes of three main components: Query
Manager, Task Manager and Group Manager. The framework illustrates the complete workflow from user query
processing through task decomposition and management to multi-agent group chat execution, with arrows indicating
data flow between components. Task Forest visualization demonstrates how queries are transformed into hierarchical
task structures with solved (brown) and unsolved (yellow) nodes, while parallel group chats are carrying out in
Group Manager.

contrast, the core insight of AGENTGROUPCHAT-135

V2 is to allow agents to autonomously adopt136

a divide-and-conquer paradigm—dynamically de-137

composing tasks and organizing cooperation ac-138

cording to the problem structure. This enables a139

flexible and scalable multi-agent system that can140

generalize across domains, addressing a key gap141

left by prior approaches.142

3 Framework of AGENTGROUPCHAT-V2143

This work introduces AGENTGROUPCHAT-V2 ,144

featuring a modular architecture composed of three145

main components: Query Manager, Task Manager,146

and Group Manager (see Figure 2). This design147

enables flexible data exchange and function invo-148

cation through standardized interfaces, allowing149

each module to scale independently with compu-150

tational demand and supporting horizontal system151

expansion.152

3.1 Query Manager153

The Query Manager serves as the system’s fron-154

tend, handling user interaction and integrating155

LLMs as inference engines. It receives user queries,156

performs semantic analysis to decompose them into157

task tree structures, and forwards these to the Task158

Manager. After task processing is complete, the159

Query Manager collects and standardizes results,160

ensuring that responses accurately and appropri-161

ately address user requirements.162

3.2 Task Manager163

The Task Manager acts as the central coordination164

hub, managing overall task execution. Typically165

implemented as a single instance, it maintains a166

task forest representing multiple task trees derived167

from user input. The Task Manager tracks bidi-168

rectional relationships between tasks, forming a 169

comprehensive dependency graph. It allocates and 170

schedules tasks based on their structure and system 171

resource availability, enabling parallel execution 172

where possible. For hierarchical dependencies, it 173

ensures information flow between child and parent 174

tasks, and upon completion of all sub-tasks, returns 175

consolidated results to the Query Manager. 176

3.3 Group Manager 177

The Group Manager is responsible for orchestrat- 178

ing multi-agent collaboration to execute assigned 179

tasks. It manages the preparation and deployment 180

of agent groups, including the selection of suitable 181

LLMs, resource allocation, and scheduling. Mul- 182

tiple Group Manager instances can operate in par- 183

allel, each supervising independent agent groups, 184

which allows the system to efficiently scale its com- 185

putational resources according to demand. 186

4 Group Chat Design 187

This section details the organizational and imple- 188

mentation mechanisms of group chat in AGENT- 189

GROUPCHAT-V2 , the core of multi-agent collabo- 190

ration and problem-solving. As illustrated in Fig- 191

ure 3, the system adopts a structured approach to 192

both task management and agent group orchestra- 193

tion. 194

4.1 Task 195

In AGENTGROUPCHAT-V2 , each Task is distinctly 196

defined by an identifier, description, parent and 197

child relationships, and processing result. Root 198

tasks are parentless, and leaf tasks have empty 199

child sets. Tasks progress through several states: 200

initialization (structure created), waiting (awaiting 201

prerequisites), execution (delegated to Group Man- 202
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Figure 3: Detailed implementation of Task Manager and
Group Manager modules showing: (1) Task Manage-
ment structure with hierarchical organization of tasks,
including Task ID, descriptions, parent-child relation-
ships, and result tracking; (2) Group Chat Prepara-
tion process outlining agent selection criteria and re-
source allocation strategies; and (3) Group Chat Envi-
ronment configuration displaying the agent infrastruc-
ture with Claude3 and Qwen3 LLMs assigned specific
roles, workspace allocations, and specialized functions
for systematic problem-solving through collaborative
interactions.

ager), completion (result produced) or failure (er-203

ror encountered). This structure forms hierarchical204

task trees that support flexible decomposition and205

dependency tracking.206

4.2 Group207

A Group represents a collaborative work unit man-208

aged by the Group Manager. Each group contains209

a progress ID, a linked task, assigned resources,210

and a set of agents. Agents within the group are211

specified by identity, LLM engine (e.g., Claude3,212

Qwen3), workspace (Scratch), assigned object (Ob-213

ject), and History. Scratch is for agent-internal214

computation, Object documents the role for inter-215

pretability, and History preserves conversational216

context for persistent and multi-turn collaboration.217

Groups are assembled with diverse agent roles, and218

their lifecycle includes preparation (configuration),219

activity (discussion), result integration, and termi-220

nation.221

4.3 Group Environment Configuration222

Group environment configuration determines the223

initial state and capabilities of each group. This224

includes progress and task IDs, the list and order225

of agents, and shared resources. Group Manager226

orchestrates configuration, assigning agents and re-227

sources by analyzing the task needs and available228

LLMs. Each agent receives an appropriate iden-229

Algorithm 1 StartGroupChat (GroupManager)
1: Input: max action turn, agent ids, initial env
2: Output: final env, task result
3: env← initial env
4: for turn = 1 to max action turn do
5: for current agent in agent ids do
6: env← current agent.perceive(env)
7: (message, target agent) ← cur-

