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ABSTRACT

We study online convex optimization with predictions, where, at each time step
t, predictions about the next k steps are available, and with coupled costs over
time steps, where the cost function at time step ¢ depends on the decisions made
between time ¢ — a and time ¢ + b for some nonnegative integers a, b.

We provide a general recipe to run synchronous update in an asynchronous fashion
that respects the sequential revelation of information. Combined with existing
convergence results for convex optimization using inexact first-order oracle, we
show that acceleration is possible in this framework, where the dynamic regret can

be reduced by a factor of (1 — O(v/k)) wt through accelerated gradient descent,
at a cost of an additive error term that depends on the prediction accuracy. This
generalizes and improves the (1 — x/4)" factor obtained by [Li & Li (2020) for
a + b = 1. Our algorithm also has smaller dependency on longer-term prediction
error. Moreover, our algorithm is the first gradient based algorithm which, when
the strong-convexity assumption is relaxed, constructs a solution whose regret
decays at the rate of O(1/k?), at a cost of an additive error term that depends on
the prediction accuracy.

1 INTRODUCTION

We study online convex optimization with coupled cost: at time step ¢, the cost function f; is a
function of decisions (;_g).(;+5), 1.€., the decisions made in a window of length a + b around ¢.
This generalizes the well studied smoothed online convex optimization problem (L1 & Li, 2020; L1
et al., 2021} |Goel & Wierman, [2019; |Chen et al., 2018; Goel et al.l [2019; |Pan et al.| [2022) where
ft is the sum of a stage cost that depends only on current decision x;, and a switching cost between
z and x;_1. Following the setup of L1 & Li|(2020) and|L1 et al.|(2021), we assume that the cost at

time ¢ is parameterized by 6; € O, and the decision maker has potentially inexact predictions, g(st),
about future 6, (s > t). Online convex optimization with switching costs has been used in various
settings such as online optimal control (Li et al.,|2019), data center management (Lin et al.,|[2012),
power systems (Kim & Giannakis}, [2017)), to name a few. Our history-dependent stage costs also
echo a recent line of work on online convex optimization with memory (Anava et al.,[2015} |Kumar
et al.,|2023; |Shi et al.,[2020), which shows applications in online linear control (Agarwal et al.| 2019)),
statistical arbitrage in finance, and time series prediction (Anava et al.,[2015).

We focus on the following question proposed and studied in |Li & Li (2020): when making decisions
online, how can one make the best use of predictions about future, while being robust to inaccuracy
in the (long-term) predictions?

Many methods have been proposed to incorporate predictions in online convex optimization: from
optimization based methods such as RHC (Kwon & Pearson, [1977)), AFHC (Lin et al.} [2012) and
CHC (Chen et al., 2016), which require solving optimization problems (exactly) at each iteration, to
gradient based methods RHAG (L1 et al., 2021) which converges at the optimal rate but requires exact
prediction, and RHIG (Li & Li, |2020) which works with inexact prediction but suffers suboptimal
convergence rate.

In this work, we propose the online Projected Gradient Method (online-PGM) and online Accelerated
Gradient Method (online-AGM), which build upon variants of the well known (accelerated) gradient
descent designed for inexact first order oracle (Bubeck! [2015;Devolder et al., |2013azb)). We show that
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when k-step predictions of the objective functions and k-step look ahead initialization are available,
online-AGM achieves the convergence rate (1 — O(+/k)*) for x-conditioned objective functions.
In addition, the extra additive term in the dynamic regret due to prediction inaccuracy has smaller
dependency on long-term prediction error, as compared to RHIG in|Li & Li (2020). We also consider
the case when the strong-convexity assumption is relaxed, and show that online-AGM constructs a
solution whose regret decays at the rate of O(1/k?), plus additive terms due to prediction inaccuracy.

As a by-product, we formalize and generalize [Li & L1 (2020) and [Li et al.|(2021))’s “fill-the-table”
approach to running (accelerated) gradient descent online, which might be of independent interest.

1.1 SETUP

We consider online convex optimization, where the loss at time ¢ depends on the decision x4 in the
window s € W; = [max(1,¢ — a), min(¢ + b, T")] for some fixed a,b € {0,1,...}, as well as a
parameter 0; € © in a parameter space. That is,

T
C(x;0") = th(arwt;@k). )]
t=1

At the beginning of each time step ¢, the decision maker (DM) has prediction 5(;) about 0, for s >t

and imperfect memory/information of past 52” for1 < s <t — 1, and decides z; € X; C R%. Then
he is given additional information about the true 8* (e.g. the exact value of ), and updates his
information about the parameter sequence to e+ — (5(1t+1), é\(QHl), . ,é\(Tt'H)).

The performance of the DM’s output sequence x = (1, T2, . .., Z7) is compared to the minimum of
Eq.|ljover & := Hthl X, and is evaluated using the dynamic regret defined a

C(x;0%) — C(x*;0"), x* € argminC(x';0%).
x'e€X

Motivating example 1: aggregate information. Positive (a, b) can model objectives that depend on
“aggregate information” of the decision sequence, such as higher order finite differences and moving

averages (ﬁ ZHb xs). This generalizes Li et al.| (2021); [Li & Li| (2020): (a,b) = (1,0),

s=t—a

fe(xe—1, 245 05) = ft(a:t; 0F) + di(x¢, xr—1), with stage cost ft and switching cost d;.

Motivating example 2: decision making in advance, or delayed decision making. If f, depends only
on x¢_, (x¢4p) for all ¢, then the decision made at time s, xg, affects fs4 (fs—p), i.e. the decision
is made a-step in advance (b-step delayed). The window [t — a,t + b] allows a combination of
in-advance decisions up to a steps and delayed decisions up to b steps.

Motivating example 3: parameters as dual variables. For convex optimization with constraints which
satisfy strong duality, one might aim at solving the Lagrangian relaxation, where the dual variables
can be interpreted as (part of the) parameters. One might have predictions for the dual variables based
on prior information or past data about the model. See Section[A.T]

Following |Li & Lil (2020), we consider the setting where, in addition to predictions of the future
parameters, the DM has access to a feasible point x(****) € X in an online-with-look-ahead manner.
Definition 1.1 (k-step look ahead initialization). We say that the DM has a k-step look ahead

initialization, if there exists a feasible point x("**) € X, and the DM, at time t, has access to xfj"”)

fors=1,2,... min(T,t+ k).

In general, any x € X can be used as a k-step look ahead initialization for any k € [T]. However,
as will be seen, the regret of the output of our algorithms depends on how good x (%) in terms of
[|x(®) — x*||. To find a good initialization, one might take advantage of existing online convex
optimization algorithms such as online gradient descent or online mirror descent (Li & Lil 2020).

'By Assumptionbelow, X is convex and compact, and C(-; 0*) is continuous. Thus there exists x* € X
achieving the minimum.
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1.2 MAIN RESULTS

On a high level, the predictions of 8* and the k-step look ahead initialization allow the DM to perform
the classical (accelerated) gradient descent for k/(a + b) steps to x("®) using VC(-;0), where

6 is chosen based on {5(1), cee §(T)} to ensure online-implementability. Then, the regret and its
dependency on parameter prediction errors follow naturally from properties of these classical offline
algorithms — convergence rate and robustness against gradient inaccuracy, respectively.

To quantify how good the information 6 is at time t, we assume that © is a normed space, and that
Hg(st) — 0% || measures the error in prediction (s > t) or imperfect memory (1 < s < ¢ — 1). Further,
we assume that V f; is Lipschitz w.r.t. 6;.

Assumption 1.1 (V f; is Lipschitz w.r.t. ;).

0 0
‘ait (th,Gt) — ailf‘t(l’wﬁeé)‘ S ht,5||9t — 92”, Vth S XWt7 s € Wt, 9,5,02 € ("‘) (2)

In addition, we make the following assumptions on the convexity of the objective function C(-; 8*).

