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ABSTRACT

We study online convex optimization with predictions, where, at each time step
t, predictions about the next k steps are available, and with coupled costs over
time steps, where the cost function at time step t depends on the decisions made
between time t− a and time t+ b for some nonnegative integers a, b.
We provide a general recipe to run synchronous update in an asynchronous fashion
that respects the sequential revelation of information. Combined with existing
convergence results for convex optimization using inexact first-order oracle, we
show that acceleration is possible in this framework, where the dynamic regret can
be reduced by a factor of (1−O(

√
κ))

k
a+b through accelerated gradient descent,

at a cost of an additive error term that depends on the prediction accuracy. This
generalizes and improves the (1 − κ/4)k factor obtained by Li & Li (2020) for
a+ b = 1. Our algorithm also has smaller dependency on longer-term prediction
error. Moreover, our algorithm is the first gradient based algorithm which, when
the strong-convexity assumption is relaxed, constructs a solution whose regret
decays at the rate of O(1/k2), at a cost of an additive error term that depends on
the prediction accuracy.

1 INTRODUCTION

We study online convex optimization with coupled cost: at time step t, the cost function ft is a
function of decisions x(t−a):(t+b), i.e., the decisions made in a window of length a + b around t.
This generalizes the well studied smoothed online convex optimization problem (Li & Li, 2020; Li
et al., 2021; Goel & Wierman, 2019; Chen et al., 2018; Goel et al., 2019; Pan et al., 2022) where
ft is the sum of a stage cost that depends only on current decision xt, and a switching cost between
xt and xt−1. Following the setup of Li & Li (2020) and Li et al. (2021), we assume that the cost at
time t is parameterized by θt ∈ Θ, and the decision maker has potentially inexact predictions, θ̂(t)s ,
about future θs (s ≥ t). Online convex optimization with switching costs has been used in various
settings such as online optimal control (Li et al., 2019), data center management (Lin et al., 2012),
power systems (Kim & Giannakis, 2017), to name a few. Our history-dependent stage costs also
echo a recent line of work on online convex optimization with memory (Anava et al., 2015; Kumar
et al., 2023; Shi et al., 2020), which shows applications in online linear control (Agarwal et al., 2019),
statistical arbitrage in finance, and time series prediction (Anava et al., 2015).

We focus on the following question proposed and studied in Li & Li (2020): when making decisions
online, how can one make the best use of predictions about future, while being robust to inaccuracy
in the (long-term) predictions?

Many methods have been proposed to incorporate predictions in online convex optimization: from
optimization based methods such as RHC (Kwon & Pearson, 1977), AFHC (Lin et al., 2012) and
CHC (Chen et al., 2016), which require solving optimization problems (exactly) at each iteration, to
gradient based methods RHAG (Li et al., 2021) which converges at the optimal rate but requires exact
prediction, and RHIG (Li & Li, 2020) which works with inexact prediction but suffers suboptimal
convergence rate.

In this work, we propose the online Projected Gradient Method (online-PGM) and online Accelerated
Gradient Method (online-AGM), which build upon variants of the well known (accelerated) gradient
descent designed for inexact first order oracle (Bubeck, 2015; Devolder et al., 2013a;b). We show that
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when k-step predictions of the objective functions and k-step look ahead initialization are available,
online-AGM achieves the convergence rate (1 − O(

√
κ)k) for κ-conditioned objective functions.

In addition, the extra additive term in the dynamic regret due to prediction inaccuracy has smaller
dependency on long-term prediction error, as compared to RHIG in Li & Li (2020). We also consider
the case when the strong-convexity assumption is relaxed, and show that online-AGM constructs a
solution whose regret decays at the rate of O(1/k2), plus additive terms due to prediction inaccuracy.

As a by-product, we formalize and generalize Li & Li (2020) and Li et al. (2021)’s “fill-the-table”
approach to running (accelerated) gradient descent online, which might be of independent interest.

1.1 SETUP

We consider online convex optimization, where the loss at time t depends on the decision xs in the
window s ∈ Wt = [max(1, t − a),min(t + b, T )] for some fixed a, b ∈ {0, 1, . . .}, as well as a
parameter θt ∈ Θ in a parameter space. That is,

C(x;θ∗) =

T∑
t=1

ft(xWt ; θ
∗
t ). (1)

At the beginning of each time step t, the decision maker (DM) has prediction θ̂(t)s about θs for s ≥ t
and imperfect memory/information of past θ̂(t)s for 1 ≤ s ≤ t− 1, and decides xt ∈ Xt ⊂ Rdt . Then
he is given additional information about the true θ∗ (e.g. the exact value of θ∗t ), and updates his
information about the parameter sequence to θ̂(t+1) = (θ̂

(t+1)
1 , θ̂

(t+1)
2 , . . . , θ̂

(t+1)
T ).

The performance of the DM’s output sequence x = (x1, x2, . . . , xT ) is compared to the minimum of
Eq. 1 over X :=

∏T
t=1 Xt, and is evaluated using the dynamic regret defined as1

C(x;θ∗)− C(x∗;θ∗), x∗ ∈ argmin
x′∈X

C(x′;θ∗).

Motivating example 1: aggregate information. Positive (a, b) can model objectives that depend on
“aggregate information” of the decision sequence, such as higher order finite differences and moving
averages ( 1

a+b+1

∑t+b
s=t−a xs). This generalizes Li et al. (2021); Li & Li (2020): (a, b) = (1, 0),

ft(xt−1, xt; θ
∗
t ) = f̃t(xt; θ

∗
t ) + dt(xt, xt−1), with stage cost f̃t and switching cost dt.

Motivating example 2: decision making in advance, or delayed decision making. If ft depends only
on xt−a (xt+b) for all t, then the decision made at time s, xs, affects fs+a (fs−b), i.e. the decision
is made a-step in advance (b-step delayed). The window [t − a, t + b] allows a combination of
in-advance decisions up to a steps and delayed decisions up to b steps.

Motivating example 3: parameters as dual variables. For convex optimization with constraints which
satisfy strong duality, one might aim at solving the Lagrangian relaxation, where the dual variables
can be interpreted as (part of the) parameters. One might have predictions for the dual variables based
on prior information or past data about the model. See Section A.1.

Following Li & Li (2020), we consider the setting where, in addition to predictions of the future
parameters, the DM has access to a feasible point x(init) ∈ X in an online-with-look-ahead manner.

Definition 1.1 (k-step look ahead initialization). We say that the DM has a k-step look ahead
initialization, if there exists a feasible point x(init) ∈ X , and the DM, at time t, has access to x(init)s

for s = 1, 2, . . . ,min(T, t+ k).

In general, any x ∈ X can be used as a k-step look ahead initialization for any k ∈ [T ]. However,
as will be seen, the regret of the output of our algorithms depends on how good x(init), in terms of
∥x(init) − x∗∥. To find a good initialization, one might take advantage of existing online convex
optimization algorithms such as online gradient descent or online mirror descent (Li & Li, 2020).

1By Assumption 1.2 below, X is convex and compact, and C(·;θ∗) is continuous. Thus there exists x∗ ∈ X
achieving the minimum.
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1.2 MAIN RESULTS

On a high level, the predictions of θ∗ and the k-step look ahead initialization allow the DM to perform
the classical (accelerated) gradient descent for k/(a + b) steps to x(init) using ∇C(·; θ̂), where
θ̂ is chosen based on {θ̂(1), . . . , θ̂(T )} to ensure online-implementability. Then, the regret and its
dependency on parameter prediction errors follow naturally from properties of these classical offline
algorithms — convergence rate and robustness against gradient inaccuracy, respectively.

To quantify how good the information θ̂(t) is at time t, we assume that Θ is a normed space, and that
∥θ̂(t)s − θ∗s∥ measures the error in prediction (s ≥ t) or imperfect memory (1 ≤ s ≤ t− 1). Further,
we assume that∇ft is Lipschitz w.r.t. θt. 2

Assumption 1.1 (∇ft is Lipschitz w.r.t. θt).

| ∂ft
∂xs

(xWt
; θt)−

∂ft
∂xs

(xWt
; θ′t)| ≤ ht,s∥θt − θ′t∥, ∀xWt

∈ XWt
, s ∈Wt, θt, θ

′
t ∈ Θ. (2)

In addition, we make the following assumptions on the convexity of the objective function C(·;θ∗).
Assumption 1.2 (smooth, (strongly) convex C w.r.t. x). X =

∏T
t=1 Xt where each Xt is compact

and convex. For any θ ∈ ΘT , C(·;θ) : X → R is convex and differentiable on X . In addition, there
exists κ ∈ [0, 1], such that
κ

2
∥x−y∥2 ≤ C(x;θ)−C(y;θ)−⟨∇C(y;θ),x−y⟩ ≤ 1

2
∥x−y∥2, ∀x,y ∈ X ,∀θ ∈ ΘT . (3)

In terminology of convex optimization, C(·;θ) is 1-smooth, and when κ > 0, it’s also κ-strongly
convex. Li & Li (2020); Li et al. (2021) assume that κ > 0, thereby their results hold only for strongly
convex C. As will be seen, our algorithms provide guarantees even in the case when κ = 0, i.e.
when the objective is not necessarily strongly convex. Moreover, Assumption 1.2 is weaker than
assumptions on each ft, and typically, one can think of κ = Θ(1) as a constant that does not depend
on T (see Section A.2).

Due to the constraint Xt, we make the following assumption common in convex optimization
literature:
Assumption 1.3 (efficient projection). For all t ∈ [T ], for all y ∈ Rdt , projecting y to Xt, i.e. finding
argminxt∈Xt

∥xt − y∥2, can be computed efficiently.

