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ABSTRACT

Neural Architecture Search (NAS) aims to find high-performing models, with
candidate evaluation often being the most expensive step. While NAS-Bench
datasets facilitate the development of performance prediction models by providing
benchmark results, most existing work focuses on improving predictor accuracy,
with limited attention to search strategies and the selection of initial architectures
used for training. In this work, we reformulate NAS as an inverse problem of per-
formance prediction by utilizing Invertible Neural Networks (INNs) to construct a
bidirectional performance prediction model that maps architectures to performance
and, inversely, maps performance targets back to architectures. Specifically, we
train the performance predictor and the search strategy together, in an end-to-end
manner. We further propose a novel sampling strategy that selects promising
initial architectures without requiring any candidate training. Experiments show
that InvertNAS outperforms state-of-the-art NAS methods on NAS-Bench-201,
and NAS-Bench-NLP, and performs competitively on NAS-Bench-101 and NAS-
Bench-301. These results demonstrate the effectiveness and query efficiency of our
approach. We believe this inverse formulation provides a promising direction for
future NAS research.

1 INTRODUCTION

Neural architecture search (NAS) aims to automatically discover neural network architectures that
can outperform manually designed ones. A typical NAS algorithm consists of three components
(Elsken et al., 2019): the search space, the performance estimation strategy, and the search strategy.
The primary goal of a NAS algorithm is to identify multiple promising architectures within the search
space. Based on different performance estimation strategies, NAS methods can be categorized into
several types: vanilla NAS (Zoph & Le, 2017), which trains each architecture from scratch; one-shot
NAS (Bender et al., 2018; Liu et al., 2019), which trains a supernetwork with weight sharing to
approximate performance and reduce evaluation time; zero-cost proxy-based NAS (Mellor et al.,
2021; Abdelfattah et al., 2021; Yamasaki et al., 2025; Gracheva, 2025), which estimates performance
based on architectural features without training; and predictor-based NAS (Wen et al., 2020; Wu
et al., 2021; Lukasik et al., 2021; Jing et al., 2022), which employs a surrogate model to predict
the performance of neural architectures. Among these, vanilla NAS is the most resource-intensive.
Meanwhile, one-shot NAS and zero-cost proxy methods cannot evaluate architectures based on
actual performance. Predictor-based NAS leverages a performance predictor to identify promising
architectures for training, significantly reducing evaluation time. Although the predictor’s accuracy
improves with more training architectures, collecting such data is costly, as each architecture must be
trained to obtain its performance label. This overhead becomes a limitation when the search space
is large. Furthermore, while existing predictor-based NAS methods focus heavily on improving
prediction accuracy, relatively little attention has been paid to the design of search strategies or the
selection of initial architectures used for predictor training, which are both crucial for effective and
efficient search.

We can interpret performance prediction in neural architecture search (NAS) as a regression task,
where the goal is to estimate the accuracy of a given architecture based on its structural representa-
tion. From this perspective, NAS can be viewed as the inverse problem: instead of predicting the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Illustration of the model architecture and workflow. From left to right: the architecture
undergoes a graph encoder transformation into a latent space code, which is processed by N INNs.
The accuracy values are aggregated using inverse distance weighting to produce the final prediction.
From right to left: The target accuracy, paired with a random vector z, is inverted through the N
INNs parallelly to produce the latent representation, which a transformer decoder then translates into
N architectures.

performance from a known architecture, we aim to identify the architecture that yields a desired level
of performance. If we could accurately reverse the performance prediction process, then training a
performance predictor would be functionally equivalent to solving the NAS problem itself. However,
the nonlinearity introduced by activation functions in neural networks makes it difficult to compute
the inverse of a standard model. Invertible Neural Networks (INNs) (Ardizzone et al., 2018; 2019) ad-
dress this issue by ensuring bijectivity, meaning that the mapping from inputs to outputs is reversible.
This property allows the output to be mapped back to its corresponding input. To construct such a
model, standard dense layers can be replaced with coupling layers commonly used in INNs.

We propose a predictor-based NAS method, InvertNAS, which constructs an invertible performance
predictor by combining a graph variational autoencoder (GVAE) (Kipf & Welling, 2016) with an
invertible neural network (INN) (Ardizzone et al., 2018). InvertNAS supports bidirectional mapping
between neural architectures and their performance (as illustrated in Figure 1), enabling both pre-
diction and inverse generation. This design allows us to train the performance predictor and search
strategy jointly in an end-to-end fashion, improving the alignment between prediction and search effi-
ciency. Using unsupervised learning, we train an autoencoder to align neural architectures with their
corresponding latent representations. By interpreting the NAS performance predictor as an encoder,
we map architectures into a latent space, which is then used to predict their accuracies. The invertible
neural network allows us to derive a latent representation by querying a target performance value.
This representation is subsequently passed through the GVAE decoder to generate the corresponding
architecture x. As a result, InvertNAS supports a bidirectional mapping between neural architectures
and their performance. Our approach leverages the invertibility of the model to enable a global search
over the architecture space. This alternative search strategy offers unique advantages and opens new
directions for NAS research. In addition, we introduce a novel sampling strategy for selecting initial
architectures to train the performance predictor. Our method identifies informative and promising
candidates with minimal overhead, providing a more effective alternative to random selection. Our
contributions are summarized as follows:

• Introduce invertible neural networks into NAS for the first time, enabling bidirectional
architecture-performance mapping.

• Propose InvertNAS, which jointly trains a performance predictor and search strategy via an
GVAE-INN framework.

• Propose a sampling strategy that selects informative initial architectures with minimal
overhead, serving as an effective alternative to random selection.
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• Demonstrate that InvertNAS outperforms state-of-the-art (SOTA) methods on NAS-Bench-
201 and NAS-Bench-NLP, and performs comparably on NAS-Bench-101 and NAS-Bench-
301, highlighting its overall effectiveness.

2 RELATED WORKS

Neural architecture search (NAS) is typically formulated as a discrete optimization problem over a
graph-based search space, where nodes represent operations and edges represent connections. When
represented by an operation matrix and an adjacency matrix, this space becomes difficult to optimize
using gradients. Early NAS methods employed discrete encodings and adopted strategies such as
random search (RS) (Li & Talwalkar, 2020), local search (LS) (Den Ottelander et al., 2021; White
et al., 2021b), Bayesian optimization (BO) (Kandasamy et al., 2018), and evolutionary algorithms
(EA) (Real et al., 2019). To address the inefficiency of these methods, differentiable NAS was
proposed. DARTS (Liu et al., 2019), for instance, relaxed the search space into a continuous form
by introducing soft operator selection, enabling gradient-based optimization of both architecture
parameters and model weights. The development of tabular NAS benchmarks, such as NAS-Bench-
101 (Ying et al., 2019) and NAS-Bench-201 (Dong & Yang, 2020), has further accelerated NAS
research by significantly reducing the cost of architecture evaluation. Recent works focus on learning
more effective architectural representations. With the help of graph neural networks (GNNs),
architectures can be embedded into a continuous latent space, facilitating more efficient search.
GA-NAS (Rezaei et al., 2021) leverages reinforcement learning to discover promising patterns,
while AG-Net (Lukasik et al., 2022) iteratively refines architectures using a graph-based decoder.
Delta-NAS (Sridhar & Chen, 2025) introduces a performance-difference predictor and integrates it
into an evolutionary framework to improve sample efficiency. GENNAPE (Mills et al., 2023) and
FLAN (Akhauri & Abdelfattah, 2024) improve the encoding quality, although they do not emphasize
search strategies. CR-LSO (Rao et al., 2022) embeds the discrete space into a convex latent space
to enable gradient-based optimization. Diffusion-based approaches (An et al., 2023; Asthana et al.,
2024) have also shown strong performance, with DiNAS (Asthana et al., 2024) achieving competitive
results across multiple benchmarks (state of the art). In contrast to prior work, we reformulate NAS
as an inverse learning problem, where architecture search and performance prediction are unified
within a single framework. Our method leverages invertible neural networks to enable bidirectional
mapping and incorporates a sampling strategy that selects informative initial architectures without
training candidate architectures, thereby improving both efficiency and search quality.

3 METHOD

We interpret the NAS performance predictor as an encoder that maps architectures to accuracy. Under
this view, particularly when only limited sampled data is available, architectures can first be projected
into a latent space and subsequently mapped to their corresponding accuracies. This formulation
enables the use of unsupervised learning to train an autoencoder that aligns neural architectures with
latent representations. In this framework, the encoder of the autoencoder maps architectures into the
latent space, while the decoder reconstructs architectures from the latent representations. We then
introduce an invertible neural network (INN) to model the relationship between the latent space and
accuracy. Unlike conventional models that learn a unidirectional mapping from the latent space to
performance y, the INN allows for bidirectional training: both from latent space to y and from y to
latent space. This bidirectional capability enables the INN to capture a richer and more complete
relationship between latent representations and accuracy. The capabilities of the invertible function
are discussed in Appendix C.

