Divide-and-Conquer Is What LLM-Based Multi-Agent System Need

Anonymous ACL submission

Abstract

Large language model (LLM) based multi-
agent systems offer promising capabilities in
social simulation and complex task solving, yet
face key challenges in system design, general-
izability, and scalability. We introduce AGENT-
GROUPCHAT-V2 , a novel framework featur-
ing: (1) a fully parallel divide-and-conquer
architecture for efficient task decomposition
and distributed processing; (2) an adaptive col-
laboration engine that dynamically selects het-
erogeneous LLMs and interaction strategies;
(3) agent organization optimization for effec-
tive problem breakdown. Experiments show
that AGENTGROUPCHAT-V2 achieves state-
of-the-art results across several benchmarks,
with substantial improvements on tasks such as
GSMSK, AIME, and HumanEval, especially as
task complexity increases. Our results demon-
strate that AGENTGROUPCHAT-V2 enables
the construction of robust and general-purpose
LLM multi-agent systems, excelling in com-
plex reasoning scenarios.

1 Introduction

Interest in multi-agent systems based on large lan-
guage models (LLMs) has grown rapidly (Guo
et al., 2024; Li et al., 2023; Xi et al., 2023; Liang
et al., 2024), driven by their promise in domains
such as social simulation (Gao et al., 2024; Park
et al., 2023; Gu et al., 2024b) and complex task
resolution (Hong et al., 2023; Wu et al., 2023). In
social simulations, LLLM agents provide new ways
to model human-like interactions and study collec-
tive behavior (Gu et al., 2024b; Lee et al., 2023);
for problem-solving, collaborative multi-agent net-
works enhance reasoning and planning capabili-
ties through distributed intelligence (Huang et al.,
2024; Wei et al., 2022; Du et al., 2023). Compared
to single-agent systems, multi-agent architectures
foster emergent strategies and superior collective
intelligence (Ferber and Weiss, 1999; Dafoe et al.,
2021; Gu et al., 2024b).

Despite their progress, current LLM multi-agent
frameworks face major barriers regarding general-
izability, scalability, and real-world utility (Ouyang
et al., 2022; Cemri et al., 2025). Many popular
systems target either social simulation (Gao et al.,
2023; Gu et al., 2024b) or specific tasks such as
software development (Hong et al., 2023; Wu et al.,
2023), lacking methods to support diverse, complex
problem types (Shoham and Leyton-Brown, 2008).
Furthermore, they frequently adopt sequential exe-
cution patterns, or to say workflow (Sapkota et al.,
2025; Zhang et al., 2025), resulting in inefficient
computation and high resource overhead (Kumar,
2025). Notably, increased computational resources
do not always yield better performance, and multi-
agent approaches may sometimes underperform
compared to single-agent baselines (Zhang et al.,
2023; Cemri et al., 2025; Sapkota et al., 2025).

To overcome these limitations, it is important to
design general and efficient collaboration mecha-
nisms among agents. A promising direction is to
rethink the organization of both tasks and agent
interactions to fully exploit the benefits of multi-
agent collaboration. In this context, we identify that
the divide-and-conquer paradigm—which system-
atically decomposes complex tasks and distributes
subtasks among specialized agents—is fundamen-
tal for improving both efficiency and adaptability in
multi-agent systems (Shoham and Leyton-Brown,
2008; Ferber and Weiss, 1999). Through struc-
tured decomposition, responsibilities are clearly as-
signed, concurrency are maximized, and emergent
behaviors are managed more effectively, enabling
scalable and robust multi-agent intelligence.

To this end, we propose AGENTGROUPCHAT-
V2, centered on three innovations: (1) a fully par-
allel architecture with hierarchical manager mod-
ules supporting scalable, distributed operation; (2)
dynamic task-level divide-and-conquer via hierar-
chical task decomposition and dependency man-
agement; and (3) execution-level specialization

##4 AgentGroupChat:v2 mmm Multi-Agent Debate

100 CommonSense Domain

i
g
‘4

3
=

AN

Accuracy / Percentie (%)

IRy -‘5;
AN 2
AIIITITIHIHIHIIN

HellaSwag

s
EX-)

JEC-QA FinQual MedmcQA
Law> (EM inance> (EM) EM

78 AgentGroupChat

N

m— Multi-Agent Debate

CommonSense Domain

&
>

AT

IR

3

AT

3
&

SANS——

8

AN

Accuracy | Percentile (%)

HellaSwag WinoGrande JEC-QA FinQual MedmcQA

Structural Math Co

AN

rucText-Eval MATH GSMBK 1 MBPP.
" M € " as5@1)

StrucText-Eval MATH

m— ReAct s AutoGen e Naive Naive-CoT

g
&

2
N

3
3

2

AT
ONNNNNNNNNE

m—ReAct W AutoGen Naive Naive-CoT

Structural Math Code

AT

3
s

AT
AN

GSMBK AME MBPP. HumanEval

Figure 1: Upper: The performance of AGENTGROUPCHAT-V2 powered by Qwen2.5-72B. Downer: The per-
formance of AGENTGROUPCHAT-V?2 powered by Llama3.1-70B. Both models are evaluated across five diverse
reasoning domains: commonsense reasoning, domain-specific knowledge, structural text understanding, mathemat-
ics, and code generation. AGENTGROUPCHAT-V?2 consistently outperforms existing multi-agent approaches and
baseline methods across both models and all benchmark categories, demonstrating the effectiveness, robustness and

promising of multi-agent approach.

through adaptive role assignment to heterogeneous
LLM agents. Our experiments confirm that AGENT-
GROUPCHAT-V2 significantly boosts performance
and generalizability, especially on high-difficulty
reasoning and generation tasks (see Figure 1).

2 Related Work

LLM-based multi-agent systems have demon-
strated transformative potential in two key do-
mains (Li et al., 2023; Wooldridge, 2009):

2.1 Social Dynamics Simulation

Recent advances integrate cognitive architectures
with behavioral economics principles (Bates et al.,
1994).Xie et al. (Xie et al., 2024a) and Han et
al. (Han et al., 2023) develop game-theoretic frame-
works capturing trust dynamics and market com-
petition through iterative belief-updating mecha-
nisms (Dafoe et al., 2021).Sociological simulations
leverage event-driven architectures, with Park et
al. (Park et al., 2023) modeling opinion evolution
through social interaction cascades, while Zhang
et al. (Zhang et al., 2024) employ hierarchical
Bayesian networks for electoral behavior predic-
tion (Lee et al., 2023). Emerging platforms like
Gu’s group chat simulator (Gu et al., 2024b) and
Liu’s rumor-control Twitter emulator (Liu et al.,

2024) demonstrate practical applications in digital
social dynamics (Gao et al., 2023).