Below, we state the performance of our algorithms online-PGM and online-AGM, which is to be
presented in Algorithm 3.
Theorem 1.1. Under the Assumptions 1.1, 1.2, 1.3, suppose that the DM has access to a k-step
look ahead initialization as defined in 1.1, and that L is chosen such that (a+ b)L ≤ k, that θ̂(t) is
available at time t, and that κ is given. Then Algorithm 3 outputs xt at time t = 1, 2, . . . , T such
that x satisfies the following properties:
• For κ = 0,

C(x;θ∗)− C(x∗;θ∗) ≤

{
1
2LR

2
0 +

2DX
L

∑L
l=1 ϵl (online-PGM)

4
L2R2

0 +
4DX
L2

∑L
l=1 l

2ϵl (online-AGM).

• For κ > 0,

C(x;θ∗)− C(x∗;θ∗) ≤

{
exp(−κL/4)

2 R2
0 +

κ/8+1/4
1−ρL

∑L
l=1 ρ

L−lϵ2l (online-PGM)
6ρL1R2

0 + (1/κ+ 1/2)
∑L

l=1 ρ
L−l
1 ϵ2l (online-AGM),

where ρ = 1− κ/4, ρ1 = (1 + 1
4

√
κ)−2,R0 := ∥x(init) − x∗∥, DX = maxx,x′∈X ∥x− x′∥ is the

diameter of X . For t ∈ [T ], denoting W̃t := [max(1, t− b),min(t+ a, T )]

ϵ2l :=

(a+b)(L−l)∑
t=1

(
∑
s∈W̃t

hs,t∥θ̂(1)s − θ∗s∥)2 +
T∑

t=(a+b)(L−l)+1

(
∑
s∈W̃t

hs,t∥θ̂(t−(a+b)(L−l))
s − θ∗s∥)2.

2Alternatively, one can replace the norm on the RHS of Eq. 2 with a penalty function ρ : Θ × Θ → R+.
Then our main results still hold (with potentially different constant factors), with ∥θt− θ̂t∥ replaced by ρ(θt, θ̂t).
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When κ > 0, we can further use the upper bound that κ
2R

2
0 ≤ C(x(init);θ∗) − C(x∗;θ∗), which

implies that for online-AGM, there exists ρ1 = 1−O(
√
κ),

C(x;θ∗)−C(x∗;θ∗) = O
(
κ−1ρL1 (C(x

(init);θ∗)− C(x∗;θ∗))
)
+O

(
(κ−1 + 1)

L∑
l=1

ρL−l1 ϵ2l

)
.

1.3 CONTRIBUTIONS

Li & Li (2020) shows that it’s possible to reduce the dynamic regret of x(init) by a factor ofO(κ−1ρk)

for ρ = 1− κ
4 , at the cost of an additive term O((κ−1 + 1)

∑k
l=1 ρ

l−1δl)) that depends on the l-step
prediction errors δl. A lower bound Ω(Cκ

∑T
t=1 ρ

t−1
0 δt) for ρ0 = ( 1−

√
κ

1+
√
κ
)2 is also proposed where

Cκ is a constant depending on κ. When k-step exact prediction is available, RHAG proposed in Li
et al. (2021) uses accelerated gradient descent and can reduce the regret of the initialization by a
factor of O(κ−1ρk0). For the setup studied in Li & Li (2020); Li et al. (2021), our online-PGM is
a slight variation to RHIG and achieves similar performance as RHIG, while our online-AGM is a
slight variation to RHAG, and our results hold for the case when the gradients are inexact.

Our contributions. We show that acceleration is also possible when the prediction is inexact, and
closes the gap on the decay rate (ρ and ρ0) of the influence of long-term prediction error. We propose
an algorithm, online Accelerated Gradient Method, which performs accelerated gradient descent steps
instead of gradient descent steps as in Li & Li (2020). Our online-AGM constructs solutions whose

dynamic regret is the sum of two components: one term —O(κ−1ρ
k

a+b

1 (C(x(init);θ∗)−C(x∗;θ∗)))
— depends on how good the initialization is, and the other term — O((κ−1 + 1)

∑ k
a+b

l=1 ρ
l−1
1 δl)) —

depends on the prediction error. Importantly, ρ1 = 1−O(
√
κ), which depends on

√
κ as in the lower

bound rate ρ0, and is smaller than the rate ρ = 1− κ/4 for RHIG (for small enough κ).

In addition, we analyze the performance of online-PGM and online-AGM when the strong-convexity
assumption is relaxed — a setting not studied in Li et al. (2021); Li & Li (2020) — and show that the
regret decays at the rate of O(( k

a+b )
−1) and O(( k

a+b )
−2) respectively, with additive error terms due

to the prediction inaccuracy. To the best of our knowledge, our online-PGM and online-AGM are the
first gradient-based algorithms for smoothed online convex optimization (and objectives with more
general couplings) with inexact predictions without the strong-convexity assumption.

As a by-product, we formalize and generalize Li & Li (2020) and Li et al. (2021)’s “fill-the-table”
approach to running (accelerated) gradient descent online. We view the iterative updates in offline
algorithms as state-evolution (in networks), and provide a general recipe to turn offline algorithms to
online ones while maintaining the offline performance (such as convergence rate and robustness).
This systematic approach to constructing online algorithms from offline ones might have applications
in other problems.

1.4 NOTATIONS

We use boldface to denote variables that have T components, such as x = (x1, x2, . . . , xT ) and
θ = (θ1, θ2, . . . , θT ). For convenience, for any A ⊂ [T ], we use xA to denote (xt)t∈A, and similarly
for θ. We let [n] := {1, 2, . . . , n} for all n ∈ N. For any convex compact set K ⊂ Rd and y ∈ Rd,
ProjK(y) := argminy′∈K ∥y′ − y∥2.

2 CONNECTIONS WITH PREVIOUS WORKS

Smooth online convex optimization. Our problem is motivated by a recent line of work on online
convex optimization with switching cost, where the goal is to minimize

∑T
t=1 ft(xt) + d(xt, xt−1)

by choosing xt sequentially, based on past decisions and past ft’s, together with potentially inexact
predictions about future ft’s(Kwon & Pearson, 1977; Lin et al., 2012; Chen et al., 2016; Li et al.,
2021; Li & Li, 2020). Various methods have been proposed to take advantage of the prediction. To
name a few, RHC (Kwon & Pearson, 1977), AFHC (Lin et al., 2012) and CHC (Chen et al., 2016)
choose xt’s based on the optimal solution to the predicted problem restricted to windows around t;
RHAG (Li et al., 2021) applies accelerated gradient descent with exact prediction, and RHIG (Li &
Li, 2020) applies gradient descent with inexact prediction (more comparison in Section 1.3).
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Online convex optimization and dynamic regret. We measure the performance of x using the
dynamic regret, i.e. against the optimal x∗ which does not necessarily satisfy x∗t = x∗t+1 for all t.
Dynamic regret has been well studied for problems where ft depends only on xt (see Zinkevich
(2003); Besbes et al. (2015); Zhao & Zhang (2021); Hazan (2022) and references therein). Typically,
the regret is upper bounded using a combination of T , PT the variation of the sequence (x∗1, . . . , x

∗
T ),

and/or VT the variation of the sequence (f1, . . . , fT ). For instance, the online gradient descent (OGD)
achieves O(

√
TPT ) (Zinkevich, 2003), and the restarted OGD achieves O(T 2/3V1/3

T ) (Besbes et al.,
2015). However, it’s non-trivial to obtain dynamic regret guarantees for the general coupled objective
functions where ft also depends on decisions made in the past and/or future. Li & Li (2020) shows
that in the special setting of smooth online convex optimization with prediction, where the coupling is
only due to the switching costs between consecutive decisions, restarted OGD can achieve O(

√
TVT )

dynamic regret, with additive terms due to prediction errors.

Other related online optimization problems. Convex optimization with memory (Anava et al.,
2015; Kumar et al., 2023; Shi et al., 2020) can be viewed as a special case of our problem Eq. 1 with
b = 0. However, static regret and the offline fixed decision are usually used as benchmarks. Also
related is online optimization with prediction, where bound on static regret using the prediction error
has been obtained for online mirror descent (Rakhlin & Sridharan, 2013).

Smooth convex optimization with inexact oracles. Under Assumption 1.1, prediction error can be
related to error in gradient, and thus be treated as a form of oracle inaccuracy. Our Algorithm 3 builds
upon Devolder et al. (2013a) and Devolder et al. (2013b), which study the convergence properties
of (accelerated) gradient descent with inexact first order oracle. We present a modification of their
results below in Section 3.1. Optimization with inexact oracle has also been studied in many other
works: d’Aspremont (2008) and Schmidt et al. (2011), to name a few.

Decentralized convex optimization. Our objective function C(x1, x2, . . . , xT ;θ) can be viewed as
a function of T components and fits naturally into a network model, where each vertex represents
the decision at some time step, and vertices communicate information such as current decision
variables, gradients, and momentum. This connects our problem with many other network-related
problems, especially parallel/distributed optimization (Scaman et al., 2017; Mosk-Aoyama et al.,
2010; Bertsekas & Tsitsiklis, 2015). It will be interesting to further explore what insights these
network-related problems can bring to our online convex optimization with prediction.

3 TWO INGREDIENTS IN ALGORITHM DESIGN

Our online-PGM and online-AGM (Algorithm 3) can be viewed as offline convex optimization
algorithms which are robust to oracle errors, implemented in an asynchronous fashion such that the
updates can be carried out online. We explain these two ingredients in Sections 3.1 and 3.2.

3.1 OPTIMIZATION WITH INEXACT FIRST ORDER ORACLE

Offline smooth convex optimization with first order oracle is a well studied problem, and the
accelerated gradient method is known to achieve the optimal convergence rates of O(1/k2) and of
O(exp(−

√
κk)) for strongly convex κ-conditioned objectives(Bubeck, 2015). In fact, Devolder et al.