Assumption 1.2 (smooth, (strongly) convex C' w.r.t. x). X = Hil X; where each Xy is compact
and convex. For any 0 € oT, C(+;0) : X — R is convex and differentiable on X. In addition, there
exists k € [0, 1], such that

1
gllx—yH2 < C(x;0)~C(y;0) = (VC(y;0),x—y) < Sllx—y|* Vx,ye&,v0 e e’ 3)

In terminology of convex optimization, C(+; @) is 1-smooth, and when x > 0, it’s also x-strongly
convex. [Li & Li|(2020); L1 et al.[(2021) assume that x > 0, thereby their results hold only for strongly
convex C. As will be seen, our algorithms provide guarantees even in the case when k = 0, i.e.
when the objective is not necessarily strongly convex. Moreover, Assumption is weaker than
assumptions on each f;, and typically, one can think of kK = ©(1) as a constant that does not depend
on T (see Section[A.2).

Due to the constraint X;, we make the following assumption common in convex optimization
literature:

Assumption 1.3 (efficient projection). Forallt € [T, for all y € R®%, projecting y to X,, i.e. finding
arg ming, e x, ||v¢ — y||% can be computed efficiently.

Below, we state the performance of our algorithms online-PGM and online-AGM, which is to be
presented in Algorithm 3]

Theorem 1.1. Under the Assumptions suppose that the DM has access to a k-step
look ahead initialization as defined in and that L is chosen such that (a + b)L < k, that ) is

available at time t, and that & is given. Then Algorithm [3|outputs T, at time t = 1,2,...,T such
that X satisfies the following properties:
e Fork =0,

1 R2 4 2Dx L line-PGM

72 Ry + "5 Yo Pa (online-AGM).
e Fork >0,

—rL/4 8+1/4 L _ .
O 6% — Cxrs07) < | HB RS SEGE S0, pt e (online-PGM)

T 6pFRE + (1) +1/2) S, pEle2 (online-AGM),
where p=1—k/4, p1 = (1 + %\/E)_Q, Ry = ||X(m”’) —x*||, Dx = maxx xex ||x — X'|| is the
diameter of X. Fort € [T, denoting Wy := [max(1,¢ — b), min(¢t + a, T)]

(a+b)(L-1) T
= > (D healoV —6)* + Do (D heallBSIEED g2,
t=1 SEWt t=(a+b)(L—1)+1 sewt

?Alternatively, one can replace the norm on the RHS of Eq. [2) with a penalty function p : © x © — R.
Then our main results still hold (with potentially different constant factors), with ||6; — 6. || replaced by p(6:, 6;).
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When & > 0, we can further use the upper bound that R3 < C(x(""); %) — C(x*; 0*), which
implies that for online-AGM, there exists p; = 1 — O(y/kK),

L
Cx;0")—C(x*;0%") =0 (nflpf(C(x(m”);O*) - C’(x*;O*))) +0 ((/—il +1) ZplL_lelQ> .
=1

1.3 CONTRIBUTIONS

Li & Li(2020) shows that it’s possible to reduce the dynamlc regret of x(") by a factor of O(k~1p")
for p =1 — %, at the cost of an additive term O((k ! + 1) lel p'=18;)) that depends on the I-step

prediction errors §;. A lower bound Q(C), Zthl ph16;) for pg = (;ﬁ)Q is also proposed where

C,, is a constant depending on k. When k-step exact prediction is available, RHAG proposed in |Li
et al.| (2021) uses accelerated gradient descent and can reduce the regret of the initialization by a
factor of O(x~* pg) For the setup studied in|Li & Li|(2020); LLi et al.| (2021), our online-PGM is
a slight variation to RHIG and achieves similar performance as RHIG, while our online-AGM is a
slight variation to RHAG, and our results hold for the case when the gradients are inexact.

Our contributions. We show that acceleration is also possible when the prediction is inexact, and
closes the gap on the decay rate (p and pg) of the influence of long-term prediction error. We propose
an algorithm, online Accelerated Gradient Method, which performs accelerated gradient descent steps
instead of gradient descent steps as in|Li & Li|(2020). Our online- AGM constructs solutions whose

dynamic regret is the sum of two components: one term — O (k™1 p; i (C(xlnit), 0*) C(x*' 0*)))

— depends on how good the initialization is, and the other term — O((x~! + 1) Zl“*lb pe)) —

depends on the prediction error. Importantly, p; = 1 — O(y/k), which depends on /k as in the lower
bound rate pg, and is smaller than the rate p = 1 — /4 for RHIG (for small enough x).

In addition, we analyze the performance of online-PGM and online-AGM when the strong-convexity
assumption is relaxed — a setting not studied in L1 et al.|(2021); |L1 & L1/ (2020) — and show that the
regret decays at the rate of O((33) ") and O(( o) 2) respectively, with additive error terms due
to the prediction inaccuracy. To the best of our knowledge, our online-PGM and online-AGM are the
first gradient-based algorithms for smoothed online convex optimization (and objectives with more
general couplings) with inexact predictions without the strong-convexity assumption.

As a by-product, we formalize and generalize |L1 & Li/(2020) and [Li et al.| (2021)’s “fill-the-table”
approach to running (accelerated) gradient descent online. We view the iterative updates in offline
algorithms as state-evolution (in networks), and provide a general recipe to turn offline algorithms to
online ones while maintaining the offline performance (such as convergence rate and robustness).
This systematic approach to constructing online algorithms from offline ones might have applications
in other problems.

1.4 NOTATIONS

We use boldface to denote variables that have T' components, such as x = (21,9, ...,2r) and
6 = (01,65, ...,07). For convenience, for any A C [T], we use x4 to denote (x+)+c 4, and similarly
for 6. We let [n] := {1,2,...,n} forall n € N. For any convex compact set £ C R? and y € R,

Proji(y) := argminy i |y’ — yl*.
2 CONNECTIONS WITH PREVIOUS WORKS

Smooth online convex optimization. Our problem is motivated by a recent line of work on online
convex optimization with switching cost, where the goal is to minimize Zthl fi(my) + d(ze, m—1)
by choosing x; sequentially, based on past decisions and past f;’s, together with potentially inexact
predictions about future f;’s(Kwon & Pearson (1977} [Lin et al} 2012} |Chen et al.| 2016} [Li et al.|
2021; [Li & Li, |2020). Various methods have been proposed to take advantage of the prediction. To
name a few, RHC (Kwon & Pearson! (1977), AFHC (Lin et al.,[2012)) and CHC (Chen et al., [2016))
choose x;’s based on the optimal solution to the predicted problem restricted to windows around ¢;
RHAG (Li et al.} 2021)) applies accelerated gradient descent with exact prediction, and RHIG (Li &
Lil 2020) applies gradient descent with inexact prediction (more comparison in Section [I.3)).
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Online convex optimization and dynamic regret. We measure the performance of x using the
dynamic regret, i.e. against the optimal x* which does not necessarily satisfy x} = x, for all £.
Dynamic regret has been well studied for problems where f; depends only on x; (see |Zinkevich
(2003)); Besbes et al.| (2015)); Zhao & Zhang| (2021)); [Hazan| (2022) and references therein). Typically,
the regret is upper bounded using a combination of T', Py the variation of the sequence (3, ..., z%),
and/or Vr the variation of the sequence (f1, ..., fr). For instance, the online gradient descent (OGD)

achieves O(v/T"Pr) (Zinkevich, 2003), and the restarted OGD achieves O(Tz/ 3V;/ 3) (Besbes et al.,
2015). However, it’s non-trivial to obtain dynamic regret guarantees for the general coupled objective
functions where f; also depends on decisions made in the past and/or future. [Li & Li| (2020) shows
that in the special setting of smooth online convex optimization with prediction, where the coupling is
only due to the switching costs between consecutive decisions, restarted OGD can achieve O(v/TVr)
dynamic regret, with additive terms due to prediction errors.

