
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ONLINE CONVEX OPTIMIZATION WITH PREDICTION
THROUGH ACCELERATED GRADIENT DESCENT

Anonymous authors
Paper under double-blind review

ABSTRACT

We study online convex optimization with predictions, where, at each time step
t, predictions about the next k steps are available, and with coupled costs over
time steps, where the cost function at time step t depends on the decisions made
between time t− a and time t+ b for some nonnegative integers a, b.
We provide a general recipe to run synchronous update in an asynchronous fashion
that respects the sequential revelation of information. Combined with existing
convergence results for convex optimization using inexact first-order oracle, we
show that acceleration is possible in this framework, where the dynamic regret can
be reduced by a factor of (1−O(

√
κ))

k
a+b through accelerated gradient descent,

at a cost of an additive error term that depends on the prediction accuracy. This
generalizes and improves the (1 − κ/4)k factor obtained by Li & Li (2020) for
a+ b = 1. Our algorithm also has smaller dependency on longer-term prediction
error. Moreover, our algorithm is the first gradient based algorithm which, when
the strong-convexity assumption is relaxed, constructs a solution whose regret
decays at the rate of O(1/k2), at a cost of an additive error term that depends on
the prediction accuracy.

1 INTRODUCTION

We study online convex optimization with coupled cost: at time step t, the cost function ft is a
function of decisions x(t−a):(t+b), i.e., the decisions made in a window of length a + b around t.
This generalizes the well studied smoothed online convex optimization problem (Li & Li, 2020; Li
et al., 2021; Goel & Wierman, 2019; Chen et al., 2018; Goel et al., 2019; Pan et al., 2022) where
ft is the sum of a stage cost that depends only on current decision xt, and a switching cost between
xt and xt−1. Following the setup of Li & Li (2020) and Li et al. (2021), we assume that the cost at
time t is parameterized by θt ∈ Θ, and the decision maker has potentially inexact predictions, θ̂(t)s ,
about future θs (s ≥ t). Online convex optimization with switching costs has been used in various
settings such as online optimal control (Li et al., 2019), data center management (Lin et al., 2012),
power systems (Kim & Giannakis, 2017), to name a few. Our history-dependent stage costs also
echo a recent line of work on online convex optimization with memory (Anava et al., 2015; Kumar
et al., 2023; Shi et al., 2020), which shows applications in online linear control (Agarwal et al., 2019),
statistical arbitrage in finance, and time series prediction (Anava et al., 2015).

We focus on the following question proposed and studied in Li & Li (2020): when making decisions
online, how can one make the best use of predictions about future, while being robust to inaccuracy
in the (long-term) predictions?

Many methods have been proposed to incorporate predictions in online convex optimization: from
optimization based methods such as RHC (Kwon & Pearson, 1977), AFHC (Lin et al., 2012) and
CHC (Chen et al., 2016), which require solving optimization problems (exactly) at each iteration, to
gradient based methods RHAG (Li et al., 2021) which converges at the optimal rate but requires exact
prediction, and RHIG (Li & Li, 2020) which works with inexact prediction but suffers suboptimal
convergence rate.

In this work, we propose the online Projected Gradient Method (online-PGM) and online Accelerated
Gradient Method (online-AGM), which build upon variants of the well known (accelerated) gradient
descent designed for inexact first order oracle (Bubeck, 2015; Devolder et al., 2013a;b). We show that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

when k-step predictions of the objective functions and k-step look ahead initialization are available,
online-AGM achieves the convergence rate (1 − O(

√
κ)k) for κ-conditioned objective functions.

In addition, the extra additive term in the dynamic regret due to prediction inaccuracy has smaller
dependency on long-term prediction error, as compared to RHIG in Li & Li (2020). We also consider
the case when the strong-convexity assumption is relaxed, and show that online-AGM constructs a
solution whose regret decays at the rate of O(1/k2), plus additive terms due to prediction inaccuracy.

As a by-product, we formalize and generalize Li & Li (2020) and Li et al. (2021)’s “fill-the-table”
approach to running (accelerated) gradient descent online, which might be of independent interest.

1.1 SETUP

We consider online convex optimization, where the loss at time t depends on the decision xs in the
window s ∈ Wt = [max(1, t − a),min(t + b, T)] for some fixed a, b ∈ {0, 1, . . .}, as well as a
parameter θt ∈ Θ in a parameter space. That is,

C(x;θ∗) =

T∑
t=1

ft(xWt ; θ
∗
t). (1)

At the beginning of each time step t, the decision maker (DM) has prediction θ̂(t)s about θs for s ≥ t
and imperfect memory/information of past θ̂(t)s for 1 ≤ s ≤ t− 1, and decides xt ∈ Xt ⊂ Rdt . Then
he is given additional information about the true θ∗ (e.g. the exact value of θ∗t), and updates his
information about the parameter sequence to θ̂(t+1) = (θ̂

(t+1)
1 , θ̂

(t+1)
2 , . . . , θ̂

(t+1)
T).

The performance of the DM’s output sequence x = (x1, x2, . . . , xT) is compared to the minimum of
Eq. 1 over X :=

∏T
t=1 Xt, and is evaluated using the dynamic regret defined as1

C(x;θ∗)− C(x∗;θ∗), x∗ ∈ argmin
x′∈X

C(x′;θ∗).

Motivating example 1: aggregate information. Positive (a, b) can model objectives that depend on
“aggregate information” of the decision sequence, such as higher order finite differences and moving
averages (1

a+b+1

∑t+b
s=t−a xs). This generalizes Li et al. (2021); Li & Li (2020): (a, b) = (1, 0),

ft(xt−1, xt; θ
∗
t) = f̃t(xt; θ

∗
t) + dt(xt, xt−1), with stage cost f̃t and switching cost dt.

Motivating example 2: decision making in advance, or delayed decision making. If ft depends only
on xt−a (xt+b) for all t, then the decision made at time s, xs, affects fs+a (fs−b), i.e. the decision
is made a-step in advance (b-step delayed). The window [t − a, t + b] allows a combination of
in-advance decisions up to a steps and delayed decisions up to b steps.

Motivating example 3: parameters as dual variables. For convex optimization with constraints which
satisfy strong duality, one might aim at solving the Lagrangian relaxation, where the dual variables
can be interpreted as (part of the) parameters. One might have predictions for the dual variables based
on prior information or past data about the model. See Section A.1.

Following Li & Li (2020), we consider the setting where, in addition to predictions of the future
parameters, the DM has access to a feasible point x(init) ∈ X in an online-with-look-ahead manner.

Definition 1.1 (k-step look ahead initialization). We say that the DM has a k-step look ahead
initialization, if there exists a feasible point x(init) ∈ X , and the DM, at time t, has access to x(init)s

for s = 1, 2, . . . ,min(T, t+ k).

In general, any x ∈ X can be used as a k-step look ahead initialization for any k ∈ [T]. However,
as will be seen, the regret of the output of our algorithms depends on how good x(init), in terms of
∥x(init) − x∗∥. To find a good initialization, one might take advantage of existing online convex
optimization algorithms such as online gradient descent or online mirror descent (Li & Li, 2020).

1By Assumption 1.2 below, X is convex and compact, and C(·;θ∗) is continuous. Thus there exists x∗ ∈ X
achieving the minimum.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1.2 MAIN RESULTS

On a high level, the predictions of θ∗ and the k-step look ahead initialization allow the DM to perform
the classical (accelerated) gradient descent for k/(a + b) steps to x(init) using ∇C(·; θ̂), where
θ̂ is chosen based on {θ̂(1), . . . , θ̂(T)} to ensure online-implementability. Then, the regret and its
dependency on parameter prediction errors follow naturally from properties of these classical offline
algorithms — convergence rate and robustness against gradient inaccuracy, respectively.

To quantify how good the information θ̂(t) is at time t, we assume that Θ is a normed space, and that
∥θ̂(t)s − θ∗s∥ measures the error in prediction (s ≥ t) or imperfect memory (1 ≤ s ≤ t− 1). Further,
we assume that∇ft is Lipschitz w.r.t. θt. 2

Assumption 1.1 (∇ft is Lipschitz w.r.t. θt).

| ∂ft
∂xs

(xWt
; θt)−

∂ft
∂xs

(xWt
; θ′t)| ≤ ht,s∥θt − θ′t∥, ∀xWt

∈ XWt
, s ∈Wt, θt, θ

′
t ∈ Θ. (2)

In addition, we make the following assumptions on the convexity of the objective function C(·;θ∗).
Assumption 1.2 (smooth, (strongly) convex C w.r.t. x). X =

∏T
t=1 Xt where each Xt is compact

and convex. For any θ ∈ ΘT , C(·;θ) : X → R is convex and differentiable on X . In addition, there
exists κ ∈ [0, 1], such that
κ

2
∥x−y∥2 ≤ C(x;θ)−C(y;θ)−⟨∇C(y;θ),x−y⟩ ≤ 1

2
∥x−y∥2, ∀x,y ∈ X ,∀θ ∈ ΘT . (3)

In terminology of convex optimization, C(·;θ) is 1-smooth, and when κ > 0, it’s also κ-strongly
convex. Li & Li (2020); Li et al. (2021) assume that κ > 0, thereby their results hold only for strongly
convex C. As will be seen, our algorithms provide guarantees even in the case when κ = 0, i.e.
when the objective is not necessarily strongly convex. Moreover, Assumption 1.2 is weaker than
assumptions on each ft, and typically, one can think of κ = Θ(1) as a constant that does not depend
on T (see Section A.2).

Due to the constraint Xt, we make the following assumption common in convex optimization
literature:
Assumption 1.3 (efficient projection). For all t ∈ [T], for all y ∈ Rdt , projecting y to Xt, i.e. finding
argminxt∈Xt

∥xt − y∥2, can be computed efficiently.

Below, we state the performance of our algorithms online-PGM and online-AGM, which is to be
presented in Algorithm 3.
Theorem 1.1. Under the Assumptions 1.1, 1.2, 1.3, suppose that the DM has access to a k-step
look ahead initialization as defined in 1.1, and that L is chosen such that (a+ b)L ≤ k, that θ̂(t) is
available at time t, and that κ is given. Then Algorithm 3 outputs xt at time t = 1, 2, . . . , T such
that x satisfies the following properties:
• For κ = 0,

C(x;θ∗)− C(x∗;θ∗) ≤

{
1
2LR

2
0 +

2DX
L

∑L
l=1 ϵl (online-PGM)

4
L2R2

0 +
4DX
L2

∑L
l=1 l

2ϵl (online-AGM).

• For κ > 0,

C(x;θ∗)− C(x∗;θ∗) ≤

{
exp(−κL/4)

2 R2
0 +

κ/8+1/4
1−ρL

∑L
l=1 ρ

L−lϵ2l (online-PGM)
6ρL1R2

0 + (1/κ+ 1/2)
∑L

l=1 ρ
L−l
1 ϵ2l (online-AGM),

where ρ = 1− κ/4, ρ1 = (1 + 1
4

√
κ)−2,R0 := ∥x(init) − x∗∥, DX = maxx,x′∈X ∥x− x′∥ is the

diameter of X . For t ∈ [T], denoting W̃t := [max(1, t− b),min(t+ a, T)]

ϵ2l :=

(a+b)(L−l)∑
t=1

(
∑
s∈W̃t

hs,t∥θ̂(1)s − θ∗s∥)2 +
T∑

t=(a+b)(L−l)+1

(
∑
s∈W̃t

hs,t∥θ̂(t−(a+b)(L−l))
s − θ∗s∥)2.