(2013a) and Devolder et al. (2013b) show that the accelerated gradient method is also robust to gradient
inaccuracy: the convergence rates of O(1/k2) and exp(−

√
κt) still hold, but the suboptimality gaps

have one extra additive term that depends on the error in the gradients. This applies exactly to our
setting, where∇C(·; θ̂) is used as an approximation to∇C(·;θ∗).
Formally, Devolder et al. (2013a) and Devolder et al. (2013b) study convex optimization with inexact
first order oracle. The goal is to solve the following convex optimization problem

min
x∈K

F (x) (4)

where K ⊂ Rd is closed and convex, and F is convex on K, and the optimal is achieved at some
x∗ ∈ K. The algorithm has access to a (δ,m,M) oracle defined as

5
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Definition 3.1 ((δ,m,M)-oracle). We say O : K → R× Rd is a first-order (δ,m,M)-oracle if for
any y ∈ K, when queried at y, the oracle returns (Fδ,m,M (y), gδ,m,M (y)) ∈ R× Rd such that

m

2
∥x− y∥2 ≤ F (x)− Fδ,m,M (y)− ⟨gδ,m,M (y), x− y⟩ ≤ M

2
∥x− y∥2 + δ, ∀x ∈ K, (5)

where δ ≥ 0, 0 ≤ m ≤M .

The simplest example isO(x) = (F (x),∇F (x)), which is a (0,m,M)-oracle when F ism-strongly
convex and M -smooth. In fact, Devolder et al. (2013a) and Devolder et al. (2013b) show that if one
has an inexact gradient and function value oracle for F , one can construct a (δ,m′,M ′)-oracle for
some δ,m′,M ′ that might depend on m,M and error in gradient and value oracles (Proposition B.1).

Method Assumption Evaluation x(l) Dependency onR0 Dependency on δl’s

PGM m > 0
κ
∑l

i=1(1−κ)
l−ix(i)

1−(1−κ)l
M
2 exp(−κl)R2

0
κ
∑l

i=1(1−κ)
l−iδi

1−(1−κ)l

PGM m = 0 1
l

∑l
i=1 x

(i) M
2lR

2
0

1
l

∑l
i=1 δi

AGM m > 0 x(l) (1 +
√
κ
2 )−2l · 3MR2

0

∑l
i=1(1 +

√
κ
2 )−2(l−i)δi

AGM m = 0 x(l) 4M
l2 R

2
0 4

∑l
i=1(

i
l )

2δi

Table 1: Convergence properties for convex optimization with (δl,m,M)-oracle O(l), l = 1, 2, . . ..
Denote R0 := ∥x(0) − x∗∥ and κ = m/M , and the guarantee is F (x(l)) − F (x∗) ≤
“Dependency onR0” + “Dependency on δl’s”. See Theorem B.1 and B.2 for the exact statements.

In Table 1, we summarize the performance of the Projected Gradient Method (PGM, Algorithm 1),
and the Accelerated Gradient Method (AGM, Algorithm 2) proposed in Devolder et al. (2013a;b) for
problems with inexact first order oracles. The proofs for Theorem B.1 and B.2, adapted from Devolder
et al. (2013a) to deal with iteration-dependent δl (at iteration l, the oracle O(l) is a (δl,m,M)-oracle),
are provided in Appendix B.

Algorithm 1: Projected Gradient Method
with (δ,m,M)-oracle
Input: Initial x(0) ∈ K,O(l) an (δl,m,M)-oracle for F for

l = 1, 2, . . .

Output: x(1), x(2), . . .
for l = 1, 2, . . . , do

Obtain (f(l−1), g(l−1))← O(l)(x(l−1));
Update x(l) ←
argminx∈K ⟨g(l−1), x− x(l−1)⟩+ M

2 ∥x− x(l−1)∥2;

end

Algorithm 2: Accelerated Gradient Method
with (δ,m,M)-oracle
Input: Initial x(init) ∈ K,O(l) an (δl,m,M)-oracle for F

for l = 1, 2, . . ., sequence (αl)l∈N and sequence
(τl)l∈N.

Output: the sequence x(1), x(2), x(3), . . .

Initialize y(1) ← x(init), v(0) ← 0 ∈ Rd;
for l = 1, 2, . . . , do

Obtain (f(l), g(l))← O(l)(y(l));
Compute

x
(l) ← arg min

x∈K
⟨g(l)

, x− y
(l)⟩+

M

2
∥x− y

(l)∥2

v
(l) ← v

(l−1)
+ αl(g

(l) −my
(l)

)

z
(l) ← arg min

y∈K

M

2
∥y−y(1)∥2+⟨v(l)

, y⟩+
m(

∑l
j=1 αj)

2
∥y∥2

Update y(l+1) ← τlz
(l) + (1− τl)x

(l);
end

3.2 FROM OFFLINE ALGORITHMS TO ONLINE ALGORITHMS

The second observation is that offline algorithms that update all variables synchronously can be
implemented in an asynchronously manner, such that the variables can be updated sequentially. In
fact, this can be done efficiently as long as the variables are only “weakly coupled”. Take PGM
as an example. When applying PGM to our objective C(·;θ∗), in the l-th iteration, the update is
x(l) = ProjX (x

(l−1) − η∇C(x(l−1);θ∗)) for some η ≥ 0. Direct computation shows that

∂C

∂xt
(x;θ∗) =

min(t+a,T )∑
s=max(1,t−b)

∂fs
∂xt

(xWs ; θ
∗
s), ∀x ∈ X (6)

In particular, this implies that ∂C
∂xt

(x;θ∗) depends only on xs′ for s′ ∈ ∪min(t+a,T )
s=max(1,t−b)Ws, that is, for

|s′ − s| ≤ a+ b. See Figure 1 for an example for a = 2, b = 1.
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Figure 1: Example: a = 2, b = 1, ∂C
∂xt

(x;θ) =
∑t+2

s=t−1
∂fs
∂xt

(x(s−2):(s+1); θs) depends on
θ(t−1):(t+2) and x(t−3):(t+3).

xt−4 xt−3 xt−2 xt−1 xt xt+1 xt+2 xt+3

ft−2(·; θt−2) ft−1(·; θt−1) ft(·; θt) ft+1(·; θt+1) ft+2(·; θt+2)

· · · · · ·

· · · · · ·

In other words, x(l)t can be computed as long has x(l−1)s has been computed for all |s− t| ≤ a+ b,
even if some x(l−1)s′ has not been computed. This idea is used in the design of RHIG algorithm, where
a = 1, b = 0 and simple gradient descent steps like those in Algorithm 1 are used.

Below, in Section 3.2.1 we first look at a hypothetical offline setting for the problem Eq. 1, which
can be solved using Algorithms 1 (PGM) and 2 (AGM). In Section 3.2.2, we show that the iterative
updates in PGM and AGM admit a state-transition view, where roughly the states can be taken as
x for PGM, and (x, v) for AGM. In Section 3.2.3, we explore this state-transition view in a more
general network setting, and propose a recipe to simulate synchronous state-evolution asynchronously,
thereby turning offline algorithms into online ones. This “network and states” perspective allows us
to work with objectives that have more complex dependency structure (e.g. a, b ≥ 1) in a unified way
(the “momentum term” v in AGM is treated as part of the state).

3.2.1 A HYPOTHETICAL OFFLINE CONVEX OPTIMIZATION PROBLEM

First, recall that Equation 6 implies that ∂C
∂xt

(x;θ) = ∂C
∂xt

(xW t
; θ

W̃t
) depends only on xW t

where

W t := [max(1, t−a−b),min(t+a+b, T )], and on θ
W̃t

where W̃t := [max(1, t−b),min(t+a, T )].

This allows us to define, for each θ
W̃t
∈ Θ|W̃t|, Gt(·; θW̃t

) : XW t
→ Rdt as

Gt(xW t
; θ

W̃t
) :=

∂C

∂xt
(xW t

; θ
W̃t

) =
∑
s∈W̃t

∂fs
∂xt

(xWs
; θs), ∀xW t

∈ XW t
. (7)

Next, we consider solving the problem Eq. 1, but in the following hypothetical offline convex
optimization setting: the algorithm is given an initial feasible solution x(init) ∈ X , and a sequence of
oracles O(l) for l = 1, 2, . . . , L, such that

O(l)(x) = (0, G1(xW 1
; θ

(l)

W̃1
), G2(xW 2

; θ
(l)

W̃2
), . . . , GT (xWT

; θ
(l)

W̃T
)), ∀x ∈ X , (8)

where θ(l)
W t
∈ Θ|W t| for all l ∈ [L] and t ∈ [n]. Gt can be viewed as an approximation to ∂C

∂xt
. For

instance, when θ = θ∗, Gt(xW t
; θ∗

W̃t
) = ∂C

∂xt
(xW t

; θ∗
W̃t

), and in general, the norm of gradient error

is upper bounded by (
∑T

t=1(
∑

s∈W̃t
hs,t∥θ∗s − θ

(l)
s ∥)2)1/2 by Assumption 1.1 (Proposition C.1).

Consider Algorithms 1 and 2 with the oracles O(1),O(2), . . . ,O(L). Notice that in our design of
O(l), the (approximate) function value term is always set to 0. Nevertheless, in both algorithms the
(approximate) function values are never used. As a result, when running these algorithms, the updates
are the same as if the (approximate) function values are not 0 but set to the exact function values at
the queried points. In particular, taking ∆

(l)
2 = (

∑T
t=1(

∑
s∈W̃t

hs,t∥θ∗s − θ
(l)
s ∥)2)1/2, if κ = 0, O(l)

is equivalent to a (δl, 0, 1)-oracle for C(·;θ∗), where δl = 2∆
(l)
2 DX . If κ > 0, for l ∈ [L], O(l) is

equivalent to a (δl,
κ
2 , 2)-oracle for C(·;θ∗), where δl = ( 1κ + 1

2 )(∆
(l)
2 )2. Applying Theorem B.1 or

Theorem B.2, we get the convergence rate (stated in Corollary C.1 and Corollary C.2).