rent agent.decide action(env)
8: dialogue history ← EXECUTEAC-

TION(current agent, env, message, target agent)
9: env← UpdateEnvironment(dialogue history, env)

10: end for
11: discussion summary ← SummarizeGroupMes-

sages(env)
12: env ← UpdateEnvironment(discussion summary,

env)
13: is complete ← TaskMan-

ager.CheckTaskCompletion(env)
14: if is complete then
15: return env, ExtractTaskResult(env)
16: end if
17: end for
18: return env, ExtractTaskResult(env)

tity, Scratch space, task Object, and an initialized 230

History. 231

4.4 Group Chat Orchestration 232

Group chat proceeds according to Algorithm 1, co- 233

ordinated by Group Manager over a series of action 234

turns. At each turn, agents sequentially perceive 235

the environment, generate messages, interact with 236

others, and update the environment and dialogue 237

history. After each round, the system summarizes 238

the discussion and checks if the task has been com- 239

pleted; results can be output early upon successful 240

completion. 241

4.5 Agent Interaction 242

Agent interactions (Algorithm 2) support both 243

broadcast and pairwise communication. Upon re- 244

ceiving an action, an agent may broadcast to all 245

members or engage in an alternating dialogue loop 246

with a specific target agent until a stopping criterion 247

is met. 248

4.6 Chat Results Processing 249

To ensure effective utilization of group discussions, 250

the Group Manager summarizes dialogues, extracts 251

key conclusions, and stores them in agents’ mem- 252

ories to inform future turns. It also validates the 253

quality and completeness of outcomes, and formats 254

results for downstream consumption by the Task 255

Manager. 256
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Baseline LLM GSM8K MATH AIME

Level1 Level2 Level3 Level4 Level5 (2024)

Naive Qwen2.5-72B 37.52 60.17 49.41 37.16 26.49 21.78 0.0

Llama-3.1-70B 35.70 50.44 44.11 30.97 28.20 19.84 10.0

Naive-CoT Qwen2.5-72B 75.13 85.84 77.65 75.22 63.68 48.25 10.0

Llama-3.1-70B 87.33 91.15 88.82 87.17 80.77 67.32 16.7

ReAct Qwen2.5-72B 52.76 53.10 35.88 36.73 28.21 19.46 3.3

Llama-3.1-70B 20.09 28.32 11.76 7.52 4.27 2.33 0.0

AutoGen Qwen2.5-72B 81.80 89.38 85.29 88.05 71.79 54.86 16.7

Llama-3.1-70B 85.21 96.46 92.94 91.15 82.48 66.93 20.0

Multi-Agent Debate Qwen2.5-72B 75.81 85.84 79.41 75.66 66.24 52.14 16.7

Llama-3.1-70B 90.82 97.35 92.94 92.48 85.90 71.98 20.0

AGENTGROUPCHAT-V2 Qwen2.5-72B 87.41 92.92 90.00 84.07 71.79 59.10 21.4

Llama-3.1-70B 91.50 98.23 94.12 88.94 81.20 83.54 30.4

Table 1: Experiment result on Math Problem.