2Alternatively, one can replace the norm on the RHS of Eq. 2 with a penalty function ρ : Θ × Θ → R+.
Then our main results still hold (with potentially different constant factors), with ∥θt− θ̂t∥ replaced by ρ(θt, θ̂t).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

When κ > 0, we can further use the upper bound that κ
2R

2
0 ≤ C(x(init);θ∗) − C(x∗;θ∗), which

implies that for online-AGM, there exists ρ1 = 1−O(
√
κ),

C(x;θ∗)−C(x∗;θ∗) = O
(
κ−1ρL1 (C(x

(init);θ∗)− C(x∗;θ∗))
)
+O

(
(κ−1 + 1)

L∑
l=1

ρL−l1 ϵ2l

)
.

1.3 CONTRIBUTIONS

Li & Li (2020) shows that it’s possible to reduce the dynamic regret of x(init) by a factor ofO(κ−1ρk)

for ρ = 1− κ
4 , at the cost of an additive term O((κ−1 + 1)

∑k
l=1 ρ

l−1δl)) that depends on the l-step
prediction errors δl. A lower bound Ω(Cκ

∑T
t=1 ρ

t−1
0 δt) for ρ0 = (1−

√
κ

1+
√
κ
)2 is also proposed where

Cκ is a constant depending on κ. When k-step exact prediction is available, RHAG proposed in Li
et al. (2021) uses accelerated gradient descent and can reduce the regret of the initialization by a
factor of O(κ−1ρk0). For the setup studied in Li & Li (2020); Li et al. (2021), our online-PGM is
a slight variation to RHIG and achieves similar performance as RHIG, while our online-AGM is a
slight variation to RHAG, and our results hold for the case when the gradients are inexact.

Our contributions. We show that acceleration is also possible when the prediction is inexact, and
closes the gap on the decay rate (ρ and ρ0) of the influence of long-term prediction error. We propose
an algorithm, online Accelerated Gradient Method, which performs accelerated gradient descent steps
instead of gradient descent steps as in Li & Li (2020). Our online-AGM constructs solutions whose

dynamic regret is the sum of two components: one term —O(κ−1ρ
k

a+b

1 (C(x(init);θ∗)−C(x∗;θ∗)))
— depends on how good the initialization is, and the other term — O((κ−1 + 1)

∑ k
a+b

l=1 ρ
l−1
1 δl)) —

depends on the prediction error. Importantly, ρ1 = 1−O(
√
κ), which depends on

√
κ as in the lower

bound rate ρ0, and is smaller than the rate ρ = 1− κ/4 for RHIG (for small enough κ).

In addition, we analyze the performance of online-PGM and online-AGM when the strong-convexity
assumption is relaxed — a setting not studied in Li et al. (2021); Li & Li (2020) — and show that the
regret decays at the rate of O((k

a+b)
−1) and O((k

a+b)
−2) respectively, with additive error terms due

to the prediction inaccuracy. To the best of our knowledge, our online-PGM and online-AGM are the
first gradient-based algorithms for smoothed online convex optimization (and objectives with more
general couplings) with inexact predictions without the strong-convexity assumption.

As a by-product, we formalize and generalize Li & Li (2020) and Li et al. (2021)’s “fill-the-table”
approach to running (accelerated) gradient descent online. We view the iterative updates in offline
algorithms as state-evolution (in networks), and provide a general recipe to turn offline algorithms to
online ones while maintaining the offline performance (such as convergence rate and robustness).
This systematic approach to constructing online algorithms from offline ones might have applications
in other problems.

1.4 NOTATIONS

We use boldface to denote variables that have T components, such as x = (x1, x2, . . . , xT) and
θ = (θ1, θ2, . . . , θT). For convenience, for any A ⊂ [T], we use xA to denote (xt)t∈A, and similarly
for θ. We let [n] := {1, 2, . . . , n} for all n ∈ N. For any convex compact set K ⊂ Rd and y ∈ Rd,
ProjK(y) := argminy′∈K ∥y′ − y∥2.

2 CONNECTIONS WITH PREVIOUS WORKS

Smooth online convex optimization. Our problem is motivated by a recent line of work on online
convex optimization with switching cost, where the goal is to minimize

∑T
t=1 ft(xt) + d(xt, xt−1)

by choosing xt sequentially, based on past decisions and past ft’s, together with potentially inexact
predictions about future ft’s(Kwon & Pearson, 1977; Lin et al., 2012; Chen et al., 2016; Li et al.,
2021; Li & Li, 2020). Various methods have been proposed to take advantage of the prediction. To
name a few, RHC (Kwon & Pearson, 1977), AFHC (Lin et al., 2012) and CHC (Chen et al., 2016)
choose xt’s based on the optimal solution to the predicted problem restricted to windows around t;
RHAG (Li et al., 2021) applies accelerated gradient descent with exact prediction, and RHIG (Li &
Li, 2020) applies gradient descent with inexact prediction (more comparison in Section 1.3).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Online convex optimization and dynamic regret. We measure the performance of x using the
dynamic regret, i.e. against the optimal x∗ which does not necessarily satisfy x∗t = x∗t+1 for all t.
Dynamic regret has been well studied for problems where ft depends only on xt (see Zinkevich
(2003); Besbes et al. (2015); Zhao & Zhang (2021); Hazan (2022) and references therein). Typically,
the regret is upper bounded using a combination of T , PT the variation of the sequence (x∗1, . . . , x

∗
T),

and/or VT the variation of the sequence (f1, . . . , fT). For instance, the online gradient descent (OGD)
achieves O(

√
TPT) (Zinkevich, 2003), and the restarted OGD achieves O(T 2/3V1/3

T) (Besbes et al.,
2015). However, it’s non-trivial to obtain dynamic regret guarantees for the general coupled objective
functions where ft also depends on decisions made in the past and/or future. Li & Li (2020) shows
that in the special setting of smooth online convex optimization with prediction, where the coupling is
only due to the switching costs between consecutive decisions, restarted OGD can achieve O(

√
TVT)

dynamic regret, with additive terms due to prediction errors.

Other related online optimization problems. Convex optimization with memory (Anava et al.,
2015; Kumar et al., 2023; Shi et al., 2020) can be viewed as a special case of our problem Eq. 1 with
b = 0. However, static regret and the offline fixed decision are usually used as benchmarks. Also
related is online optimization with prediction, where bound on static regret using the prediction error
has been obtained for online mirror descent (Rakhlin & Sridharan, 2013).

Smooth convex optimization with inexact oracles. Under Assumption 1.1, prediction error can be
related to error in gradient, and thus be treated as a form of oracle inaccuracy. Our Algorithm 3 builds
upon Devolder et al. (2013a) and Devolder et al. (2013b), which study the convergence properties
of (accelerated) gradient descent with inexact first order oracle. We present a modification of their
results below in Section 3.1. Optimization with inexact oracle has also been studied in many other
works: d’Aspremont (2008) and Schmidt et al. (2011), to name a few.

Decentralized convex optimization. Our objective function C(x1, x2, . . . , xT ;θ) can be viewed as
a function of T components and fits naturally into a network model, where each vertex represents
the decision at some time step, and vertices communicate information such as current decision
variables, gradients, and momentum. This connects our problem with many other network-related
problems, especially parallel/distributed optimization (Scaman et al., 2017; Mosk-Aoyama et al.,
2010; Bertsekas & Tsitsiklis, 2015). It will be interesting to further explore what insights these
network-related problems can bring to our online convex optimization with prediction.

3 TWO INGREDIENTS IN ALGORITHM DESIGN

Our online-PGM and online-AGM (Algorithm 3) can be viewed as offline convex optimization
algorithms which are robust to oracle errors, implemented in an asynchronous fashion such that the
updates can be carried out online. We explain these two ingredients in Sections 3.1 and 3.2.

3.1 OPTIMIZATION WITH INEXACT FIRST ORDER ORACLE

Offline smooth convex optimization with first order oracle is a well studied problem, and the
accelerated gradient method is known to achieve the optimal convergence rates of O(1/k2) and of
O(exp(−

√
κk)) for strongly convex κ-conditioned objectives(Bubeck, 2015). In fact, Devolder et al.

(2013a) and Devolder et al. (2013b) show that the accelerated gradient method is also robust to gradient
inaccuracy: the convergence rates of O(1/k2) and exp(−

√
κt) still hold, but the suboptimality gaps

have one extra additive term that depends on the error in the gradients. This applies exactly to our
setting, where∇C(·; θ̂) is used as an approximation to∇C(·;θ∗).
Formally, Devolder et al. (2013a) and Devolder et al. (2013b) study convex optimization with inexact
first order oracle. The goal is to solve the following convex optimization problem

min
x∈K

F (x) (4)

where K ⊂ Rd is closed and convex, and F is convex on K, and the optimal is achieved at some
x∗ ∈ K. The algorithm has access to a (δ,m,M) oracle defined as

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Definition 3.1 ((δ,m,M)-oracle). We say O : K → R× Rd is a first-order (δ,m,M)-oracle if for
any y ∈ K, when queried at y, the oracle returns (Fδ,m,M (y), gδ,m,M (y)) ∈ R× Rd such that

m

2
∥x− y∥2 ≤ F (x)− Fδ,m,M (y)− ⟨gδ,m,M (y), x− y⟩ ≤ M

2
∥x− y∥2 + δ, ∀x ∈ K, (5)

where δ ≥ 0, 0 ≤ m ≤M .

The simplest example isO(x) = (F (x),∇F (x)), which is a (0,m,M)-oracle when F ism-strongly
convex and M -smooth. In fact, Devolder et al. (2013a) and Devolder et al. (2013b) show that if one
has an inexact gradient and function value oracle for F , one can construct a (δ,m′,M ′)-oracle for
some δ,m′,M ′ that might depend on m,M and error in gradient and value oracles (Proposition B.1).

Method Assumption Evaluation x(l) Dependency onR0 Dependency on δl’s

PGM m > 0
κ
∑l

i=1(1−κ)
l−ix(i)

1−(1−κ)l
M
2 exp(−κl)R2

0
κ
∑l

i=1(1−κ)
l−iδi

1−(1−κ)l

PGM m = 0 1
l

∑l
i=1 x

(i) M
2lR

2
0

1
l

∑l
i=1 δi

AGM m > 0 x(l) (1 +
√
κ
2)−2l · 3MR2

0

∑l
i=1(1 +

√
κ
2)−2(l−i)δi

AGM m = 0 x(l) 4M
l2 R

2
0 4

∑l
i=1(

i
l)

2δi

Table 1: Convergence properties for convex optimization with (δl,m,M)-oracle O(l), l = 1, 2,
Denote R0 := ∥x(0) − x∗∥ and κ = m/M , and the guarantee is F (x(l)) − F (x∗) ≤
“Dependency onR0” + “Dependency on δl’s”. See Theorem B.1 and B.2 for the exact statements.

In Table 1, we summarize the performance of the Projected Gradient Method (PGM, Algorithm 1),
and the Accelerated Gradient Method (AGM, Algorithm 2) proposed in Devolder et al. (2013a;b) for
problems with inexact first order oracles. The proofs for Theorem B.1 and B.2, adapted from Devolder
et al. (2013a) to deal with iteration-dependent δl (at iteration l, the oracle O(l) is a (δl,m,M)-oracle),
are provided in Appendix B.

Algorithm 1: Projected Gradient Method
with (δ,m,M)-oracle
Input: Initial x(0) ∈ K,O(l) an (δl,m,M)-oracle for F for

l = 1, 2, . . .