2.2 Collaborative Problem-Solving

Cutting-edge systems employ structured debate
protocols and knowledge fusion mechanisms (Du
et al., 2023).Xiong’s FORD framework (Xiong
et al., 2023) enhances reasoning through tri-
phase argumentation processes, complemented
by Du’s knowledge graph-based consensus for-
mation (Du et al., 2023).Software engineering
innovations like Qian’s dialogue-driven develop-
ment (Qian et al., 2024) and Hong’s documentation-
centric workflow (Hong et al., 2023) establish new
paradigms for Al-assisted programming (Wang
et al., 2023).Domain-specific implementations
showcase methodological cross-pollination, from
Sun’s legal argumentation system with adversar-
ial validation (Sun et al., 2024) to Yu’s cognitive
conflict-driven MOOC platform (Yu et al., 2024),
demonstrating versatile problem-solving architec-
tures (Ferber and Weiss, 1999).

Although impressive progress has been made in
both social simulation and collaborative problem-
solving, previous LLM-based multi-agent systems
still lack solutions that are truly effective and
broadly applicable for general-purpose tasks. In

Query Manager
Powered by LLM

Task Manager
Powered by CPU

Available Resources

of GPU

Group Manager
Powered by LLM

Process User Query
Target: Divide User Query into Task
CC@ =
Respond

Respond to User

Target: Organize the Result of Task
Tree to meet the
requirement of user query

Task Forest

Group Chat Setup
Orchestrate an optimal
multi-agent group chat
environment based on Task

| 289 N

Group Group
Chat Chatting
Finished

Target: Tools

LLMs
and

L 2

Group
Chatting

Function

[ifd

Run in Parallel

Figure 2: Illustration of AgentGroupChat-V2 framework, which composes of three main components: Query
Manager, Task Manager and Group Manager. The framework illustrates the complete workflow from user query
processing through task decomposition and management to multi-agent group chat execution, with arrows indicating
data flow between components. Task Forest visualization demonstrates how queries are transformed into hierarchical
task structures with solved (brown) and unsolved (yellow) nodes, while parallel group chats are carrying out in

Group Manager.

contrast, the core insight of AGENTGROUPCHAT-
V2 is to allow agents to autonomously adopt
a divide-and-conquer paradigm—dynamically de-
composing tasks and organizing cooperation ac-
cording to the problem structure. This enables a
flexible and scalable multi-agent system that can
generalize across domains, addressing a key gap
left by prior approaches.

3 Framework of AGENTGROUPCHAT-V2

This work introduces AGENTGROUPCHAT-V?2 ,
featuring a modular architecture composed of three
main components: Query Manager, Task Manager,
and Group Manager (see Figure 2). This design
enables flexible data exchange and function invo-
cation through standardized interfaces, allowing
each module to scale independently with compu-
tational demand and supporting horizontal system
expansion.

3.1 Query Manager

The Query Manager serves as the system’s fron-
tend, handling user interaction and integrating
LLMs as inference engines. It receives user queries,
performs semantic analysis to decompose them into
task tree structures, and forwards these to the Task
Manager. After task processing is complete, the
Query Manager collects and standardizes results,
ensuring that responses accurately and appropri-
ately address user requirements.

3.2 Task Manager

The Task Manager acts as the central coordination
hub, managing overall task execution. Typically
implemented as a single instance, it maintains a
task forest representing multiple task trees derived
from user input. The Task Manager tracks bidi-

rectional relationships between tasks, forming a
comprehensive dependency graph. It allocates and
schedules tasks based on their structure and system
resource availability, enabling parallel execution
where possible. For hierarchical dependencies, it
ensures information flow between child and parent
tasks, and upon completion of all sub-tasks, returns
consolidated results to the Query Manager.

3.3 Group Manager

The Group Manager is responsible for orchestrat-
ing multi-agent collaboration to execute assigned
tasks. It manages the preparation and deployment
of agent groups, including the selection of suitable
LLMs, resource allocation, and scheduling. Mul-
tiple Group Manager instances can operate in par-
allel, each supervising independent agent groups,
which allows the system to efficiently scale its com-
putational resources according to demand.

4 Group Chat Design

This section details the organizational and imple-
mentation mechanisms of group chat in AGENT-
GROUPCHAT-V?2, the core of multi-agent collabo-
ration and problem-solving. As illustrated in Fig-
ure 3, the system adopts a structured approach to
both task management and agent group orchestra-
tion.

4.1 Task

In AGENTGROUPCHAT-V2, each Task is distinctly
defined by an identifier, description, parent and
child relationships, and processing result. Root
tasks are parentless, and leaf tasks have empty
child sets. Tasks progress through several states:
initialization (structure created), waiting (awaiting
prerequisites), execution (delegated to Group Man-

Task Manager Group Manager

Task Management

Powered by CPU

If all tasks in a task tree have RESULTS, output the
entire task tree.

»jll_m s BN

Group Chat Preparation
Powered by LLM
Target: Orchestrate an optimal multi-agent group chat
environment by:

. Selecting LLMs based on task requirements to power the

|m T 2. Allocating Proper Scratch and objects for each agents
3. Allocating appropriate resources
—_— R
! 1
...... ! !
| Desc [| | Group Chat Environment
ey kil Progress 2 Task3
EX s B resks
B s [IRUPWIR (ngent 1, Agent 2] [TPTPTl (Toskd, Tasks,
N System Logs]
[_history | [
Update Task Tr
== | Agentin [EFESY You are a log searcher...
Il ks D - 4| claude3 [T Detect errorin system logs.
In Task1 [l [askd,] EC Acent2 [EEERl Youarea output formulator...
BT treresution e T

Figure 3: Detailed implementation of Task Manager and
Group Manager modules showing: (1) Task Manage-
ment structure with hierarchical organization of tasks,
including Task ID, descriptions, parent-child relation-
ships, and result tracking; (2) Group Chat Prepara-
tion process outlining agent selection criteria and re-
source allocation strategies; and (3) Group Chat Envi-
ronment configuration displaying the agent infrastruc-
ture with Claude3 and Qwen3 LLMs assigned specific
roles, workspace allocations, and specialized functions
for systematic problem-solving through collaborative
interactions.

ager), completion (result produced) or failure (er-
ror encountered). This structure forms hierarchical
task trees that support flexible decomposition and
dependency tracking.