Baseline LLM MBPP HumanEval

pass@1 pass@3 pass@5 pass@1 pass@3 pass@5

Naive Qwen2.5-72B 54.46 60.09 62.02 67.07 78.34 81.60

Llama-3.1-70B 51.80 60.82 63.65 68.90 80.92 83.52

Naive-CoT Qwen2.5-72B 51.30 61.52 65.08 62.86 78.60 82.43

Llama-3.1-70B 53.04 60.51 62.75 71.58 81.23 83.56

ReAct Qwen2.5-72B 57.02 65.34 68.50 75.54 84.39 86.84

Llama-3.1-70B 55.88 62.39 64.84 78.53 85.71 87.66

AutoGen Qwen2.5-72B 40.60 54.33 59.27 66.46 80.83 84.22

Llama-3.1-70B 40.26 55.05 60.07 57.50 75.20 80.26

Multi-Agent Debate Qwen2.5-72B 55.28 63.76 66.67 75.54 83.19 85.41

Llama-3.1-70B 54.68 63.02 65.75 75.67 84.81 87.65

AGENTGROUPCHAT-V2 Qwen2.5-72B 60.34 63.76 64.45 76.46 82.31 84.15

Llama-3.1-70B 58.84 60.35 60.84 79.20 80.38 80.91

Table 2: Experiment result on Code Generation.
5 Experiment Setup257

5.1 Task & Benchmark258

Mathematical Reasoning: We evaluate on259

GSM8K (Cobbe et al., 2021), MATH (Hendrycks260

et al., 2021), and AIME (Art of Problem Solv-261

ing, 2024). Accuracy on all math benchmarks is262

verified through symbolic answer equivalence (see263

Appendix A for detailed evaluation criteria).264

Code Generation: Benchmarks include265

MBPP (Austin et al., 2021) and Hu-266

manEval (Chen et al., 2021). Pass rate calculation267

and details on pass@k methodology are presented268

in Appendix A.269

Domain-Specific Tasks: We test financial rea-270

soning (FinQual (Xie et al., 2024b)), legal QA271

(JEC-QA), and medical QA (MedmcQA (Pal272

et al., 2022)). Full descriptions of dataset construc- 273

tion are provided in Appendix B. 274

Structural Text Understanding: StrucText- 275

Eval (Gu et al., 2024a) assesses structured text 276

processing (details in Appendix B). 277

Commonsense Reasoning: HellaSwag (Zellers 278

et al., 2019) and WinoGrande (Sakaguchi et al., 279

2021); see Appendix B for dataset details. 280

5.2 Baseline Methods 281

We consider five representative baselines: Naive, 282

Naive-CoT (Wei et al., 2022), ReAct (Yao et al., 283

2022), AutoGen (Wu et al., 2023), and Multi- 284

Agent Debate (Liang et al., 2023). Implementation 285

and protocol details can be found in Appendix C. 286
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Method Model
Width=1 Width=2 Width=3

Depth=1Depth=2Depth=3Depth=1Depth=2Depth=3Depth=1Depth=2Depth=3

Naive
Llama3.1-70B 78.5 77.2 72.8 69.3 63.5 54.2 66.8 53.3 42.7
Qwen2.5-72B 81.9 80.7 77.9 72.5 68.0 55.4 70.3 56.8 45.0

Naive-CoT
Llama3.1-70B 84.1 83.8 76.2 75.5 70.3 53.7 73.2 57.1 43.5
Qwen2.5-72B 86.7 85.3 78.3 77.8 71.4 54.8 75.5 55.2 42.3

ReAct
Llama3.1-70B 5.2 3.8 2.1 4.1 2.9 1.3 3.5 1.8 0.5
Qwen2.5-72B 8.1 6.7 4.9 6.3 4.2 2.8 5.1 3.1 1.2

AutoGen
Llama3.1-70B 28.4 24.7 19.8 22.1 17.3 12.6 18.9 13.2 8.7
Qwen2.5-72B 34.2 31.1 26.5 27.8 22.9 17.4 24.3 18.1 12.8

Multi-Agent Debate
Llama3.1-70B 83.3 82.2 74.8 74.1 68.9 52.2 72.4 54.7 40.3
Qwen2.5-72B 82.1 81.5 75.2 76.3 67.6 53.8 71.2 55.4 41.7

AGENTGROUPCHAT-V2
Llama3.1-70B 81.7 80.8 79.1 73.6 69.2 58.4 72.8 62.9 48.7
Qwen2.5-72B 83.5 82.9 77.3 76.7 70.8 59.2 73.6 64.7 52.1

Table 3: Exact Match (EM) Accuracy for StrucText-Eval.
Role Type Role Setting

General Role Agent-001 is a math expert.

Specialized Role

Agent-001 is a error detection specialist focused on identifying calculation mistakes, logical
inconsistencies, and reasoning flaws in mathematical solutions.

Agent-002 is a logical reasoning specialist specialized in mathematical proof construction, step-
by-step deduction, and logical argument validation.

Agent-003 is a context comprehension specialist responsible for understanding problem state-
ments, extracting key information, and summarizing lengthy mathematical contexts.

Agent-004 is a computational specialist dedicated to performing accurate calculations, numerical
analysis, and algebraic manipulations.

Agent-005 is a solution verification specialist focused on checking final answers, validating
solution paths, and ensuring mathematical correctness.

Table 4: Role configuration for multi-agent mathematical problem-solving collaboration.