Output: x(1), x(2), . . .
for l = 1, 2, . . . , do

Obtain (f(l−1), g(l−1))← O(l)(x(l−1));
Update x(l) ←
argminx∈K ⟨g(l−1), x− x(l−1)⟩+ M

2 ∥x− x(l−1)∥2;

end

Algorithm 2: Accelerated Gradient Method
with (δ,m,M)-oracle
Input: Initial x(init) ∈ K,O(l) an (δl,m,M)-oracle for F

for l = 1, 2, . . ., sequence (αl)l∈N and sequence
(τl)l∈N.

Output: the sequence x(1), x(2), x(3), . . .

Initialize y(1) ← x(init), v(0) ← 0 ∈ Rd;
for l = 1, 2, . . . , do

Obtain (f(l), g(l))← O(l)(y(l));
Compute

x
(l) ← arg min

x∈K
⟨g(l)

, x− y
(l)⟩+

M

2
∥x− y

(l)∥2

v
(l) ← v

(l−1)
+ αl(g

(l) −my
(l)

)

z
(l) ← arg min

y∈K

M

2
∥y−y(1)∥2+⟨v(l)

, y⟩+
m(

∑l
j=1 αj)

2
∥y∥2

Update y(l+1) ← τlz
(l) + (1− τl)x

(l);
end

3.2 FROM OFFLINE ALGORITHMS TO ONLINE ALGORITHMS

The second observation is that offline algorithms that update all variables synchronously can be
implemented in an asynchronously manner, such that the variables can be updated sequentially. In
fact, this can be done efficiently as long as the variables are only “weakly coupled”. Take PGM
as an example. When applying PGM to our objective C(·;θ∗), in the l-th iteration, the update is
x(l) = ProjX (x

(l−1) − η∇C(x(l−1);θ∗)) for some η ≥ 0. Direct computation shows that

∂C

∂xt
(x;θ∗) =

min(t+a,T)∑
s=max(1,t−b)

∂fs
∂xt

(xWs ; θ
∗
s), ∀x ∈ X (6)

In particular, this implies that ∂C
∂xt

(x;θ∗) depends only on xs′ for s′ ∈ ∪min(t+a,T)
s=max(1,t−b)Ws, that is, for

|s′ − s| ≤ a+ b. See Figure 1 for an example for a = 2, b = 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 1: Example: a = 2, b = 1, ∂C
∂xt

(x;θ) =
∑t+2

s=t−1
∂fs
∂xt

(x(s−2):(s+1); θs) depends on
θ(t−1):(t+2) and x(t−3):(t+3).

xt−4 xt−3 xt−2 xt−1 xt xt+1 xt+2 xt+3

ft−2(·; θt−2) ft−1(·; θt−1) ft(·; θt) ft+1(·; θt+1) ft+2(·; θt+2)

· · · · · ·

· · · · · ·

In other words, x(l)t can be computed as long has x(l−1)s has been computed for all |s− t| ≤ a+ b,
even if some x(l−1)s′ has not been computed. This idea is used in the design of RHIG algorithm, where
a = 1, b = 0 and simple gradient descent steps like those in Algorithm 1 are used.

Below, in Section 3.2.1 we first look at a hypothetical offline setting for the problem Eq. 1, which
can be solved using Algorithms 1 (PGM) and 2 (AGM). In Section 3.2.2, we show that the iterative
updates in PGM and AGM admit a state-transition view, where roughly the states can be taken as
x for PGM, and (x, v) for AGM. In Section 3.2.3, we explore this state-transition view in a more
general network setting, and propose a recipe to simulate synchronous state-evolution asynchronously,
thereby turning offline algorithms into online ones. This “network and states” perspective allows us
to work with objectives that have more complex dependency structure (e.g. a, b ≥ 1) in a unified way
(the “momentum term” v in AGM is treated as part of the state).

3.2.1 A HYPOTHETICAL OFFLINE CONVEX OPTIMIZATION PROBLEM

First, recall that Equation 6 implies that ∂C
∂xt

(x;θ) = ∂C
∂xt

(xW t
; θ

W̃t
) depends only on xW t

where

W t := [max(1, t−a−b),min(t+a+b, T)], and on θ
W̃t

where W̃t := [max(1, t−b),min(t+a, T)].

This allows us to define, for each θ
W̃t
∈ Θ|W̃t|, Gt(·; θW̃t

) : XW t
→ Rdt as

Gt(xW t
; θ

W̃t
) :=

∂C

∂xt
(xW t

; θ
W̃t

) =
∑
s∈W̃t

∂fs
∂xt

(xWs
; θs), ∀xW t

∈ XW t
. (7)

Next, we consider solving the problem Eq. 1, but in the following hypothetical offline convex
optimization setting: the algorithm is given an initial feasible solution x(init) ∈ X , and a sequence of
oracles O(l) for l = 1, 2, . . . , L, such that

O(l)(x) = (0, G1(xW 1
; θ

(l)

W̃1
), G2(xW 2

; θ
(l)

W̃2
), . . . , GT (xWT

; θ
(l)

W̃T
)), ∀x ∈ X , (8)

where θ(l)
W t
∈ Θ|W t| for all l ∈ [L] and t ∈ [n]. Gt can be viewed as an approximation to ∂C

∂xt
. For

instance, when θ = θ∗, Gt(xW t
; θ∗

W̃t
) = ∂C

∂xt
(xW t

; θ∗
W̃t

), and in general, the norm of gradient error

is upper bounded by (
∑T

t=1(
∑

s∈W̃t
hs,t∥θ∗s − θ

(l)
s ∥)2)1/2 by Assumption 1.1 (Proposition C.1).

Consider Algorithms 1 and 2 with the oracles O(1),O(2), . . . ,O(L). Notice that in our design of
O(l), the (approximate) function value term is always set to 0. Nevertheless, in both algorithms the
(approximate) function values are never used. As a result, when running these algorithms, the updates
are the same as if the (approximate) function values are not 0 but set to the exact function values at
the queried points. In particular, taking ∆

(l)
2 = (

∑T
t=1(

∑
s∈W̃t

hs,t∥θ∗s − θ
(l)
s ∥)2)1/2, if κ = 0, O(l)

is equivalent to a (δl, 0, 1)-oracle for C(·;θ∗), where δl = 2∆
(l)
2 DX . If κ > 0, for l ∈ [L], O(l) is

equivalent to a (δl,
κ
2 , 2)-oracle for C(·;θ∗), where δl = (1κ + 1

2)(∆
(l)
2)2. Applying Theorem B.1 or

Theorem B.2, we get the convergence rate (stated in Corollary C.1 and Corollary C.2).

3.2.2 STATE EVOLUTION PERSPECTIVE OF ALGORITHMS 1 AND 2

In fact, since the feasible set X =
∏T

t=1 Xi and Gt(·; θW̃t
) : XW t

→ Rdt depends only on xs for
s ∈W t, the update steps in Algorithms 1 and 2 are separable, in the following sense:
• in the l-th iteration of Algorithms 1, for t = 1, 2, . . . , T ,

x
(l)
t ← ProjXt

(x
(l−1)
t − 1

M
Gt(x

(l−1)
W t

; θ
(l)

W̃t
)). (9)

That is, x(l)t depends only on x(l−1)
W t

(and θ(l)
W̃t

). Here M = 1 if κ = 0 and M = 2 if κ > 0.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

• in the l-th iteration of Algorithms 2, for t = 1, 2, . . . , T ,

x
(l)
t ← ProjXt

(y
(l)
t −

1

M
Gt(y

(l)

W t
; θ

(l)

W̃t
)), v

(l)
t ← v

(l−1)
t + αl(Gt(y

(l)

W t
; θ

(l)

W̃t
)−my(l)t)

z
(l)
t ← ProjXt

(
My

(1)
t − v

(l)
t

m(
∑l

j=1 αj) +M
), y

(l+1)
t ← τlz

(l)
t + (1− τl)x(l)t

Here m = 0,M = 1 if κ = 0, and m = κ/2,M = 2 if κ > 0. Notice that z(l)t and y(l)t depend
only on (x

(l)
t , v

(l)
t −My

(1)
t), while (x(l)t , v

(l)
t −My

(1)
t) depends only on (x

(l−1)
W t

, v
(l−1)
W t

−My
(1)

W t
)

(together with l and θ(l)
W̃t

), thus (x(l)t , v
(l)
t −My

(1)
t) can be used as state variables.

A more precise definition of the states is presented in Section C.3. Consequently, in Algorithm 1, as
long as x(l−1)

W t
is computed before x(l)t is computed, the evolution of x(l) remains the same as if all

xt’s are updated at the same time. Similarly for Algorithm 2.

Figure 2: Example: a = 2, b = 1, one step gradient descent for xt using Gt, which depends on
x(t−3):(t+3). For simplicity, we omit the dependency on θ(l).

x
(l−1)
t−4 x

(l−1)
t−3 x

(l−1)
t−2 x

(l−1)
t−1 x

(l−1)
t x

(l−1)
t+1 x

(l−1)
t+2 x

(l−1)
t+3

Gt−2 Gt−1 Gt Gt+1 Gt+2

· · · · · ·

· · · · · ·

x
(l)
t

3.2.3 ASYNCHRONOUS UPDATE FOR SYNCHRONOUS ALGORITHMS

Let G = (V,E) be an undirected graph. For each vertex v ∈ V and ξ = 0, 1, . . ., Nξ(v) ⊂ V is the
set of vertices that are ξ-hop away from v. For instance, N0(v) = {v} and N1(v) is the the neighbor
of v, which we abbreviate as N (v). For convenience Nξ(v) = ∪ξi=0Ni(v), and N (v) = N1(v).

We associate v ∈ V a state space Sv and a state update function ϕv : SN (v) → Sv . Consider

the following synchronous update: at t = 0, vertex v is at state s(0)v ∈ Sv. For l = 1, 2, . . .,
s
(l)
v = ϕv(s

(l−1)
N (v)

). That is, the state of v at l depends only on the states of v and its neighbors at
iterations l− 1. Importantly, the update order for the vertices within the l-th iteration does not matter,
since the new states depend only on the states in the previous step. However, the update order cannot
be changed across iterations (e.g. update sv twice at iteration l and fix it at iteration l + 1).

For any fixed ordering σ : [|V |]→ V , L ∈ N, in Algorithm 5 we give an asynchronous way to update
the states for L steps such that the state evolution s̃(l)v for all v ∈ V, l ∈ [L] satisfies
• consistency: the state evolution is the same as the synchronous update, i.e. s̃(l)v = s

(l)
v for all

v ∈ V, l ∈ [L]

• minimum information: for all vertex i ∈ V , the sequence s̃(1:L)
σ(i) = (s̃

(1)
σ(i), . . . , s̃

(L)
σ(i)) does not

depend on s(0)v for v /∈ ∪ij=1NL(σ(j))

The second condition implies that s(1:L)
σ(1) , s

(1:L)
σ(2) , . . . , s

(1:L)
σ(|V |) can be computed sequentially, such

that by the time s̃(1:L)
σ(i) is computed, only s(0)NL(σ(1))

, s
(0)

NL(σ(2))
, . . . , s

(0)

NL(σ(i))
are revealed (some

information might be revealed multiple times). In addition, we point out that the first property,
consistency, holds for all l ∈ [L] not just for the last iterate l = L. This is crucial since for many
algorithms, the final output depends not just on the last iterate variables, but also on the entire path.
For instance, for Algorithms 1 and 2, the performance guarantee is stated for some weighted average
of the intermediate decision variables.