4.2 Group

A Group represents a collaborative work unit man-
aged by the Group Manager. Each group contains
a progress 1D, a linked task, assigned resources,
and a set of agents. Agents within the group are
specified by identity, LLM engine (e.g., Claude3,
Qwen3), workspace (Scratch), assigned object (Ob-
ject), and History. Scratch is for agent-internal
computation, Object documents the role for inter-
pretability, and History preserves conversational
context for persistent and multi-turn collaboration.
Groups are assembled with diverse agent roles, and
their lifecycle includes preparation (configuration),
activity (discussion), result integration, and termi-
nation.

4.3 Group Environment Configuration

Group environment configuration determines the
initial state and capabilities of each group. This
includes progress and task IDs, the list and order
of agents, and shared resources. Group Manager
orchestrates configuration, assigning agents and re-
sources by analyzing the task needs and available
LLMs. Each agent receives an appropriate iden-

Algorithm 1 StartGroupChat (GroupManager)

1: Input: max_action_turn, agent_ids, initial_env
2: Output: final_env, task_result

3: env <« initial_env

4: for turn = 1 to max_action_turn do

5 for current_agent in agent_ids do

6 env <— current_agent.perceive(env)

7

(message, target_agent) — cur-
rent_agent.decide_action(env)
8: dialogue_history — EXECUTEAC-
TION(current_agent, env, message, target_agent)
9: env < UpdateEnvironment(dialogue_history, env)
10: end for
11: discussion_summary < SummarizeGroupMes-
sages(env)
12: env < UpdateEnvironment(discussion_summary,
env)
13: is_.complete — TaskMan-
ager.CheckTaskCompletion(env)
14: if is_complete then
15: return env, ExtractTaskResult(env)
16: end if
17: end for

18: return env, ExtractTaskResult(env)

tity, Scratch space, task Object, and an initialized
History.

4.4 Group Chat Orchestration

Group chat proceeds according to Algorithm 1, co-
ordinated by Group Manager over a series of action
turns. At each turn, agents sequentially perceive
the environment, generate messages, interact with
others, and update the environment and dialogue
history. After each round, the system summarizes
the discussion and checks if the task has been com-
pleted; results can be output early upon successful
completion.

4.5 Agent Interaction

Agent interactions (Algorithm 2) support both
broadcast and pairwise communication. Upon re-
ceiving an action, an agent may broadcast to all
members or engage in an alternating dialogue loop
with a specific target agent until a stopping criterion
is met.

4.6 Chat Results Processing

To ensure effective utilization of group discussions,
the Group Manager summarizes dialogues, extracts
key conclusions, and stores them in agents’ mem-
ories to inform future turns. It also validates the
quality and completeness of outcomes, and formats
results for downstream consumption by the Task
Manager.

Baseline LLM GSMSK MATH AIME
Levell Level2 Level3 Leveld Levels (2024)
Naive Qwen2.5-72B 37.52 60.17 49.41 37.16 26.49 21.78 0.0
Llama-3.1-70B 35.70 50.44 44.11 30.97 28.20 19.84 10.0
Naive-CoT Qwen2.5-72B 75.13 85.84 77.65 75.22 63.68 48.25 10.0
Llama-3.1-70B 87.33 91.15 88.82 87.17 80.77 67.32 16.7
ReAct Qwen2.5-72B 52.76 53.10 35.88 36.73 28.21 19.46 33
Llama-3.1-70B 20.09 28.32 11.76 7.52 4.27 2.33 0.0
AutoGen Qwen2.5-72B 81.80 89.38 85.29 88.05 71.79 54.86 16.7
Llama-3.1-70B 85.21 96.46 92.94 91.15 82.48 66.93 20.0
Multi-Agent Debate Qwen2.5-72B 75.81 85.84 79.41 75.66 66.24 52.14 16.7
Llama-3.1-70B 90.82 97.35 92.94 92.48 85.90 71.98 20.0
AGENTGROUPCHAT-V2 Qwen2.5-72B 87.41 92.92 90.00 84.07 71.79 59.10 214
Llama-3.1-70B 91.50 98.23 94.12 88.94 81.20 83.54 304
Table 1: Experiment result on Math Problem.
Baseline LLM MBPP HumanEval
pass@1 pass@3 pass@5 pass@1 pass@3 pass@5
Naive Qwen2.5-72B 54.46 60.09 62.02 67.07 78.34 81.60
Llama-3.1-70B 51.80 60.82 63.65 68.90 80.92 83.52
Naive-CoT Qwen2.5-72B 51.30 61.52 65.08 62.36 78.60 82.43
Llama-3.1-70B 53.04 60.51 62.75 71.58 81.23 83.56
ReAct Qwen2.5-72B 57.02 65.34 68.50 75.54 84.39 86.84
Llama-3.1-70B 55.88 62.39 64.34 78.53 85.71 87.66
AutoGen Qwen2.5-72B 40.60 54.33 59.27 66.46 80.83 84.22
Llama-3.1-70B 40.26 55.05 60.07 57.50 75.20 80.26
Multi-Agent Debate Qwen2.5-72B 55.28 63.76 66.67 75.54 83.19 85.41
Llama-3.1-70B 54.68 63.02 65.75 75.67 84.81 87.65
AGENTGROUPCHAT-V2 Qwen2.5-72B 60.34 63.76 64.45 76.46 82.31 84.15
Llama-3.1-70B 58.84 60.35 60.84 79.20 80.38 80.91

Table 2: Experiment result on Code Generation.

5 Experiment Setup
5.1 Task & Benchmark

Mathematical Reasoning: We evaluate on
GSMSK (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021), and AIME (Art of Problem Solv-
ing, 2024). Accuracy on all math benchmarks is
verified through symbolic answer equivalence (see
Appendix A for detailed evaluation criteria).

Code Generation: Benchmarks include
MBPP (Austin et al., 2021) and Hu-
mankEval (Chen et al., 2021). Pass rate calculation
and details on pass @k methodology are presented
in Appendix A.

Domain-Specific Tasks: We test financial rea-
soning (FinQual (Xie et al., 2024b)), legal QA
(JEC-QA), and medical QA (MedmcQA (Pal

et al., 2022)). Full descriptions of dataset construc-
tion are provided in Appendix B.

Structural Text Understanding: StrucText-
Eval (Gu et al., 2024a) assesses structured text
processing (details in Appendix B).

Commonsense Reasoning: HellaSwag (Zellers
et al., 2019) and WinoGrande (Sakaguchi et al.,
2021); see Appendix B for dataset details.