5.3 Large Language Models287

All experiments use Qwen2.5-72B-Instruct and288

Llama-3.1-70B-Instruct-Turbo, with full model289

usage and inference details available in Ap-290

pendix D.291

6 Experiment292

6.1 Overall Performance293

6.1.1 Mathematical Reasoning Analysis294

Finding 1

AGENTGROUPCHAT-V2 demonstrates
strong mathematical reasoning by lever-
aging effective task decomposition and
agent specialization, particularly excelling
on high-complexity problems.

295

Table 1 reports results across GSM8K, MATH,296

and AIME, where AGENTGROUPCHAT-V2 not297

only achieves the highest overall accuracy, but its 298

advantages notably expand with problem complex- 299

ity. For example, on the demanding AIME(2024), 300

AGENTGROUPCHAT-V2 attains 30.4% accuracy 301

(Llama-3.1-70B), nearly double that of the best 302

baseline. The gap is less pronounced on simpler 303

datasets (e.g., GSM8K), but becomes striking on 304

the more layered MATH and in the progression 305

from lower to higher levels within each bench- 306

mark. The marked improvement from Naive to 307

Naive-CoT highlights the benefit of explicit step- 308

wise reasoning, but only AGENTGROUPCHAT-V2 309

further leverages dedicated agent roles for effective 310

divide-and-conquer. Importantly, as the diversity 311

and interdependence of solution steps grow, single- 312

agent and even loosely-structured frameworks stall, 313

while specialized agents in AGENTGROUPCHAT- 314

V2 coordinate to solve highly non-trivial subtasks 315

in parallel. 316
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Figure 4: AGENTGROUPCHAT-V2 w/ General Role per-
formance on MATH-100
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Figure 5: AGENTGROUPCHAT-V2 w/ Specified Role
performance on MATH-100
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Figure 6: AutoGen performance on MATH-100

2 3 4 5

2

3

4

5

44 49 46 43

42 45 44 41

40 43 42 39

38 41 40 37

Dialogue Rounds

N
um

be
ro

fA
ge

nt
s

30

40

50

Figure 7: Multi-Agent Debate performance on MATH-
100

6.1.2 Code Generation Analysis317

Finding 2

Collaborative multi-agent analysis pro-
motes rapid convergence to high-quality ini-
tial solutions in code generation, but perfor-
mance improvements diminish for broader
sampling, highlighting the need for task-
specific exploration strategies.

318

As shown in Table 2, AGENTGROUPCHAT-319

V2 consistently delivers the best performance320

in pass@1 accuracy, achieving 79.20% on Hu-321

manEval and 76.46% on MBPP. These results322

suggest that multi-agent collaborative analysis323

quickly converges to high-quality first solutions,324

outperforming both naive and chain-of-thought ap-325

proaches. For larger values of k (e.g., pass@5), Re-326

Act and similar iterative frameworks gain ground,327

as their exploration strategy generates more di-328

verse candidate programs. This confirms that while329

divide-and-conquer collaboration is ideal for tasks330

emphasizing correctness and logic in minimal sam-331

ples, a more exploratory approach may be benefi-332

cial when breadth and coverage are prioritized. 333

6.1.3 Structural Text Understanding Analysis 334

Finding 3

AGENTGROUPCHAT-V2 robustly handles
increasing structural complexity, maintain-
ing higher accuracy as task depth and
breadth grow.

335

Performance on StrucText-Eval (Table 3) fur- 336

ther demonstrates AGENTGROUPCHAT-V2 ’s 337

resilience to context and structure complexity. 338

When both the width and depth of structured text 339

expand, most methods—including sophisticated 340

single-agent and multi-agent baselines—exhibit 341

sharp performance degradation (sometimes ¿30% 342

absolute drop). In contrast, AGENTGROUPCHAT- 343

V2 ’s divide-and-conquer strategy achieves the 344

highest accuracy in the most challenging (width=3, 345

depth=3) scenarios, showing only moderate loss 346

with increased context. This underscores the ben- 347

efits of explicit recursive decomposition and hier- 348

archical collaboration for tasks involving layered, 349
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Algorithm 2 EXECUTEACTION{current agent,
env, message, target agent}
1: Input: current agent, env, message, target agent,

max chat turn
2: Output: dialogue history
3: turn count← 1
4: dialogue history← [ ]
5: if target agent is AllGroupMembers then
6: message ← GenerateMessage(current agent, env,

message, target agent)
7: Append (current agent, target agent, message) to dia-

logue history
8: return dialogue history
9: end if

10: sender← current agent
11: receiver← target agent
12: while turn count ¡ 2 · max chat turn do
13: response ← GenerateResponse(receiver, dia-

logue history, env)
14: if not response then
15: return dialogue history
16: end if
17: Append (receiver, sender, response) to dia-

logue history
18: temp← sender
19: sender← receiver
20: receiver← temp
21: turn count← turn count + 1
22: end while
23: return dialogue history

interdependent information.350

6.2 Ablation Study351

To elucidate the impact of team design and inter-352

action strategy, we conduct systematic ablation ex-353

periments on MATH-100, varying agent count and354

dialogue rounds, and distinguishing between gen-355

eral and specialized role assignments, see Table 4356

for definitions.357

Finding 4

Specialized agent roles combined with
moderate-scale collaboration significantly
outperform homogeneous teams, scaling
positively with agent diversity and demon-
strating that targeted division of labor
avoids redundancy and amplifies collective
reasoning.