The Algorithm 5 and its performance (Theorem C.1) are stated in Appendix C.2. To illustrate
the idea, let’s take V = [|V |] and σ(i) = i for all i ∈ V , then Algorithm 5 initializes s̃(0)NL(1)

using s(0)NL(1)
, then computes sequentially s̃(1)NL−1(1)

, s̃
(2)

NL−2(1)
, . . . , s̃

(L−1)
N 1(1)

, s̃
(L)
1 . Since s̃(l)NL−l(1)

depends only on s̃(l−1)NL−l+1(1)
, which has already been computed when s̃(l)NL−l(1)

is computed, this

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

order of update is valid. Then s̃(0)NL(2)
is initialized using s(0)NL(1)

, and it computes sequentially

s̃
(1)

NL−1(2)
, s̃

(2)

NL−2(2)
, . . . , s̃

(L−1)
N 1(2)

, s̃
(L)
2 . Similarly for the rest of the nodes. (If s̃(l)v has been set before,

s̃
(l)
v won’t be computed again.) Figure 3 gives an example when L = 2.

Figure 3: Update rule for Algorithm 5 for v = 1, 2, L = 2.

s̃
(0)
1

s̃
(0)
2

s̃
(0)
3

s̃
(0)
4 s̃

(0)
5

s6

s̃
(0:1)
1

s̃
(0:1)
2

s̃
(0:1)
3

s̃
(0)
4 s̃

(0)
5

s6

s̃
(0:2)
1

s̃
(0:1)
2

s̃
(0:1)
3

s̃
(0)
4 s̃

(0)
5

s6

s̃
(0:2)
1

s̃
(0:1)
2

s̃
(0:1)
3

s̃
(0)
4 s̃

(0)
5

s
(0)
6

s̃
(0:2)
1

s̃
(0:1)
2

s̃
(0:1)
3

s̃
(0:1)
4 s̃

(0:1)
5

s
(0)
6

s̃
(0:2)
1

s̃
(0:2)
2

s̃
(0:1)
3

s̃
(0:1)
4 s̃

(0:1)
5

s
(0)
6

For Algorithms 1 and 2 run with the oracles O(l) defined as in Eq. 8, we can take V = [T] and
E = {{u, v} ⊂ V 2, u ̸= v, |u − v| ≤ a + b}. Then the neighborhood of t ∈ V is N (t) = W t,
with the states as defined in Section C.3.

4 ALGORITHMS AND PERFORMANCE
Finally, we present our Algorithm 3: online-PGM in green , and online-AGM in yellow . Just like
the offline PGM (Algorithm 1), for online-PGM, each update is a projected gradient descent update
using Gs,l = Gs(x

(l−1)
W s

; θ
(l)

W̃s
) ≈ ∂C

∂xs
(x(l−1);θ∗) (Gs is defined in Eq. 7)

x(l)s ← ProjXs
(x(l−1)s − 1

M
Gs,l). (10)

Similarly, following the offline AGM (Algorithm 2), in online-AGM, each update is a projected
gradient descent step at the extrapolated point y(l), followed by an update on momentum terms and
next query point. With Gs,l = Gs(y

(l)

W s
; θ

(l)

W̃s
) ≈ ∂C

∂xs
(y(l);θ∗)

x(l)s ← ProjXs
(y(l)s −

1

M
Gs,l), ṽ(l)s ← ṽ(l−1)s +αl(Gs,l−my(l)s), y(l+1)

s ← τlz
(l)
s +(1−τl)x(l)s ,

(11)
where z(l)s ← ProjXs

(
−ṽ(l)

s

m(
∑l

j=1 αj)+M
).

Thus, it remains to choose L and θ(l)
W̃v

for each iteration l so that the asynchronous update rule in
Algorithm 5 (with σ(i) = i for i ∈ [|V |]) can be implemented online given k-step initialization ahead.
It turns out that our update order can also be viewed as a “fill-the-table” type as in Li & Li (2020).
Thus, L ≤ k/(a+ b), and the following choice of θ(l)

W̃v
’s are valid, with details in Appendix C.4:

θ
(l)

W̃v
= θ̂

(1)

W̃v
, v ∈ [(a+b)(L−l)+1], θ

(l)

W̃v
= θ̂

(v−(a+b)(L−l))
W̃v

, v = (a+b)(L−l)+2, . . . , T. (12)

For online AGM, we make the further simplification: since a direct implementation of Algorithm
5 for AGM only keeps in the memory the state variables ((x, v)) and recompute the non-state ones
((y, s)). These repetitive computations can be inefficient, and when memory is not a concern, these
dependent variables can be computed once, and stored. In Algorithm 3, we provide such simplified
implementation.

Proof of Theorem 1.1. By Theorem C.1, the sequence x(l)t generated when running Algorithm 3 is
the same as the sequence when running Algorithm 1 and 2, with the inexact oracles O(l) as in Eq. 8,
and choice of θ(l) as in Eq. 12, the result follows from Corollary C.1 for the case κ = 0 and Corollary
C.2 for the case κ > 0.

5 NUMERICAL EXPERIMENTS

We compare the performance of online-PGM and online-AGM3 using a variant of the planning
problem in Li & Li (2020), stated below:

C(x;θ) :=
1

2

T∑
t=1

(at(xt − θt)2 +
1

2
(xt − xt−1)2), x ∈ X := [−106, 106]T . (13)

3As pointed out in Section 1.3, online-PGM is a slight variation to RHIG and achieves similar theoretical
performance. Thus, the comparisons in this experiment can be viewed as between RHIG and online-AGM.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Algorithm 3: online Projected Gradient Method and online Accelerated Gradient Method .

For t ∈ [T], W̃t := [max(1, t−b),min(t+a, T)], W t := [max(1, t−a−b),min(t+a+b, T)]

Input: x(init)
s ∈ Xs for s = 1, 2, . . . , T , available for step

t ≥ s− k, L(≤ k
a+b) the number of updates, θ̂(t) ∈ ΘT

available at time t for t = 1, 2, . . . , T . κ ∈ [0, 1].
Output: x1, x2, . . . , xT

initialize (m,M)← (0, 1) if κ = 0, and (m,M)← (κ
2 , 2) if

κ > 0;

initialize x
(0)

1:(1+L(a+b))
← x

(init)

1:(1+L(a+b))
;

initialize y
(1)

1:(1+L(a+b))
← x

(init)

1:(1+L(a+b))
;

initialize ṽ
(0)

1:(1+L(a+b))
← −My

(1)

1:(1+L(a+b))
;

compute (αl)l∈[L] such that α1 = 1, and ∀l ∈ [L]

(1 + m
M

∑l
i=1 αi)(

∑l+1
i=1 αi) = α2

l+1;

compute τl :=
αl+1∑l+1
j=1

αj

;

for l = 1, 2, . . . , L do
for s = 1, 2, . . . , 1 + (a + b)(L− l) do

Gs,l ←
∑

s′∈W̃s

∂f
s′

∂xs
(x

(l−1)
W

s′
; θ̂

(1)

s′);

update x(l)
s using Gs,l and Eq. 10;

Gs,l ←
∑

s′∈W̃s

∂f
s′

∂xs
(y

(l)
W

s′
; θ̂

(1)

s′);

update x(l)
s , ṽ(l)

s , z(l)
s , y(l+1)

s using Gs,l and Eq. 11;

end
end

x1 ←

1
L

∑L
l=1 x

(l)
1 (κ = 0)

m/M

1−(1− m
M

)L

∑L
l=1(1−m/M)L−lx

(l)
1 (κ > 0)

x1 ← x
(L)
1 ;

for t = 2, . . . , T do
if t + L(a + b) ≤ T then

initialize x
(0)

t+L(a+b)
← x

(init)

t+L(a+b)
;

initialize y
(1)

t+L(a+b)
← x

(init)

t+L(a+b)
;

initialize v
(0)

t+L(a+b)
← −My

(1)

t+L(a+b)
;

end
for l = 1, 2, . . . , L do

if t + (a + b)(L− l) ≤ T then
s← t + (a + b)(L− l);

Gs,l ←
∑

s′∈W̃s

∂f
s′

∂xs
(x

(l−1)
W

s′
; θ̂

(t)

s′);

update x(l)
s using Gs,l and Eq. 10;

Gs,l ←
∑

s′∈W̃s

∂f
s′

∂xs
(y

(l)
W

s′
; θ̂

(t)

s′);

update x(l)
s , ṽ(l)

s , z(l)
s , y(l+1)

s using Gs,l and Eq. 11;

end
end

xt ←

1
L

∑L
l=1 x

(l)
t (κ = 0)

m/M

1−(1− m
M

)L

∑L
l=1(1−m/M)L−lx

(l)
t (κ > 0)

xt ← x
(L)
t ;

end

Here the parameter θ is composed of a known sinusoidal signal term and a correlated noise term, i.e.,
θt = 4 sin(t2)+ξt, and ξt = γξt−1+et follows an autoregressive process with noise et ∼iid N (0, 1),
with known γ. The DM uses the optimal prediction ξ̂(t)s = γs−t+1ξt−1 for s ≥ t. Further, we assume
that at’s are known, and are generated such that at = 1+ABt whereBt ∼iid Bern(0.3). We choose
A ∈ {0, 50, 500}, where larger A models ill-conditioned problems with small κ. For simplicity, we
take x(init) = 0 or x(init) = x∗nf := argminx∈X C(x;θ− ξ), the optimal solution in the noise free
setting. For each pair of (γ,A), we generate 100 problems, and Figure 4 plots the logarithm of the
sample-average dynamics regret for γ = 0.3, 0.7, A = 0, 500. See Figures 5 and 6 in Appendix for
more experiment results.

The results show the superior performance of online-AGM, and also the following interesting
phenomenon: in addition to faster convergence of dynamic regret, online-AGM is also converging to
a better point: in all settings in Figure 4, when k = 20, the average dynamic regret for online-AGM
is strictly smaller than that of online-PGM. This might be explained by the fact that online-AGM has
smaller dependency on longer-term prediction inaccuracy.

0 5 10 15 20
2.5

3

3.5

4

4.5

5

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(a) γ = 0.3, A = 0

0 5 10 15 20
8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(b) γ = 0.3, A = 500

0 5 10 15 20
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(c) γ = 0.7, A = 0

0 5 10 15 20
8

8.2

8.4

8.6

8.8

9

9.2

9.4

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(d) γ = 0.7, A = 500

Figure 4: Logarithm of sample-average dynamic regret.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Naman Agarwal, Brian Bullins, Elad Hazan, Sham Kakade, and Karan Singh. Online control with
adversarial disturbances. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 111–119. PMLR, 09–15 Jun 2019.

Oren Anava, Elad Hazan, and Shie Mannor. Online learning for adversaries with memory: Price of
past mistakes. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

Dimitri Bertsekas and John Tsitsiklis. Parallel and Distributed Computation: Numerical Method.
Athena Scientific, 2015.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization. Operations
Research, 63(5):1227–1244, 2015.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends® in
Machine Learning, 8(3-4):231–357, 2015. ISSN 1935-8237.

Niangjun Chen, Joshua Comden, Zhenhua Liu, Anshul Gandhi, and Adam Wierman. Using pre-
dictions in online optimization: Looking forward with an eye on the past. In Proceedings of the
2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer
Science, SIGMETRICS ’16, pp. 193–206, New York, NY, USA, 2016. Association for Computing
Machinery.