5.2 Baseline Methods

We consider five representative baselines: Naive,
Naive-CoT (Wei et al., 2022), ReAct (Yao et al.,
2022), AutoGen (Wu et al., 2023), and Multi-
Agent Debate (Liang et al., 2023). Implementation
and protocol details can be found in Appendix C.

Method Model Width=1 Width=2 Width=3
Depth=1Depth=2Depth=3 Depth=1Depth=2 Depth=3 Depth=1 Depth=2Depth=3
Naive Llama3.1-70B 78.5 77.2 72.8 69.3 63.5 54.2 66.8 53.3 42.7
Qwen2.5-72B 81.9 80.7 779 72.5 68.0 55.4 70.3 56.8 45.0
. Llama3.1-70B 84.1 83.8 76.2 75.5 70.3 53.7 73.2 57.1 43.5
Naive-CoT - -
Qwen2.5-72B 86.7 85.3 78.3 77.8 71.4 54.8 75.5 55.2 42.3
Llama3.1-70B 5.2 3.8 2.1 4.1 2.9 1.3 3.5 1.8 0.5
ReAct
Qwen2.5-72B 8.1 6.7 4.9 6.3 4.2 2.8 5.1 3.1 1.2
Llama3.1-70B 28.4 24.7 19.8 22.1 17.3 12.6 18.9 13.2 8.7
AutoGen
Qwen2.5-72B 34.2 31.1 26.5 27.8 229 17.4 24.3 18.1 12.8
Multi-Agent Debate Llama3.1-70B 83.3 82.2 74.8 74.1 68.9 52.2 724 54.7 40.3
Qwen2.5-72B 82.1 81.5 75.2 76.3 67.6 53.8 71.2 554 41.7
Llama3.1-70B 81.7 80.8 79.1 73.6 69.2 58.4 72.8 62.9 48.7
AGENTGROUPCHAT-V2
Qwen2.5-72B 83.5 82.9 77.3 76.7 70.8 59.2 73.6 64.7 52.1

Table 3: Exact Match (EM) Accuracy for StrucText-Eval.

Role Type Role Setting

General Role Agent-001 is a math expert.

Agent-001 is a error detection specialist focused on identifying calculation mistakes, logical
inconsistencies, and reasoning flaws in mathematical solutions.

Agent-002 is a logical reasoning specialist specialized in mathematical proof construction, step-

by-step deduction, and logical argument validation.

Specialized Role

Agent-003 is a context comprehension specialist responsible for understanding problem state-

ments, extracting key information, and summarizing lengthy mathematical contexts.

Agent-004 is a computational specialist dedicated to performing accurate calculations, numerical
analysis, and algebraic manipulations.

Agent-005 is a solution verification specialist focused on checking final answers, validating
solution paths, and ensuring mathematical correctness.

Table 4: Role configuration for multi-agent mathematical problem-solving collaboration.

5.3 Large Language Models

All experiments use Qwen2.5-72B-Instruct and
Llama-3.1-70B-Instruct-Turbo, with full model
usage and inference details available in Ap-
pendix D.

6 Experiment

6.1 Overall Performance

6.1.1 Mathematical Reasoning Analysis

Finding 1

AGENTGROUPCHAT-V2 demonstrates
strong mathematical reasoning by lever-
aging effective task decomposition and
agent specialization, particularly excelling
on high-complexity problems.
Table 1 reports results across GSM8K, MATH,
and AIME, where AGENTGROUPCHAT-V2 not

only achieves the highest overall accuracy, but its
advantages notably expand with problem complex-
ity. For example, on the demanding AIME(2024),
AGENTGROUPCHAT-V?2 attains 30.4% accuracy
(Llama-3.1-70B), nearly double that of the best
baseline. The gap is less pronounced on simpler
datasets (e.g., GSM8K), but becomes striking on
the more layered MATH and in the progression
from lower to higher levels within each bench-
mark. The marked improvement from Naive to
Naive-CoT highlights the benefit of explicit step-
wise reasoning, but only AGENTGROUPCHAT-V?2
further leverages dedicated agent roles for effective
divide-and-conquer. Importantly, as the diversity
and interdependence of solution steps grow, single-
agent and even loosely-structured frameworks stall,
while specialized agents in AGENTGROUPCHAT-
V2 coordinate to solve highly non-trivial subtasks
in parallel.

Number of Agents
W
I

2 3 4 5
Dialogue Rounds

Number of Agents
(%)
T

2 3 4 5
Dialogue Rounds

Figure 4: AGENTGROUPCHAT-V2 w/ General Role per- Figure 5: AGENTGROUPCHAT-V2 w/ Specified Role

formance on MATH-100

Number of Agents
W
I

2 3 4 5
Dialogue Rounds

Figure 6: AutoGen performance on MATH-100

6.1.2 Code Generation Analysis

Finding 2

Collaborative multi-agent analysis pro-
motes rapid convergence to high-quality ini-
tial solutions in code generation, but perfor-
mance improvements diminish for broader
sampling, highlighting the need for task-
specific exploration strategies.

\. J

performance on MATH-100

Number of Agents
w
T

2 3 4 5
Dialogue Rounds

Figure 7: Multi-Agent Debate performance on MATH-
100

cial when breadth and coverage are prioritized.

6.1.3 Structural Text Understanding Analysis

AGENTGROUPCHAT-V2 robustly handles
increasing structural complexity, maintain-
ing higher accuracy as task depth and
breadth grow.

As shown in Table 2, AGENTGROUPCHAT-
V2 consistently delivers the best performance
in pass@1 accuracy, achieving 79.20% on Hu-
manEval and 76.46% on MBPP. These results
suggest that multi-agent collaborative analysis
quickly converges to high-quality first solutions,
outperforming both naive and chain-of-thought ap-
proaches. For larger values of k (e.g., pass@5), Re-
Act and similar iterative frameworks gain ground,
as their exploration strategy generates more di-
verse candidate programs. This confirms that while
divide-and-conquer collaboration is ideal for tasks
emphasizing correctness and logic in minimal sam-
ples, a more exploratory approach may be benefi-

Performance on StrucText-Eval (Table 3) fur-
ther demonstrates AGENTGROUPCHAT-V2 ° s
resilience to context and structure complexity.
When both the width and depth of structured text
expand, most methods—including sophisticated
single-agent and multi-agent baselines—exhibit
sharp performance degradation (sometimes ;30%
absolute drop). In contrast, AGENTGROUPCHAT-
V2 ’s divide-and-conquer strategy achieves the
highest accuracy in the most challenging (width=3,
depth=3) scenarios, showing only moderate loss
with increased context. This underscores the ben-
efits of explicit recursive decomposition and hier-
archical collaboration for tasks involving layered,