358

In AGENTGROUPCHAT-V2 with specialized359

roles (Fig. 5), accuracy grows robustly with team360

size: with 5 specialized agents and 3 dialogue361

rounds, accuracy peaks at 58%, a striking im-362

provement of 64.6% over minimal settings. No-363

tably, each additional agent consistently brings non-364

trivial gains, with collaboration between distinct365

expert perspectives enabling broader coverage and366

more rigorous validation of solution steps. 367

Finding 5

Homogeneous (general) agent groups show
stagnant or declining performance as either
agent count or rounds increase, due to cu-
mulative information redundancy and lack
of complementary reasoning.

368

General-role configurations (Fig. 4) see accuracy 369

plateau or degrade as more agents are added, with 370

negligible improvement from increasing dialogue 371

rounds. This effect highlights that, absent special- 372

ized functions, collaboration fails to create new 373

insights and mostly produces redundant or even 374

conflicting reasoning. 375

Finding 6

Traditional multi-agent frameworks (Auto-
Gen, Debate) suffer diminishing returns or
negative scaling at larger team sizes, illus-
trating the necessity of proactive role dif-
ferentiation and dialogue orchestration to
unlock benefits in large-scale collaborative
problem solving.

376

AutoGen and Multi-Agent Debate (Figs. 6, 7) 377

serve as external controls—both show early im- 378

provements with more agents or dialogue depth, 379

but soon flatten or reverse, likely due to coordina- 380

tion overhead without sufficient specialization. 381

Further results. Experiments on domain-specific 382

QA (Finance, Law, Medical), as well as common- 383

sense reasoning (HellaSwag, WinoGrande), are 384

provided in Appendix E. These results reveal that 385

for tasks with low logical complexity or heavy 386

reliance on external knowledge, the divide-and- 387

conquer scheme may introduce unnecessary delib- 388

eration and overhead, and simpler strategies can 389

be preferable. Rich qualitative examples and dis- 390

cussion of task decomposition can be found in 391

Appendix F. 392

7 Conclusion 393

We introduces AGENTGROUPCHAT-V2 in this pa- 394

per, a framework for LLM-based multi-agent sys- 395

tems featuring hierarchical task division and adap- 396

tive collaboration. Experiments show strong gains 397

in reasoning and code generation, setting a new 398

standard for complex multi-agent applications. 399
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Limitations400

AGENTGROUPCHAT-V2 , as a multi-agent sys-401

tem framework based on large language models402

(LLMs), has achieved notable progress in broad403

compatibility and efficient task collaboration. Nev-404

ertheless, our evaluations reveal two main limi-405

tations. First, experimental results indicate that406

for tasks heavily reliant on extensive external407

knowledge or with relatively low logical complex-408

ity (such as commonsense reasoning or domain-409

specific question answering), introducing multi-410

agent division of labor and parallel discussion may411

lead to unnecessary inference redundancy and in-412

creased computational overhead. In such cases, a413

single model invocation or a simple reasoning chain414

may outperform the multi-agent approach. Second,415

the system’s performance is highly contingent upon416

the quality of task decomposition and the appropri-417

ateness of agent role assignment. For problems that418

are difficult to structurally decompose or involve419

highly coupled steps, the divide-and-conquer strat-420

egy does not necessarily yield solutions superior to421

those provided by a single agent.422

Ethical Concerns423

This study centers on algorithmic and system ar-424

chitectural design, with all evaluation tasks se-425

lected from publicly available and widely-used426

standard datasets. No sensitive personal infor-427

mation, simulated societal opinion, or real-world428

decision-making applications are involved. The429

multi-agent interactions are solely employed to430

enhance reasoning and problem-solving abilities,431

explicitly excluding the generation of misleading432

conclusions, group manipulation, or the deploy-433

ment of autonomous systems with real-world op-434

erational authority. During the research process,435

neither the codebase nor experimental logs store436

any user privacy information; only aggregated eval-437

uation data are released externally. Potential ethical438

risks, such as information bias or uncontrollable be-439

havior emerging from automated collaboration, are440

primarily determined by the underlying LLM and441

task setup, rather than AGENTGROUPCHAT-V2 it-442

self. All experiments are conducted within closed,443

secure environments. Should the framework be ap-444

plied in scenarios involving human users or open445

environments in the future, further assessments and446

governance will strictly adhere to prevailing ethical447

guidelines in academia and industry.448
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A Details of Experiment Setup 674