Other related online optimization problems. Convex optimization with memory (Anava et al.|
2015; Kumar et al., 2023} Shi et al.,[2020) can be viewed as a special case of our problem Eq. E] with
b = 0. However, static regret and the offline fixed decision are usually used as benchmarks. Also
related is online optimization with prediction, where bound on static regret using the prediction error
has been obtained for online mirror descent (Rakhlin & Sridharan, 2013)).

Smooth convex optimization with inexact oracles. Under Assumption[I.1] prediction error can be
related to error in gradient, and thus be treated as a form of oracle inaccuracy. Our Algorithm [3]builds
upon Devolder et al.|(2013a) and |Devolder et al. (2013b)), which study the convergence properties
of (accelerated) gradient descent with inexact first order oracle. We present a modification of their
results below in Section 3.1} Optimization with inexact oracle has also been studied in many other
works: |d’ Aspremont| (2008)) and |Schmidt et al.| (2011}, to name a few.

Decentralized convex optimization. Our objective function C'(z1, xa, . . ., z7; @) can be viewed as
a function of 7" components and fits naturally into a network model, where each vertex represents
the decision at some time step, and vertices communicate information such as current decision
variables, gradients, and momentum. This connects our problem with many other network-related
problems, especially parallel/distributed optimization (Scaman et al., 2017; Mosk-Aoyama et al.|
2010; [Bertsekas & Tsitsiklis, 2015). It will be interesting to further explore what insights these
network-related problems can bring to our online convex optimization with prediction.

3 TWO INGREDIENTS IN ALGORITHM DESIGN

Our online-PGM and online-AGM (Algorithm [3) can be viewed as offline convex optimization
algorithms which are robust to oracle errors, implemented in an asynchronous fashion such that the
updates can be carried out online. We explain these two ingredients in Sections [3.1]and [3.2]

3.1 OPTIMIZATION WITH INEXACT FIRST ORDER ORACLE

Offline smooth convex optimization with first order oracle is a well studied problem, and the
accelerated gradient method is known to achieve the optimal convergence rates of O(1/k?) and of
O(exp(—+/kk)) for strongly convex x-conditioned objectives(Bubeckl, [2015). In fact, Devolder et al.
(2013a) and|Devolder et al.|(2013b) show that the accelerated gradient method is also robust to gradient
inaccuracy: the convergence rates of O(1/k?) and exp(—+/kt) still hold, but the suboptimality gaps
have one extra additive term that depends on the error in the gradients. This applies exactly to our

-~

setting, where VC(+; @) is used as an approximation to VC/(+; 6*).
Formally, [Devolder et al.[|(2013a)) and |Devolder et al.|(2013b)) study convex optimization with inexact
first order oracle. The goal is to solve the following convex optimization problem

géi}rcl F(x) 4)

where K C R< is closed and convex, and F is convex on /X, and the optimal is achieved at some
x* € K. The algorithm has access to a (4, m, M) oracle defined as
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Definition 3.1 ((§, m, M)-oracle). We say O : K — R x R? is a first-order (5, m, M)-oracle if for
any'y € K, when queried at y, the oracle returns (Fs a1 (), gs.m.m(y)) € R x R? such that

m M
5”1‘ - y”2 S F(I) - F5-,TVL7M(y) - <g5,nL,A{(Y)7x - y> S 7“‘]: - yH2 + 67 Va € IC’ (5)
where 6 > 0,0 <m < M.

The simplest example is O(z) = (F(z), VF(x)), which is a (0, m, M )-oracle when F' is m-strongly
convex and M -smooth. In fact,[Devolder et al.|(2013a)) and [Devolder et al.|(2013b) show that if one
has an inexact gradient and function value oracle for F', one can construct a (§, m’, M")-oracle for
some 0, m’, M’ that might depend on m, M and error in gradient and value oracles (Proposition .

Method | Assumption Evaluation z() Dependency on Rg Dependency on §;’s
P —k) 2@ P — k),
PGM m>0 | Emalett | Mexp(—kl)RE e
PGM m=0 I Zi:1 e 2R3 I Zi:l 0 ‘
AGM m > 0 0] (1452 3MR2 | S (1 4 )20,
AGM m=0 z® WR2 4 ()2

Table 1: Convergence properties for convex optimization with (d;, m, M)-oracle oW 1=1,2,....
Denote Ry := |[z(® — 2*|| and x = m/M, and the guarantee is F(z)) — F(z*) <
“Dependency on Ro” + “Dependency on &;’s”. See Theorem|[B.1|and [B.2|for the exact statements.

In Table[I] we summarize the performance of the Projected Gradient Method (PGM, Algorithm T},
and the Accelerated Gradient Method (AGM, Algorithm@ proposed in|Devolder et al.|(2013afb) for
problems with inexact first order oracles. The proofs for Theorem|B.I|and[B.2] adapted from Devolder
et al. (2013a) to deal with iteration-dependent &; (at iteration /, the oracle 0Wisa (61, m, M)-oracle),
are provided in Appendix

Algorithm 2: Accelerated Gradient Method
with (8, m, M)-oracle

Input: Initial 2 € K, O an (81, m, M )-oracle for F/
forl =1,2,...,sequence (a);en and sequence

Algorithm 1: Projected Gradient Method

1 (T1)1en-
with (6’ m, M)-Orade Output: the sequence () s z<2), z<3), L.
itialize v (1) p(init) (0) d.
Input: Initial (9 € K, ©® an (6;, m, M)-oracle for F for i‘g:llahfzelyQ A flo s = 0 €R;

Output: zu;, z’(é‘); . Obtain (), g «— 0D (y V),
fori =1,2,...,do Compute
Obtain (=1, g071) « 0O (z01);
Update z®
argmingex (9470, 2 = 270) + Hlz — 207V

M
1) : @ _ D2
@ e argmin(g,x —y ) + o flz -y
v D al(g(l) - rrLy(l>)
end

L0

M . m(h_, aj)

. (1) 2 ) j=1%J

“— —|ly— , == -
argmin — ly—y 17+, )+ 2

Update y 1) «— 7,20 4 (1 — 7)a®;
end

3.2 FROM OFFLINE ALGORITHMS TO ONLINE ALGORITHMS

The second observation is that offline algorithms that update all variables synchronously can be
implemented in an asynchronously manner, such that the variables can be updated sequentially. In
fact, this can be done efficiently as long as the variables are only “weakly coupled”. Take PGM
as an example. When applying PGM to our objective C'(+; 8*), in the [-th iteration, the update is
x() = Proj , (x~1) — nVC(x~1); 6%)) for some 5 > 0. Direct computation shows that

oC ( 0*) min(t+a,T)
~ (x: -
8xt ’

9fs

Tt

("EWs;e:)a Vx e X (6)
s=max(1,t—b)

In particular, this implies that g—g(x; 0*) depends only on x, for s’ € U?:”;Eia?_b) W, that is, for

|s' — s| < a+ b. See Figure|[l]for an example for a = 2,b = 1.

2
Iyl
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Figure 1: Example: a = 2,0 = 1 a—g(x;O) = Z?—? 1 gij (7(s—2):(s4+1); ') depends on
O(t—1):(t+2) and T(;_3):(¢1+3)-

O]

In other words, x;’ can be computed as long has x(q U has been computed for all |s — ¢| < a+ b,

even if some :U(, Y has not been computed. This idea is used in the design of RHIG algorithm, where

a=1,b=0 and simple gradient descent steps like those in Algorithm|I]are used.