Algorithm 2 EXECUTEACTION{current_agent,
env, message, target_agent}

1: Input: current_agent,
max_chat_turn

: Output: dialogue_history

: turn_count < 1

: dialogue_history < []

: if target_agent is AllGroupMembers then
message <— GenerateMessage(current_agent, env,

message, target_agent)

7 Append (current_agent, target_agent, message) to dia-
logue_history

8: return dialogue_history

9: end if

10: sender <— current_agent

11: receiver < target_agent

12: while turn_count j 2 - max_chat_turn do

env, message, target.agent,

QR W

13: response < GenerateResponse(receiver, dia-
logue _history, env)

14: if not response then

15: return dialogue_history

16: end if

17: Append (receiver, sender, response) to dia-
logue_history

18: temp <— sender

19: sender < receiver

20: receiver <— temp

21: turn_count <— turn_count + 1

22: end while
23: return dialogue_history

interdependent information.

6.2 Ablation Study

To elucidate the impact of team design and inter-
action strategy, we conduct systematic ablation ex-
periments on MATH-100, varying agent count and
dialogue rounds, and distinguishing between gen-
eral and specialized role assignments, see Table 4
for definitions.

Finding 4

Specialized agent roles combined with
moderate-scale collaboration significantly
outperform homogeneous teams, scaling
positively with agent diversity and demon-
strating that targeted division of labor
avoids redundancy and amplifies collective
reasoning.

\. J

In AGENTGROUPCHAT-V2 with specialized
roles (Fig. 5), accuracy grows robustly with team
size: with 5 specialized agents and 3 dialogue
rounds, accuracy peaks at 58%, a striking im-
provement of 64.6% over minimal settings. No-
tably, each additional agent consistently brings non-
trivial gains, with collaboration between distinct
expert perspectives enabling broader coverage and

more rigorous validation of solution steps.

Finding 5

Homogeneous (general) agent groups show
stagnant or declining performance as either
agent count or rounds increase, due to cu-
mulative information redundancy and lack
of complementary reasoning.

\. J

General-role configurations (Fig. 4) see accuracy
plateau or degrade as more agents are added, with
negligible improvement from increasing dialogue
rounds. This effect highlights that, absent special-
ized functions, collaboration fails to create new
insights and mostly produces redundant or even
conflicting reasoning.

Finding 6

Traditional multi-agent frameworks (Auto-
Gen, Debate) suffer diminishing returns or
negative scaling at larger team sizes, illus-
trating the necessity of proactive role dif-
ferentiation and dialogue orchestration to
unlock benefits in large-scale collaborative
problem solving.

. .

AutoGen and Multi-Agent Debate (Figs. 6, 7)
serve as external controls—both show early im-
provements with more agents or dialogue depth,
but soon flatten or reverse, likely due to coordina-
tion overhead without sufficient specialization.

Further results. Experiments on domain-specific
QA (Finance, Law, Medical), as well as common-
sense reasoning (HellaSwag, WinoGrande), are
provided in Appendix E. These results reveal that
for tasks with low logical complexity or heavy
reliance on external knowledge, the divide-and-
conquer scheme may introduce unnecessary delib-
eration and overhead, and simpler strategies can
be preferable. Rich qualitative examples and dis-
cussion of task decomposition can be found in
Appendix F.

7 Conclusion

We introduces AGENTGROUPCHAT-V?2 in this pa-
per, a framework for LLM-based multi-agent sys-
tems featuring hierarchical task division and adap-
tive collaboration. Experiments show strong gains
in reasoning and code generation, setting a new
standard for complex multi-agent applications.

Limitations

AGENTGROUPCHAT-V2 , as a multi-agent sys-
tem framework based on large language models
(LLMs), has achieved notable progress in broad
compatibility and efficient task collaboration. Nev-
ertheless, our evaluations reveal two main limi-
tations. First, experimental results indicate that
for tasks heavily reliant on extensive external
knowledge or with relatively low logical complex-
ity (such as commonsense reasoning or domain-
specific question answering), introducing multi-
agent division of labor and parallel discussion may
lead to unnecessary inference redundancy and in-
creased computational overhead. In such cases, a
single model invocation or a simple reasoning chain
may outperform the multi-agent approach. Second,
the system’s performance is highly contingent upon
the quality of task decomposition and the appropri-
ateness of agent role assignment. For problems that
are difficult to structurally decompose or involve
highly coupled steps, the divide-and-conquer strat-
egy does not necessarily yield solutions superior to
those provided by a single agent.

Ethical Concerns

This study centers on algorithmic and system ar-
chitectural design, with all evaluation tasks se-
lected from publicly available and widely-used
standard datasets. No sensitive personal infor-
mation, simulated societal opinion, or real-world
decision-making applications are involved. The
multi-agent interactions are solely employed to
enhance reasoning and problem-solving abilities,
explicitly excluding the generation of misleading
conclusions, group manipulation, or the deploy-
ment of autonomous systems with real-world op-
erational authority. During the research process,
neither the codebase nor experimental logs store
any user privacy information; only aggregated eval-
uation data are released externally. Potential ethical
risks, such as information bias or uncontrollable be-
havior emerging from automated collaboration, are
primarily determined by the underlying LLM and
task setup, rather than AGENTGROUPCHAT-V?2 it-
self. All experiments are conducted within closed,
secure environments. Should the framework be ap-
plied in scenarios involving human users or open
environments in the future, further assessments and
governance will strictly adhere to prevailing ethical
guidelines in academia and industry.

References

Art of Problem Solving. 2024. Aime problems and
solutions. https://artofproblemsolving.
com/wiki/index.php/AIME_Problems_
and_Solutions. Accessed: 2024-06-09.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1
others. 2021. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732.

Joseph Bates and 1 others. 1994. The role of emotion
in believable agents. Communications of the ACM,
37(7):122-125.

Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A
Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kan-
nan Ramchandran, and 1 others. 2025. Why do
multi-agent llm systems fail? arXiv preprint
arXiv:2503.13657.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Allan Dafoe, Yoram Bachrach, Gillian Hadfield, Eric
Horvitz, Kate Larson, and Thore Graepel. 2021. Co-
operative ai: machines must learn to find common
ground.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Jacques Ferber and Gerhard Weiss. 1999. Multi-agent
systems: an introduction to distributed artificial in-
telligence, volume 1. Addison-wesley Reading.

Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao
Ding, Zhilun Zhou, Fengli Xu, and Yong Li. 2024.
Large language models empowered agent-based mod-
eling and simulation: A survey and perspectives.
Humanities and Social Sciences Communications,
11(1):1-24.

Chen Gao, Xiaochong Lan, Zhihong Lu, Jinzhu Mao,
Jinghua Piao, Huandong Wang, Depeng Jin, and
Yong Li. 2023. S3: Social-network simulation sys-
tem with large language model-empowered agents.
arXiv preprint arXiv:2307.14984.

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions

Zhouhong Gu, Haoning Ye, Xingzhou Chen, Zeyang
Zhou, Hongwei Feng, and Yanghua Xiao. 2024a.
Structext-eval: Evaluating large language model’s
reasoning ability in structure-rich text. arXiv preprint
arXiv:2406.10621.

Zhouhong Gu, Xiaoxuan Zhu, Haoran Guo, Lin Zhang,
Yin Cai, Hao Shen, Jiangjie Chen, Zheyu Ye,
Yifei Dai, Yan Gao, and 1 others. 2024b. Agent-
groupchat: An interactive group chat simulacra for
better eliciting emergent behavior. arXiv preprint
arXiv:2403.13433.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,
Shichao Pei, Nitesh V Chawla, Olaf Wiest, and Xi-
angliang Zhang. 2024. Large language model based
multi-agents: A survey of progress and challenges.
arXiv preprint arXiv:2402.01680.

Xu Han, Zengqing Wu, and Chuan Xiao. 2023. “guinea
pig trials” utilizing gpt: A novel smart agent-based
modeling approach for studying firm competition and
collusion. arXiv preprint arXiv:2308.10974.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, and 1
others. 2023. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint
arXiv:2308.00352.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei
Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-
ing Tang, and Enhong Chen. 2024. Understanding
the planning of llm agents: A survey. Preprint,
arXiv:2402.02716.

Abhishek Kumar. 2025. Large language model based
multi-agent system augmented complex event pro-
cessing pipeline for internet of multimedia things.
arXiv preprint arXiv:2501.00906.

Sanguk Lee, Tai-Quan Peng, Matthew H Goldberg,
Seth A Rosenthal, John E Kotcher, Edward W
Maibach, and Anthony Leiserowitz. 2023. Can large
language models capture public opinion about global
warming? an empirical assessment of algorithmic
fidelity and bias. arXiv preprint arXiv:2311.00217.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023. Camel:
Communicative agents for” mind” exploration of
large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. 2023. Encouraging divergent thinking
in large language models through multi-agent debate.
arXiv preprint arXiv:2305.19118.

10

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu,
Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, and 1 others. 2024. Taskmatrix. ai:
Completing tasks by connecting foundation models
with millions of apis. Intelligent Computing, 3:0063.

Yuhan Liu, Xiuying Chen, Xiaoqing Zhang, Xing Gao,
Ji Zhang, and Rui Yan. 2024. From skepticism to
acceptance: Simulating the attitude dynamics toward
fake news. arXiv preprint arXiv:2403.09498.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in neural
information processing systems, 35:27730-27744.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan
Sankarasubbu. 2022. Medmcqa: A large-scale multi-
subject multi-choice dataset for medical domain ques-
tion answering. In Proceedings of the Conference
on Health, Inference, and Learning, volume 174 of
Proceedings of Machine Learning Research, pages
248-260. PMLR.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S Bern-
stein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th an-
nual acm symposium on user interface software and
technology, pages 1-22.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, and 1 others. 2024. Chatdev: Com-
municative agents for software development. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 15174-15186.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99-106.

Ranjan Sapkota, Konstantinos I Roumeliotis, and Manoj
Karkee. 2025. Ai agents vs. agentic ai: A concep-
tual taxonomy, applications and challenges. arXiv
preprint arXiv:2505.10468.

Yoav Shoham and Kevin Leyton-Brown. 2008. Mul-
tiagent systems: Algorithmic, game-theoretic, and
logical foundations. Cambridge University Press.

Jingyun Sun, Chengxiao Dai, Zhongze Luo, Yangbo
Chang, and Yang Li. 2024. Lawluo: A chinese
law firm co-run by llm agents. arXiv preprint
arXiv:2407.16252.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

https://arxiv.org/abs/2402.02716
https://arxiv.org/abs/2402.02716
https://arxiv.org/abs/2402.02716
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

Michael Wooldridge. 2009. An introduction to multia-
gent systems. John wiley & sons.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, and 1 others. 2023. The rise
and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864.

Chengxing Xie, Canyu Chen, Feiran Jia, Ziyu Ye,
Kai Shu, Adel Bibi, Ziniu Hu, Philip Torr, Bernard
Ghanem, and Guohao Li. 2024a. Can large language
model agents simulate human trust behaviors? arXiv
preprint arXiv:2402.04559.

Qiangian Xie, Weiguang Han, Zhengyu Chen, Ruoyu
Xiang, Xiao Zhang, Yueru He, Mengxi Xiao, Dong
Li, Yongfu Dai, Duanyu Feng, and 1 others. 2024b.
Finben: A holistic financial benchmark for large lan-
guage models. Advances in Neural Information Pro-
cessing Systems, 37:95716-95743.

Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing
Qin. 2023. Examining inter-consistency of large lan-
guage models collaboration: An in-depth analysis via
debate. arXiv preprint arXiv:2305.11595.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Jifan Yu, Zheyuan Zhang, Daniel Zhang-li, Shangqing
Tu, Zhanxin Hao, Rui Miao Li, Haoxuan Li,
Yuanchun Wang, Hanming Li, Linlu Gong, and 1
others. 2024. From mooc to maic: Reshaping on-
line teaching and learning through 1lm-driven agents.
arXiv preprint arXiv:2409.03512.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Guibin Zhang, Kaijie Chen, Guancheng Wan, Heng
Chang, Hong Cheng, Kun Wang, Shuyue Hu, and Lei
Bai. 2025. Evoflow: Evolving diverse agentic work-
flows on the fly. arXiv preprint arXiv:2502.07373.

Xinnong Zhang, Jiayu Lin, Libo Sun, Weihong Qi, Yi-
hang Yang, Yue Chen, Hanjia Lyu, Xinyi Mou, Sim-
ing Chen, Jiebo Luo, and 1 others. 2024. Electionsim:

11

Massive population election simulation powered by
large language model driven agents. arXiv preprint
arXiv:2410.20746.