3.2.2 STATE EVOLUTION PERSPECTIVE OF ALGORITHMS 1 AND 2

In fact, since the feasible set X =
∏T

t=1 Xi and Gt(·; θW̃t
) : XW t

→ Rdt depends only on xs for
s ∈W t, the update steps in Algorithms 1 and 2 are separable, in the following sense:
• in the l-th iteration of Algorithms 1, for t = 1, 2, . . . , T ,

x
(l)
t ← ProjXt

(x
(l−1)
t − 1

M
Gt(x

(l−1)
W t

; θ
(l)

W̃t
)). (9)

That is, x(l)t depends only on x(l−1)
W t

(and θ(l)
W̃t

). Here M = 1 if κ = 0 and M = 2 if κ > 0.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

• in the l-th iteration of Algorithms 2, for t = 1, 2, . . . , T ,

x
(l)
t ← ProjXt

(y
(l)
t −

1

M
Gt(y

(l)

W t
; θ

(l)

W̃t
)), v

(l)
t ← v

(l−1)
t + αl(Gt(y

(l)

W t
; θ

(l)

W̃t
)−my(l)t )

z
(l)
t ← ProjXt

(
My

(1)
t − v

(l)
t

m(
∑l

j=1 αj) +M
), y

(l+1)
t ← τlz

(l)
t + (1− τl)x(l)t

Here m = 0,M = 1 if κ = 0, and m = κ/2,M = 2 if κ > 0. Notice that z(l)t and y(l)t depend
only on (x

(l)
t , v

(l)
t −My

(1)
t ), while (x(l)t , v

(l)
t −My

(1)
t ) depends only on (x

(l−1)
W t

, v
(l−1)
W t

−My
(1)

W t
)

(together with l and θ(l)
W̃t

), thus (x(l)t , v
(l)
t −My

(1)
t ) can be used as state variables.

A more precise definition of the states is presented in Section C.3. Consequently, in Algorithm 1, as
long as x(l−1)

W t
is computed before x(l)t is computed, the evolution of x(l) remains the same as if all

xt’s are updated at the same time. Similarly for Algorithm 2.

Figure 2: Example: a = 2, b = 1, one step gradient descent for xt using Gt, which depends on
x(t−3):(t+3). For simplicity, we omit the dependency on θ(l).

x
(l−1)
t−4 x

(l−1)
t−3 x

(l−1)
t−2 x

(l−1)
t−1 x

(l−1)
t x

(l−1)
t+1 x

(l−1)
t+2 x

(l−1)
t+3

Gt−2 Gt−1 Gt Gt+1 Gt+2

· · · · · ·

· · · · · ·

x
(l)
t

3.2.3 ASYNCHRONOUS UPDATE FOR SYNCHRONOUS ALGORITHMS

Let G = (V,E) be an undirected graph. For each vertex v ∈ V and ξ = 0, 1, . . ., Nξ(v) ⊂ V is the
set of vertices that are ξ-hop away from v. For instance, N0(v) = {v} and N1(v) is the the neighbor
of v, which we abbreviate as N (v). For convenience Nξ(v) = ∪ξi=0Ni(v), and N (v) = N1(v).

We associate v ∈ V a state space Sv and a state update function ϕv : SN (v) → Sv . Consider

the following synchronous update: at t = 0, vertex v is at state s(0)v ∈ Sv. For l = 1, 2, . . .,
s
(l)
v = ϕv(s

(l−1)
N (v)

). That is, the state of v at l depends only on the states of v and its neighbors at
iterations l− 1. Importantly, the update order for the vertices within the l-th iteration does not matter,
since the new states depend only on the states in the previous step. However, the update order cannot
be changed across iterations (e.g. update sv twice at iteration l and fix it at iteration l + 1).

For any fixed ordering σ : [|V |]→ V , L ∈ N, in Algorithm 5 we give an asynchronous way to update
the states for L steps such that the state evolution s̃(l)v for all v ∈ V, l ∈ [L] satisfies
• consistency: the state evolution is the same as the synchronous update, i.e. s̃(l)v = s

(l)
v for all

v ∈ V, l ∈ [L]

• minimum information: for all vertex i ∈ V , the sequence s̃(1:L)
σ(i) = (s̃

(1)
σ(i), . . . , s̃

(L)
σ(i)) does not

depend on s(0)v for v /∈ ∪ij=1NL(σ(j))

The second condition implies that s(1:L)
σ(1) , s

(1:L)
σ(2) , . . . , s

(1:L)
σ(|V |) can be computed sequentially, such

that by the time s̃(1:L)
σ(i) is computed, only s(0)NL(σ(1))

, s
(0)

NL(σ(2))
, . . . , s

(0)

NL(σ(i))
are revealed (some

information might be revealed multiple times). In addition, we point out that the first property,
consistency, holds for all l ∈ [L] not just for the last iterate l = L. This is crucial since for many
algorithms, the final output depends not just on the last iterate variables, but also on the entire path.
For instance, for Algorithms 1 and 2, the performance guarantee is stated for some weighted average
of the intermediate decision variables.

The Algorithm 5 and its performance (Theorem C.1) are stated in Appendix C.2. To illustrate
the idea, let’s take V = [|V |] and σ(i) = i for all i ∈ V , then Algorithm 5 initializes s̃(0)NL(1)

using s(0)NL(1)
, then computes sequentially s̃(1)NL−1(1)

, s̃
(2)

NL−2(1)
, . . . , s̃

(L−1)
N 1(1)

, s̃
(L)
1 . Since s̃(l)NL−l(1)

depends only on s̃(l−1)NL−l+1(1)
, which has already been computed when s̃(l)NL−l(1)

is computed, this

8
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order of update is valid. Then s̃(0)NL(2)
is initialized using s(0)NL(1)

, and it computes sequentially

s̃
(1)

NL−1(2)
, s̃

(2)

NL−2(2)
, . . . , s̃

(L−1)
N 1(2)

, s̃
(L)
2 . Similarly for the rest of the nodes. (If s̃(l)v has been set before,

s̃
(l)
v won’t be computed again.) Figure 3 gives an example when L = 2.

Figure 3: Update rule for Algorithm 5 for v = 1, 2, L = 2.
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1
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3
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(0:2)
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(0:1)
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(0:1)
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5
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For Algorithms 1 and 2 run with the oracles O(l) defined as in Eq. 8, we can take V = [T ] and
E = {{u, v} ⊂ V 2, u ̸= v, |u − v| ≤ a + b}. Then the neighborhood of t ∈ V is N (t) = W t,
with the states as defined in Section C.3.

4 ALGORITHMS AND PERFORMANCE
Finally, we present our Algorithm 3: online-PGM in green , and online-AGM in yellow . Just like
the offline PGM (Algorithm 1), for online-PGM, each update is a projected gradient descent update
using Gs,l = Gs(x

(l−1)
W s

; θ
(l)

W̃s
) ≈ ∂C

∂xs
(x(l−1);θ∗) (Gs is defined in Eq. 7)

x(l)s ← ProjXs
(x(l−1)s − 1

M
Gs,l). (10)

Similarly, following the offline AGM (Algorithm 2), in online-AGM, each update is a projected
gradient descent step at the extrapolated point y(l), followed by an update on momentum terms and
next query point. With Gs,l = Gs(y

(l)

W s
; θ

(l)

W̃s
) ≈ ∂C

∂xs
(y(l);θ∗)

x(l)s ← ProjXs
(y(l)s −

1

M
Gs,l), ṽ(l)s ← ṽ(l−1)s +αl(Gs,l−my(l)s ), y(l+1)

s ← τlz
(l)
s +(1−τl)x(l)s ,

(11)
where z(l)s ← ProjXs

(
−ṽ(l)

s

m(
∑l

j=1 αj)+M
).

Thus, it remains to choose L and θ(l)
W̃v

for each iteration l so that the asynchronous update rule in
Algorithm 5 (with σ(i) = i for i ∈ [|V |]) can be implemented online given k-step initialization ahead.
It turns out that our update order can also be viewed as a “fill-the-table” type as in Li & Li (2020).
Thus, L ≤ k/(a+ b), and the following choice of θ(l)

W̃v
’s are valid, with details in Appendix C.4:

θ
(l)

W̃v
= θ̂

(1)

W̃v
, v ∈ [(a+b)(L−l)+1], θ

(l)

W̃v
= θ̂

(v−(a+b)(L−l))
W̃v

, v = (a+b)(L−l)+2, . . . , T. (12)

For online AGM, we make the further simplification: since a direct implementation of Algorithm
5 for AGM only keeps in the memory the state variables ((x, v)) and recompute the non-state ones
((y, s)). These repetitive computations can be inefficient, and when memory is not a concern, these
dependent variables can be computed once, and stored. In Algorithm 3, we provide such simplified
implementation.

Proof of Theorem 1.1. By Theorem C.1, the sequence x(l)t generated when running Algorithm 3 is
the same as the sequence when running Algorithm 1 and 2, with the inexact oracles O(l) as in Eq. 8,
and choice of θ(l) as in Eq. 12, the result follows from Corollary C.1 for the case κ = 0 and Corollary
C.2 for the case κ > 0.

5 NUMERICAL EXPERIMENTS

We compare the performance of online-PGM and online-AGM3 using a variant of the planning
problem in Li & Li (2020), stated below:

C(x;θ) :=
1

2

T∑
t=1

(at(xt − θt)2 +
1

2
(xt − xt−1)2), x ∈ X := [−106, 106]T . (13)

3As pointed out in Section 1.3, online-PGM is a slight variation to RHIG and achieves similar theoretical
performance. Thus, the comparisons in this experiment can be viewed as between RHIG and online-AGM.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Algorithm 3: online Projected Gradient Method and online Accelerated Gradient Method .