Building on this framework, we propose InvertNAS, which supports both forward prediction and
inverse retrieval, enabling direct navigation of the search space toward high-performing architectures.
The overall workflow is illustrated in Figure 1. The architecture-to-performance prediction process
follows the left-to-right direction in Figure 1. An input architecture is first encoded into a latent
representation via a graph encoder. This latent representation is then processed by N independent
invertible neural networks, each producing a predicted accuracy. The outputs are aggregated using
inverse distance weighting (IDW) (Shepard, 1968) to obtain the final predicted performance. For
further implementation details of IDW, please refer to Appendix D. Conversely, the NAS process is
represented by the right-to-left direction in Figure 1. A target accuracy is used as the input, paired
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with a random vector z. This combination is passed through the inverse of the N INNs to obtain the
corresponding latent representations. These codes are then decoded by a transformer-based decoder
to generate N candidate architectures. The details of each component are described in the following
subsections. Finally, we introduce our proposed sampling strategy for selecting initial architectures
to train the performance predictor before retraining.

3.1 MODEL ARCHITECTURE

Graph Variational Autoencoder (GVAE) Our encoder, which references Arch2Vec (Yan et al.,
2020), employs the Graph Isomorphism Network (GIN) layer (Xu et al., 2018) to construct our graph
encoder. We utilize a five-layer GIN with hidden sizes of 128, 128, 128, 128, 16. The decoder is a
multi-head transformer-based model with positional embedding. It is configured with 3 transformer
blocks, 32 embedding dimensions, and 256 hidden dimensions. Therefore, the dimension of latent
representations is |V | × 16, where 16 is the GIN output channels and |V | is the number of nodes in a
graph G. The transformer decodes the latent representation into two parts: operation and adjacency
matrix. Both parts are treated as classification tasks. The operation task selects the operation types
for each node, while the adjacency matrix task predicts the existence of an edge. Hence, the tensor
shape of operations is (|V |, |OPS|), where |OPS| is the number of candidate operations. The tensor
shape of the adjacency matrix is (|V |, |V |, 2), viewed as a binary classification task.

The objective of the GVAE is to reconstruct the input graph from its latent representation while simul-
taneously learning a meaningful latent space. The objective function for this process is formulated as
the sum of three components: the node classification cross-entropy loss, edge classification cross-
entropy loss, and the Kullback-Leibler (KL) divergence loss. The node classification loss, Lnode,
quantifies the discrepancy between the predicted node labels and the true node labels, encouraging
accurate classification of nodes in the reconstructed graph. Similarly, the edge classification loss,
Ledge, measures the difference between the predicted edge labels and the true edge labels, promoting
precise edge classification in the reconstructed graph. In addition to these reconstruction losses,
the GVAE incorporates the KL divergence loss, LKL, which encourages the learned latent space to
adhere to a prior distribution, typically a multivariate Gaussian distribution. By including this loss
term, the GVAE promotes the learning of a smooth and structured latent space, facilitating meaningful
interpolation and exploration of graph structures during inference. The overall objective function for
the GVAE is defined as:

LGVAE = αgvaeLnode + βgvaeLedge + γgvaeLKL, (1)

where αgvae, βgvae, and γgvae represent the trade-offs for these terms, and we set them to 1.0, 1.0,
and 0.16, respectively, across all experiments. By optimizing this objective function, the GVAE aims
to reconstruct the input graph accurately while simultaneously learning a latent representation that
captures relevant graph properties and enables efficient generation of new graph instances.

Invertible Neural Network (INN) The INN architecture is based on the work presented by
(Ardizzone et al., 2018). We made slight modifications to certain hyperparameters, such as the
number of layers and hidden sizes. We utilize 4 coupling layers and 5 hidden layers with a hidden
size of 256 for our INN. For the aggregated model, we employ multiple INNs and use their mean
squared error (MSE) to perform inverse distance weighting.

The training objectives of the INN include the regression loss, reverse loss, and latent loss. Each
objective serves a distinct purpose during training. The regression MSE loss, denoted as Lreg, is a
supervised loss used to assess the model’s accuracy in predicting the target output. This loss measures
the difference between the predicted output ŷ and the ground truth y, encouraging the INN to reduce
this discrepancy. The reverse MSE loss, denoted as Lrev, is an unsupervised term that ensures the
invertibility of the INN. It evaluates the difference between the original input x and the reconstructed
input x̂, which is obtained by applying the inverse operation of the INN to the predicted output
ŷ. Minimizing this loss encourages the INN to reconstruct the input accurately and to establish a
bijective mapping between the input and output spaces. The latent Maximum Mean Discrepancy
(MMD) loss, denoted as Llatent, is also unsupervised. Its objective is to align the latent variable z
with a prior distribution and to eliminate the dependency between the predicted output ŷ and the
random latent variable z. The overall objective function for training the INN is a weighted sum of
these losses:

LINN = αinnLreg + βinnLrev + γinnLlatent, (2)
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where αinn, βinn, and γinn are the weighting coefficients for each loss term. We set these coefficients
to 5.0, 1.0, and 10.0, respectively, for all initial training for InvertNAS. Optimizing this objective
supports the goals of accurate prediction, invertibility, and disentanglement of the latent space.

During the retraining phase, the loss function in Equation 2 is modified using the rank-based weighting
strategy proposed in AG-Net (Lukasik et al., 2022). This strategy emphasizes architectures with
higher accuracy across the training set. By applying rank-based weights, data samples with higher
accuracy are assigned greater importance, while those with lower accuracy are given less weight. The
loss function used during retraining is defined as follows:

LINN =
1

κ|B|+ rank (xi, B)
· (αinnLforward + βinnLrev) + γinnLlatent,

where rank (xi, B) = |{xj : Acc (xj) > Acc (xi) , xj ∈ B}| ,
for xi ∈ B, i = 1, . . . , |B|

(3)

3.2 SELECTING INITIAL ARCHITECTURES

Ideally, the initial set of architectures should exhibit a distribution that closely approximates that of
high-performing architectures within the search space. However, evaluating all possible architectures
is computationally infeasible. As a result, many existing methods simply sample architectures
randomly from the search space. An alternative strategy is to use zero-cost proxies to select promising
candidates. Although these proxies are more efficient, they often suffer from high estimation errors
and limited generalizability. To address these limitation, we leverage AlignFlow (Grover et al., 2020),
a model shown to be effective in graph-to-graph translation and domain adaptation. A detailed
description of the AlignFlow framework can be found in Appendix E. In our approach, we employ
AlignFlow to connect the reduced and original NAS search spaces by learning a shared latent space
using normalizing flows. This alignment enables smooth and meaningful translation between the
two spaces. Building on this framework, we construct a more effective initial architecture set by
first defining a reduced search space that retains the original adjacency matrix but uses a simplified
set of operations. Within this subspace, we employ the zero-cost proxy to identify promising
candidate architectures. These candidates are then projected back to the full search space via the
latent representation learned by AlignFlow, and any invalid architectures are removed. A detailed
description of the reduced search space is provided in Appendix F.5. This process allows us to
initialize the performance predictor with informative architectures without requiring exhaustive
evaluation or training in the full search space.