Niangjun Chen, Gautam Goel, and Adam Wierman. Smoothed online convex optimization in high
dimensions via online balanced descent. In Sébastien Bubeck, Vianney Perchet, and Philippe
Rigollet (eds.), Proceedings of the 31st Conference On Learning Theory, volume 75 of Proceedings
of Machine Learning Research, pp. 1574–1594. PMLR, 06–09 Jul 2018.

Alexandre d’Aspremont. Smooth optimization with approximate gradient. SIAM J. on Optimization,
19(3):1171–1183, oct 2008.

Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods with inexact oracle: the
strongly convex case. Technical report, Université catholique de Louvain, Center for Operations
Research and Econometrics (CORE), May 2013a.

Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth convex
optimization with inexact oracle. Mathematical Programming, 146:37 – 75, 2013b.

Gautam Goel and Adam Wierman. An online algorithm for smoothed regression and lqr control. In
Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of the Twenty-Second Interna-
tional Conference on Artificial Intelligence and Statistics, volume 89 of Proceedings of Machine
Learning Research, pp. 2504–2513. PMLR, 16–18 Apr 2019.

Gautam Goel, Yiheng Lin, Haoyuan Sun, and Adam Wierman. Beyond online balanced descent: an
optimal algorithm for smoothed online optimization. Curran Associates Inc., Red Hook, NY, USA,
2019.

Elad Hazan. Introduction to Online Convex Optimization. The MIT Press, 2022.

Seung-Jun Kim and Geogios B. Giannakis. An online convex optimization approach to real-time
energy pricing for demand response. IEEE Transactions on Smart Grid, 8(6):2784–2793, 2017.

Raunak Kumar, Sarah Dean, and Robert Kleinberg. Online convex optimization with unbounded
memory. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

W. Kwon and A. Pearson. A modified quadratic cost problem and feedback stabilization of a linear
system. IEEE Transactions on Automatic Control, 22(5):838–842, 1977.

Yingying Li and Na Li. Leveraging predictions in smoothed online convex optimization via gradient-
based algorithms. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yingying Li, Xin Chen, and Na Li. Online optimal control with linear dynamics and predictions:
algorithms and regret analysis. Curran Associates Inc., Red Hook, NY, USA, 2019.

Yingying Li, Guannan Qu, and Na Li. Online optimization with predictions and switching costs:
Fast algorithms and the fundamental limit. IEEE Transactions on Automatic Control, 66(10):
4761–4768, 2021.

Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan L. H. Andrew. Online algorithms for
geographical load balancing. In 2012 International Green Computing Conference (IGCC), pp.
1–10, 2012.

Damon Mosk-Aoyama, Tim Roughgarden, and Devavrat Shah. Fully distributed algorithms for
convex optimization problems. SIAM Journal on Optimization, 20(6):3260–3279, 2010.

Weici Pan, Guanya Shi, Yiheng Lin, and Adam Wierman. Online optimization with feedback delay
and nonlinear switching cost. Proc. ACM Meas. Anal. Comput. Syst., 6(1), feb 2022.

Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In Shai
Shalev-Shwartz and Ingo Steinwart (eds.), Proceedings of the 26th Annual Conference on Learning
Theory, volume 30 of Proceedings of Machine Learning Research, pp. 993–1019, Princeton, NJ,
USA, 12–14 Jun 2013. PMLR.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal
algorithms for smooth and strongly convex distributed optimization in networks. In Doina Precup
and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 3027–3036. PMLR, 06–11 Aug
2017.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Convergence rates of inexact proximal-gradient
methods for convex optimization. In Proceedings of the 24th International Conference on Neural
Information Processing Systems, NIPS’11, pp. 1458–1466, Red Hook, NY, USA, 2011. Curran
Associates Inc.

Guanya Shi, Yiheng Lin, Soon-Jo Chung, Yisong Yue, and Adam Wierman. Online optimization with
memory and competitive control. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

Peng Zhao and Lijun Zhang. Improved analysis for dynamic regret of strongly convex and smooth
functions. In Proceedings of the 3rd Conference on Learning for Dynamics and Control, volume
144 of Proceedings of Machine Learning Research, pp. 48–59. PMLR, 07 – 08 June 2021.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the Twentieth International Conference on International Conference on Machine
Learning, ICML’03, pp. 928–935. AAAI Press, 2003.

A ADDITIONAL RESULTS FOR SECTION 1

A.1 EXAMPLE 3

Consider the following problem

min
xt∈Xt, t∈[T]

T∑
t=1

ft(xWt
; ξt), s.t.

T∑
t=1

ct(xWt
; ξt) ≤ 0.

Assume that for all t, Xt ⊂ Rnt , ft : XWt
× Ξ → R, and all components of ct : XWt

× Ξ → Rm

are convex. This problem has the Lagrangian

L(x,λ; ξ) :=
T∑

t=1

ft(xWt ; ξt) + λT
T∑

t=1

ct(xWt ; ξt).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Under strong duality, the original problem is equivalent to minimizing L(x,λ∗(ξ); ξ) where λ∗(ξ)
is the optimal dual (which might depend on ξ). Thus, we can define θt = (ξt, λt) with θ∗t =
(ξ∗t ,λ

∗(ξ∗)). Then we have

L(x,λ∗(ξ∗); ξ∗) =
T∑

t=1

f̃t(xt; θ
∗
t), f̃t(xWt

; θt) := ft(xWt
; ξt) + λTt ct(xWt

; ξt).

Predictions of ξt and λ∗(ξ) might be available from prior information or past data about the model.

A.2 COMMENT ON ASSUMPTION 1.2

In Assumption 1.2, we assume that C(·;θ) : X → R is 1-smooth and κ-strongly convex. We can
make the following connection with the assumption that for each t, there exists 0 ≤ αt ≤ βt, such
that ft : XWt

→ R is αt-strongly convex and βt-smooth, i.e. for all x, y ∈ XWt
,

αt

2
∥y − x∥2 ≤ ft(y; θt)− ft(x; θt)− ⟨∇ft(x; θt), y − x⟩ ≤

βt
2
∥y − x∥2.

For all x,y ∈ X , adding the above inequalities for all t, we get
T∑

t=1

αt

2
∥yWt

− xWt
∥2 ≤ C(y;θ)− C(x;θ)− ⟨∇C(x;θ),y − x⟩ ≤

T∑
t=1

βt
2
∥yWt

− xWt
∥2.

Since Wt = [max(1, t− a),min(t+ b, T)],

T∑
t=1

βt
2
∥xWt

− yWt
∥2 =

T∑
t=1

∑
s∈Wt

βt
2
∥xs − ys∥2 =

T∑
s=1

min(s+a,T)∑
t=max(1,s−b)

βt
2
∥xs − ys∥2 ≤

B

2
∥x− y∥2,

where B = maxs∈[T]

∑min(s+a,T)
t=max(1,s−b) βt. Similarly, we can show that

T∑
t=1

αt

2
∥xWt

− yWt
∥2 ≥ A

2
∥x− y∥2, A = min

s∈[T]

min(s+a,T)∑
t=max(1,s−b)

αt.

When βt ≤ β and αt ≥ α for all t, we have A ≥ (1 + min(a, b))α, and B ≤ (1 + a + b)β. That
is, the normalized objective, C

(1+a+b)β
, is 1-smooth and (1+min(a,b))α

(1+a+b)β
-strongly convex. In particular,

κ = (1+min(a,b))α

(1+a+b)β
does not depend on T when a and b are on the same scale. In fact, from the

expressions for A and B, we see that it’s possible that αt = 0 for some t, but A > 0, i.e. ft is not
strongly convex, but C still is. Thus, our Assumption 1.2 can be seen as weaker than assumptions on
each ft.

B ADDITIONAL RESULTS FOR SECTION 3.1

Proposition B.1 (Devolder et al. (2013b)Devolder et al. (2013a)). Let the oracle Õ(y) =

(F̃ (y), ∇̃F (y)) such that for all y ∈ K, |F (y)− F̃ (y)| ≤ ∆1, and ∥∇F (y)− ∇̃F (y)∥ ≤ ∆2.
• If F has a (0, 0,M ′)-oracle, i.e. F is M ′-smooth, and K is bounded and has diameter DK, then
(F̃ (y)−∆1 −∆2DK, ∇̃F (y)) is a (2∆1 + 2∆2DK, 0,M

′)-oracle.
• If F has a (0,m′,M ′)-oracle for some m′ > 0, i.e. F is M ′-smooth and m′-strongly convex, then

(F̃ (y)−∆1 − ∆2
2

m′ , ∇̃F (y)) is a (2∆1 + (1
m′ +

1
2M)∆2

2,
m′

2 , 2M
′)-oracle.

Projected gradient method. Projected gradient method with inexact first order gradient oracle is
the same as the classical PGM, but using the inexact gradient returned by an (δl,m,M)-oracle O(l).
That is, at the l-th iteration,

(f (l−1), g(l−1))← O(l)(x(l−1)), x(l) ← ProjK(x
(l−1) − 1

M
g(l−1)). (14)

The exact algorithm is presented in Algorithm 1. Below we state its convergence properties:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Theorem B.1 (Theorem 2 in Devolder et al. (2013b), modification of Theorem 4 in Devolder et al.
(2013a)). The sequence generated by Algorithm 1, with a sequence of (δl,m,M)-oracle O(l) for
l ∈ N, satisfies the following properties:

F (x(l))−F (x∗) ≤

M
2 exp(−m

M l)∥x(0) − x∗∥2+ m/M
1−(1−m

M)l

∑l
i=1(1−

m
M)l−iδi

(m > 0, x(l) := m/M
1−(1−m

M)l

∑l
i=1(1−

m
M)l−ix(i))

M
2l ∥x

(0) − x∗∥2 + 1
l

∑l
i=1 δi (m = 0, x(l) := 1

l

∑l
i=1 x

(i))
(15)

Accelerated Gradient Method. To obtain the accelerated convergence rate, Algorithm 2 performs
projected gradient descent at a extrapolated point:

(f (l), g(l))← O(l)(y(l)), x(l) ← ProjK(y
(l) − 1

M
g(l)). (16)

After that, the following updates are used, where (τl)l∈N is a sequence that depends on m,M :

v(l) ← v(l−1)+αl(g
(l)−my(l)), z(l) ← ProjK(

My(1) − v(l)

m(
∑l

j=1 αj) +M
), y(l+1) ← τlz

(l)+(1−τl)x(l)

(17)
Theorem B.2 (modification of Theorem 6 in Devolder et al. (2013a)). For Algorithm 2, choose

the sequences (αl)l∈N and (τl)l∈N such that α1 = 1, 1 + m
MAl =

α2
l+1

Al+1
for all l ∈ N, where

Al :=
∑l

i=1 αi, and τl =
αl+1

Al+1
, then for all l ∈ N, we have

F (x(l))−F (x∗) ≤

{
(1 + 1

2

√
m
M)−2l · 3M∥x(init) − x∗∥2 +

∑l
i=1(1 +

1
2

√
m
M)−2(l−i)δi m > 0

4M
l2 ∥x

(init) − x∗∥2 + 4
∑l

i=1(
i
l)

2δi m = 0

(18)

In Devolder et al. (2013b), the authors study inexact first oracle when the objective function is smooth
but not strongly convex. In Devolder et al. (2013a) the authors study the strongly convex case with
inexact oracle, but δl’s are the same for all time period. The proof of Theorem B.1 and B.2 are
adaptation of the proof in Devolder et al. (2013a) for the strongly convex and smooth objective
functions, taking into account variation in δl across time.