For t ∈ [T ], W̃t := [max(1, t−b),min(t+a, T )], W t := [max(1, t−a−b),min(t+a+b, T )]

Input: x(init)
s ∈ Xs for s = 1, 2, . . . , T , available for step

t ≥ s− k, L(≤ k
a+b ) the number of updates, θ̂(t) ∈ ΘT

available at time t for t = 1, 2, . . . , T . κ ∈ [0, 1].
Output: x1, x2, . . . , xT

initialize (m,M)← (0, 1) if κ = 0, and (m,M)← (κ
2 , 2) if

κ > 0;

initialize x
(0)

1:(1+L(a+b))
← x

(init)

1:(1+L(a+b))
;

initialize y
(1)

1:(1+L(a+b))
← x

(init)

1:(1+L(a+b))
;

initialize ṽ
(0)

1:(1+L(a+b))
← −My

(1)

1:(1+L(a+b))
;

compute (αl)l∈[L] such that α1 = 1, and ∀l ∈ [L]

(1 + m
M

∑l
i=1 αi)(

∑l+1
i=1 αi) = α2

l+1;

compute τl :=
αl+1∑l+1
j=1

αj

;

for l = 1, 2, . . . , L do
for s = 1, 2, . . . , 1 + (a + b)(L− l) do

Gs,l ←
∑

s′∈W̃s

∂f
s′

∂xs
(x

(l−1)
W

s′
; θ̂

(1)

s′ );

update x(l)
s using Gs,l and Eq. 10;

Gs,l ←
∑

s′∈W̃s

∂f
s′

∂xs
(y

(l)
W

s′
; θ̂

(1)

s′ );

update x(l)
s , ṽ(l)

s , z(l)
s , y(l+1)

s using Gs,l and Eq. 11;

end
end

x1 ←


1
L

∑L
l=1 x

(l)
1 (κ = 0)

m/M

1−(1− m
M

)L

∑L
l=1(1−m/M)L−lx

(l)
1 (κ > 0)

x1 ← x
(L)
1 ;

for t = 2, . . . , T do
if t + L(a + b) ≤ T then

initialize x
(0)

t+L(a+b)
← x

(init)

t+L(a+b)
;

initialize y
(1)

t+L(a+b)
← x

(init)

t+L(a+b)
;

initialize v
(0)

t+L(a+b)
← −My

(1)

t+L(a+b)
;

end
for l = 1, 2, . . . , L do

if t + (a + b)(L− l) ≤ T then
s← t + (a + b)(L− l);

Gs,l ←
∑

s′∈W̃s

∂f
s′

∂xs
(x

(l−1)
W

s′
; θ̂

(t)

s′ );

update x(l)
s using Gs,l and Eq. 10;

Gs,l ←
∑

s′∈W̃s

∂f
s′

∂xs
(y

(l)
W

s′
; θ̂

(t)

s′ );

update x(l)
s , ṽ(l)

s , z(l)
s , y(l+1)

s using Gs,l and Eq. 11;

end
end

xt ←


1
L

∑L
l=1 x

(l)
t (κ = 0)

m/M

1−(1− m
M

)L

∑L
l=1(1−m/M)L−lx

(l)
t (κ > 0)

xt ← x
(L)
t ;

end

Here the parameter θ is composed of a known sinusoidal signal term and a correlated noise term, i.e.,
θt = 4 sin( t2 )+ξt, and ξt = γξt−1+et follows an autoregressive process with noise et ∼iid N (0, 1),
with known γ. The DM uses the optimal prediction ξ̂(t)s = γs−t+1ξt−1 for s ≥ t. Further, we assume
that at’s are known, and are generated such that at = 1+ABt whereBt ∼iid Bern(0.3). We choose
A ∈ {0, 50, 500}, where larger A models ill-conditioned problems with small κ. For simplicity, we
take x(init) = 0 or x(init) = x∗nf := argminx∈X C(x;θ− ξ), the optimal solution in the noise free
setting. For each pair of (γ,A), we generate 100 problems, and Figure 4 plots the logarithm of the
sample-average dynamics regret for γ = 0.3, 0.7, A = 0, 500. See Figures 5 and 6 in Appendix for
more experiment results.

The results show the superior performance of online-AGM, and also the following interesting
phenomenon: in addition to faster convergence of dynamic regret, online-AGM is also converging to
a better point: in all settings in Figure 4, when k = 20, the average dynamic regret for online-AGM
is strictly smaller than that of online-PGM. This might be explained by the fact that online-AGM has
smaller dependency on longer-term prediction inaccuracy.
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Figure 4: Logarithm of sample-average dynamic regret.
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A ADDITIONAL RESULTS FOR SECTION 1

A.1 EXAMPLE 3

Consider the following problem

min
xt∈Xt, t∈[T ]

T∑
t=1

ft(xWt
; ξt), s.t.

T∑
t=1

ct(xWt
; ξt) ≤ 0.

Assume that for all t, Xt ⊂ Rnt , ft : XWt
× Ξ → R, and all components of ct : XWt

× Ξ → Rm

are convex. This problem has the Lagrangian

L(x,λ; ξ) :=
T∑

t=1

ft(xWt ; ξt) + λT
T∑

t=1

ct(xWt ; ξt).

12
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Under strong duality, the original problem is equivalent to minimizing L(x,λ∗(ξ); ξ) where λ∗(ξ)
is the optimal dual (which might depend on ξ). Thus, we can define θt = (ξt, λt) with θ∗t =
(ξ∗t ,λ

∗(ξ∗)). Then we have

L(x,λ∗(ξ∗); ξ∗) =
T∑

t=1

f̃t(xt; θ
∗
t ), f̃t(xWt

; θt) := ft(xWt
; ξt) + λTt ct(xWt

; ξt).

Predictions of ξt and λ∗(ξ) might be available from prior information or past data about the model.

A.2 COMMENT ON ASSUMPTION 1.2

In Assumption 1.2, we assume that C(·;θ) : X → R is 1-smooth and κ-strongly convex. We can
make the following connection with the assumption that for each t, there exists 0 ≤ αt ≤ βt, such
that ft : XWt

→ R is αt-strongly convex and βt-smooth, i.e. for all x, y ∈ XWt
,

αt

2
∥y − x∥2 ≤ ft(y; θt)− ft(x; θt)− ⟨∇ft(x; θt), y − x⟩ ≤

βt
2
∥y − x∥2.

For all x,y ∈ X , adding the above inequalities for all t, we get
T∑

t=1

αt

2
∥yWt

− xWt
∥2 ≤ C(y;θ)− C(x;θ)− ⟨∇C(x;θ),y − x⟩ ≤

T∑
t=1

βt
2
∥yWt

− xWt
∥2.

Since Wt = [max(1, t− a),min(t+ b, T )],

T∑
t=1

βt
2
∥xWt

− yWt
∥2 =

T∑
t=1

∑
s∈Wt

βt
2
∥xs − ys∥2 =

T∑
s=1

min(s+a,T )∑
t=max(1,s−b)

βt
2
∥xs − ys∥2 ≤

B

2
∥x− y∥2,

where B = maxs∈[T ]

∑min(s+a,T )
t=max(1,s−b) βt. Similarly, we can show that

T∑
t=1

αt

2
∥xWt

− yWt
∥2 ≥ A

2
∥x− y∥2, A = min

s∈[T ]

min(s+a,T )∑
t=max(1,s−b)

αt.

When βt ≤ β and αt ≥ α for all t, we have A ≥ (1 + min(a, b))α, and B ≤ (1 + a + b)β. That
is, the normalized objective, C

(1+a+b)β
, is 1-smooth and (1+min(a,b))α

(1+a+b)β
-strongly convex. In particular,

κ = (1+min(a,b))α

(1+a+b)β
does not depend on T when a and b are on the same scale. In fact, from the

expressions for A and B, we see that it’s possible that αt = 0 for some t, but A > 0, i.e. ft is not
strongly convex, but C still is. Thus, our Assumption 1.2 can be seen as weaker than assumptions on
each ft.

B ADDITIONAL RESULTS FOR SECTION 3.1

Proposition B.1 (Devolder et al. (2013b)Devolder et al. (2013a)). Let the oracle Õ(y) =

(F̃ (y), ∇̃F (y)) such that for all y ∈ K, |F (y)− F̃ (y)| ≤ ∆1, and ∥∇F (y)− ∇̃F (y)∥ ≤ ∆2.
• If F has a (0, 0,M ′)-oracle, i.e. F is M ′-smooth, and K is bounded and has diameter DK, then
(F̃ (y)−∆1 −∆2DK, ∇̃F (y)) is a (2∆1 + 2∆2DK, 0,M

′)-oracle.
• If F has a (0,m′,M ′)-oracle for some m′ > 0, i.e. F is M ′-smooth and m′-strongly convex, then

(F̃ (y)−∆1 − ∆2
2

m′ , ∇̃F (y)) is a (2∆1 + ( 1
m′ +

1
2M )∆2

2,
m′

2 , 2M
′)-oracle.