3.3 INVERTNAS SEARCHING ALGORITHM

As described in Algorithm 1, during each iteration of the search process, we first generate candidate
architectures by sampling vectors z from a normal distribution with standard deviation std. The
inverse path of the InvertNAS model is then used to decode these latent vectors into architectures g.
Any decoded architecture that already exists in the labeled set Avisit is discarded, and new candidates
are accumulated into the set Gcand. If no new architecture is found, the standard deviation std is
gradually increased to introduce more variation in the latent space and improve exploration. This retry
process is repeated until either the number of retries exceeds Rmax or at least 100 new candidates are
collected. Next, the forward path of the model predicts the performance of all candidates in Gcand.
This prediction process does not necessitate the utilization of the query budget. Subsequently, we
choose the top-k architectures to query their actual performances. Their true performance is then
evaluated, which consumes part of the query budget b. These evaluated architectures are added to
the labeled set Avisit. After each iteration, the model is retrained using the updated labeled set for e
epochs. The search process continues until the query budget is exhausted. Finally, the architecture in
Avisit with the highest accuracy is returned.
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Algorithm 1: InvertNAS Search Process
Input: InvertNAS model Model, query budget b, retrain epochs e, labeled set Avisit, max retries

Rmax

1 while |Avisit| < b do
2 Gcand ← ∅, std← 0, retry ← 0
3 while retry < Rmax or |Gcand| < 100 do
4 Sample z ∼ N(0, std)
5 g ←Model.inverse(1.0, z)
6 Atemp ← g −Avisit

7 if |Atemp| = 0 then
8 std← std+ τ

9 Gcand ← Gcand ∪Atemp

10 retry ← retry + 1

11 Select top-k from Model.predict(Gcand)
12 Avisit ← Avisit ∪ eval(Gcand)
13 Retrain Model on Avisit for e epochs
14 return Architecture in Avisit with highest accuracy

4 EXPERIMENTS

We evaluate InvertNAS and perform ablation studies on the initial sampling strategy. Our implemen-
tation uses an ensemble of 10 INNs, and we compare it with a variant using a single INN to analyze
the benefits of ensemble modeling. The implementation is built using TensorFlow (Abadi et al.,
2015) and Spektral (Grattarola & Alippi, 2021) for model construction and graph neural network
(GNN) operations. We also partially incorporate code from Mehta et al. (2022); Yan et al. (2021);
Ardizzone et al. (2018); Gracheva (2025) to facilitate experimental setup and evaluation. We evaluate
our approach on two widely used tabular benchmarks, NAS-Bench-101 (NB101) and NAS-Bench-
201 (NB201), as well as the surrogate benchmark NAS-Bench-301 (NB301) and NAS-Bench-NLP
(NBNLP). The details of the datasets are listed in Appendix F. All experiments are conducted over
10 independent trials, and the mean results are reported. We adopt BANANAS (White et al., 2021a),
random search (RS) (Li & Talwalkar, 2020), local search (LS) (White et al., 2021b), and regularized
evolution (RE) (Real et al., 2019) as comparison methods. The results of other NAS algorithms are
taken directly from their original publications. Methods marked with ‡ indicate results reported in the
corresponding papers, while those marked with † refer to results reported in Lukasik et al. (2022). An
asterisk (∗) denotes the optimal-performing method. The hyperparameters used in our experiments
are listed in Appendix H.

4.1 EXPERIMENTAL RESULTS

NAS-Bench-101 Table 1 presents a comparison of InvertNAS and existing NAS algorithms on the
NB101 benchmark. Overall, InvertNAS demonstrates strong and consistent performance, surpassing
prior baselines such as BANANASWhite et al. (2021a), RS, LS, and RE in both validation and test
accuracy. The single-INN variant, InvertNAS (single), achieves a validation accuracy of 95.01%
and a test accuracy of 94.21%, outperforming most existing methods using 192 queries. The full
InvertNAS model further improves performance, reaching the optimal validation accuracy of 95.06%
and a test accuracy of 94.23%, which is the second highest test accuracy in NB101. Compared to
DiNAS, which reports a validation accuracy of 94.98% and a test accuracy of 94.27% with 150
queries, InvertNAS achieves slightly higher validation accuracy and comparable test accuracy, while
demonstrating substantially improved stability across runs. Although the test accuracy of InvertNAS
is marginally lower, its zero standard deviation indicates significantly higher reliability, compared to
the 0.20% reported for DiNAS.

NAS-Bench-201 Table 2 compares InvertNAS with various baseline and SOTA NAS algorithms
on NB201 across CIFAR-10, CIFAR-100, and ImageNet16-120. Overall, InvertNAS demonstrates
strong and consistent performance, matching or surpassing leading methods such as BANANAS, AG-
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Table 1: Comparison of NAS algorithms on NB101.

Method Val. Acc (%) Val. StD (%) Test Acc (%) Test StD (%) Queries

Optimal 95.06 - 94.32 - -
BANANAS† 94.73 0.14 94.09 0.19 192
RS† 94.31 0.15 93.61 0.27 192
LS† 94.57 0.15 93.97 0.13 192
RE† 94.47 0.11 93.89 0.20 192
AG-Net† 94.90 0.22 94.18 0.10 192
DiNAS‡ 94.98 0.17 94.27 0.20 150
InvertNAS (single) 95.01 0.09 94.21 0.04 192
InvertNAS 95.06* 0.00 94.23 0.00 150

Table 2: Comparison of NAS algorithms on NB201.

Method CIFAR-10 CIFAR-100 ImageNet16-120 QueriesVal. Acc Test Acc Val. Acc Test Acc Val. Acc Test Acc

Optimal 91.61 94.37 73.49 73.51 46.73 47.31 -
β-DARTS‡ 91.55 94.36 73.49* 73.51* 46.37 46.34 -
BANANAS 91.55 94.26 73.49* 73.51* 46.68 46.49 192
RS 91.27 94.02 72.12 72.31 45.67 46.08 192
LS 91.53 94.31 72.28 73.25 45.44 46.77 192
RE 91.48 94.94 72.86 72.98 46.04 46.43 192
AG-Net† 91.60 94.37* 73.49* 73.51* 46.64 46.43 192
Shaply-NAS‡ 91.61* 94.37* 73.49* 73.51* 46.57 46.85 200
DiNAS‡ 91.61* 94.37* 73.49* 73.51* 46.66 45.41 192
InvertNAS
(single) 91.61* 94.37* 73.49* 73.51* 46.51 46.84 192
InvertNAS 91.61* 94.37* 73.49* 73.51* 46.70 47.18 192

Net, Shaply-NAS (Xiao et al., 2022), and DiNAS. The single-INN variant of InvertNAS successfully
identifies the globally optimal architectures on CIFAR-10 and CIFAR-100. On ImageNet16-120,
which is considered a more challenging dataset, InvertNAS achieves better performance than BA-
NANAS, DiNAS, and Shaply-NAS. The full InvertNAS model obtains the highest validation and test
accuracy among all compared methods, reaching 46.70% and 47.18% respectively. These results are
achieved using only 192 queries, demonstrating the effectiveness and query efficiency of our method.
Moreover, InvertNAS is able to discover the optimal architectures on CIFAR-10 and CIFAR-100 with
as few as 150 queries.

NAS-Bench-301 and NAS-Bench-NLP Table 3 presents the performance of InvertNAS on NB301
and NBNLP. Compared with baseline methods such as BANANAS, RS, BO (Kandasamy et al.,
2018), and RE, as well as advanced methods including AG-Net and DiNAS, InvertNAS achieves
the highest validation accuracy. For NB301, both the single-INN and full-model variants reach
94.94%. Although InvertNAS uses 150 queries, compared to 100 queries in DiNAS, its performance
demonstrates that it can attain SOTA accuracy with a modest increase in query cost. On the NBNLP,
InvertNAS sets a new SOTA result, reaching 96.21% accuracy, which is 0.15% higher than DiNAS.
Additionally, our method has the lowest standard deviation among all compared methods.

Summary of Experimental Results Across NB101, NB201, NB301, and NBNLP, InvertNAS
consistently demonstrates SOTA performance with competitive query efficiency. It matches or
surpasses leading methods such as DiNAS and AG-Net in terms of validation and test accuracy, while
also exhibiting strong robustness with low or zero performance variance. InvertNAS performs reliably
across diverse search spaces and datasets, consistently identifying high-performing architectures
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Table 3: Comparison of NAS algorithms on NB301 and NBNLP

NB301 NBNLP

Method Val. Acc (%) Std (%) Queries Val. Acc (%) Std (%) Queries

BANANAS† 94.77 0.10 192 95.68 0.16 304
RS† 94.31 0.12 192 95.64 0.19 304
BO† 94.71 0.10 192 - - -
RE† 94.75 0.11 192 95.66 0.21 304
AG-Net† 94.79 0.12 192 95.86 0.18 304
DiNAS‡ 94.92 0.07 100 96.06 0.17 304
InvertNAS (single) 94.94 0.02 150 - - -
InvertNAS 94.94 0.01 150 96.21 0.10 304

under moderate query budgets. These results affirm the practical utility of InvertNAS as a general
and effective solution for neural architecture search.