A.1 Mathematical Reasoning Evaluation 675

For GSM8K, MATH, and AIME, we use symbolic 676

equivalence to verify result accuracy. For AIME, 677

exact match evaluation is employed on numerical 678

answers. 679

A.2 Code Generation Evaluation Criteria 680

MBPP is evaluated by the unit-test pass rate: a 681

solution is deemed correct if it passes all provided 682

test cases. 683

HumanEval is assessed using the pass@k met- 684

ric1: 685

Pass@k = 1−
(
n−c
k

)(
n
k

) (1) 686

where n is the total number of generated solutions 687

and c is the number of correct solutions. 688

B Datasets 689

B.1 Mathematical Reasoning 690

GSM8K (Cobbe et al., 2021): 1,300 grade 691

school math problems with step-by-step reasoning. 692

MATH (Hendrycks et al., 2021): 12,000 problems 693

covering algebra, geometry, combinatorics, etc., 694

with five difficulty levels. AIME (Art of Prob- 695

lem Solving, 2024): Problems from the American 696

Invitational Mathematics Examination; assesses 697

complex mathematical reasoning. 698

B.2 Code Generation 699

MBPP (Austin et al., 2021): 500 Python prob- 700

lems, primarily algorithmic, each with multiple 701

test cases. HumanEval (Chen et al., 2021): 164 702

Python function synthesis tasks, evaluated using 703

random solution sampling (see Appendix A). 704

B.3 Domain-Specific Tasks 705

FinQual (Xie et al., 2024b): 1,000 finance-related 706

questions from CFA and FinQA, including both 707

MCQs and numerical tasks. JEC-QA: 26,365 legal 708

exam items for the Chinese Bar exam, focusing 709

1As in (Chen et al., 2021), we use n = 10 samples per
problem and report pass@1, pass@3, and pass@5.
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on legal comprehension and scenario judgment.710

MedmcQA (Pal et al., 2022): 194,000 medical711

MCQs from Indian medical entrance exams.712

B.4 Structural Text Understanding713

StrucText-Eval (Gu et al., 2024a): Evaluates com-714

prehension and manipulation of structured, hierar-715

chical textual data.716

B.5 Commonsense Reasoning717

HellaSwag (Zellers et al., 2019): 70,000 multiple-718

choice questions; each instance offers four options719

for next-sentence prediction. WinoGrande (Sak-720

aguchi et al., 2021): 44,000 pronoun disambigua-721

tion tasks to test contextual commonsense reason-722

ing.723

C Baselines724

Naive: Each task is directly assigned to a single725

LLM, without explicit intermediate reasoning or726

decomposition.727

Naive-CoT (Wei et al., 2022): Tasks are com-728

pleted by a single LLM with chain-of-thought729

prompts, eliciting reasoning chains.730

ReAct (Yao et al., 2022): Combines reasoning,731

action, and observation in a single-agent loop to732

iteratively decompose and solve tasks.733

AutoGen (Wu et al., 2023): Multi-agent conver-734

sation framework combining AssistantAgent and735

UserProxyAgent, facilitating modular dialogue-736

based task solving.737

Multi-Agent Debate (Liang et al., 2023): Mul-738

tiple agents collaboratively analyze and debate a739

problem, iterating until consensus.740

D Large Language Models741

Our experiments employ Qwen2.5-72B-Instruct742

and Llama-3.1-70B-Instruct-Turbo, two leading743

open-source LLMs. Qwen is selected for its high744

performance on math and reasoning tasks, Llama-745

3.1 for its balance of capabilities and generation746

speed. All LLMs are run in inference mode with747

default decoding settings unless otherwise stated.748

E Additional Experiments749

E.1 Commonsense Reasoning750

Table 5 presents experimental results on common-751

sense reasoning tasks (HellaSwag, WinoGrande),752

where direct model prompting or naive approaches753

often outperform collaborative frameworks due to754

the straightforward nature of the problems.755

Baselines LLM HellaSwagWinoGrande

Naive
Qwen2.5-72B 73.7 80.3

Llama-3.1-70B 70.1 82.4

Naive-CoT
Qwen2.5-72B 72.3 85.5

Llama-3.1-70B 67.7 84.3

ReAct
Qwen2.5-72B 71.6 82.4

Llama-3.1-70B 67.7 82.6

AutoGen
Qwen2.5-72B 64.4 78.4

Llama-3.1-70B 61.1 73.1

Multi-Agent Debate
Qwen2.5-72B 72.5 85.0

Llama-3.1-70B 68.9 85.1

AGENTGROUPCHAT-V2
Qwen2.5-72B 70.3 82.7

Llama-3.1-70B 66.0 85.6

Table 5: Experiment result on Commonsense Reason-
ing.