Below, in Section [3.2.1) we first look at a hypothetical offline setting for the problem Eq.[I] which
can be solved using Algorithms[T|(PGM) and 2| (AGM). In Section we show that the iterative
updates in PGM and AGM admit a state-transition view, where roughly the states can be taken as
a for PGM, and (z,v) for AGM. In Section we explore this state-transition view in a more
general network setting, and propose a recipe to simulate synchronous state-evolution asynchronously,
thereby turning offline algorithms into online ones. This “network and states” perspective allows us
to work with objectives that have more complex dependency structure (e.g. a,b > 1) in a unified way
(the “momentum term” v in AGM is treated as part of the state).

3.2.1 A HYPOTHETICAL OFFLINE CONVEX OPTIMIZATION PROBLEM
First, recall that Equationﬁlmphes that OC o (x:0) = ac (th, 07,) depends only on z;, where
W, = [max(1,t—a—b), min(t+a+b, T)] and on 9~ where W, := [max(1, t—b), min(t+a, T)].
This allows us to define, for each 0}, € eI, Gi(30,) - X, — R% as

oC Ofs
Gi(zyp,: O,) = a—zt(mwt;em) = Z 8;; (zw,;0s), Vg, € Xy, @)
seEWy

Next, we consider solving the problem Eq. |1} but in the following hypothetical offline convex
optimization setting: the algorithm is given an initial feasible solution x("**) € X, and a sequence of
oracles O for [ =1,2,..., L, such that

) ! !
OV (x) = (0, Gr (w305 ), Golag,; 08 )., Grlaog, 05 ), ¥xeX, @)
where 9% e ®Wil foralll e [L] and ¢ € [n]. G; can be viewed as an approximation to OC For
ac

instance, when 8 = 0%, G (737, ; 9%@) = 5z (Ty7,; 0% ) and in general, the norm of gradient error

is upper bounded by (Zthl(ZseWt hs 0% — L) 2 )1/2 by Assumption(Proposition .

Consider Algorithms |I|and [2| with the oracles O™, O®) ... OF)  Notice that in our design of
OW, the (approximate) function value term is always set to 0. Nevertheless, in both algorithms the
(approximate) function values are never used. As a result, when running these algorithms, the updates
are the same as if the (approximate) function values are not 0 but set to the exact function values at

the queried points. In particular, taking A (Zt Ve, st 105 — oy NAHY2,if k = 0,00
is equivalent to a (d;, 0, 1)-oracle for C(-; 8*), where 51 = 2A(Z)DX If k>0, forl € [L], OW is

equivalent to a (d;, &, 2)-oracle for C(-; 8*), where 0; = 2. Applying Theorem or
Theorem [B.2] we get the convergence rate (stated in Corollary - and Corollary[C.2).

3.2.2 STATE EVOLUTION PERSPECTIVE OF ALGORITHMS [[]AND[2]

In fact, since the feasible set X = HT X and Gy (5 0y, ) © X, — R depends only on z for

s € Wy, the update steps in Algorithms Iandlare separable in the following sense:
* in the [-th iteration of Algorithms I 1l fort =1,2,...,T,

_ 1 -
2 Projy, (a' " — MGt(ﬂf%tl)é 9%{)) ®)

That is, xﬁl) depends only on x%ﬁl) (and 9%) ). Here M =1if k =0and M =2if k > 0.
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¢ in the [-th iteration of Algorithms z fort =1,2,...,T,

2!+ Proj, (u" — —G (g 1000, v = o TV b (Gl 65 ) —my()
M (1) w®
z,gl) < Projy, ( Yt ) yglﬂ) — 7 Z(l) +(1- n)m,ﬁ”

Mo 0g) + M
Herem =0,M =1ifk =0,and m = /2, M = 2if k > 0. Notlcethatzf)andyf)depend
only on (xEl), ’ugl) My(l)) while (xgl), v§” My(l)) depends only on (z; (= 1) % b_ My(Wl) )
(together with [ and 9” ) thus (z; (l) (l) -M y(l)) can be used as state varlables

A more precise deﬁnltlon of the states is presented in Section|C.3] Consequently, in Algorithm[I] as

long as a:% D is computed before xgl) is computed, the evolution of x(*) remains the same as if all

x;’s are updated at the same time. Similarly for Algorithm 2]

Figure 2: Example: a = 2,b = 1, one step gradient descent for z; using G, which depends on

T(4—3):(¢++3)- For simplicity, we omit the dependency on JON

3.2.3 ASYNCHRONOUS UPDATE FOR SYNCHRONOUS ALGORITHMS

Let G = (V, E) be an undirected graph. For each vertex v € V and £ = 0,1,..., N¢(v) C V is the
set of vertices that are £-hop away from v. For instance, Ny(v) = {v} and N7 (v) is the the neighbor

of v, which we abbreviate as A/(v). For convenience Nz (v) = US_ i (v), and N (v) = N7 (v).
We associate v € V' a state space S, and a state update function ¢, : Sﬁ(v) — &, . Consider

the following synchronous update: at t = 0, vertex v is at state 3(0) €S, Forl =12 ..,

(l) = ¢u(s j\l/ (3)) ). That is, the state of v at [ depends only on the states of v and its neighbors at
iterations [ — 1. Importantly, the update order for the vertices within the [-th iteration does not matter,
since the new states depend only on the states in the previous step. However, the update order cannot
be changed across iterations (e.g. update s,, twice at iteration [ and fix it at iteration [ + 1).

For any fixed ordering o : [|V|] = V, L € N, in Algorithm[5|we give an asynchronous way to update

the states for L steps such that the state evolution 5 5 forall v € V,1 € [L] satisfies

* consistency: the state evolution is the same as the synchronous update, i.e. s(l) = 39) for all
veV,lell]

* minimum information: for all vertex 7 € V, the sequence s(l( ) = (3 (1())7 ce EgL(Z)) does not
depend on s for v ¢ Ui Nz (o(4))
The second condition implies that st (1L)), ((Tl(QL)), e sgl(:‘f,)l) can be computed sequentially, such

L) .

that by the time Sfy(i) ©) (0) NO)

. ne m No(e() N (@) "N (o()
information might be revealed multiple times). In addition, we point out that the first property,

consistency, holds for all [ € [L] not just for the last iterate [ = L. This is crucial since for many
algorithms, the final output depends not just on the last iterate variables, but also on the entire path.
For instance, for Algorithms[Ijand[2] the performance guarantee is stated for some weighted average
of the intermediate decision variables.

The Algorithm [5] and its performance (Theorem [C.I)) are stated in Appendix [C.2] To illustrate
the idea, let’s take V' = [|V|] and o (i) = i for all ¢ € V, then Algorithm [5|initializes s( )

is computed, only 557 are revealed (some

Nr(1)
O]

L_i(1)
is computed, this

(0)

using Si7 : ) :(2) ~(L—1) (L)

) N1y N((1))’81 . Slnces

then computes sequentially 5%

(-1
Nr_i+1(1)

Ny

depends only on 5. which has already been computed when 55

—1(1)
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order of update is valid. Then §(NO)L @ is initialized using s%)L (1)’ and it computes sequentially
(1) =(2) S(L-1)
5

(L) @i ~()
Ne1(2) SN a(2) " R (2) 52 - Similarly for the rest of the nodes. (If 5~ has been set before,
§E,l) won’t be computed again.) Figure gives an example when L = 2.
Figure 3: Update rule for Algorithm|[5|forv = 1,2, L = 2.

e RO Rl RN e @‘@ pe @

For Algorithms [I|and 2| run with the oracles O) defined as in Eq. [8| we can take V = [T and
E = {{u,v} C V2 u # v, |u—v| < a+ b}. Then the neighborhood of t € V is N'(t) = Wy,
with the states as defined in Section[C3]

4 ALGORITHMS AND PERFORMANCE
Finally, we present our Algorithm online-PGM in green , and online-AGM in yellow . Just like

the offline PGM (Algorithm [T), for online-PGM, each update is a projected gradient descent update

using G = Gs(x%I); 9% ) ~ gTCS(x(l_l); 0*) (G, is defined in Eq.
1

O Projy (7Y — —@,,). 10
Tyl I’O_]XS(.’L'S M s,l) ( )

Similarly, following the offline AGM (Algorithm 2, in online-AGM, each update is a projected
gradient descent step at the extrapolated point y("), followed by an update on momentum terms and

next query point. With G5; = Gs(y%‘;e%) )~ chs(y(l)? 0*)

1
xgl) < Projy, (ygl)—MGSJL @gl) — Tjgl_l)—I—ozl(Cr’s’l—mygl))7 ng'l) — legl)—i-(l—n)xgl),
(1D

z _ 50
where z{! Projx, (m)
P

Thus, it remains to choose L and 9%) for each iteration [ so that the asynchronous update rule in

Algorithm|[5|(with o (i) = i fori € [|VU|]) can be implemented online given k-step initialization ahead.
It turns out that our update order can also be viewed as a “fill-the-table” type as in|Li & Li| (2020).