4.2 ABLATION STUDIES ON INITIAL SAMPLING STRATEGY

To evaluate the effectiveness of our proposed initial sampling strategy, we compare it against two
alternative baselines by replacing our method in the initial selection phase. The experiments are
conducted on three NAS benchmarks: NB101, NB201, NB301 and NBNLP, and the results are
summarized in Table 4. The first baseline applies a zero-cost proxy, to rank candidate architectures
within the target search space, selecting the top-ranked ones. For NB101 and NB201, where the search
spaces are relatively small, the proxy is applied to all architectures. For NB301, we randomly sampled
100,000 architectures due to its significantly larger search space and then ranked them using a proxy.
For NBNLP, we sampled 200,000 architectures instead. The second baseline adopts uniform random
sampling without any proxy guidance. To assess the quality of the selected architectures, we compare
their distribution against that of top-performing architectures in the search space. Specifically, we
define an ideal distribution by selecting the top 1%, 3%, and 5% of architectures ranked by validation
accuracy. We then apply kernel density estimation (KDE) to estimate the rank distributions of the
sampled architectures and calculate the Kullback–Leibler (KL) divergence between each sampling
strategy and the ideal distribution. Lower KL values indicate a closer alignment with the distribution
of high-performing architectures. As shown in Table 4, our proposed method, denoted as AlignFlow,
consistently achieves the lowest KL divergence across all settings. This indicates that the architectures
selected by AlignFlow are more closely aligned with the distribution of optimal architectures. In
contrast, the zero-cost proxy and random selection strategies exhibit larger KL divergence values,
reflecting greater deviation from the ideal distribution. These results suggest that our proposed strategy
is more effective in identifying informative initial architectures, which likely benefits subsequent
performance prediction. While the zero-cost proxy method offers a fast estimation, it is susceptible
to noise, which can degrade the quality of the selected samples. The random sampling method
performs the worst, as expected, due to the lack of any search guidance. Overall, the observed KL
divergence values provide strong empirical support for the effectiveness of our sampling strategy in
approximating the distribution of optimal regions in the search space.

We conducted additional ablation studies on hyperparameters, including the number of INNs and
different ensemble methods. The results are presented in Appendix J and Appendix K, respectively.

5 CONCLUSION

We propose InvertNAS, a novel predictor-based NAS framework that reformulates neural architecture
search as an inverse problem of performance prediction. By integrating invertible neural networks
with a graph-based autoencoder, our method enables a bidirectional mapping between architectures
and their predicted performance. This design allows for end-to-end joint training of the performance
predictor and search strategy, improving the overall alignment between architecture evaluation and
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Table 4: KL with different sampling strategies with InvertNAS.
NB101 Val. Acc Test Acc KL KL KL
CIFAR-10 (%) (%) (1%) (3%) (5%)

alignflow 95.06 94.23 0.000107 0.000074 0.000062
zc 95.06 94.23 0.001460 0.002388 0.001392
random 94.87 94.17 0.003040 0.001984 0.001916

NB201 Val. Acc Test Acc KL KL KL
CIFAR-10 (%) (%) (1%) (3%) (5%)

alignflow 91.61 94.37 0.000480 0.000704 0.000312
zc 91.61 94.37 0.001438 0.001654 0.001339
random 91.55 94.32 0.085604 0.052934 0.055364

NB201 Val. Acc Test Acc KL KL KL
CIFAR-100 (%) (%) (1%) (3%) (5%)

alignflow 73.49 73.51 0.001796 0.000876 0.000704
zc 73.49 73.51 0.007344 0.006179 0.005385
random 73.49 73.51 0.023032 0.021633 0.065222

NB201 Val. Acc Test Acc KL KL KL
imagenet16 (%) (%) (1%) (3%) (5%)

alignflow 46.70 47.18 0.002247 0.001740 0.000844
zc 46.68 47.08 0.005997 0.005260 0.019844
random 46.65 47.13 0.025670 0.036503 0.068861

NB301 Val. Acc Test Acc KL KL KL
CIFAR-10 (%) (%) (1%) (3%) (5%)

alignflow 94.94 - 0.000034 0.000022 0.000020
zc 94.80 - 0.000053 0.000031 0.000023
random 94.73 - 0.000762 0.000488 0.000357

NBNLP Val. Acc Test Acc KL KL KL
PTB (%) (%) (1%) (3%) (5%)

alignflow 96.21 - 0.000038 0.000019 0.000014
zc 96.15 - 0.000038 0.000019 0.000014
random 96.11 - 0.000123 0.000087 0.000076

exploration. We further introduce an efficient sampling strategy that selects informative initial
architectures without requiring candidate training. Experimental results on NB101, NB201, NB301
and NBNLP demonstrate that InvertNAS achieves competitive or superior performance compared
to SOTA methods, while maintaining high query efficiency and robustness. Especially, InvertNAS
achieved a new SOTA on NBNLP. These findings highlight the potential of invertible models for
enabling globally informed architecture generation and suggest a promising direction for future NAS
research. In particular, extending this inverse formulation to broader search spaces, multi-objective
settings, or hardware-constrained environments may further enhance the generalizability and impact
of the proposed approach.

9
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generation with conditional invertible neural networks. arXiv preprint arXiv:1907.02392, 2019.

Rohan Asthana, Joschua Conrad, Youssef Dawoud, Maurits Ortmanns, and Vasileios Belagian-
nis. Multi-conditioned graph diffusion for neural architecture search. Transactions on Machine
Learning Research, 2024. ISSN 2835-8856.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding
and simplifying one-shot architecture search. In Jennifer Dy and Andreas Krause (eds.), Proceed-
ings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pp. 550–559. PMLR, 10–15 Jul 2018.

Tom Den Ottelander, Arkadiy Dushatskiy, Marco Virgolin, and Peter AN Bosman. Local search
is a remarkably strong baseline for neural architecture search. In Evolutionary Multi-Criterion
Optimization: 11th International Conference, EMO 2021, Shenzhen, China, March 28–31, 2021,
Proceedings 11, pp. 465–479. Springer, 2021.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations (ICLR), 2020. URL https:
//openreview.net/forum?id=HJxyZkBKDr.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, jan 2019. ISSN 1532-4435.

E. Gracheva. Neural architecture search: two constant shared weights initialisations. Artificial
Intelligence Review, 58(296), 2025. ISSN 1573-7462. doi: 10.1007/s10462-025-11238-2. URL
https://doi.org/10.1007/s10462-025-11238-2.

Daniele Grattarola and Cesare Alippi. Graph neural networks in tensorflow and keras with spektral
[application notes]. Comp. Intell. Mag., 16(1):99–106, feb 2021. ISSN 1556-603X. doi: 10.1109/
MCI.2020.3039072. URL https://doi.org/10.1109/MCI.2020.3039072.

Aditya Grover, Christopher Chute, Rui Shu, Zhangjie Cao, and Stefano Ermon. Alignflow: Cycle
consistent learning from multiple domains via normalizing flows. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(04):4028–4035, Apr. 2020. doi: 10.1609/aaai.v34i04.5820.
URL https://ojs.aaai.org/index.php/AAAI/article/view/5820.

10

https://www.tensorflow.org/
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
https://doi.org/10.1007/s10462-025-11238-2
https://doi.org/10.1109/MCI.2020.3039072
https://ojs.aaai.org/index.php/AAAI/article/view/5820


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kun Jing, Jungang Xu, and Pengfei Li. Graph masked autoencoder enhanced predictor for neural
architecture search. In Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI-22, pp. 3114–3120, 2022.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with bayesian optimisation and optimal transport. Advances in neural
information processing systems, 31, 2018.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. In NIPS Workshop on Bayesian
Deep Learning, 2016.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
Uncertainty in artificial intelligence, pp. 367–377. PMLR, 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. In 7th
International Conference on Learning Representations, ICLR, 2019.

Jovita Lukasik, David Friede, Arber Zela, Frank Hutter, and Margret Keuper. Smooth variational
graph embeddings for efficient neural architecture search. In 2021 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

Jovita Lukasik, Steffen Jung, and Margret Keuper. Learning where to look–generative nas is
surprisingly efficient. In European Conference on Computer Vision, pp. 257–273. Springer, 2022.

Yash Mehta, Colin White, Arber Zela, Arjun Krishnakumar, Guri Zabergja, Shakiba Moradian,
Mahmoud Safari, Kaicheng Yu, and Frank Hutter. NAS-bench-suite: NAS evaluation is (now)
surprisingly easy. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=0DLwqQLmqV.

Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural architecture search without
training. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 7588–7598.
PMLR, 18–24 Jul 2021.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm
language models. ICLR, 2018.

Keith G. Mills, Fred X. Han, Jialin Zhang, Fabian Chudak, Ali Safari Mamaghani, Mohammad
Salameh, Wei Lu, Shangling Jui, and Di Niu. Gennape: Towards generalized neural architecture
performance estimators. In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

Xuan Rao, Bo Zhao, Xiaosong Yi, and Derong Liu. Cr-lso: Convex neural architecture optimization
in the latent space of graph variational autoencoder with input convex neural networks. arXiv
preprint arXiv:2211.05950, 2022.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. In Proceedings of the Thirty-Third AAAI Conference on Artificial
Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19.
AAAI Press, 2019. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33014780.