E.2 Domain-Specific Tasks 756

Table 6 reports results for financial, legal, and med- 757

ical professional QA (FinQual, JEC-QA, Medm- 758

cQA). AGENTGROUPCHAT-V2 shows domain- 759

adaptive effectiveness but is sometimes matched 760

or surpassed by simpler competitive baselines on 761

knowledge retrievalintensive tasks. 762

F Case Study and Qualitative Analysis 763

We provide illustrative cases on task tree decompo- 764

sition and inter-agent group chat. For example, Fig- 765

ure 8 and 9 show typical hierarchical breakdowns 766

in software engineering and document writing sce- 767

narios, with agent assignments detailed in each 768

phase. Our group chat example demonstrates how 769

specialized agents contribute distinct perspectives, 770

requirement analysis, code, and review, progres- 771

sively refining solutions within structured dialogue 772

rounds. These findings highlight the effective or- 773

chestration and benefit of specialization in complex 774

tasks. 775
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Method Model JEC-QA (Law) FinQual (Finance) MedmcQA (Medical)
EM Accuracy EM Accuracy EM Accuracy

Naive Llama-3.1-70B 31.58 71.83 73.90

Qwen2.5-72B 42.56 76.00 89.30

Naive-CoT Llama-3.1-70B 32.93 73.60 89.97

Qwen2.5-72B 38.80 79.20 76.40

ReAct Llama-3.1-70B 22.71 43.50 83.10

Qwen2.5-72B 29.92 67.10 70.70

AutoGen Llama-3.1-70B 30.08 63.76 56.79

Qwen2.5-72B 40.60 79.16 68.60

Multi-Agent Debate Llama-3.1-70B 31.58 78.28 90.20

Qwen2.5-72B 38.50 80.20 75.90

AGENTGROUPCHAT-V2 Llama-3.1-70B 30.62 77.09 81.82

Qwen2.5-72B 41.20 77.11 79.00

Table 6: Experiment results on Law, Finance, and Medical multiple-choice QA tasks.

Table 7: Agent Assignment for Interactive Data Visual-
ization Tool Development Tasks

Task Name Participating Agents

Module Interface De-
sign

Requirement Analyst Agent, Code
Implementation Agent, Code Re-
view Agent

File Parsing Implemen-
tation

Requirement Analyst Agent, Code
Implementation Agent, Code Re-
view Agent

Data Processing Imple-
mentation

Requirement Analyst Agent, Code
Implementation Agent, Code Re-
view Agent

Data Display Implemen-
tation

Requirement Analyst Agent, Code
Implementation Agent, Code Re-
view Agent

Interactive Function Im-
plementation

Requirement Analyst Agent, Code
Implementation Agent, Code Re-
view Agent

Testing and Verification Test Planning Agent, Test Execution
Agent, Quality Assurance Agent

Table 8: Agent Assignment for Blockchain Technology
Analysis Article Writing Tasks

Task Name Participating Agents

Technology Survey
Research Planning Agent, Research
Execution Agent, Content Review
Agent

Case Collection
Research Planning Agent, Research
Execution Agent, Content Review
Agent

Market Analysis
Research Planning Agent, Research
Execution Agent, Content Review
Agent

Writing Technology
Analysis Chapters

Writing Planning Agent, Writing
Execution Agent, Content Review
Agent

Writing Market Analy-
sis Chapters

Writing Planning Agent, Writing
Execution Agent, Content Review
Agent

Overall Optimization
Integration Planning Agent, Integra-
tion Execution Agent, Quality As-
surance Agent

Figure 8: A schematic illustration of task decomposition
for the “Interactive Data Visualization Tool Develop-
ment” task by AGENTGROUPCHAT-V2 . Rectangular
boxes represent specific executable tasks, while paral-
lelograms denote annotation labels for task groupings.
Arrow connections indicate dependency relationships
between tasks, and all tasks not directly connected can
be executed in parallel after the completion of their pre-
requisite tasks.
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Table 9: Two-Round Agent Dialogue for File Parsing Task

Round Agent Dialogue Content

R
ou

nd
1

Requirement
Analyst Agent

Let me analyze this file parsing task... We need to implement a parsing function supporting
CSV and Excel files. Core requirements include: 1) File format validation; 2) Automatic
character encoding detection; 3) Data parsing with JSON output; 4) Large file handling
capability... I suggest implementing the basic framework first.