Thus, L < k/(a + b), and the following choice of 9% ’s are valid, with details in Appendix
O _ ) _ O _ plo=(atd)(L-0) _ _ _
05 =05, vel(at+d)(L-1)+1], 0'1/[71, =0 , v = (a+b)(L—-1)+2,...,T. (12)

For online AGM, we make the further simplification: since a direct implementation of Algorithm
for AGM only keeps in the memory the state variables ((x, v)) and recompute the non-state ones
((y, s)). These repetitive computations can be inefficient, and when memory is not a concern, these
dependent variables can be computed once, and stored. In Algorithm[3] we provide such simplified
implementation.

Proof of Theorem[I.1} By Theorem the sequence 2 generated when running Algorithmis
the same as the sequence when running Algorithm and [2} with the inexact oracles O() as in Eq.
and choice of () as in Eq.[12] the result follows from Corollaryfor the case x = 0 and Corollary
[C2 for the case x > 0. O

5 NUMERICAL EXPERIMENTS

We compare the performance of online-PGM and on]ine—AGME| using a variant of the planning
problem in|Li & Li[(2020), stated below:

T
1 1

C(x:0) = > (ar(a — 0:)* + 5 (e = zi-1)%), xeXx:=[-10510%7T. (13)

t=1

3As pointed out in Section online-PGM is a slight variation to RHIG and achieves similar theoretical
performance. Thus, the comparisons in this experiment can be viewed as between RHIG and online-AGM.
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Algorithm 3: online Projected Gradient Method and online Accelerated Gradient Method .
Fort € [T], W, = [max(1,t—b), min(t+a,T)], W; := [max(1,t—a—b), min(t+a+b,T)]

Input: r(m“’) € Xsfors =1,2,...,T,available fo/r step - 21—1 mi” (k =0)
t>s—k L(<Z a+b) the number of updates, o) c T . (T/M ST Zl71(1 m/M)L*lzgl) (k > 0)
available attime ¢ fort = 1,2,...,T. k € [0, 1].

Output: 1,Z2,..., 2T _ (L)

initialize (m, M) < (0,1) if x = 0,and (m, M) < (%,2)if T1 2y s

K> 0; fort = 2, ( )
T (0) (init) ) ift + ‘L(a + b < T then
initialize T (1+L(a+b)) & T1:(1+L(atb))’ initiali (0) (init) .
o it initialize ©,'; 4y < Tyip (aab)
initialize y,, — x' 8
:(1+L(a+b)) 1:(14L(a+b)) ST (1) (init)
© o initialize Yt Liatd) & T4 L(atb)
initialize ¥ — —My ;
1:(1+L(a+b)) 1:(1+L(a+b))’ L (0) (1) .
initialize Vs i Liatb) 7Myt+L(a+b),
compute (cv;);eqr) suchthat oy = 1,and VI € [L] end
forl =1,2,...,Ldo
1+ le 1o)X Jr1 ;) _O‘l2+1; ift + (a b)(L—l) < T then
o s+ t+ (a+b)(L—1);
gell o
compute 7; 1= SFL Of 1, (1—1) . 7(t)
Z]—l j G <_z:s’E‘?\d/S Oz g ( W/ ’9 )
for! =1,2, , L do
for s = 1 2 ,14+ (a+b)(L—1)do update mgl) using G5 ; and Eq.
of 1 (1—1) /11)
Goy + = s ; af 1
ES'EWS a5 Wy ) Gt ¢ oew, oo (yéi/)s/;é?));
(1) ysi 0
update = using Gs,z and Eq. update 2, 50, 20| 40+ using G,y and Eq.
. 1) . gy, d
ot Coew, 22w ,189); g
update rgl) 5 ﬁgl), zél), yé“rl) using G5 ; and Eq. _ Zl—l x(l) (k= 0)
end Ty ‘_(T_/Ai)f S (1 —m/M)E D (k> 0)
end
Ty < wiL) 3

end

Here the parameter 0 is composed of a known sinusoidal signal term and a correlated noise term, i.e.,
0, =4 s1n( )+&, and & = &1 +e; follows an autoregresswe process with noise e; ~;;q N (0, 1),

with known ~. The DM uses the optimal prediction & £l — t+1§t_1 for s > t. Further, we assume
that a;’s are known, and are generated such that a; = 1 +ABt where By ~;;q Bern(0.3). We choose
A € {0,50,500}, where larger A models ill-conditioned problems with small . For simplicity, we
take x(""*) = 0 or x("") = X}, = arg mingex C(x; @ — &), the optimal solution in the noise free
setting. For each pair of (v, A), we generate 100 problems, and Figure 4] I plots the logarithm of the

sample-average dynamics regret for v = 0.3,0.7, A = 0,500. See Figures [5|and [6]in Appendix for
more experiment results.

The results show the superior performance of online-AGM, and also the following interesting
phenomenon: in addition to faster convergence of dynamic regret, online-AGM is also converging to
a better point: in all settings in Figure |4, when k& = 20, the average dynamic regret for online-AGM
is strictly smaller than that of online-PGM. This might be explained by the fact that online-AGM has
smaller dependency on longer—term predlctlon inaccuracy.

(@y=03,4=0 (b) vy =0.3,A =500 ©y=07,A=0 (d)y=0.7,A =500

Figure 4: Logarithm of sample-average dynamic regret.
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A ADDITIONAL RESULTS FOR SECTION(I]

A.1 EXAMPLE 3

Consider the following problem

T T
i Y flawi&), sty claw,;&) <0.
t=1 t=1

T EXy, tE

Assume that for all ¢, Xy C R™, f; : Xy, x E — R, and all components of ¢, : Ay, x = — R™
are convex. This problem has the Lagrangian

T T
LOGAE) = filww,; &) + AT erlww,; &)
t=1 t=1

12
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Under strong duality, the original problem is equivalent to minimizing £(x, A*(§); &) where A*(&)
is the optimal dual (which might depend on &). Thus, we can define 6; = (&, ;) with 0 =
(&, A*(€%)). Then we have

T
E(X A* * Z xt» * , ft(xwt;et) = ft(l'Wt;gt) +)‘tTCt($Wt§ft)~

Predictions of & and A*(&) might be available from prior information or past data about the model.