Seyed Saeed Changiz Rezaei, Fred X Han, Di Niu, Mohammad Salameh, Keith Mills, Shuo Lian,
Wei Lu, and Shangling Jui. Generative adversarial neural architecture search. arXiv preprint
arXiv:2105.09356, 2021.

Donald Shepard. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings
of the 1968 23rd ACM National Conference, ACM ’68, pp. 517–524, New York, NY, USA, 1968.
Association for Computing Machinery. ISBN 9781450374866. doi: 10.1145/800186.810616.
URL https://doi.org/10.1145/800186.810616.

Arjun Sridhar and Yiran Chen. Delta-NAS: Difference of Architecture Encoding for Predictor-Based
Evolutionary Neural Architecture Search . In 2025 IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), pp. 7857–7865, Los Alamitos, CA, USA, 2025. IEEE Computer
Society. doi: 10.1109/WACV61041.2025.00763.

11

https://openreview.net/forum?id=0DLwqQLmqV
https://openreview.net/forum?id=0DLwqQLmqV
https://doi.org/10.1145/800186.810616


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Esteban G. Tabak and Cristina V. Turner. A family of nonparametric density estimation algorithms.
Communications on Pure and Applied Mathematics, 66(2):145–164, 2013. doi: 10.1002/cpa.21423.

Esteban G. Tabak, Eric Vanden-Eijnden, et al. Density estimation by dual ascent of the log-likelihood.
Communications in Mathematical Sciences, 8(1):217–233, 2010.

Brian L. Trippe and Richard E. Turner. Conditional density estimation with bayesian normalising
flows. arXiv preprint arXiv:1802.04908, 2018.

Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan Kindermans. Neural
predictor for neural architecture search. In European Conference on computer vision, pp. 660–676.
Springer, 2020.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(12):10293–10301, May 2021a. doi: 10.1609/aaai.v35i12.17233. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/17233.

Colin White, Sam Nolen, and Yash Savani. Exploring the loss landscape in neural architecture search.
In Uncertainty in Artificial Intelligence, pp. 654–664. PMLR, 2021b.

Junru Wu, Xiyang Dai, Dongdong Chen, Yinpeng Chen, Mengchen Liu, Ye Yu, Zhangyang Wang,
Zicheng Liu, Mei Chen, and Lu Yuan. Stronger nas with weaker predictors. Advances in Neural
Information Processing Systems, 34:28904–28918, 2021.

Han Xiao, Ziwei Wang, Zheng Zhu, Jie Zhou, and Jiwen Lu. Shapley-nas: discovering operation
contribution for neural architecture search. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11892–11901, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Tomomasa Yamasaki, Zhehui Wang, Tao Luo, Niangjun Chen, and Bo Wang. Rbflex-nas: Training-
free neural architecture search using radial basis function kernel and hyperparameter detection.
IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15, 2025. doi: 10.1109/
TNNLS.2025.3552693.

Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang. Does unsupervised architecture representa-
tion learning help neural architecture search? Advances in neural information processing systems,
33:12486–12498, 2020.

Shen Yan, Colin White, Yash Savani, and Frank Hutter. Nas-bench-x11 and the power of learning
curves. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In International conference on
machine learning, pp. 7105–7114. PMLR, 2019.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In 5th
International Conference on Learning Representations, ICLR, 2017.

A LIMITATIONS AND BROADER IMPACTS

A.1 LIMITATIONS

We did not perform hyperparameter tuning for InvertNAS due to computational constraints. Given
the unsupervised nature of GVAE and AlignFlow, each component was trained once and reused as a
pretrained model in our experiments. While various implementations of invertible neural networks
exist, we adopt a representative variant to demonstrate the applicability of INNs to the NAS problem.
Our evaluation focuses on NAS-Bench-101, NAS-Bench-201, NAS-Bench-301, and NAS-Bench-
NLP. Although additional NAS constraints such as inference time and parameter count were not
considered in our current experiments, the invertible structure of INNs allows the predictor to be
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naturally extended to incorporate such constraints. This can be achieved by jointly predicting relevant
metrics, such as inference time and parameter size, and by padding the latent vector with a random
variable z at designated positions. Extending InvertNAS in this direction is left for future work.

A.2 BROADER IMPACTS

We propose InvertNAS, which, as discussed in the contributions of the introduction, redefines the NAS
problem from a new perspective. InvertNAS formulates NAS as the inverse problem of performance
prediction, providing a novel theoretical framework that enables the joint consideration of the search
strategy and performance estimation strategy. This formulation offers a promising new direction for
future NAS research, both in theory and methodology.

Our work may also inspire future studies to extend the concept of invertible neural networks (INNs)
to broader areas in automated machine learning (AutoML) and generative design problems. If
InvertNAS can identify high-performing architectures with only a small number of queries, it will
advance NAS towards a low-cost, high-efficiency paradigm. This not only lowers the barrier to entry,
making NAS more accessible to resource-constrained research environments, but also contributes to
reducing resource consumption and carbon emissions.

B LICENSE FOR DATASETS AND CODES

We provide a summary of the licenses for all datasets and codebases used in our work in Ta-
ble 5. The invertible neural network (INN) layer was adapted from the implementation available at
https://github.com/jaekookang/invertible neural networks. At the time of
writing, the license information for both the INN, epsinas codebase and AlignFlow was not publicly
disclosed.

Table 5: License information for assets
Asset License
NB101 Apache License 2.0
NB201 MIT License
NB301 Apache License 2.0
nas-bench-x11 Apache License 2.0
NASLib Apache License 2.0
Alignflow Not Found
INN Not Found
epsinas Not Found

C IMPLEMENTATION AND EQUATIONS OF INN LAYERS

Invertible Neural Networks (INNs) (Ardizzone et al., 2018; 2019) are designed to establish a reversible
mapping between inputs and outputs, enabling both forward and inverse transformations. The model
architecture ensures bijectivity, a one-to-one correspondence between inputs and outputs, which
is critical for applications requiring inference in both directions. This is achieved by constructing
the network using a series of invertible transformations, commonly known as normalizing flows
(Tabak et al., 2010; Tabak & Turner, 2013; Trippe & Turner, 2018), which transform a simple base
distribution, typically a standard Gaussian, into a complex target distribution. The core building block
of an INN is the coupling layer, which operates by splitting the input vector x into two equally sized
parts: x = [x1, x2]. The output is then computed by applying a sequence of learned transformations
to each sub-vector. These transformations are defined through the following forward and backward
equations:

y1 = x1 ⊙ exp(s2(x2)) + t2(x2), y2 = x2 ⊙ exp(s1(y1)) + t1(y1), (4)

x2 = (y2 − t1(y1))⊙ exp(−s1(y1)), x1 = (y1 − t2(x2))⊙ exp(−s2(x2)). (5)
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Here, x1, x2, y1, y2 are vectors of equal dimension, and ⊙ denotes element-wise multiplication. The
transformation functions s1(), s2(), t1(), t2() can be arbitrary neural networks and do not need to be
invertible themselves.

During the forward pass, the input x is split into x1 and x2 to compute the outputs y1 and y2 via
Equation 4. The final output vector is then formed as y = [y1, y2]. Conversely, during the inverse
pass, y is decomposed back into y1 and y2, and the original input x = [x1, x2] is recovered using
Equation 5.

Because the forward and inverse computations require the input and output vectors to have identical
dimensions, a latent vector z sampled from a standard normal distribution is often concatenated to
the output: y′ = [y, z]. This augmentation preserves dimensional consistency and allows the model
to encode information that may be lost in the transformation. The variable z can also be interpreted
as capturing uncertainty or stochastic variations in the mapping. The forward and inverse mappings
within the i-th INN layer can be written more explicitly as:

yi = [yi1, yi2]

= f(xi)

= f([xi1, xi2])

= [xi1 ⊙ esi2(xi2) + ti2(xi2),

xi2 ⊙ esi1(xi1⊙esi2(xi2)+ti2(xi2)) + ti1(xi1 ⊙ esi2(xi2) + ti2(xi2))]

(6)

xi = [xi1, xi2]

= f−1(yi)

= f−1([yi1, yi2])

= [(yi1 − ti2((yi2 − ti1(yi1))⊙ e−si1(yi1)))⊙ e−si2((yi2−ti1(yi1))⊙e−si1(yi1)),

(yi2 − ti1(yi1))⊙ e−si1(yi1)]

(7)

where xi1, xi2 and yi1, yi2 denote the partitioned components at the i-th layer. The same transforma-
tion functions si1(), si2(), ti1(), ti2() are shared between the forward and inverse passes, ensuring
consistency across both directions of the mapping. By stacking multiple INN layers and optimizing
them using suitable loss functions—such as regression loss, inverse consistency loss, and latent
regularization—the model can effectively learn bidirectional mappings. This makes INNs particularly
suitable for tasks that require both generation and inversion capabilities. To the best of our knowledge,
this is the first work that applies INNs to the neural architecture search problem.