Yifan Zhang, Jingqin Wang, Jianye Yu, and Joey Tianyi
Wen. 2023. Multi-agent reinforcement learn-
ing: A comprehensive survey. arXiv preprint
arXiv:2312.10256.

A Details of Experiment Setup

A.1 Mathematical Reasoning Evaluation

For GSM8K, MATH, and AIME, we use symbolic
equivalence to verify result accuracy. For AIME,
exact match evaluation is employed on numerical
answers.

A.2 Code Generation Evaluation Criteria

MBPP is evaluated by the unit-test pass rate: a
solution is deemed correct if it passes all provided
test cases.

HumanEval is assessed using the pass @k met-

ric':
)
(;)
where n is the total number of generated solutions
and c is the number of correct solutions.

Pass@Qk = 1 — (D

B Datasets

B.1 Mathematical Reasoning

GSMS8K (Cobbe et al., 2021): 1,300 grade
school math problems with step-by-step reasoning.
MATH (Hendrycks et al., 2021): 12,000 problems
covering algebra, geometry, combinatorics, etc.,
with five difficulty levels. AIME (Art of Prob-
lem Solving, 2024): Problems from the American
Invitational Mathematics Examination; assesses
complex mathematical reasoning.

B.2 Code Generation

MBPP (Austin et al., 2021): 500 Python prob-
lems, primarily algorithmic, each with multiple
test cases. HumanEval (Chen et al., 2021): 164
Python function synthesis tasks, evaluated using
random solution sampling (see Appendix A).

B.3 Domain-Specific Tasks

FinQual (Xie et al., 2024b): 1,000 finance-related
questions from CFA and FinQA, including both
MCQs and numerical tasks. JEC-QA: 26,365 legal
exam items for the Chinese Bar exam, focusing

'As in (Chen et al., 2021), we use n = 10 samples per
problem and report pass@1, pass@3, and pass@5.

on legal comprehension and scenario judgment.
MedmcQA (Pal et al., 2022): 194,000 medical
MCQs from Indian medical entrance exams.

B.4 Structural Text Understanding

StrucText-Eval (Gu et al., 2024a): Evaluates com-
prehension and manipulation of structured, hierar-
chical textual data.

B.5 Commonsense Reasoning

HellaSwag (Zellers et al., 2019): 70,000 multiple-
choice questions; each instance offers four options
for next-sentence prediction. WinoGrande (Sak-
aguchi et al., 2021): 44,000 pronoun disambigua-
tion tasks to test contextual commonsense reason-
ing.

C Baselines

Naive: Each task is directly assigned to a single
LLM, without explicit intermediate reasoning or
decomposition.

Naive-CoT (Wei et al., 2022): Tasks are com-
pleted by a single LLM with chain-of-thought
prompts, eliciting reasoning chains.

ReAct (Yao et al., 2022): Combines reasoning,
action, and observation in a single-agent loop to
iteratively decompose and solve tasks.

AutoGen (Wu et al., 2023): Multi-agent conver-
sation framework combining AssistantAgent and
UserProxyAgent, facilitating modular dialogue-
based task solving.

Multi-Agent Debate (Liang et al., 2023): Mul-
tiple agents collaboratively analyze and debate a
problem, iterating until consensus.

D Large Language Models

Our experiments employ Qwen2.5-72B-Instruct
and Llama-3.1-70B-Instruct-Turbo, two leading
open-source LLMs. Qwen is selected for its high
performance on math and reasoning tasks, Llama-
3.1 for its balance of capabilities and generation
speed. All LLMs are run in inference mode with
default decoding settings unless otherwise stated.

E Additional Experiments

E.1 Commonsense Reasoning

Table 5 presents experimental results on common-
sense reasoning tasks (HellaSwag, WinoGrande),
where direct model prompting or naive approaches
often outperform collaborative frameworks due to
the straightforward nature of the problems.

12

Baselines LLM HellaSwag WinoGrande

. Qwen2.5-72B 73.7 80.3
Naive

Llama-3.1-70B 70.1 82.4
Naive-CoT Qwen2.5-72B 72.3 85.5
Llama-3.1-70B 67.7 84.3
ReAct Qwen2.5-72B 71.6 82.4
Llama-3.1-70B 67.7 82.6
AutoGen Qwen2.5-72B 64.4 78.4
Llama-3.1-70B 61.1 73.1
Multi-Agent Debate Qwen25-72B 725 85.0
Llama-3.1-70B 68.9 85.1
AGENTGROUPCHAT-V2 Vo272 703 82.7
Llama-3.1-70B 66.0 85.6

Table 5: Experiment result on Commonsense Reason-
ing.

E.2 Domain-Specific Tasks

Table 6 reports results for financial, legal, and med-
ical professional QA (FinQual, JEC-QA, Medm-
cQA). AGENTGROUPCHAT-V2 shows domain-
adaptive effectiveness but is sometimes matched
or surpassed by simpler competitive baselines on
knowledge retrievalintensive tasks.

F Case Study and Qualitative Analysis

We provide illustrative cases on task tree decompo-
sition and inter-agent group chat. For example, Fig-
ure 8 and 9 show typical hierarchical breakdowns
in software engineering and document writing sce-
narios, with agent assignments detailed in each
phase. Our group chat example demonstrates how
specialized agents contribute distinct perspectives,
requirement analysis, code, and review, progres-
sively refining solutions within structured dialogue
rounds. These findings highlight the effective or-
chestration and benefit of specialization in complex
tasks.

JEC-QA (Law)

FinQual (Finance) MedmcQA (Medical)

Method Model EM Accuracy EM Accuracy EM Accuracy

. Llama-3.1-70B 31.58 71.83 73.90
Naive

Qwen2.5-72B 42.56 76.00 89.30
Naive-CoT Llama-3.1-70B 32.93 73.60 89.97
Qwen2.5-72B 38.80 79.20 76.40
ReAct Llama-3.1-70B 22.71 43.50 83.10
Qwen2.5-72B 29.92 67.10 70.70
AutoGen Llama-3.1-70B 30.08 63.76 56.79
Qwen2.5-72B 40.60 79.16 68.60
Multi-Agent Debate Llama-3.1-70B 31.58 78.28 90.20
Qwen2.5-72B 38.50 80.20 75.90
AGENTGROUPCHAT-V2 Llama-3.1-70B 30.62 77.09 81.82
Qwen2.5-72B 41.20 77.11 79.00

Table 6: Experiment results on Law, Finance, and Medical multiple-choice QA tasks.