A.2 COMMENT ON ASSUMPTIONI[I.2]

In Assumption we assume that C(+;0) : X — R is 1-smooth and x-strongly convex. We can
make the following connection with the assumption that for each ¢, there exists 0 < oy < f3;, such
that f; : Ay, — R is ay-strongly convex and [3;-smooth, i.e. for all z,y € Xw,,

Sy — ol < fuly; 0) — Fulr: 00) — (Vi B0)oy — 3) < Xy — o

For all x,y € X, adding the above inequalities for all £, we get
T

T
(0%
" Sy, — 2w P < Cy36) - Cx:6) — (VO(x:0),y — %) sZ% o, — %
t=1 t=1

Since Wy = [max(1,t — @), min(¢t + b, T)],

T min s+a T

Bt Bt Bt B
Z 5w, = yw, [I> = Z > 5 s = wslP=>" Y 5 s ys||* < §||X—Y\\27
t=1 t=1 seW,; s=1t=max(1,s— b)

min(s+a,T)

where B = max ¢[r t=max(1,s—b

) B¢. Similarly, we can show that

T o A min(s+a,T)
t .
> Sllowe —ywilP = Slx =yl A=min > an

se[T
t=1 s€lT] t=max(1,s—b)

When 3; < B and o; > @ for all t, we have A > (1 + min(a,b))@, and B < (1 + a + b)3. That
. . P C o (1+min(a,b))a .
is, the normalized objective, rar)s 18 1-smooth and Ttainp strongly convex. In particular,

(tmin(@b))a qo6q ot depend on 7" when a and b are on the same scale. In fact, from the

(14a+b)B
expressions for A and B, we see that it’s possible that oy = 0 for some ¢, but A > 0, i.e. f; is not
strongly convex, but C still is. Thus, our Assumption[I.2]can be seen as weaker than assumptions on
each f;.

R =

B ADDITIONAL RESULTS FOR SECTION[3.1]

Proposition B.1 (Devolder et al.| (2013b)Devolder et al. (2013a)). Let the oracle @(y) =

(F(y), VF(y)) such that for all y € K, |F(y) — F(y)| < Ay, and |[VF(y) — VF(y)| < As.

e IfF hasa (0,0, M")-oracle, i.e. F is M'-smooth, and K is bounded and has diameter Dy, then
(F(y) — A — AQDK:, @F(y)) isa (2A1 + 2A5 Dy, 0, M')-oracle.

e IfFhasa (0,m' M') -oracle for some m’ > 0, i.e. F' is M'-smooth and m/’-strongly convex, then

(F(y) — A1 — 22, VF(y)) isa 201 + (-5 + 55)A3, 2, 2M")-oracle.

'm/’

Projected gradient method. Projected gradient method with inexact first order gradient oracle is
the same as the classical PGM, but using the inexact gradient returned by an (8;, m, M )-oracle oW,
That is, at the [-th iteration,

1
— gy, 14
7y ) (14)

The exact algorithm is presented in Algorithm[I] Below we state its convergence properties:

(fED g0y 0 (=), 20  Proj (201 —

13
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Theorem B.1 (Theorem 2 in Devolder et al.|(2013b)), modification of Theorem 4 in |Devolder et al.
(2013a)). The sequence generated by Algorlthml with a sequence of (8;,m, M )-oracle OV for
l € N, satisfies the following properties:

Yexp(—f5D)lla® — 2|2+ =%y s, (1 - 57)'776
FEO)-F(z*) < (m>0as;—1g@iyzzﬂ m)l=ig (@)

%”f(o) — || + %Zi:l 6 (m=0, " = 1 Zz:l z® )

15)

Accelerated Gradient Method. To obtain the accelerated convergence rate, Algorithm [2] performs
projected gradient descent at a extrapolated point:

1
(f(l)’g(l)) — 0(1)@(1))’ 20 Proj,C(y(l) — Mg(l))' (16)
After that, the following updates are used, where (7;);en is a sequence that depends on m, M:
My® — O

v® v(lfl)Jral(g(l)fmy(l)), 20 Proj( YD Tzz(l)Jr(l*Tl)iU(l)

l )
m(Zj:I aj) + M
(17)
Theorem B.2 (modification of Theorem 6 in [Devolder et al.| (2013a)). For Algorithm 2] choose
2
the sequences (ay)ien and (T))ien such that oy = 1, 1 + 77 A = Zii for alll € N, where

A= Zi’:l o, and 1) = a’“, then for all | € N, we have

(ini l 1 /m\—2(1—i
F(a:(l))*F(:r*) _{ (13 2V LM [t — ||2+Zi:1(1+§\/ ) 20=)e; m >0

”Wﬂmﬂ wW+4ZZA) m=0
(18)

InDevolder et al.[(2013b)), the authors study inexact first oracle when the objective function is smooth
but not strongly convex. InDevolder et al.|(2013a) the authors study the strongly convex case with
inexact oracle, but §;’s are the same for all time period. The proof of Theorem and are
adaptation of the proof in [Devolder et al.| (2013a) for the strongly convex and smooth objective
functions, taking into account variation in §; across time.

B.1 PROJECTED GRADIENT METHOD

Proof of Theorem[B.1] The case when m = 0 follows directly from Theorem 2 in Devolder et al.
(2013b). Below, we adapt the proof of Theorem 6 in Devolder et al.|(2013a)) to show the bound when
m > 0.

For convenience, denote 77 = ||2) — z*||? for = 0,1,2, .. .. Then we have
(I4+1) _ m*HQ — Tl2 + 2<.13(l+1) _ JJ(Z),.T(Z_H) _ $*> _ Hx(l—i—l) _ $(l)||2.

7"l+1
The optimality condition at z(*+1) implies that
(gW + Mz — 20y ¢ — 2Dy >0, vz e K.
Thus we have
(@D g0 g0 _ ey < Lo pe - parny

M
Thus we have

2
ri S 174 ple e —al) o — a2

=7+ (g2 2) = (g0, g0+ — o) 4 Aol 5O

<ri+ %(g(l),x* —z®) - %[F(x(l“)) — O 1] (O s (8,41, m, M) oracle)
<o (@) = SO = Tl = O] - ZRE) - O -5

= (1= 20 [F@) = P@D) + 6],

14
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Denoting R; := & [F(2*) — F(z*V) + §;1.1], and applying the above bound recursively, we get

m
T?S(l )7“11+Rll< 1—— +Z ’1Rlz

M

Thus we have
l

m m.;_
0< (1—77)'r + da- a7 R,

i=1
which implies that

l
Sa- %)l*i[p(x@) —FEY) < (1-— H«O +Z )i,

i=1

B.2 ACCELERATED GRADIENT METHOD

Lemma B.1. Denote
* L _ M 1) 2 @) 4 (@ (4) myo )2
(. meln ||:z: II“+ E a;f —y") + 5 |z =y [I7].

Choosing the sequence (o )icn and sequence (1;)1en such that

2
m B!
1+ —A, = , ap =1
M A

where A} = 2221 o, and 1) = Zl“ Then for any | > 1, we have AF(z®)) < Vi + E; where
= Zi:l Aid;.

Proof of Lemma(B-1] The proof is an adaptation of the proof for Lemma 3 in[Devolder et al.| (2013a).
The proof is by induction on [. For [ =1,

. .M m ‘
(S min 7Hy —yW)2+ O 4 (g, 2 —y M) + gllx —yM? (usingay = 1)

> min fO + (g0, 5 — @y 1+ X

(1)||2
zeK 2

|z —y

M
= fO 4 (g 2D — D)y 4 7”3:(1) —yW|2  (by the update rule)
> F(zM) —4y. (OW is (61, m, M)-oracle)

Thus the statement is true for [ = 1. Suppose that it’s true for some [ > 1, then the optimality
condition for () implies that

(M (20 — Dy 40O 4 m a0y — 20y >0, Wyek.
By the update rule,

l l
o =3 ai(g® = my®) = v® 4 maz0 =3 a4y — my® 4+ mzD),

i=1
and so we get

l
MW =y My —20) > O ai(g"? —my® +m2), 20 —y), Wy ek
=1

15
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Since ||z — y(1)||? is strongly convex in x, we have for any x € K,

M M M
e =y D12 = 20 =y DI 2 MEO —y O,z = 20) + o — 2O

l
o N
> (3 ailg® =y o+ mz0), 20 — ) + o — 2O

l
. M
_ L@ 5 (Z) ) L0
;:1 ai{g'¥, z )+ m E o +z x) + 5 ||

Thus for any z € K, for the objective function in the definition of ¥}, ,,

141
e - vOI 4 3ol (g% =)+ Fle =y
M i m i
> 20—y ||2+Za 9", w =y )+ =y
—|—z:ozZ ) g —|—mz:0¢z @ 4,00 a:}—i—MHm—z(l)Hz
2 2

m
+ al+1[f(l+1 + <g(l+1)7x . y(l+1)> + EHx _ y(l+1)||2]