D INVERSE DISTANCE WEIGHT (IDW)

The inverse distance weighting (IDW) method (Shepard, 1968) improves ensemble prediction by
assigning higher weights to more accurate predictors. Predictors with outputs closer to the target
receive greater weights, while those with larger errors are downweighted. We implement IDW using
a basic weighting function, where the mean squared error (MSE) serves as the distance metric. The
final prediction ŷ is computed as:

ŷ =

∑N
i=1 wiyi∑N
i=1 wi

, where wi =
1

MSEi + ε
(8)

Here, MSEi denotes the mean squared error between the i-th predictor’s output yi and the ground
truth, and ε is a small constant (set to 10−8) for numerical stability.

E DETAILS OF ALIGNFLOW FRAMEWORK

AlignFlow (Grover et al., 2020) is a generative adversarial network (GAN) framework designed
to utilize data from multiple domains for tasks such as cross-domain translation and unsupervised
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domain adaptation. Its core idea is to model each domain using a separate normalizing flow, which
allows for flexible and expressive density estimation. A central feature of AlignFlow is the ability to
learn a shared latent representation Z across domains. This shared space enables exact inference and
consistent alignment between domain-specific distributions. To perform cross-domain translation,
AlignFlow defines invertible mappings between each domain and the latent space. For example,
given domains A and B, the mappings GZ→A, GZ→B , and their inverses are constructed such that
the transformation from domain A to domain B can be expressed as a composition: GA→B =
GZ→B ◦GA→Z .

AlignFlow guarantees marginal consistency between domains under a wide range of training objec-
tives. Its invertible structure also ensures exact cycle consistency, meaning that a sample translated
from a source domain to a target domain and then back will perfectly reconstruct the original input.
During inference, a source sample is projected into the latent space and decoded into the target
domain. The shared latent space supports both conditional and unconditional generation, and also
allows for smooth interpolation between domains. In our work, we leverage AlignFlow to transfer
from a reduced architecture search space to a more complex target space. This facilitates efficient
initialization of candidate architectures in neural architecture search (NAS), leading to improved
diversity and sampling quality.

F DETAILED SEARCH SPACE DESCRIPTIONS

F.1 NAS-BENCH-101

NAS-Bench-101 is a public dataset that holds performance details of 423,624 different convolutional
neural network (CNN) structures. It is created by fully training and testing these structures on the
CIFAR-10 image classification task. The goal of NAS-Bench-101 is to give researchers a common
platform to fairly compare different NAS algorithms and understand what they’re good and bad at. It
uses a method called operation-on-nodes. The space of a cell includes all possible operations on V
nodes, with the first and last nodes marked as operation INPUT and OUTPUT. They are the input and
output tensors to the cell. Each node carries one of L labels. The amount of labeled Directed Acyclic
Graphs (DAGs) will increase quickly with both V and L. To keep the size of the space down, some
limits are set: there are three kinds of operations (1x1 convolution, 3x3 convolution, 3x3 max-pool),
the maximum number of nodes is seven, and the most edges allowed is nine. The

F.2 NAS-BENCH-201

NAS-Bench-201 constitutes a dataset incorporating 15,625 potential configurations of neural cells.
These architectures have undergone training and evaluation across three distinct image classification
tasks, including CIFAR-10, CIFAR-100, and ImageNet-16-120. Drawing parallels with NAS-Bench-
101, it constructs its search space employing cells. However, the distinctive feature of NAS-Bench-201
lies in its operation-on-edges mechanism, diverging from the approach in NAS-Bench-101. Each
cell is depicted as a DAG composed of four nodes and six edges. The predefined set encompasses
five operations, including 1x1 and 3x3 convolutions, 3x3 average pooling, zero operation, and skip
connections. Additionally, it provides comprehensive data such as training duration and pertinent
metadata for each epoch of every architecture, thereby serving as a valuable resource for researchers
in the field of NAS. In the context of our experiments, we have introduced modifications to transform
the DAG from an operation-on-edges format into an operation-on-nodes format, thereby ensuring
that the data format is consistent with NAS-Bench-101.

F.3 NAS-BENCH-301

The DARTS search space comprises over 1018 architectures, making tabular benchmarks like NAS-
Bench-101 impractical. NAS-Bench-301 addresses this by providing a surrogate benchmark for NAS
on CIFAR-10, using a model trained on 60k sampled architectures and their validation accuracies.
Each architecture consists of eight stacked cells. The k-th cell takes as input the outputs of cells k−2
and k−1, with 1× 1 convolutions applied as needed for dimension matching. The space defines two
cell types: normal and reduction. Reduction cells, placed at one-third and two-thirds of the network
depth, use stride-two operations to reduce spatial resolution. All normal (or reduction) cells share a
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common architecture. Each cell contains seven nodes. The first two receive inputs from preceding
cells; the remaining four are intermediate nodes. Outputs from intermediate nodes are concatenated
along the depth dimension. Edges between nodes are assigned one of seven operations: separable
conv 3× 3, separable conv 5× 5, dilated separable conv 3× 3, dilated separable conv 5× 5, max
pool 3× 3, avg pool 3× 3, and skip connection.

F.4 NAS-BENCH-NLP

The search space for NAS-Bench-NLP focuses on recurrent neural network architectures. The
macro-level architecture is the same as AWD-LSTM (Merity et al., 2018), and the cell structure is
defined as follows: the operations for each node include linear transformations, element-wise blend-
ing/product/sum, and activation functions such as tanh, Sigmoid, and LeakyReLU. The maximum
number of nodes is 24, with a maximum of 3 hidden states and a maximum of 3 linear input vectors.
The NAS-Bench-NLP model is trained on the Penn Tree Bank (PTB) dataset. There are a total of
1053 architectures in the defined search space. Since the original NAS-Bench-NLP dataset is a tabular
dataset containing only a subset of the search space defined in the NAS-Bench-NLP paper, we opted
to use the surrogate version of NAS-Bench-NLP from NAS-Bench-x11 (Yan et al., 2021). While the
official metric for NAS-Bench-NLP is perplexity, we will use the term accuracy for convenience.

F.5 REDUCED SEARCH SPACE

In our proposed initial sampling strategy for training the InvertNAS, we define the reduced search
space for NB101, NB201, and NB301. For NB101 and NB201, we removed the 3x3 convolution
operation. For NB301, we removed the separable 3x3 and 5x5 convolution operations, while for
NBNLP, the element-wise sum operation was removed. We use NWOT (Mellor et al., 2021) as the
zero shot proxy for NB101, NB201 and NB301. We use epsinas (Gracheva, 2025) as the zero shot
proxy for NBNLP.

G DETAILED EVALUATION RESULTS FOR INVERTNAS

Table 6 presents the evaluation results of our proposed InvertNAS method. The variant labeled as
single refers to InvertNAS using only a single invertible neural network (INN), while InvertNAS
denotes the use of an ensemble of ten INNs. Each result is reported as the mean and standard
deviation over ten independent runs. The columns Val. Acc and Test Acc represent the accuracy
on the validation and test sets, respectively, while Std denotes the corresponding standard deviation.
Compared to the single-INN version, InvertNAS with multiple INNs exhibits a clear reduction in
standard deviation, indicating improved stability. Additionally, there is a slight improvement in the
average accuracy across most benchmarks.