Projected gradient method. Projected gradient method with inexact first order gradient oracle is
the same as the classical PGM, but using the inexact gradient returned by an (δl,m,M)-oracle O(l).
That is, at the l-th iteration,

(f (l−1), g(l−1))← O(l)(x(l−1)), x(l) ← ProjK(x
(l−1) − 1

M
g(l−1)). (14)

The exact algorithm is presented in Algorithm 1. Below we state its convergence properties:

13
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Theorem B.1 (Theorem 2 in Devolder et al. (2013b), modification of Theorem 4 in Devolder et al.
(2013a)). The sequence generated by Algorithm 1, with a sequence of (δl,m,M)-oracle O(l) for
l ∈ N, satisfies the following properties:

F (x(l))−F (x∗) ≤


M
2 exp(−m

M l)∥x(0) − x∗∥2+ m/M
1−(1−m

M )l

∑l
i=1(1−

m
M )l−iδi

(m > 0, x(l) := m/M
1−(1−m

M )l

∑l
i=1(1−

m
M )l−ix(i))

M
2l ∥x

(0) − x∗∥2 + 1
l

∑l
i=1 δi (m = 0, x(l) := 1

l

∑l
i=1 x

(i))
(15)

Accelerated Gradient Method. To obtain the accelerated convergence rate, Algorithm 2 performs
projected gradient descent at a extrapolated point:

(f (l), g(l))← O(l)(y(l)), x(l) ← ProjK(y
(l) − 1

M
g(l)). (16)

After that, the following updates are used, where (τl)l∈N is a sequence that depends on m,M :

v(l) ← v(l−1)+αl(g
(l)−my(l)), z(l) ← ProjK(

My(1) − v(l)

m(
∑l

j=1 αj) +M
), y(l+1) ← τlz

(l)+(1−τl)x(l)

(17)
Theorem B.2 (modification of Theorem 6 in Devolder et al. (2013a)). For Algorithm 2, choose

the sequences (αl)l∈N and (τl)l∈N such that α1 = 1, 1 + m
MAl =

α2
l+1

Al+1
for all l ∈ N, where

Al :=
∑l

i=1 αi, and τl =
αl+1

Al+1
, then for all l ∈ N, we have

F (x(l))−F (x∗) ≤

{
(1 + 1

2

√
m
M )−2l · 3M∥x(init) − x∗∥2 +

∑l
i=1(1 +

1
2

√
m
M )−2(l−i)δi m > 0

4M
l2 ∥x

(init) − x∗∥2 + 4
∑l

i=1(
i
l )

2δi m = 0

(18)

In Devolder et al. (2013b), the authors study inexact first oracle when the objective function is smooth
but not strongly convex. In Devolder et al. (2013a) the authors study the strongly convex case with
inexact oracle, but δl’s are the same for all time period. The proof of Theorem B.1 and B.2 are
adaptation of the proof in Devolder et al. (2013a) for the strongly convex and smooth objective
functions, taking into account variation in δl across time.

B.1 PROJECTED GRADIENT METHOD

Proof of Theorem B.1. The case when m = 0 follows directly from Theorem 2 in Devolder et al.
(2013b). Below, we adapt the proof of Theorem 6 in Devolder et al. (2013a) to show the bound when
m > 0.

For convenience, denote r2l = ∥x(l) − x∗∥2 for l = 0, 1, 2, . . .. Then we have

r2l+1 = ∥x(l+1) − x∗∥2 = r2l + 2⟨x(l+1) − x(l), x(l+1) − x∗⟩ − ∥x(l+1) − x(l)∥2.
The optimality condition at x(l+1) implies that

⟨g(l) +M(x(l+1) − x(l)), x− x(l+1)⟩ ≥ 0, ∀x ∈ K.
Thus we have

⟨x(l+1) − x(l), x(l+1) − x∗⟩ ≤ 1

M
⟨g(l), x∗ − x(l+1)⟩.

Thus we have

r2l+1 ≤ r2l +
2

M
⟨g(l), x∗ − x(l+1)⟩ − ∥x(l+1) − x(l)∥2

= r2l +
2

M
⟨g(l), x∗ − x(l)⟩ − 2

M
[⟨g(l), x(l+1) − x(l)⟩+ M

2
∥x(l+1) − x(l)∥2]

≤ r2l +
2

M
⟨g(l), x∗ − x(l)⟩ − 2

M
[F (x(l+1))− f (l) − δl+1] (O(l+1) is (δl+1,m,M) oracle)

≤ r2l +
2

M
[F (x∗)− f (l) − m

2
∥x∗ − x(l)∥2]− 2

M
[F (x(l+1))− f (l) − δl+1]

= (1− m

M
)r2l +

2

M
[F (x∗)− F (x(l+1)) + δl+1].

14
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Denoting Rl :=
2
M [F (x∗)− F (x(l+1)) + δl+1], and applying the above bound recursively, we get

r2l ≤ (1− m

M
)r2l−1 +Rl−1 ≤ (1− m

M
)lr20 +

l∑
i=1

(1− m

M
)i−1Rl−i.

Thus we have

0 ≤ (1− m

M
)lr20 +

l∑
i=1

(1− m

M
)i−1Rl−i,

which implies that

l∑
i=1

(1− m

M
)l−i[F (x(i))− F (x∗)] ≤ (1− m

M
)l · M

2
r20 +

l∑
i=1

(1− m

M
)l−iδi.

B.2 ACCELERATED GRADIENT METHOD

Lemma B.1. Denote

ψ∗l := min
x∈K

M

2
∥x− y(1)∥2 +

l∑
i=1

αi[f
(i) + ⟨g(i), x− y(i)⟩+ m

2
∥x− y(i)∥2].

Choosing the sequence (αl)l∈N and sequence (τl)l∈N such that

1 +
m

M
Al =

α2
l+1

Al+1
, α1 = 1

where Al :=
∑l

i=1 αi, and τl =
αl+1

Al+1
. Then for any l ≥ 1, we have AlF (x

(l)) ≤ ψ∗l + El where

El =
∑l

i=1Aiδi.

Proof of Lemma B.1. The proof is an adaptation of the proof for Lemma 3 in Devolder et al. (2013a).

The proof is by induction on l. For l = 1,

ψ∗1 = min
x∈K

M

2
∥y − y(1)∥2 + f (1) + ⟨g(1), x− y(1)⟩+ m

2
∥x− y(1)∥2 (using α1 = 1)

≥ min
x∈K

f (1) + ⟨g(1), x− y(1)⟩+ M

2
∥x− y(1)∥2

= f (1) + ⟨g(1), x(1) − y(1)⟩+ M

2
∥x(1) − y(1)∥2 (by the update rule)

≥ F (x(1))− δ1. (O(1) is (δ1,m,M)-oracle)

Thus the statement is true for l = 1. Suppose that it’s true for some l ≥ 1, then the optimality
condition for z(l) implies that

⟨M(z(l) − y(1)) + v(l) +mAlz
(l), y − z(l)⟩ ≥ 0, ∀y ∈ K.

By the update rule,

v(l) =
l∑

i=1

αi(g
(i) −my(i)) =⇒ v(l) +mAlz

(l) =
l∑

i=1

αi(g
(i) −my(i) +mz(l)),

and so we get

M⟨z(l) − y(1), y − z(l)⟩ ≥ ⟨
l∑

i=1

αi(g
(i) −my(i) +mz(l)), z(l) − y⟩, ∀y ∈ K.
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Since ∥x− y(1)∥2 is strongly convex in x, we have for any x ∈ K,

M

2
∥x− y(1)∥2 − M

2
∥z(l) − y(1)∥2 ≥M⟨z(l) − y(1), x− z(l)⟩+ M

2
∥x− z(l)∥2

≥ ⟨
l∑

i=1

αi(g
(i) −my(i) +mz(l)), z(l) − x⟩+ M

2
∥x− z(l)∥2

=

l∑
i=1

αi⟨g(i), z(l) − x⟩+m

l∑
i=1

αi⟨−y(i) + z(l), z(l) − x⟩+ M

2
∥x− z(l)∥2.

Thus for any x ∈ K, for the objective function in the definition of ψ∗l+1,

M

2
∥x− y(1)∥2 +

l+1∑
i=1

αi[f
(i) + ⟨g(i), x− y(i)⟩+ m

2
∥x− y(i)∥2]

≥ M

2
∥z(l) − y(1)∥2 +

l∑
i=1

αi[f
(i) + ⟨g(i), x− y(i)⟩+ m

2
∥x− y(i)∥2]

+

l∑
i=1

αi⟨g(i), z(l) − x⟩+m

l∑
i=1

αi⟨−y(i) + z(l), z(l) − x⟩+ M

2
∥x− z(l)∥2

+ αl+1[f
(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]

=
M

2
∥z(l) − y(1)∥2 +

l∑
i=1

αi[f
(i) + ⟨g(i), z(l) − y(i)⟩+ m

2
∥x− y(i)∥2]

+m

l∑
i=1

αi⟨−y(i) + z(l), z(l) − x⟩+ M

2
∥x− z(l)∥2

+ αl+1[f
(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2].

Using the following relation,

⟨z(l) − y(i), z(l) − x⟩ = 1

2
∥z(l) − y(i)∥2 + 1

2
∥z(l) − x∥2 − 1

2
∥x− y(i)∥2,

we get

M

2
∥x− y(1)∥2 +

l+1∑
i=1

αi[f
(i) + ⟨g(i), x− y(i)⟩+ m

2
∥x− y(i)∥2]

≥ M

2
∥z(l) − y(1)∥2 +

l∑
i=1

αi[f
(i) + ⟨g(i), z(l) − y(i)⟩+ m

2
∥x− y(i)∥2]

+
m

2

l∑
i=1

αi(∥z(l) − y(i)∥2 + ∥z(l) − x∥2 − ∥x− y(i)∥2) +
M

2
∥x− z(l)∥2

+ αl+1[f
(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]

=
M

2
∥z(l) − y(1)∥2 +

l∑
i=1

αi[f
(i) + ⟨g(i), z(l) − y(i)⟩+ m

2
∥z(l) − y(i)∥2] + M +mAl

2
∥x− z(l)∥2

+ αl+1[f
(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]

= ψ∗l +
M +mAl

2
∥x− z(l)∥2 + αl+1[f

(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]
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Thus we have

ψ∗l+1 ≥ ψ∗l +min
x∈K

M +mAl

2
∥x− z(l)∥2 + αl+1[f

(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2].