1
M i i i m i
= M0 g0+ S el 4 (g, 20 —59) + e =y
i=1
!

; M
+ mZoq(—y(z) + 20 20 gy 4 7”1: — 202

i—1
m
+ al+1[f(l+1) + <9(l+1)7=’f - y(Hl)) + EH»T - y(l+1)||2]~

Using the following relation,

(2 49,20 gy = 220 = y O 4 220 — 2 - Sl -y,

we get
+1 m
e~y O + 2o alf + g% =y + Flle =yl
M . ,
> S0 -y VI + Za O+ (g, 20 =y ) + Lz =y

l
m ; ; M
+ 23 (2 =y + 20 = 2l — o = yO)2) + e — 2O
i=1

m
+ g [ 4 (0D [z — Dy 5“95 —y)2

M i ; m ; M +mA
= S0 =y M)+ Za O+ (g, 20—y ) 4 2O = g2+ = e - 2O
+ [ fD + <g<l+l> 2=y ") + e =y O]
’ 2
M A
= 7 + S o — 2O 4 g [ + (g, — D) 4 Dz — D)

2 2

16
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Thus we have

. M—i—mAl
* > *
Ui =Y +§161,fcl s

m
||.’E _ Z(l)||2 + Oél+1[f(l+1) + <g(l+1)’x _ y(l+1)> + E”x _ y(l+1)||2].
By induction AlF(,T(l)) <4f + Ey, and so
* m
0F o [ 1 (g0 2 — D) 4 D 402

m
Tl — g0

m
> Al[f(l+l) + (g(l+1),x(l) _ y(l+1)> + Enx(l) _ y(l—i-l)HZ] — E

> A F (W) — By 4 agya [fO) + (gD -y 4

m
ol 4 (g0, g - D) 1 T 0D
= A fUY 4 (gD Ay (2O — yFD) fag (y — D)) — By
Am Qapp1m
4 A0 gy ST e

Since 7, = X—i, and y(*Y) = 720 + (1 — 7))z ®,
Al(ﬂf(l) - y(lH)) + a1y — y(l+1)) =aq1(y — Z(l))-
Thus we get
1/17 + al+1[f(l+1) + (g(Hl),x _ y(l+1)> + %H{E 7 y(l+1)||2}
> A fOY — B+ g (gD y — 20,
Thus for the 9], |, since we choose the sequence such that 7, = Zl:i and Al+17'l2 =1+ 34
M + ’ITLA[

Uiy > A [ — B+ min Iz — 2V + apr (gD, y — 20y

TP M
= —Ej+ A [fY + min ZTHfE — 20| 4 (gt 2 — 2]

For z € IC, define 7 = mz + (1 — 7)2®, since 7y (z — 2()) = 7 — y(H1),

M

gnei’rcl LQ lz — 2@ )2 + 7 (gt 2 — 21)
min B~y 4 (g0, 5 - y )

zen K+(1—7)z® 2

M

> min —||7 — (D) 2 + <g(z+1)’ 5_ y(l+1)>
zek 2

Putting the above two equations together, we get
" M ~
Ve Z =B+ Apa[fO) 4 min 7 — g D) 4 (g0, 3 — D))

> A F(aY) — B — A6

where the last step uses O+ is (8,41, m, M)-oracle.

O
Proof of Theorem|B.2)

!

* _in [ — o (1)]12 7 £(0) (1) o o(0) e — @12

v = min v -y +§az[f +{gWs 2 —y) + Sl =y

M l m

< Sl =y 2+ D il + (00" — D)+ Dt — O

i=1

IN

M * *
e =y VP + AF (@),

17
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where the last step is because O is (§;, m, M)-oracle. Since y(1) = (") together with Lemma

we have
F(:L‘(l)) < %Hw(init) T ||2+F +Z
— 24, A

When m > 0, from the proof of Lemma 4 inDevolder et al.|(2013a), Ax+1 > (1 + %\ /m/M)? A,
for all £k > 1, giving the desired bound.

When m = 0, Remark 10 in|Devolder et al.[(2013a) shows that Ay, > (k + 1)?/4 forall k > 1. In
addition, ar; = A; = 1, we can use induction to show that A; < k2 for all k and ay, < k for all k:
a%_ﬂ =api1 +Arandso gy = 1/2+\/1/4+ A <k+1, A1 <k +k+1< (k+1)2
Thus, A;/A; < 4i?/(1+1)% O

C ADDITIONAL RESULTS FOR SECTION

C.1 ADDITIONAL RESULTS FOR THE HYPOTHETICAL OFFLINE PROBLEM

Proposition C.1. The oracle defined in Eq.[8|satisfies

T
l *
SUCDRSNECTRUDBIEES O SRS

t=1 sEWt

HVC(X;Q*)—(Gl(le' )Gz(

Proof of Proposition|C.1) By Assumption m for any 8 € ©7T,
80 8f8 *

. Ofs
I @, 05,) = Gelaw,: O )l = | Z w.i0s) = 5 (aw.; 05))
! sGWf ¢
afs * afs *
<> 5 (@w.; 65) = wwg, IS D hasllor =64
SGWt SEWt
With this oracle O, the gradient has error
" l l l
IVC(x;67) = (Gr(agy, 65 ), Gl i 05 ). -, O (g, 105 )P
T T
oC . 1) .
=2l (o, 0,) = Golar s 00 < 23 hseller = 617
t=1 —1

sGWt

O

For each O), we can take A = 0and AY) = (-7 (e, hstllOF — 6"]))2)1/2 in Proposition
[B:1] Combining Proposition[B.1]

Corollary C.1. If k = 0, for | € [L], OW is equivalent to a (6,0, 1)-oracle for C(-; 8*), where
o = 2(2? 1O e, Ts,tll0% — oV N?Y2Dy, Dy = maxy xex ||x — X'|| is the diameter of X.

Thus Algortthmlgenemtes a sequence zV, ) . =) such that
1 1< 1<
C ~(l),0* — O(x*: 0* [ (init) )2 - 51 l) _ =
(x0:0%) — C(x'30%) < o lx X””i;’ =T
Algorithm@generates a sequence zV 23 ) such that

.

4 o 1
). p* *. 0% mni * |12 2
C(x(),B)—C(X,0)<—12Hx( O — x| —1—42_ (i)é

18
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Corollary C.2. If k& > O, for I € [L], OW is equivalent to a (5;,%,2)-oracle for C(-;6%),
where & = (L + %)(2521@56% hs 0% — 9@”)2). Thus Algorithmgenerates a sequence

M @2 () such that for X! = ﬁ/i/‘l)l Zizl(l — k/4)x®

K/4 l

<. g*) _ *.0%) < exp(—/@l/él) (init) _ x2 1 — e /4) 5.
C(X ,9) C(X,e)_ 2 ||X XH +17(17}€/4)l;( K/) 6l

Algorithmlé]generates a sequence xV 23 2 such that

l
1 - 1 )
C(X(l); 0") — C(x*;0") <6(1+ Z\/E)_ZHX(”L”) —x*|]? + E (1+ Z\/E)_Q(l_l)éi.

i=1

C.2 ADDITION RESULTS FOR THE UPDATE RULE

Algorithm 4: synchronous update
Input: G = (V, E) the underlying graph, ¢, : SN(U) — &S, the state transition function and

51(,0) € S, the initial state for all v € V, L the number of updates.