Table 7: Agent Assignment for Interactive Data Visual-
ization Tool Development Tasks

Task Name

Participating Agents

Module Interface De-
sign

Requirement Analyst Agent, Code
Implementation Agent, Code Re-
view Agent

File Parsing Implemen-
tation

Requirement Analyst Agent, Code
Implementation Agent, Code Re-
view Agent

Data Processing Imple-
mentation

Requirement Analyst Agent, Code
Implementation Agent, Code Re-
view Agent

Data Display Implemen-
tation

Requirement Analyst Agent, Code
Implementation Agent, Code Re-
view Agent

Interactive Function Im-
plementation

Requirement Analyst Agent, Code
Implementation Agent, Code Re-
view Agent

Testing and Verification

Test Planning Agent, Test Execution
Agent, Quality Assurance Agent

Table 8: Agent Assignment for Blockchain Technology
Analysis Article Writing Tasks

Task Name Participating Agents
Research Planning Agent, Research
Technology Survey Execution Agent, Content Review

Agent

Case Collection

Research Planning Agent, Research
Execution Agent, Content Review
Agent

Research Planning Agent, Research

Market Analysis Execution Agent, Content Review
Agent
Writing Technology Wrmng Planning Agent, ert}ng
; Execution Agent, Content Review
Analysis Chapters

Agent

Writing Market Analy-
sis Chapters

Writing Planning Agent, Writing
Execution Agent, Content Review
Agent

Overall Optimization

Integration Planning Agent, Integra-
tion Execution Agent, Quality As-
surance Agent

13

‘ Interactive Data Visualization Tool Design

I

‘ Module Interface Design

l
J
/

/ Data Processing Function / / Visualization Function
File Parsing Data Processing Data Display lr;tuer:i;g\:‘e
Implementation Implementation Implementation
Implementatlon

‘ Testing and Verification }
Figure 8: A schematic illustration of task decomposition
for the “Interactive Data Visualization Tool Develop-
ment” task by AGENTGROUPCHAT-V2 . Rectangular
boxes represent specific executable tasks, while paral-
lelograms denote annotation labels for task groupings.
Arrow connections indicate dependency relationships
between tasks, and all tasks not directly connected can
be executed in parallel after the completion of their pre-
requisite tasks.

Table 9: Two-Round Agent Dialogue for File Parsing Task

Round

Agent

Dialogue Content

Round 1

Requirement
Analyst Agent

Let me analyze this file parsing task... We need to implement a parsing function supporting
CSV and Excel files. Core requirements include: 1) File format validation; 2) Automatic
character encoding detection; 3) Data parsing with JSON output; 4) Large file handling
capability... I suggest implementing the basic framework first.

Code Imple-
mentation
Agent

def parse_file(file_path):
try:
if file_path.endswith(’.csv’):
df = pd.read_csv(file_path)
elif file_path.endswith(’.xlsx’):
df = pd.read_excel(file_path)
else:
return {"error”: "Unsupportedmformat™}
... data processing logic
return df.to_dict(’records’)
except Exception as e:
return {"error”: str(e)}

Code
Agent

Review

Reviewing the implementation... The basic functionality exists, but several issues need
attention: 1) No file size limitation, potential memory overflow; 2) Encoding detection relies
entirely on pandas defaults, may cause garbled text; 3) Exception handling too simplistic,
poor user experience; 4) Missing data type inference capability... Requires substantial
improvements.

Round 2

Requirement
Analyst Agent

Based on the code review feedback... Adding specific requirements: 1) 100MB file size limit;
2) Support UTF-8, GBK, ASCII encoding auto-detection; 3) Categorized error handling
with user-friendly messages; 4) Intelligent data type recognition for dates, numbers, and
text; 5) Chunked processing mechanism for large files... This should provide comprehensive
coverage.

Code Imple-
mentation
Agent

import chardet
import os
from typing import Callable, Dict, Any
class FileParser:
def __init-_(self, chunk_size=10000):
self.chunk_size = chunk_size

def parse_file(self, file_path:
File size validation
if os.path.getsize(file_.path) > 100%1024%1024:
return {”error”: "Filemexceedsml0OOMBmlimit”}

str) —> Dict[str, Any]:

Enhanced encoding detection
with open(file_path, "rb’) as f:

raw_data = f.read(50000)

detected = chardet.detect(raw._data)

encoding = detected [encoding’] if detected[’confidence’] > 0.7 else “utf-8’
try:

if file_path.endswith(’.csv’):
... chunked CSV processing
return self._parse_csv_chunked(file_path ,
file_path .endswith ((*.xIsx’, *.xls’)):
... Excel processing with compatibility
return self._parse_excel(file_path)
except Exception as e:

return {’error”:

encoding)
elif

f”Parsemerror :m{str(e)}”, “type”: type(e).__name__}

-parse_csv_chunked (self , file_path ,

... streaming processing

chunks = []

for chunk in pd.read_csv(file_path,
chunks . append (chunk)

df = pd.concat(chunks, ignore_-index=True)

return {"data”: df.to_dict(’records’), “dtypes”:

encoding):
implementation

encoding=encoding , chunksize=self.chunk_size):

df . dtypes.to_-dict()}

Code
Agent

Review

Final review assessment...

14

Writing Blockchain Technology Analysis Article

i

Research Content

]

E 1
[/
[TE;:SJ’:;”} (i | ::z:::.;)
[/
[1

i

Content Creation

Analysis Chapters

Writing Technology Writing Market
Analysis Chapters

Overall Optimization

Figure 9: Another illustration of task decomposition
for “Writing Blockchain Techonology Analysis Article”
task by AGENTGROUPCHAT-V2

	Introduction
	Related Work
	Social Dynamics Simulation
	Collaborative Problem-Solving

	Framework of AgentGroupChat-V2
	Query Manager
	Task Manager
	Group Manager

	Group Chat Design
	Task
	Group
	Group Environment Configuration
	Group Chat Orchestration
	Agent Interaction
	Chat Results Processing

	Experiment Setup
	Task & Benchmark
	Baseline Methods
	Large Language Models

	Experiment
	Overall Performance
	Mathematical Reasoning Analysis
	Code Generation Analysis
	Structural Text Understanding Analysis

	Ablation Study

	Conclusion
	Details of Experiment Setup
	Mathematical Reasoning Evaluation
	Code Generation Evaluation Criteria

	Datasets
	Mathematical Reasoning
	Code Generation
	Domain-Specific Tasks
	Structural Text Understanding
	Commonsense Reasoning

	Baselines
	Large Language Models
	Additional Experiments
	Commonsense Reasoning
	Domain-Specific Tasks

	Case Study and Qualitative Analysis