B.1 PROJECTED GRADIENT METHOD

Proof of Theorem B.1. The case when m = 0 follows directly from Theorem 2 in Devolder et al.
(2013b). Below, we adapt the proof of Theorem 6 in Devolder et al. (2013a) to show the bound when
m > 0.

For convenience, denote r2l = ∥x(l) − x∗∥2 for l = 0, 1, 2, Then we have

r2l+1 = ∥x(l+1) − x∗∥2 = r2l + 2⟨x(l+1) − x(l), x(l+1) − x∗⟩ − ∥x(l+1) − x(l)∥2.
The optimality condition at x(l+1) implies that

⟨g(l) +M(x(l+1) − x(l)), x− x(l+1)⟩ ≥ 0, ∀x ∈ K.
Thus we have

⟨x(l+1) − x(l), x(l+1) − x∗⟩ ≤ 1

M
⟨g(l), x∗ − x(l+1)⟩.

Thus we have

r2l+1 ≤ r2l +
2

M
⟨g(l), x∗ − x(l+1)⟩ − ∥x(l+1) − x(l)∥2

= r2l +
2

M
⟨g(l), x∗ − x(l)⟩ − 2

M
[⟨g(l), x(l+1) − x(l)⟩+ M

2
∥x(l+1) − x(l)∥2]

≤ r2l +
2

M
⟨g(l), x∗ − x(l)⟩ − 2

M
[F (x(l+1))− f (l) − δl+1] (O(l+1) is (δl+1,m,M) oracle)

≤ r2l +
2

M
[F (x∗)− f (l) − m

2
∥x∗ − x(l)∥2]− 2

M
[F (x(l+1))− f (l) − δl+1]

= (1− m

M
)r2l +

2

M
[F (x∗)− F (x(l+1)) + δl+1].

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Denoting Rl :=
2
M [F (x∗)− F (x(l+1)) + δl+1], and applying the above bound recursively, we get

r2l ≤ (1− m

M
)r2l−1 +Rl−1 ≤ (1− m

M
)lr20 +

l∑
i=1

(1− m

M
)i−1Rl−i.

Thus we have

0 ≤ (1− m

M
)lr20 +

l∑
i=1

(1− m

M
)i−1Rl−i,

which implies that

l∑
i=1

(1− m

M
)l−i[F (x(i))− F (x∗)] ≤ (1− m

M
)l · M

2
r20 +

l∑
i=1

(1− m

M
)l−iδi.

B.2 ACCELERATED GRADIENT METHOD

Lemma B.1. Denote

ψ∗l := min
x∈K

M

2
∥x− y(1)∥2 +

l∑
i=1

αi[f
(i) + ⟨g(i), x− y(i)⟩+ m

2
∥x− y(i)∥2].

Choosing the sequence (αl)l∈N and sequence (τl)l∈N such that

1 +
m

M
Al =

α2
l+1

Al+1
, α1 = 1

where Al :=
∑l

i=1 αi, and τl =
αl+1

Al+1
. Then for any l ≥ 1, we have AlF (x

(l)) ≤ ψ∗l + El where

El =
∑l

i=1Aiδi.

Proof of Lemma B.1. The proof is an adaptation of the proof for Lemma 3 in Devolder et al. (2013a).

The proof is by induction on l. For l = 1,

ψ∗1 = min
x∈K

M

2
∥y − y(1)∥2 + f (1) + ⟨g(1), x− y(1)⟩+ m

2
∥x− y(1)∥2 (using α1 = 1)

≥ min
x∈K

f (1) + ⟨g(1), x− y(1)⟩+ M

2
∥x− y(1)∥2

= f (1) + ⟨g(1), x(1) − y(1)⟩+ M

2
∥x(1) − y(1)∥2 (by the update rule)

≥ F (x(1))− δ1. (O(1) is (δ1,m,M)-oracle)

Thus the statement is true for l = 1. Suppose that it’s true for some l ≥ 1, then the optimality
condition for z(l) implies that

⟨M(z(l) − y(1)) + v(l) +mAlz
(l), y − z(l)⟩ ≥ 0, ∀y ∈ K.

By the update rule,

v(l) =
l∑

i=1

αi(g
(i) −my(i)) =⇒ v(l) +mAlz

(l) =
l∑

i=1

αi(g
(i) −my(i) +mz(l)),

and so we get

M⟨z(l) − y(1), y − z(l)⟩ ≥ ⟨
l∑

i=1

αi(g
(i) −my(i) +mz(l)), z(l) − y⟩, ∀y ∈ K.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Since ∥x− y(1)∥2 is strongly convex in x, we have for any x ∈ K,

M

2
∥x− y(1)∥2 − M

2
∥z(l) − y(1)∥2 ≥M⟨z(l) − y(1), x− z(l)⟩+ M

2
∥x− z(l)∥2

≥ ⟨
l∑

i=1

αi(g
(i) −my(i) +mz(l)), z(l) − x⟩+ M

2
∥x− z(l)∥2

=

l∑
i=1

αi⟨g(i), z(l) − x⟩+m

l∑
i=1

αi⟨−y(i) + z(l), z(l) − x⟩+ M

2
∥x− z(l)∥2.

Thus for any x ∈ K, for the objective function in the definition of ψ∗l+1,

M

2
∥x− y(1)∥2 +

l+1∑
i=1

αi[f
(i) + ⟨g(i), x− y(i)⟩+ m

2
∥x− y(i)∥2]

≥ M

2
∥z(l) − y(1)∥2 +

l∑
i=1

αi[f
(i) + ⟨g(i), x− y(i)⟩+ m

2
∥x− y(i)∥2]

+

l∑
i=1

αi⟨g(i), z(l) − x⟩+m

l∑
i=1

αi⟨−y(i) + z(l), z(l) − x⟩+ M

2
∥x− z(l)∥2

+ αl+1[f
(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]

=
M

2
∥z(l) − y(1)∥2 +

l∑
i=1

αi[f
(i) + ⟨g(i), z(l) − y(i)⟩+ m

2
∥x− y(i)∥2]

+m

l∑
i=1

αi⟨−y(i) + z(l), z(l) − x⟩+ M

2
∥x− z(l)∥2

+ αl+1[f
(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2].

Using the following relation,

⟨z(l) − y(i), z(l) − x⟩ = 1

2
∥z(l) − y(i)∥2 + 1

2
∥z(l) − x∥2 − 1

2
∥x− y(i)∥2,

we get

M

2
∥x− y(1)∥2 +

l+1∑
i=1

αi[f
(i) + ⟨g(i), x− y(i)⟩+ m

2
∥x− y(i)∥2]

≥ M

2
∥z(l) − y(1)∥2 +

l∑
i=1

αi[f
(i) + ⟨g(i), z(l) − y(i)⟩+ m

2
∥x− y(i)∥2]

+
m

2

l∑
i=1

αi(∥z(l) − y(i)∥2 + ∥z(l) − x∥2 − ∥x− y(i)∥2) +
M

2
∥x− z(l)∥2

+ αl+1[f
(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]

=
M

2
∥z(l) − y(1)∥2 +

l∑
i=1

αi[f
(i) + ⟨g(i), z(l) − y(i)⟩+ m

2
∥z(l) − y(i)∥2] + M +mAl

2
∥x− z(l)∥2

+ αl+1[f
(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]

= ψ∗l +
M +mAl

2
∥x− z(l)∥2 + αl+1[f

(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Thus we have

ψ∗l+1 ≥ ψ∗l +min
x∈K

M +mAl

2
∥x− z(l)∥2 + αl+1[f

(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2].

By induction AlF (x
(l)) ≤ ψ∗l + El, and so

ψ∗l + αl+1[f
(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]

≥ AlF (x
(l))− El + αl+1[f

(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]

≥ Al[f
(l+1) + ⟨g(l+1), x(l) − y(l+1)⟩+ m

2
∥x(l) − y(l+1)∥2]− El

+ αl+1[f
(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]

= Al+1f
(l+1) + ⟨g(l+1), Al(x

(l) − y(l+1)) + αl+1(y − y(l+1))⟩ − El

+
Alm

2
∥x(l) − y(l+1)∥2 + αl+1m

2
∥x− y(l+1)∥2.

Since τl =
αl+1

Al+1
, and y(l+1) = τlz

(l) + (1− τl)x(l),

Al(x
(l) − y(l+1)) + αl+1(y − y(l+1)) = αl+1(y − z(l)).

Thus we get

ψ∗l + αl+1[f
(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]

≥ Al+1f
(l+1) − El + αl+1⟨g(l+1), y − z(l)⟩.

Thus for the ψ∗l+1, since we choose the sequence such that τl =
αl+1

Al+1
and Al+1τ

2
l = 1 + m

MAl

ψ∗l+1 ≥ Al+1f
(l+1) − El +min

x∈K

M +mAl

2
∥x− z(l)∥2 + αl+1⟨g(l+1), y − z(l)⟩

= −El +Al+1[f
(l+1) +min

x∈K

τ2l M

2
∥x− z(l)∥2 + τl⟨g(l+1), x− z(l)⟩]

For x ∈ K, define x̂ = τlx+ (1− τl)x(l), since τl(x− z(l)) = x̂− y(l+1),

min
x∈K

τ2l M

2
∥x− z(l)∥2 + τl⟨g(l+1), x− z(l)⟩

= min
x̂∈τlK+(1−τl)x(l)

M

2
∥x̂− y(l+1)∥2 + ⟨g(l+1), x̂− y(l+1)⟩

≥ min
x̂∈K

M

2
∥x̂− y(l+1)∥2 + ⟨g(l+1), x̂− y(l+1)⟩

Putting the above two equations together, we get

ψ∗l+1 ≥ −El +Al+1[f
(l+1) +min

x̂∈K

M

2
∥x̂− y(l+1)∥2 + ⟨g(l+1), x̂− y(l+1)⟩]

≥ Al+1F (x
(l+1))− El −Al+1δl+1.

where the last step uses O(l+1) is (δl+1,m,M)-oracle.

Proof of Theorem B.2.

ψ∗l = min
x∈K

M

2
∥x− y(1)∥2 +

l∑
i=1

αi[f
(i) + ⟨g(i), x− y(i)⟩+ m

2
∥x− y(i)∥2]

≤ M

2
∥x∗ − y(1)∥2 +

l∑
i=1

αi[f
(i) + ⟨g(i), x∗ − y(i)⟩+ m

2
∥x∗ − y(i)∥2]

≤ M

2
∥x∗ − y(1)∥2 +AlF (x

∗),

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where the last step is because O(i) is (δi,m,M)-oracle. Since y(1) = x(init), together with Lemma
B.1, we have

F (x(l)) ≤ M

2Al
∥x(init) − x∗∥2 + F (x∗) +

l∑
i=1

Ai

Al
δi.

When m > 0, from the proof of Lemma 4 in Devolder et al. (2013a), Ak+1 ≥ (1 + 1
2

√
m/M)2Ak

for all k ≥ 1, giving the desired bound.

When m = 0, Remark 10 in Devolder et al. (2013a) shows that Ak ≥ (k + 1)2/4 for all k ≥ 1. In
addition, α1 = A1 = 1, we can use induction to show that Ak ≤ k2 for all k and αk ≤ k for all k:
α2
k+1 = αk+1 + Ak and so αk+1 = 1/2 +

√
1/4 +Ak ≤ k + 1, Ak+1 ≤ k2 + k + 1 ≤ (k + 1)2.