By induction AlF (x
(l)) ≤ ψ∗l + El, and so

ψ∗l + αl+1[f
(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]

≥ AlF (x
(l))− El + αl+1[f

(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]

≥ Al[f
(l+1) + ⟨g(l+1), x(l) − y(l+1)⟩+ m

2
∥x(l) − y(l+1)∥2]− El

+ αl+1[f
(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]

= Al+1f
(l+1) + ⟨g(l+1), Al(x

(l) − y(l+1)) + αl+1(y − y(l+1))⟩ − El

+
Alm

2
∥x(l) − y(l+1)∥2 + αl+1m

2
∥x− y(l+1)∥2.

Since τl =
αl+1

Al+1
, and y(l+1) = τlz

(l) + (1− τl)x(l),

Al(x
(l) − y(l+1)) + αl+1(y − y(l+1)) = αl+1(y − z(l)).

Thus we get

ψ∗l + αl+1[f
(l+1) + ⟨g(l+1), x− y(l+1)⟩+ m

2
∥x− y(l+1)∥2]

≥ Al+1f
(l+1) − El + αl+1⟨g(l+1), y − z(l)⟩.

Thus for the ψ∗l+1, since we choose the sequence such that τl =
αl+1

Al+1
and Al+1τ

2
l = 1 + m

MAl

ψ∗l+1 ≥ Al+1f
(l+1) − El +min

x∈K

M +mAl

2
∥x− z(l)∥2 + αl+1⟨g(l+1), y − z(l)⟩

= −El +Al+1[f
(l+1) +min

x∈K

τ2l M

2
∥x− z(l)∥2 + τl⟨g(l+1), x− z(l)⟩]

For x ∈ K, define x̂ = τlx+ (1− τl)x(l), since τl(x− z(l)) = x̂− y(l+1),

min
x∈K

τ2l M

2
∥x− z(l)∥2 + τl⟨g(l+1), x− z(l)⟩

= min
x̂∈τlK+(1−τl)x(l)

M

2
∥x̂− y(l+1)∥2 + ⟨g(l+1), x̂− y(l+1)⟩

≥ min
x̂∈K

M

2
∥x̂− y(l+1)∥2 + ⟨g(l+1), x̂− y(l+1)⟩

Putting the above two equations together, we get

ψ∗l+1 ≥ −El +Al+1[f
(l+1) +min

x̂∈K

M

2
∥x̂− y(l+1)∥2 + ⟨g(l+1), x̂− y(l+1)⟩]

≥ Al+1F (x
(l+1))− El −Al+1δl+1.

where the last step uses O(l+1) is (δl+1,m,M)-oracle.

Proof of Theorem B.2.

ψ∗l = min
x∈K

M

2
∥x− y(1)∥2 +

l∑
i=1

αi[f
(i) + ⟨g(i), x− y(i)⟩+ m

2
∥x− y(i)∥2]

≤ M

2
∥x∗ − y(1)∥2 +

l∑
i=1

αi[f
(i) + ⟨g(i), x∗ − y(i)⟩+ m

2
∥x∗ − y(i)∥2]

≤ M

2
∥x∗ − y(1)∥2 +AlF (x

∗),
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where the last step is because O(i) is (δi,m,M)-oracle. Since y(1) = x(init), together with Lemma
B.1, we have

F (x(l)) ≤ M

2Al
∥x(init) − x∗∥2 + F (x∗) +

l∑
i=1

Ai

Al
δi.

When m > 0, from the proof of Lemma 4 in Devolder et al. (2013a), Ak+1 ≥ (1 + 1
2

√
m/M)2Ak

for all k ≥ 1, giving the desired bound.

When m = 0, Remark 10 in Devolder et al. (2013a) shows that Ak ≥ (k + 1)2/4 for all k ≥ 1. In
addition, α1 = A1 = 1, we can use induction to show that Ak ≤ k2 for all k and αk ≤ k for all k:
α2
k+1 = αk+1 + Ak and so αk+1 = 1/2 +

√
1/4 +Ak ≤ k + 1, Ak+1 ≤ k2 + k + 1 ≤ (k + 1)2.

Thus, Ai/Al ≤ 4i2/(l + 1)2.

C ADDITIONAL RESULTS FOR SECTION 3.2

C.1 ADDITIONAL RESULTS FOR THE HYPOTHETICAL OFFLINE PROBLEM

Proposition C.1. The oracle defined in Eq. 8 satisfies

∥∇C(x;θ∗)−(G1(xW 1
; θ

(l)

W̃1
), G2(xW 2

; θ
(l)

W̃2
), . . . , GT (xWT

; θ
(l)

W̃T
))∥2 ≤

T∑
t=1

(
∑
s∈W̃t

hs,t∥θ∗s−θ(l)s ∥)2.

Proof of Proposition C.1. By Assumption 1.1, for any θ ∈ ΘT ,

∥ ∂C
∂xt

(xW t
; θ∗

W̃t
)−Gt(xW t

; θ
W̃t

)∥ = ∥
∑
s∈W̃t

(
∂fs
∂xt

(xWs ; θ
∗
s)−

∂fs
∂xt

(xWs ; θs))∥

≤
∑
s∈W̃t

∥∂fs
∂xt

(xWs ; θ
∗
s)−

∂fs
∂xt

(xWs ; θs)∥ ≤
∑
s∈W̃t

hs,t∥θ∗s − θs∥.

With this oracle O(l), the gradient has error

∥∇C(x;θ∗)− (G1(xW 1
; θ

(l)

W̃1
), G2(xW 2

; θ
(l)

W̃2
), . . . , GT (xWT

; θ
(l)

W̃T
))∥2

=

T∑
t=1

∥ ∂C
∂xt

(xW t
; θ∗

W̃t
)−Gt(xW t

; θ
(l)

W̃t
)∥2 ≤

T∑
t=1

(
∑
s∈W̃t

hs,t∥θ∗s − θ(l)s ∥)2.

For eachO(l), we can take ∆(l)
1 = 0 and ∆

(l)
2 = (

∑T
t=1(

∑
s∈W̃t

hs,t∥θ∗s−θ
(l)
s ∥)2)1/2 in Proposition

B.1. Combining Proposition B.1,

Corollary C.1. If κ = 0, for l ∈ [L], O(l) is equivalent to a (δl, 0, 1)-oracle for C(·;θ∗), where
δl = 2(

∑T
t=1(

∑
s∈W̃t

hs,t∥θ∗s − θ
(l)
s ∥)2)1/2DX , DX = maxx,x′∈X ∥x− x′∥ is the diameter of X .

Thus Algorithm 1 generates a sequence x(1), x(2), . . . , x(L) such that

C(x̃(l);θ∗)− C(x∗;θ∗) ≤ 1

2l
∥x(init) − x∗∥2 + 1

l

l∑
i=1

δi, x̃(l) =
1

l

l∑
i=1

x(i).

Algorithm 2 generates a sequence x(1), x(2), . . . , x(L) such that

C(x(l);θ∗)− C(x∗;θ∗) ≤ 4

l2
∥x(init) − x∗∥2 + 4

l∑
i=1

(
i

l
)2δi.
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Corollary C.2. If κ > 0, for l ∈ [L], O(l) is equivalent to a (δl,
κ
2 , 2)-oracle for C(·;θ∗),

where δl = ( 1κ + 1
2 )(
∑T

t=1(
∑

s∈W̃t
hs,t∥θ∗s − θ

(l)
s ∥)2). Thus Algorithm 1 generates a sequence

x(1), x(2), . . . , x(L) such that for xl := κ/4
1−(1−κ/4)l

∑l
i=1(1− κ/4)l−ix(i)

C(x(l);θ∗)− C(x∗;θ∗) ≤ exp(−κl/4)
2

∥x(init) − x∗∥2 + κ/4

1− (1− κ/4)l
l∑

i=1

(1− κ/4)l−iδi

Algorithm 2 generates a sequence x(1), x(2), . . . , x(L) such that

C(x(l);θ∗)− C(x∗;θ∗) ≤ 6(1 +
1

4

√
κ)−2l∥x(init) − x∗∥2 +

l∑
i=1

(1 +
1

4

√
κ)−2(l−i)δi.

C.2 ADDITION RESULTS FOR THE UPDATE RULE

Algorithm 4: synchronous update
Input: G = (V,E) the underlying graph, ϕv : SN (v) → Sv the state transition function and

s
(0)
v ∈ Sv the initial state for all v ∈ V , L the number of updates.

Output: s(L)
v for all v ∈ V .

for l = 1, 2, . . . , L do
for v ∈ V do // update order for v does not matter

update s(l)v ← ϕv(s
(l−1)
N (v)

)

end
end

Algorithm 5: asynchronous update
Input: G = (V,E) the underlying graph, ϕv : SN (v) → Sv the state transition function and

s
(0)
v ∈ Sv the initial state for all v ∈ V , L the number of updates, σ : [|V |]→ V the

output order.
Output: s̃(L)

σ(1), s̃
(L)
σ(2), . . . , s̃

(L)
σ(|V |)

initializeH = ∅; // H ⊂ ({0} ∪ [L])× V contains pairs (l, v) s.t. s̃
(l)
v has

been computed

for i = 1, 2, . . . , |V | do // compute s̃
(L)
σ(i)

for v ∈ NL(σ(i)) \ ∪i−1j=1NL(σ(j)) do
initialize s̃(0)v ← s

(0)
v ,H ← H∪ {(0, v)};

end
for l = 1, 2, . . . , L do // compute s̃

(l)

NL−l(σ(i))
using s̃

(l−1)
NL−l+1(σ(i))

for v ∈ NL−l(σ(i)) do // update order for v does not matter

if (l, v) /∈ H then // s̃
(l)
v has not been computed yet

update s̃(l)v ← ϕv(s̃
(l−1)
N (v)

),H ← H∪ {(l, v)};
end

end
end

end

Theorem C.1. The update rules in Algorithm 5 are valid. Thus computation of s̃(1:L)
σ(i) does not

require knowledge about s(0)u for any u /∈ ∪ij=1s
(0)

NL(σ(j))
.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

In addition, given the same set of inputs (graph G, state transition functions ϕv, and initial states
s
(0)
v ), for any order of output σ : [|V |]→ V , Algorithm 5 and Algorithm 4 produce the same state

evolution: s(l)v = s̃
(l)
v for all v ∈ V , l ∈ [L].