Table 6: Performance evaluations of InvertNAS
Dataset Method Val. Acc Val. Std Test Acc Test Std Queries
NB101 single 0.9501 0.0916 0.9421 0.0466 192
NB201 Cifar10 single 0.9161 0.0000 0.9437 0.0000 150
NB201 Cifar100 single 0.7349 0.0000 0.7351 0.0000 150
NB201 ImageNet16 single 0.4651 0.0012 0.4684 0.0019 192
NB301 single 0.9494 0.0002 - - 150

NB101 InvertNAS 0.9506 0.0000 0.9423 0.0000 150
NB201 Cifar10 InvertNAS 0.9161 0.0000 0.9437 0.0000 150
NB201 Cifar100 InvertNAS 0.7349 0.0000 0.7351 0.0000 150
NB201 ImageNet16 InvertNAS 0.4670 0.0006 0.4718 0.0028 192
NB301 InvertNAS 0.9494 0.0001 - - 150
NBNLP InvertNAS 0.9621 0.0010 - - 304

Following is the comparison of NAS Algorithms on NB201 with Accuracy and Standard Deviation.
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Table 7: Comparison of NAS algorithms on NB201 (CIFAR-10) with accuracy and standard deviation.
Method Val. Acc (%) Val. Std (%) Test Acc (%) Test Std (%) Queries

Optimal 91.61 0.00 94.37 0.00 -
β-DARTS† 91.55 0.00 94.36 0.00 -
BANANAS 91.55 0.15 94.26 0.22 192
RS 91.27 0.23 94.02 0.21 192
LS 91.53 0.15 94.31 0.15 192
RE 91.48 0.13 94.94 0.21 192
AG-Net† 91.60 0.02 94.37* 0.00 192
Shaply-NAS† 91.61* 0.00 94.37* 0.00 200
DiNAS† 91.61* 0.00 94.37* 0.18 192
InvertNAS (single) 91.61* 0.00 94.37* 0.00 192
InvertNAS 91.61* 0.00 94.37* 0.00 192

Table 8: Comparison of NAS algorithms on NB201 (CIFAR-100) with accuracy and standard
deviation.

Method Val. Acc (%) Val. Std (%) Test Acc (%) Test Std (%) Queries

Optimal 73.49 0.00 73.51 0.00 -
β-DARTS† 73.49* 0.00 73.51* 0.00 -
BANANAS 73.49* 0.00 73.51* 0.00 192
RS 72.12 0.90 72.31 0.92 192
LS 72.28 0.52 73.25 0.58 192
RE 72.86 0.83 72.98 0.79 192
AG-Net† 73.49* 0.00 73.51* 0.00 192
Shaply-NAS† 73.49* 0.00 73.51* 0.00 200
DiNAS† 73.49* 0.00 73.51* 0.00 192
InvertNAS (single) 73.49* 0.00 73.51* 0.00 192
InvertNAS 73.49* 0.00 73.51* 0.00 192

Table 9: Comparison of NAS algorithms on NB201 (ImageNet16-120) with accuracy and standard
deviation.

Method Val. Acc (%) Val. Std (%) Test Acc (%) Test Std (%) Queries

Optimal 46.73 0.00 47.31 0.00 -
β-DARTS† 46.37 0.00 46.34 0.00 -
BANANAS 46.68 0.09 46.49 0.42 192
RS 45.67 0.52 46.08 0.60 192
LS 45.44 0.18 46.77 0.25 192
RE 46.04 0.54 46.43 0.38 192
AG-Net† 46.64 0.12 46.43 0.34 192
Shaply-NAS† 46.57 0.08 46.85 0.12 200
DiNAS† 46.66 0.09 45.41 0.59 192
InvertNAS (single) 46.51 0.12 46.84 0.19 192
InvertNAS 46.70 0.06 47.18 0.28 192

H IMPLEMENTATION DETAILS

All experiments were conducted on a workstation equipped with 251 GB of RAM, an Intel Xeon
Gold 5218 CPU (64 cores), and a single NVIDIA RTX 4090 GPU with 24 GB of memory. We adopt
a three-phase training procedure involving GVAE pretraining, AlignFlow-based sampling, and INN
optimization.
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In the first phase, we pretrain the GVAE component of InvertNAS using self-supervised learning
to improve the decoder’s ability to reconstruct architectures from latent representations. For NAS-
Bench-101 and NAS-Bench-201, the entire search space is used. In contrast, NAS-Bench-301 and
NAS-Bench-NLP use a subset of architectures, relying on 50,000 and 25,000 randomly sampled
architectures, respectively. The dataset is split into 80% training, 10% validation, and 10% testing.
GVAE is trained for 500 epochs with a batch size of 64 (32 for NAS-Bench-301), using the Adam
optimizer with a learning rate of 1 × 10−3. The noise scale in GVAE is set to 0.05 throughout
all experiments. We employ the ReduceLROnPlateau scheduler with a factor of 0.1, patience
of 50, and minimum learning rate of 1 × 10−5, along with early stopping (patience of 100 for
NAS-Bench-101 and NAS-Bench-201, and 50 for NAS-Bench-301). On average, training GVAE
takes approximately 2 hours.

The second phase involves training AlignFlow to select informative initial architectures. Given the
unsupervised nature of GVAE and AlignFlow, each component is trained once and reused throughout
all experiments. AlignFlow training takes less than 20 minutes across all benchmarks. We provide
the pretrained weights for both GVAE and AlignFlow. In this phase, the AlignFlow generator is
trained using Adam with a learning rate of 0.001, β1 = 0.9, β2 = 0.999, and four coupling layers
with hidden dimension 128. The discriminator shares the same learning rate but uses β1 = 0.5 and
three hidden layers. A validation loss combining generator and discriminator losses is used for early
stopping, with patience of 10 and a minimum of 20 epochs. Unlabeled datasets are randomly split
into 80% training and 20% validation, with a maximum training size of 5,000 for NAS-Bench-101,
15,625 for NAS-Bench-201, 20,000 for NAS-Bench-301, and 25,000 for NAS-Bench-NLP. We use a
batch size of 32 across all datasets.

In the final phase, we freeze the pretrained GVAE and proceed to train the INNs to facilitate
architecture search. This training and search process is computationally efficient, typically requiring
less than 1.5 GPU hours for a query budget of 192. On average, training the INNs takes approximately
1 hour for NAS-Bench-101 and NAS-Bench-201, and about 1.5 hours for NAS-Bench-301. We
begin by initializing the training set with 30 architectures and retain the top 20 based on their
performance. In each iteration, we sample 100 candidate architectures and select the top 5 according
to predicted performance. The INN model is composed of 10 networks, each with four coupling
layers, a latent dimension of 16, five hidden layers with 256 units each, and two coupling blocks. For
NAS-Bench-101 and NAS-Bench-201, we use a batch size of 64 and set the learning rate to 0.001
with a CosineDecay scheduler, repeating each architecture label 20 times to enhance training
stability. For NAS-Bench-301 and NAS-BENCH-NLP, we reduce the batch size to 32. The learning
rate is initially set to 0.001 with early stopping (patience of 30) and subsequently decreased to 0.0001
with the same early stopping criterion. Additionally, the label repetition count is reduced to 5 to
accommodate the increased complexity of the search space.

Hyperparameter details for all components are summarized in Table 10, Table 11, Table 12, Table 13,
and Table 14. The input dimension of the INN is determined by the product of the GVAE latent
space dimension and the node encoding dimension within a search cell, which varies across search
spaces. For NAS-Bench-101, the node encoding dimension is 7; for NAS-Bench-201, it is 8. In
NAS-Bench-301, both the normal and reduction cells use a node encoding dimension of 11, resulting
in a combined total of 22. In NAS-Bench-NLP, the node encoding dimension is 20.
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Table 10: Hyperparameters for GVAE
Benchmark Hyperparameter Value
NB101 Training epochs 500

Patience 100
Batch size 64
Learning rate 1× 10−3

latent space dimension 16

NB201 Training epochs 500
Patience 100
Batch size 64
Learning rate 1× 10−3

latent space dimension 16

NB301 Training epochs 500
Patience 50
Batch size 32
Learning rate 1× 10−3

latent space dimension 16

NBNLP Training epochs 500
Patience 50
Batch size 32
Learning rate 1× 10−3

latent space dimension 20

Table 11: Hyperparameters for AlignFlow
Component Hyperparameter Value
Generator Optimizer Adam

Learning rate 0.001
β1 / β2 0.9 / 0.999
Coupling layers 4
Hidden dimension 128

Discriminator Optimizer Adam
Learning rate 0.001
β1 / β2 0.5 / 0.999
Hidden dimension 128
Hidden layers 3

Training Validation loss generator loss+ discriminator loss
Minimum epochs 20
Early stopping patience 10
Train/Validation split 8:2
Batch size 32
Training set size (NB101) 5,000
Training set size (NB201) 15,625
Training set size (NB301) 20,000
Training set size (NBNLP) 25,000
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Table 12: Hyperparameters for INNs on NAS-Bench-101
Category Hyperparameter Value
Shared Number of INNs 10

Initial training set Select 30 (top 20 by accuracy)
Validation set size 10
Samples per round 100
Top-k selection 5
Latent dimension 16
Coupling layers 4
Hidden layers 5
Hidden dimension 256
Number of couples 2