Thus, Ai/Al ≤ 4i2/(l + 1)2.

C ADDITIONAL RESULTS FOR SECTION 3.2

C.1 ADDITIONAL RESULTS FOR THE HYPOTHETICAL OFFLINE PROBLEM

Proposition C.1. The oracle defined in Eq. 8 satisfies

∥∇C(x;θ∗)−(G1(xW 1
; θ

(l)

W̃1
), G2(xW 2

; θ
(l)

W̃2
), . . . , GT (xWT

; θ
(l)

W̃T
))∥2 ≤

T∑
t=1

(
∑
s∈W̃t

hs,t∥θ∗s−θ(l)s ∥)2.

Proof of Proposition C.1. By Assumption 1.1, for any θ ∈ ΘT ,

∥ ∂C
∂xt

(xW t
; θ∗

W̃t
)−Gt(xW t

; θ
W̃t

)∥ = ∥
∑
s∈W̃t

(
∂fs
∂xt

(xWs ; θ
∗
s)−

∂fs
∂xt

(xWs ; θs))∥

≤
∑
s∈W̃t

∥∂fs
∂xt

(xWs ; θ
∗
s)−

∂fs
∂xt

(xWs ; θs)∥ ≤
∑
s∈W̃t

hs,t∥θ∗s − θs∥.

With this oracle O(l), the gradient has error

∥∇C(x;θ∗)− (G1(xW 1
; θ

(l)

W̃1
), G2(xW 2

; θ
(l)

W̃2
), . . . , GT (xWT

; θ
(l)

W̃T
))∥2

=

T∑
t=1

∥ ∂C
∂xt

(xW t
; θ∗

W̃t
)−Gt(xW t

; θ
(l)

W̃t
)∥2 ≤

T∑
t=1

(
∑
s∈W̃t

hs,t∥θ∗s − θ(l)s ∥)2.

For eachO(l), we can take ∆(l)
1 = 0 and ∆

(l)
2 = (

∑T
t=1(

∑
s∈W̃t

hs,t∥θ∗s−θ
(l)
s ∥)2)1/2 in Proposition

B.1. Combining Proposition B.1,

Corollary C.1. If κ = 0, for l ∈ [L], O(l) is equivalent to a (δl, 0, 1)-oracle for C(·;θ∗), where
δl = 2(

∑T
t=1(

∑
s∈W̃t

hs,t∥θ∗s − θ
(l)
s ∥)2)1/2DX , DX = maxx,x′∈X ∥x− x′∥ is the diameter of X .

Thus Algorithm 1 generates a sequence x(1), x(2), . . . , x(L) such that

C(x̃(l);θ∗)− C(x∗;θ∗) ≤ 1

2l
∥x(init) − x∗∥2 + 1

l

l∑
i=1

δi, x̃(l) =
1

l

l∑
i=1

x(i).

Algorithm 2 generates a sequence x(1), x(2), . . . , x(L) such that

C(x(l);θ∗)− C(x∗;θ∗) ≤ 4

l2
∥x(init) − x∗∥2 + 4

l∑
i=1

(
i

l
)2δi.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Corollary C.2. If κ > 0, for l ∈ [L], O(l) is equivalent to a (δl,
κ
2 , 2)-oracle for C(·;θ∗),

where δl = (1κ + 1
2)(
∑T

t=1(
∑

s∈W̃t
hs,t∥θ∗s − θ

(l)
s ∥)2). Thus Algorithm 1 generates a sequence

x(1), x(2), . . . , x(L) such that for xl := κ/4
1−(1−κ/4)l

∑l
i=1(1− κ/4)l−ix(i)

C(x(l);θ∗)− C(x∗;θ∗) ≤ exp(−κl/4)
2

∥x(init) − x∗∥2 + κ/4

1− (1− κ/4)l
l∑

i=1

(1− κ/4)l−iδi

Algorithm 2 generates a sequence x(1), x(2), . . . , x(L) such that

C(x(l);θ∗)− C(x∗;θ∗) ≤ 6(1 +
1

4

√
κ)−2l∥x(init) − x∗∥2 +

l∑
i=1

(1 +
1

4

√
κ)−2(l−i)δi.

C.2 ADDITION RESULTS FOR THE UPDATE RULE

Algorithm 4: synchronous update
Input: G = (V,E) the underlying graph, ϕv : SN (v) → Sv the state transition function and

s
(0)
v ∈ Sv the initial state for all v ∈ V , L the number of updates.

Output: s(L)
v for all v ∈ V .

for l = 1, 2, . . . , L do
for v ∈ V do // update order for v does not matter

update s(l)v ← ϕv(s
(l−1)
N (v)

)

end
end

Algorithm 5: asynchronous update
Input: G = (V,E) the underlying graph, ϕv : SN (v) → Sv the state transition function and

s
(0)
v ∈ Sv the initial state for all v ∈ V , L the number of updates, σ : [|V |]→ V the

output order.
Output: s̃(L)

σ(1), s̃
(L)
σ(2), . . . , s̃

(L)
σ(|V |)

initializeH = ∅; // H ⊂ ({0} ∪ [L])× V contains pairs (l, v) s.t. s̃
(l)
v has

been computed

for i = 1, 2, . . . , |V | do // compute s̃
(L)
σ(i)

for v ∈ NL(σ(i)) \ ∪i−1j=1NL(σ(j)) do
initialize s̃(0)v ← s

(0)
v ,H ← H∪ {(0, v)};

end
for l = 1, 2, . . . , L do // compute s̃

(l)

NL−l(σ(i))
using s̃

(l−1)
NL−l+1(σ(i))

for v ∈ NL−l(σ(i)) do // update order for v does not matter

if (l, v) /∈ H then // s̃
(l)
v has not been computed yet

update s̃(l)v ← ϕv(s̃
(l−1)
N (v)

),H ← H∪ {(l, v)};
end

end
end

end

Theorem C.1. The update rules in Algorithm 5 are valid. Thus computation of s̃(1:L)
σ(i) does not

require knowledge about s(0)u for any u /∈ ∪ij=1s
(0)

NL(σ(j))
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

In addition, given the same set of inputs (graph G, state transition functions ϕv, and initial states
s
(0)
v), for any order of output σ : [|V |]→ V , Algorithm 5 and Algorithm 4 produce the same state

evolution: s(l)v = s̃
(l)
v for all v ∈ V , l ∈ [L].

Proof of Theorem C.1. For convenience, we denote the state of the setH in the i-th outer iteration,
right after the initialization of s̃(0)v , as Hi,0; right after the l-th inner iteration, as Hi,l for l =
1, 2, . . . , L.

We claim that
• valid update rule: for each i ∈ [|V |] and l ∈ [L], before entering the l-th iteration, s̃(l−1)NL−l+1(σ(i))

has been computed, i.e. (l − 1, v) ∈ Hi,l−1, for all v ∈ NL−l+1(σ(i));
• consistent output: for all l ∈ {0, 1, . . . , L}, i ∈ [|V |], for all (l′, v′) ∈ Hi,l, s

(l′)
v′ = s̃

(l′)
v′ .

First, it’s easy to see that ∪ij=1NL(σ(j)) ⊂ Hi,0 for all i ∈ [|V |].

Next we prove the first claim. For any i ∈ [|V |], we use induction on l. The claim holds for l = 1
since ∪ij=1NL(σ(j)) ⊂ Hi,0, and so (0, v) ∈ Hi,0, for all v ∈ NL(σ(i)). Suppose the claim is true
for some l ≤ L− 1, then for l+1, by the update process in the l-th iteration, for all v ∈ NL−l(σ(i)),
s̃
(l)
v is either already computed before or is computed, and so (l, v) ∈ Hi,l. This completes the

induction.

Then we prove the second claim. The claim holds for H1,0 since s̃(0)v = s
(0)
v for v ∈ NL(σ(1)),

andH1,0 = {(1, v), v ∈ NL(σ(1))}. Now suppose the statement holds forHi,l for some i ∈ [|V |]
and l ∈ {0, 1, . . . , L− 1}, then during the (l + 1)-th iteration, the updates are s̃(l+1)

v ← ϕv(s̃
(l)

N (v)
),

and since ∀u ∈ N (v), (l, u) ∈ Hi,l, by the induction hypothesis, s̃(l)u = s
(l)
u , and so s̃(l+1)

v =

ϕv(s̃
(l)

N (v)
) = ϕv(s

(l)

N (v)
) = s

(l+1)
v .

Suppose the claim holds for Hi,L for some i ∈ [|V | − 1], then it holds for Hi+1,0 since the only
added terms are initialization s̃(0)v = s

(0)
v for v ∈ NL(σ(i+ 1)) \ ∪ij=1NL(σ(j)).

In addition, notice that in the first i iterations, s̃(0)v are initialized for v ∈ ∪ij=1NL(σ(j)) only, and

the L subsequent updates for l ∈ [L] require s̃(0)v but not s(0)u for any u ∈ V . Thus computation of
s̃
(L)
σ(i) does not require knowledge about s(0)u for any u /∈ ∪ij=1s

(0)

NL(σ(j))
.

C.3 STATE TRANSITION OF PGM AND AGM – A NETWORK PERSPECTIVE

Let St = {0, 1, . . . , L} × Xt and (l, x
(l)
t) ∈ St represents the states of vertex t ∈ V . Since

ϕt : SN (t) → St ∪ {Err} can be chosen based on Equation Eq. 9: for all xW t
∈ XW t

, l ∈ [L− 1],

ϕt((l − 1, xs)s∈W t
) := (l,ProjXt

(x
(l−1)
t − 1

M
Gt(x

(l−1)
W t

; θ
(l)

W̃t
))),

and

ϕt((ls, xs)s∈W t
) := Err, ls ̸= ls′ for some s, s′ ∈W t, or ls = L for some s ∈W t.

Here the state also includes the current iteration as part of the information, and this allows us to
use l-dependent θ(l)

W̃t
. Also, ϕt is Err if the gradient Gt is evaluated at different iteration-version

(ls ̸= ls′) of neighbors x(ls−1)s and x(ls′−1)s′ , or if xs has already been updated L times. However,
neither of these two cases will happen during Algorithm 5: it’s easy to check that s̃(l)v = (l, x

(l)
v) is

satisfied all the time, and so the input to ϕv is always of the form (l − 1, xs)s∈W t
for some l ∈ [L]

and xW t
∈ XW t

.

Similarly, for Algorithm 2, the state space can be taken as St = {0, 1, . . . , L} × Xt × Rd and
(l, x

(l)
t , ṽ

(l)
t := v

(l)
t −My

(1)
t) is the state for vertex t ∈ V . In addition, since the update order only

depends on the underlying graph G = (V,E) which is the same for Algorithm 2 and 1, the order of

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

computing s(l)v can be done in the same way. The difference between the two algorithms is that the
(projected) gradient descent at x(l)t in Algorithm 1 is replaced by (projected) gradient descent at the
extrapolated point y(l)t , followed by an update on ṽ(l)t in Algorithm 2.

C.4 CHOICE OF L AND θ
(l)

W̃v

We provide two rules for the choice of L and θ(l)
W̃v

• requirement on L: notice that in iteration i = 1, 2, . . . , T of Algorithm 5, all L-hop neighbors of
vertex i must be initialized first. That is, by time i, x(init)v must be available for all v that are at
most L-hops away from i, i.e. for all v ∈ [T], such that |v − i| ≤ L(a + b). Thus, we choose
L(a+ b) ≤ k.