Code Imple-
mentation
Agent

def p a r s e f i l e ( f i l e p a t h ) :
t r y :

i f f i l e p a t h . e n d s w i t h ( ’ . c sv ’ ) :
d f = pd . r e a d c s v ( f i l e p a t h )

e l i f f i l e p a t h . e n d s w i t h ( ’ . x l s x ’ ) :
d f = pd . r e a d e x c e l ( f i l e p a t h )

e l s e :
re turn {” e r r o r ” : ” Unsuppor t ed f o r m a t ”}

# . . . da ta p r o c e s s i n g l o g i c
re turn df . t o d i c t ( ’ r e c o r d s ’ )

e xc ep t E x c e p t i o n as e :
re turn {” e r r o r ” : s t r ( e )}

Code Review
Agent

Reviewing the implementation... The basic functionality exists, but several issues need
attention: 1) No file size limitation, potential memory overflow; 2) Encoding detection relies
entirely on pandas defaults, may cause garbled text; 3) Exception handling too simplistic,
poor user experience; 4) Missing data type inference capability... Requires substantial
improvements.

R
ou

nd
2

Requirement
Analyst Agent

Based on the code review feedback... Adding specific requirements: 1) 100MB file size limit;
2) Support UTF-8, GBK, ASCII encoding auto-detection; 3) Categorized error handling
with user-friendly messages; 4) Intelligent data type recognition for dates, numbers, and
text; 5) Chunked processing mechanism for large files... This should provide comprehensive
coverage.

Code Imple-
mentation
Agent

import c h a r d e t
import os
from t y p i n g import C a l l a b l e , Dic t , Any

c l a s s F i l e P a r s e r :
def i n i t ( s e l f , c h u n k s i z e =10000 ) :

s e l f . c h u n k s i z e = c h u n k s i z e

def p a r s e f i l e ( s e l f , f i l e p a t h : s t r ) −> D i c t [ s t r , Any ] :
# F i l e s i z e v a l i d a t i o n
i f os . p a t h . g e t s i z e ( f i l e p a t h ) > 100*1024*1024:

re turn {” e r r o r ” : ” F i l e e x c e e d s 100MB l i m i t ”}

# Enhanced e n c o d i n g d e t e c t i o n
wi th open ( f i l e p a t h , ’ rb ’ ) a s f :

r a w d a t a = f . r e a d ( 5 0 0 0 0 )
d e t e c t e d = c h a r d e t . d e t e c t ( r a w d a t a )
e n c o d i n g = d e t e c t e d [ ’ e n c o d i n g ’ ] i f d e t e c t e d [ ’ c o n f i d e n c e ’ ] > 0 . 7 e l s e ’ u t f −8 ’

t r y :
i f f i l e p a t h . e n d s w i t h ( ’ . c sv ’ ) :

# . . . chunked CSV p r o c e s s i n g
re turn s e l f . p a r s e c s v c h u n k e d ( f i l e p a t h , e n c o d i n g )

e l i f f i l e p a t h . e n d s w i t h ( ( ’ . x l s x ’ , ’ . x l s ’ ) ) :
# . . . E x c e l p r o c e s s i n g w i t h c o m p a t i b i l i t y
re turn s e l f . p a r s e e x c e l ( f i l e p a t h )

e xc ep t E x c e p t i o n as e :
re turn {” e r r o r ” : f ” P a r s e e r r o r : { s t r ( e )} ” , ” t y p e ” : type ( e ) . n a m e }

def p a r s e c s v c h u n k e d ( s e l f , f i l e p a t h , e n c o d i n g ) :
# . . . s t r e a m i n g p r o c e s s i n g i m p l e m e n t a t i o n
chunks = [ ]
f o r chunk in pd . r e a d c s v ( f i l e p a t h , e n c o d i n g = encoding , c h u n k s i z e = s e l f . c h u n k s i z e ) :

chunks . append ( chunk )
d f = pd . c o n c a t ( chunks , i g n o r e i n d e x =True )
re turn {” d a t a ” : d f . t o d i c t ( ’ r e c o r d s ’ ) , ” d t y p e s ” : d f . d t y p e s . t o d i c t ( )}

Code Review
Agent Final review assessment...
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Figure 9: Another illustration of task decomposition
for “Writing Blockchain Techonology Analysis Article”
task by AGENTGROUPCHAT-V2
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