NB101-specific Batch size 64
Learning rate 0.001
Repeat label 20
x dimension 112
y dimension 1
z dimension 111

Table 13: Hyperparameters for INNs on NAS-Bench-201
Category Hyperparameter Value
Shared Number of INNs 10

Initial training set Select 30 (top 20 by accuracy)
Validation set size 10
Samples per round 100
Top-k selection 5
Latent dimension 16
Coupling layers 4
Hidden layers 5
Hidden dimension 256
Number of couples 2

NB201-specific Batch size 64
Learning rate 0.001
Repeat label 20
x dimension 128
y dimension 1
z dimension 127
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Table 14: Hyperparameters for INNs on NAS-Bench-301
Category Hyperparameter Value
Shared Number of INNs 10

Initial training set Select 30 (top 20 by accuracy)
Validation set size 10
Samples per round 100
Top-k selection 5
Latent dimension 16
Coupling layers 4
Hidden layers 5
Hidden dimension 256
Number of couples 2

NB301-specific Batch size 32
Learning rate 0.001→ 0.0001
Repeat label 5
x dimension 352
y dimension 1
z dimension 351

Table 15: Hyperparameters for INNs on NAS-Bench-NLP
Category Hyperparameter Value
Shared Number of INNs 10

Initial training set Select 30 (top 30 by accuracy)
Validation set size 10
Samples per round 100
Top-k selection 5
Latent dimension 16
Coupling layers 4
Hidden layers 5
Hidden dimension 256
Number of couples 2

NBNLP-specific Batch size 32
Learning rate 0.001→ 0.0001
Repeat label 5
x dimension 280
y dimension 1
z dimension 279
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I EVALUATE THE QUALITY OF ARCHITECTURES GENERATED BY THE
INVERSE PATH

To evaluate the quality of architectures generated by the inverse path of InvertNAS, we collect
statistics on the architectures obtained through InvertNAS’s inverse path at each iteration. We then
computed three key metrics:

• Validity: The percentage of generated architectures that are valid.
• Uniqueness: The percentage of generated valid architectures that are distinct (not previously

encountered).
• Novelty: The percentage of generated architectures that are both valid and entirely new to

the search process.

The following Table 16, presents the average of these metrics across all rounds of a single search
process for various benchmarks. (Cifar-10, Cifar-100, and imagenet16-120 are benchmarks within
NB201.)

As observed from the table, the Validity is consistently close to 100% across most benchmarks, except
for imagenet16-120. The lower validity in imagenet16-120 stems from our algorithm’s strategy: in
earlier stages, when it samples in regions with less noise, validity is near 100%. However, as the
algorithm struggles to find new architectures, it increases the sampling noise, leading to a decrease in
validity later in the process (approaching 0). At this point, after reaching a retry limit, our algorithm
ceases sampling from the inverse path and instead selects the top-k predicted architectures from. This
adaptive behavior explains the large standard deviation in validity for imagenet16-120.

Furthermore, the results demonstrate that Novelty and Uniqueness maintain similar levels across all
benchmarks. This indicates that the architectures generated through the inverse path in each round
are largely consistent and belong to a similar distribution, reflecting the stability of INN.

Table 16: Quality of architectures generated by InvertNAS
Benchmarks Validity Novelty Uniqueness
Cifar-10 1.0000E+00 8.0463E-03 9.6782E-03
Cifar-100 9.9995E-01 7.1727E-03 8.8784E-03
imagenet16-120 3.3101E-01 3.0907E-03 4.0664E-03
NB101 9.9358E-01 9.0165E-03 1.1164E-02
NB301 1.0000E+00 1.5388E-02 1.4262E-02

J COMPARISON OF DIFFERENT ENSAMBLE METHODS

We conducted a comparison of different ensemble methods. Our proposed InvertNAS uses Inverse
Distance Weighting (IDW) to ensemble the results from the INNs. We compared this with a simple
averaged weight approach, where each of the 10 INNs was given an equal weight of 0.1. The results
averaged over 10 runs are shown in Table 17. We found that the performance of the Inverse Distance
Weighting (IDW) method and the averaged weight method was quite similar across most benchmarks.
However, a few notable differences emerged. For both the NB301 validation accuracy and the NB201
ImageNet-16-120 test accuracy, the IDW method yielded slightly better results with a lower standard
deviation. This indicates that while both methods are effective, IDW provides a small but consistent
improvement in both accuracy and stability.

K COMPARISON OF DIFFERENT NUMBERS OF INNS

We conducted an ablation study on the number of Inverse Neural Networks (INNs). Table 18 shows
the mean and standard deviation over 10 runs. For simpler benchmarks, such as CIFAR-10 and
CIFAR-100 on NB201, we found that varying the number of INNs did not significantly affect the
final results, as all configurations were able to find the optimal architecture. However, a greater
difference was observed on the ImageNet-16-120 benchmark, which had a larger standard deviation.
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Table 17: Comparison of different ensamble methods
Val. Acc Val. Std Test Acc Test Std Queries

Inverse Distance Weight
NB101 InvertNAS 95.06 0.00 94.23 0.00 150
NB201 Cifar10 InvertNAS 91.61 0.00 94.37 0.00 150
NB201 Cifar100 InvertNAS 73.49 0.00 73.51 0.00 150
NB201 ImageNet16 InvertNAS 46.70 0.06 47.18 0.28 192
NB301 InvertNAS 94.94 0.01 - - 150
Averaged Weight
nb101 95.06 0.00 94.23 0.00 150
nb201 cifar10 91.61 0.00 94.37 0.00 150
nb201 cifar100 73.49 0.00 73.51 0.00 150
nb201 imagenet 46.70 0.08 46.78 0.29 192
nb301 94.92 0.01 - - 150

These results suggest that for more complex tasks, the number of INNs plays a more significant
role in finding the best architecture. Overall, our experiments indicate that a larger number of INNs
generally leads to better final performance, as demonstrated by higher accuracy and lower standard
deviation across all benchmarks.

Table 18: Comparison of different numbers of INNs
Benchmark INN number Val. Acc (mean, std) Test Acc (mean, std)
nb301 1 (94.94, 0.02) -

3 (94.91, 0.04) -
5 (94.88, 0.03) -
7 (94.91, 0.00) -
10 (94.94, 0.01) -

nb101 1 (95.01, 0.09) (94.21, 0.04)
3 (94.99, 0.09) (94.21, 0.03)
5 (95.00, 0.12) (94.23, 0.02)
7 (94.98, 0.11) (94.19, 0.06)
10 (95.06, 0.00) (94.23, 0.00)

cifar10 1 (91.61, 0.00) (94.37, 0.00)
3 (91.61, 0.00) (94.37, 0.00)
5 (91.61, 0.00) (94.37, 0.00)
7 (91.61, 0.00) (94.37, 0.00)
10 (91.61, 0.00) (94.37, 0.00)

cifar100 1 (73.49, 0.00) (73.51, 0.00)
3 (73.49, 0.00) (73.51, 0.00)
5 (73.49, 0.00) (73.51, 0.00)
7 (73.49, 0.00) (73.51, 0.00)
10 (73.49, 0.00) (73.51, 0.00)

imagenet 1 (46.51, 0.12) (46.84, 0.19)
3 (46.65, 0.09) (46.97, 0.31)
5 (46.73, 0.00) (46.60, 0.07)
7 (46.70, 0.08) (46.75, 0.32)
10 (46.70, 0.06) (47.18, 0.28)

L THE USE OF LARGE LANGUAGE MODELS (LLMS)

We only used the LLMs (ChatGPT and Gemini) to polish the English writing.

23


	Introduction
	Related Works
	Method
	Model Architecture
	Selecting Initial Architectures
	InvertNAS Searching Algorithm

	Experiments
	Experimental Results
	Ablation Studies on Initial Sampling Strategy

	Conclusion
	Limitations and Broader Impacts 
	Limitations
	Broader Impacts

	License for Datasets and Codes
	Implementation and Equations of INN Layers
	Inverse Distance Weight (IDW)
	Details of AlignFlow Framework
	Detailed Search Space Descriptions
	NAS-Bench-101
	NAS-Bench-201
	NAS-Bench-301
	NAS-Bench-NLP
	Reduced Search Space

	Detailed Evaluation Results for InvertNAS 
	Implementation Details
	Evaluate the Quality of Architectures Generated by the Inverse Path
	Comparison of Different Ensamble Methods
	Comparison of different numbers of INNs
	The Use of Large Language Models (LLMs)