Output: 55,“ forallv e V.
fori=1,2,...,Ldo
forv € V do // update order for v does not matter
(0 (-1)
update sy’ ¢”(SN(U))
end

end

Algorithm 5: asynchronous update
Input: G = (V, E) the underlying graph, ¢,, : Sﬁ(v) — S, the state transition function and

s € S, the initial state for all v € V, L the number of updates, o : [[V]] = V the

output order.
. 2D (D) (L)
Output: Ba(1)r30(2)7 1 Sa(lv])

initialize H =0; // H C ({0} U[L]) x V contains pairs (l,v) s.t. 5 has
been computed

fori=1,2,...,|V|do // compute §<(TL(3)

for v € Ny (0(i)) \ UZiN'L(a(j)) do
‘ initialize 5% « s, H « H U {(0,v)};
end
for1=12....Ldo // compute 5%%0(0) using 5%21,)H1(g<1:))
forv e Np_;(o(i)) do // update order for v does not matter
if (I,v) ¢ H then // 59 has not been computed yet
‘ update 5 « d’v(g(ﬁl;f)))’ H<+—HU{(,v)};
end
end
end
end

Theorem C.1. The update rules in Algorithm 5| are valid. Thus computation of 5((71(:5) does not

require knowledge about sq(,,o) Sor any u ¢ Ué:ls%l(o(j))'

19
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In addition, given the same set of inputs (graph G, state transition functions ¢, and initial states
(0)) for any order of output o : [|V|] = V, AlgorithmE]and Algorithm produce the same state
evolution: s(l) = §5,l)f0r allveV,lel[l].

Proof of Theorem For convenience, we denote the state of the set # in the i-th outer iteration,
right after the initialization of 55,0), as H,;o; right after the [-th inner iteration, as H;; for | =

1,2,...,L.

We claim that

« valid update rule: for each i € [|[V'|] and [ € [L], before entering the [-th iteration, g

Ni-i1(o(3))
has been computed, i.e. (I — 1,v) € H; 1, forallv € Ny 1(0(i));

« consistent output: forall I € {0,1,...,L},i € [|V]]. forall (I',v') € H;y, %) = 500

First, it’s easy to see that Ui, N1, (0(j )) C H;p foralli e [|[V]].

Next we prove the first claim. For any ¢ € [|V|], we use induction on [. The claim holds for [ = 1
since U, N'1(0(j)) C Hio, and 50 (0,v) € H, o, forall v € N'p(0(i)). Suppose the claim is true
for some [ < L — 1, then for [ + 1, by the update process in the I-th iteration, for all v € N';,_;(o(i)),
57(}) is either already computed before or is computed, and so (I,v) € #,;;. This completes the
induction.

Then we prove the second claim. The claim holds for H; o since 5 = 50 forv € Np(o(1)),

and H1,0 = {(1,v), v € N(o(1))}. Now suppose the statement holds for H, ; for some i 6 [
andl € {0,1,...,L — 1}, then during the (I 4+ 1)-th iteration, the updates are 51(, AR

and since Yu € N (v), (I,u) € H,,, by the induction hypothesis, sg) = s&l), and so S,

l l I+1
9u(80) = Dulsi,) = 5.

Suppose the claim holds for H; ;, for some i € [|V| — 1], then it holds for ;11 o since the only
added terms are initialization s(O) = st forv € Nir(o(i+1)) \ Ui NL(o(4)).

In addition, notice that in the first 7 iterations, 578 )

the L subsequent updates for [ € [L] require sSJ ) but not Su © for any u € V. Thus computation of

8¢ ()) does not require knowledge about s& ) for any u ¢ U’ s . O

I=15K L (o))

E

are 1n1t1ahzed forv € Ui_, N'(0(4)) only, and

C.3 STATE TRANSITION OF PGM AND AGM — A NETWORK PERSPECTIVE

Let S; = {0,1,...,L} x X; and (l,xil)) € &; represents the states of vertex t € V. Since
¢1 : Sxr(yy — Si U {Err} can be chosen based on Equation Eq. E} forall 237, € X7, L € [L — 1],

1

-1). 9
— 37 Clag ) 60)),

$u((L - 1,24) cq7,) = (1, Projy, (f ™" o

and

¢i((ls; Ts5) ye7w,) == Err, s # 1y for some s,s' € Wy, orl, = L for some s € W,.

Here the state also includes the current iteration as part of the information, and this allows us to
use [-dependent 9( ) Also, ¢, is Err if the gradient G; is evaluated at different iteration-version

(Is # lg) of nelghbors acg D and 3: -1 , or if , has already been updated L times. However,

neither of these two cases will happen durmg Algorlthml it’s easy to check that s(l) (1, 33 ) is
satisfied all the time, and so the input to ¢,, is always of the form (I — 1, z) 7, for some ! € [L]
and Ty, € XWf,'

Similarly, for Algorithm [2| the state space can be taken as S; = {0,1,...,L} x &X; x R? and
(1, xgl), f),gl) = vgl) - M ygl)) is the state for vertex ¢ € V. In addition, since the update order only

depends on the underlying graph G = (V, E) which is the same for Algorithm and the order of
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computing 31(,) can be done in the same way. The difference between the two algorithms is that the

(projected) gradient descent at x( ) in Algonthmlls replaced by (projected) gradient descent at the

O]

extrapolated point y, ’, followed by an update on v( )in Algorlthm

C.4 CHOICE OF L AND 9%

v

We provide two rules for the choice of L and G(l)

e requirement on L: notice that in iteration ¢ = 1 2,...,Tof Algorithm all L-hop neighbors of

vertex ¢ must be initialized first. That is, by time ¢, x( ") must be available for all v that are at
most L-hops away from 4, i.e. for all v € [T7], such that |v — i| < L(a + b). Thus, we choose
La+0b) <k.

* one valid choice for 0( Dif &« qSU( S (v )) ) is computed when computing s L) (i.e. during the
i-th outer iteration in Algorlthm , the prediction available at time ¢ can be used, i.e. 0% = 5%)
is a valid choice. Due to the special structure of the dependency graph for online-AGM and
online-PGM - (s, s’) € E if and only if |s — s’| < a + b — the update order is also of the “fill the
table” style as inLi & Li/(2020) and|Li et al.[(2021). In particular, as presented in Table |Z|, we can
set

e B B
o0 _ 1%, v=12.. . (a+b)(L—1)+1 "
W, @W’Hm)(um v=(a+b)(L-1)+2,....,T

v

Table 2: choice of 9% in Eq. for a=2,b=1,L=8

o2 =18
AEYED

=

CSE-SESES

L i

i

IR SESIEY
E:b
I
S
3
|
|
<

D
|
ES

&

D ADDITIONAL SETTINGS AND RESULTS FOR NUMERICAL EXPERIMENTS

Our objective function Eq.[I3]and the setting of tracking process composing of a signal term and a
time-correlated noise term is a variant of the numerical experiment in Li & Li|(2020), where a; = a
for some a > 0 for all ¢. By allowing varying a;, we can control the condition number of C(-; 6),
thereby comparing the performance of online-PGM and online-AGM for various &’s.

We choose T' = 40, k € [20] and zg = 10. In addition, since Algorlthmlrequlres the function to be
k-strongly convex and 1-smooth, we normalize each update that involves VC by a factor (2 + A)~*
and take k = 527

For the information ) at time , in this experiment, £\ = ¢, for s € [t—1] and gD = s—thle,
for s > t. That is, the DM has perfect information about past £’s, and uses the optimal prediction
(see|Li & L1/ (2020) for more details) for prediction of unseen £;’s

Our experiments are run using Matlab on Macbook Pro.

In Figure 4 we provide a subset of Figures in Figure[3] and below we provide the logarithm of the
average dynamic regret and the average ||x — x*|| for all 6 settings.

“The objective is not exactly 2 + A-smooth and 2-strongly convex. However, this choice of parameters
appear to work for this planning problem.
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Figure 5: Logarithm of sample-average dynamic regret.
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Figure 6: Logarithm of sample-average ||x — x*||.
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