• one valid choice for θ(l)
W̃v

: if s̃lv ← ϕv(s̃
(l−1)
N (v)

) is computed when computing s(1:L)
i (i.e. during the

i-th outer iteration in Algorithm 5), the prediction available at time i can be used, i.e. θ(l)
W̃v

= θ̂
(i)

W̃v

is a valid choice. Due to the special structure of the dependency graph for online-AGM and
online-PGM – (s, s′) ∈ E if and only if |s− s′| ≤ a+ b – the update order is also of the “fill the
table” style as inLi & Li (2020) and Li et al. (2021). In particular, as presented in Table 2, we can
set

θ
(l)

W̃v
=

{
θ̂
(1)

W̃v
v = 1, 2, . . . , (a+ b)(L− l) + 1

θ̂
(v−(a+b)(L−l))
W̃v

v = (a+ b)(L− l) + 2, . . . , T
(19)

Table 2: choice of θ(l)
W̃v

in Eq. 12 for a = 2, b = 1, L = 8

θ
(1)
1:3 = θ̂

(1)
1:3 θ

(1)
1:4 = θ̂

(1)
1:4 θ

(1)
2:5 = θ̂

(1)
2:5 θ

(1)
3:6 = θ̂

(1)
3:6 θ

(1)
4:7 = θ̂

(1)
4:7 θ

(1)
5:8 = θ̂

(1)
5:8 θ

(1)
6:9 = θ̂

(1)
6:9 θ

(1)
7:10 = θ̂

(1)
7:10 θ

(1)
8:11 = θ̂

(1)
8:11 θ

(1)
9:12 = θ̂

(1)
9:12 θ

(1)
10:13 = θ̂

(1)
10:13 θ

(1)
11:14 = θ̂

(1)
11:14 θ

(1)
12:15 = θ̂

(1)
12:15 θ

(1)
13:16 = θ̂

(1)
13:16

θ
(2)
1:3 = θ̂

(1)
1:3 θ

(2)
1:4 = θ̂

(1)
1:4 θ

(2)
2:5 = θ̂

(1)
2:5 θ

(2)
3:6 = θ̂

(1)
3:6 θ

(2)
4:7 = θ̂

(1)
4:7 θ

(2)
5:8 = θ̂

(1)
5:8 θ

(2)
6:9 = θ̂

(1)
6:9 θ

(2)
7:10 = θ̂

(1)
7:10 θ

(2)
8:11 = θ̂

(1)
8:11 θ

(2)
9:12 = θ̂

(1)
9:12 θ

(2)
10:13 = θ̂

(1)
10:13 θ

(2)
11:14 = θ̂

(1)
11:14 θ

(2)
12:15 = θ̂

(1)
12:15 θ

(2)
13:16 = θ̂

(1)
13:16

θ
(3)
1:3 = θ̂

(1)
1:3 θ

(3)
1:4 = θ̂

(1)
1:4 θ

(3)
2:5 = θ̂

(1)
2:5 θ

(3)
3:6 = θ̂

(1)
3:6 θ

(3)
4:7 = θ̂

(1)
4:7 θ

(3)
5:8 = θ̂

(1)
5:8 θ

(3)
6:9 = θ̂

(1)
6:9 θ

(3)
7:10 = θ̂

(1)
7:10 θ

(3)
8:11 = θ̂

(1)
8:11 θ

(3)
9:12 = θ̂

(1)
9:12 θ

(3)
10:13 = θ̂

(1)
10:13 θ

(3)
11:14 = θ̂

(1)
11:14 θ

(3)
12:15 = θ̂

(1)
12:15 θ

(3)
13:16 = θ̂

(1)
13:16

θ
(4)
1:3 = θ̂

(1)
1:3 θ

(4)
1:4 = θ̂

(1)
1:4 θ

(4)
2:5 = θ̂

(1)
2:5 θ

(4)
3:6 = θ̂

(1)
3:6 θ

(4)
4:7 = θ̂

(1)
4:7 θ

(4)
5:8 = θ̂

(1)
5:8 θ

(4)
6:9 = θ̂

(1)
6:9 θ

(4)
7:10 = θ̂

(1)
7:10 θ

(4)
8:11 = θ̂

(1)
8:11 θ

(4)
9:12 = θ̂

(1)
9:12 θ

(4)
10:13 = θ̂

(1)
10:13 θ

(4)
11:14 = θ̂

(1)
11:14 θ

(4)
12:15 = θ̂

(1)
12:15 θ

(4)
13:16 = θ̂

(2)
13:16

θ
(5)
1:3 = θ̂

(1)
1:3 θ

(5)
1:4 = θ̂

(1)
1:4 θ

(5)
2:5 = θ̂

(1)
2:5 θ

(5)
3:6 = θ̂

(1)
3:6 θ

(5)
4:7 = θ̂

(1)
4:7 θ

(5)
5:8 = θ̂

(1)
5:8 θ

(5)
6:9 = θ̂

(1)
6:9 θ

(5)
7:10 = θ̂

(1)
7:10 θ

(5)
8:11 = θ̂

(1)
8:11 θ

(5)
9:12 = θ̂

(1)
9:12 θ

(5)
10:13 = θ̂

(2)
10:13 θ

(5)
11:14 = θ̂

(3)
11:14 θ

(5)
12:15 = θ̂

(4)
12:15 θ

(5)
13:16 = θ̂

(5)
13:16

θ
(6)
1:3 = θ̂

(1)
1:3 θ

(6)
1:4 = θ̂

(1)
1:4 θ

(6)
2:5 = θ̂

(1)
2:5 θ

(6)
3:6 = θ̂

(1)
3:6 θ

(6)
4:7 = θ̂

(1)
4:7 θ

(6)
5:8 = θ̂

(1)
5:8 θ

(6)
6:9 = θ̂

(1)
6:9 θ

(6)
7:10 = θ̂

(2)
7:10 θ

(6)
8:11 = θ̂

(3)
8:11 θ

(6)
9:12 = θ̂

(4)
9:12 θ

(6)
10:13 = θ̂

(5)
10:13 θ

(6)
11:14 = θ̂

(6)
11:14 θ

(6)
12:15 = θ̂

(7)
12:15 θ

(6)
13:16 = θ̂

(8)
13:16

θ
(7)
1:3 = θ̂

(1)
1:3 θ

(7)
1:4 = θ̂

(1)
1:4 θ

(7)
2:5 = θ̂

(1)
2:5 θ

(7)
3:6 = θ̂

(1)
3:6 θ

(7)
4:7 = θ̂

(2)
4:7 θ

(7)
5:8 = θ̂

(3)
5:8 θ

(7)
6:9 = θ̂

(4)
6:9 θ

(7)
7:10 = θ̂

(5)
7:10 θ

(7)
8:11 = θ̂

(6)
8:11 θ

(7)
9:12 = θ̂

(7)
9:12 θ

(7)
10:13 = θ̂

(8)
10:13 θ

(7)
11:14 = θ̂

(9)
11:14 θ

(7)
12:15 = θ̂

(10)
12:15 θ

(7)
13:16 = θ̂

(11)
13:16

θ
(8)
1:3 = θ̂

(1)
1:3 θ

(8)
1:4 = θ̂

(2)
1:4 θ

(8)
2:5 = θ̂

(3)
2:5 θ

(8)
3:6 = θ̂

(4)
3:6 θ

(8)
4:7 = θ̂

(5)
4:7 θ

(8)
5:8 = θ̂

(6)
5:8 θ

(8)
6:9 = θ̂

(7)
6:9 θ

(8)
7:10 = θ̂

(8)
7:10 θ

(8)
8:11 = θ̂

(9)
8:11 θ

(8)
9:12 = θ̂

(10)
9:12 θ

(8)
10:13 = θ̂

(11)
10:13 θ

(8)
11:14 = θ̂

(12)
11:14 θ

(8)
12:15 = θ̂

(13)
12:15 θ

(8)
13:16 = θ̂

(14)
13:16

D ADDITIONAL SETTINGS AND RESULTS FOR NUMERICAL EXPERIMENTS

Our objective function Eq. 13 and the setting of tracking process composing of a signal term and a
time-correlated noise term is a variant of the numerical experiment in Li & Li (2020), where at = a
for some a > 0 for all t. By allowing varying at, we can control the condition number of C(·;θ),
thereby comparing the performance of online-PGM and online-AGM for various κ’s.

We choose T = 40, k ∈ [20] and x0 = 10. In addition, since Algorithm 3 requires the function to be
κ-strongly convex and 1-smooth, we normalize each update that involves∇C by a factor (2 +A)−1

and take κ = 2
2+A

4.

For the information θ(t) at time t, in this experiment, ξ̂(t)s = ξs for s ∈ [t− 1] and ξ̂(t)s = γs−t+1ξt−1
for s ≥ t. That is, the DM has perfect information about past ξs’s, and uses the optimal prediction
(see Li & Li (2020) for more details) for prediction of unseen ξs’s.

Our experiments are run using Matlab on Macbook Pro.

In Figure 4 we provide a subset of Figures in Figure 5, and below we provide the logarithm of the
average dynamic regret and the average ∥x− x∗∥ for all 6 settings.

4The objective is not exactly 2 + A-smooth and 2-strongly convex. However, this choice of parameters
appear to work for this planning problem.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 5 10 15 20
2.5

3

3.5

4

4.5

5

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(a) γ = 0.3, A = 0

0 5 10 15 20
5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(b) γ = 0.3, A = 50

0 5 10 15 20
8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(c) γ = 0.3, A = 500

0 5 10 15 20
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(d) γ = 0.7, A = 0

0 5 10 15 20
5.8

6

6.2

6.4

6.6

6.8

7

7.2

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(e) γ = 0.7, A = 50

0 5 10 15 20
8

8.2

8.4

8.6

8.8

9

9.2

9.4

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(f) γ = 0.7, A = 500

Figure 5: Logarithm of sample-average dynamic regret.

0 5 10 15 20
1.4

1.6

1.8

2

2.2

2.4

2.6

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(a) γ = 0.3, A = 0

0 5 10 15 20
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(b) γ = 0.3, A = 50

0 5 10 15 20
1.6

1.8

2

2.2

2.4

2.6

2.8

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(c) γ = 0.3, A = 500

0 5 10 15 20
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(d) γ = 0.7, A = 0

0 5 10 15 20
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(e) γ = 0.7, A = 50

0 5 10 15 20
1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

o-PGM, x = x
*

nf

o-PGM, x = 0

o-AGM, x = x
*

nf

o-AGM, x = 0

(f) γ = 0.7, A = 500

Figure 6: Logarithm of sample-average ∥x− x∗∥.

22

	Introduction
	Setup
	Main results
	Contributions
	Notations

	Connections with previous works
	Two ingredients in algorithm design
	Optimization with Inexact First Order Oracle
	From offline algorithms to online algorithms
	A Hypothetical Offline Convex Optimization Problem
	State Evolution Perspective of Algorithms 1 and 2
	Asynchronous update for synchronous algorithms

	Algorithms and performance
	Numerical Experiments
	Additional results for Section 1
	Example 3
	Comment on Assumption 1.2

	Additional Results for Section 3.1
	Projected Gradient Method
	Accelerated Gradient Method

	Additional Results for Section 3.2
	Additional Results for the Hypothetical Offline Problem
	addition results for the update rule
	state transition of PGM and AGM – a network perspective
	Choice of L and W"0365Wv(l)

	Additional Settings and Results for Numerical Experiments