Proof of Theorem C.1. For convenience, we denote the state of the setH in the i-th outer iteration,
right after the initialization of s̃(0)v , as Hi,0; right after the l-th inner iteration, as Hi,l for l =
1, 2, . . . , L.

We claim that
• valid update rule: for each i ∈ [|V |] and l ∈ [L], before entering the l-th iteration, s̃(l−1)NL−l+1(σ(i))

has been computed, i.e. (l − 1, v) ∈ Hi,l−1, for all v ∈ NL−l+1(σ(i));
• consistent output: for all l ∈ {0, 1, . . . , L}, i ∈ [|V |], for all (l′, v′) ∈ Hi,l, s

(l′)
v′ = s̃

(l′)
v′ .

First, it’s easy to see that ∪ij=1NL(σ(j)) ⊂ Hi,0 for all i ∈ [|V |].

Next we prove the first claim. For any i ∈ [|V |], we use induction on l. The claim holds for l = 1
since ∪ij=1NL(σ(j)) ⊂ Hi,0, and so (0, v) ∈ Hi,0, for all v ∈ NL(σ(i)). Suppose the claim is true
for some l ≤ L− 1, then for l+1, by the update process in the l-th iteration, for all v ∈ NL−l(σ(i)),
s̃
(l)
v is either already computed before or is computed, and so (l, v) ∈ Hi,l. This completes the

induction.

Then we prove the second claim. The claim holds for H1,0 since s̃(0)v = s
(0)
v for v ∈ NL(σ(1)),

andH1,0 = {(1, v), v ∈ NL(σ(1))}. Now suppose the statement holds forHi,l for some i ∈ [|V |]
and l ∈ {0, 1, . . . , L− 1}, then during the (l + 1)-th iteration, the updates are s̃(l+1)

v ← ϕv(s̃
(l)

N (v)
),

and since ∀u ∈ N (v), (l, u) ∈ Hi,l, by the induction hypothesis, s̃(l)u = s
(l)
u , and so s̃(l+1)

v =

ϕv(s̃
(l)

N (v)
) = ϕv(s

(l)

N (v)
) = s

(l+1)
v .

Suppose the claim holds for Hi,L for some i ∈ [|V | − 1], then it holds for Hi+1,0 since the only
added terms are initialization s̃(0)v = s

(0)
v for v ∈ NL(σ(i+ 1)) \ ∪ij=1NL(σ(j)).

In addition, notice that in the first i iterations, s̃(0)v are initialized for v ∈ ∪ij=1NL(σ(j)) only, and

the L subsequent updates for l ∈ [L] require s̃(0)v but not s(0)u for any u ∈ V . Thus computation of
s̃
(L)
σ(i) does not require knowledge about s(0)u for any u /∈ ∪ij=1s

(0)

NL(σ(j))
.

C.3 STATE TRANSITION OF PGM AND AGM – A NETWORK PERSPECTIVE

Let St = {0, 1, . . . , L} × Xt and (l, x
(l)
t ) ∈ St represents the states of vertex t ∈ V . Since

ϕt : SN (t) → St ∪ {Err} can be chosen based on Equation Eq. 9: for all xW t
∈ XW t

, l ∈ [L− 1],

ϕt((l − 1, xs)s∈W t
) := (l,ProjXt

(x
(l−1)
t − 1

M
Gt(x

(l−1)
W t

; θ
(l)

W̃t
))),

and

ϕt((ls, xs)s∈W t
) := Err, ls ̸= ls′ for some s, s′ ∈W t, or ls = L for some s ∈W t.

Here the state also includes the current iteration as part of the information, and this allows us to
use l-dependent θ(l)

W̃t
. Also, ϕt is Err if the gradient Gt is evaluated at different iteration-version

(ls ̸= ls′) of neighbors x(ls−1)s and x(ls′−1)s′ , or if xs has already been updated L times. However,
neither of these two cases will happen during Algorithm 5: it’s easy to check that s̃(l)v = (l, x

(l)
v ) is

satisfied all the time, and so the input to ϕv is always of the form (l − 1, xs)s∈W t
for some l ∈ [L]

and xW t
∈ XW t

.

Similarly, for Algorithm 2, the state space can be taken as St = {0, 1, . . . , L} × Xt × Rd and
(l, x

(l)
t , ṽ

(l)
t := v

(l)
t −My

(1)
t ) is the state for vertex t ∈ V . In addition, since the update order only

depends on the underlying graph G = (V,E) which is the same for Algorithm 2 and 1, the order of
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computing s(l)v can be done in the same way. The difference between the two algorithms is that the
(projected) gradient descent at x(l)t in Algorithm 1 is replaced by (projected) gradient descent at the
extrapolated point y(l)t , followed by an update on ṽ(l)t in Algorithm 2.

C.4 CHOICE OF L AND θ
(l)

W̃v

We provide two rules for the choice of L and θ(l)
W̃v

• requirement on L: notice that in iteration i = 1, 2, . . . , T of Algorithm 5, all L-hop neighbors of
vertex i must be initialized first. That is, by time i, x(init)v must be available for all v that are at
most L-hops away from i, i.e. for all v ∈ [T ], such that |v − i| ≤ L(a + b). Thus, we choose
L(a+ b) ≤ k.

• one valid choice for θ(l)
W̃v

: if s̃lv ← ϕv(s̃
(l−1)
N (v)

) is computed when computing s(1:L)
i (i.e. during the

i-th outer iteration in Algorithm 5), the prediction available at time i can be used, i.e. θ(l)
W̃v

= θ̂
(i)

W̃v

is a valid choice. Due to the special structure of the dependency graph for online-AGM and
online-PGM – (s, s′) ∈ E if and only if |s− s′| ≤ a+ b – the update order is also of the “fill the
table” style as inLi & Li (2020) and Li et al. (2021). In particular, as presented in Table 2, we can
set

θ
(l)

W̃v
=

{
θ̂
(1)

W̃v
v = 1, 2, . . . , (a+ b)(L− l) + 1

θ̂
(v−(a+b)(L−l))
W̃v

v = (a+ b)(L− l) + 2, . . . , T
(19)

Table 2: choice of θ(l)
W̃v

in Eq. 12 for a = 2, b = 1, L = 8

θ
(1)
1:3 = θ̂

(1)
1:3 θ

(1)
1:4 = θ̂

(1)
1:4 θ

(1)
2:5 = θ̂

(1)
2:5 θ

(1)
3:6 = θ̂

(1)
3:6 θ

(1)
4:7 = θ̂

(1)
4:7 θ

(1)
5:8 = θ̂

(1)
5:8 θ

(1)
6:9 = θ̂

(1)
6:9 θ

(1)
7:10 = θ̂

(1)
7:10 θ

(1)
8:11 = θ̂

(1)
8:11 θ

(1)
9:12 = θ̂

(1)
9:12 θ

(1)
10:13 = θ̂

(1)
10:13 θ

(1)
11:14 = θ̂

(1)
11:14 θ

(1)
12:15 = θ̂

(1)
12:15 θ

(1)
13:16 = θ̂

(1)
13:16

θ
(2)
1:3 = θ̂

(1)
1:3 θ

(2)
1:4 = θ̂

(1)
1:4 θ

(2)
2:5 = θ̂

(1)
2:5 θ

(2)
3:6 = θ̂

(1)
3:6 θ

(2)
4:7 = θ̂

(1)
4:7 θ

(2)
5:8 = θ̂

(1)
5:8 θ

(2)
6:9 = θ̂

(1)
6:9 θ

(2)
7:10 = θ̂

(1)
7:10 θ

(2)
8:11 = θ̂

(1)
8:11 θ

(2)
9:12 = θ̂

(1)
9:12 θ

(2)
10:13 = θ̂

(1)
10:13 θ

(2)
11:14 = θ̂

(1)
11:14 θ

(2)
12:15 = θ̂

(1)
12:15 θ

(2)
13:16 = θ̂

(1)
13:16

θ
(3)
1:3 = θ̂

(1)
1:3 θ

(3)
1:4 = θ̂

(1)
1:4 θ

(3)
2:5 = θ̂

(1)
2:5 θ

(3)
3:6 = θ̂

(1)
3:6 θ

(3)
4:7 = θ̂

(1)
4:7 θ

(3)
5:8 = θ̂

(1)
5:8 θ

(3)
6:9 = θ̂

(1)
6:9 θ

(3)
7:10 = θ̂

(1)
7:10 θ

(3)
8:11 = θ̂

(1)
8:11 θ

(3)
9:12 = θ̂

(1)
9:12 θ

(3)
10:13 = θ̂

(1)
10:13 θ

(3)
11:14 = θ̂

(1)
11:14 θ

(3)
12:15 = θ̂

(1)
12:15 θ

(3)
13:16 = θ̂

(1)
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D ADDITIONAL SETTINGS AND RESULTS FOR NUMERICAL EXPERIMENTS

Our objective function Eq. 13 and the setting of tracking process composing of a signal term and a
time-correlated noise term is a variant of the numerical experiment in Li & Li (2020), where at = a
for some a > 0 for all t. By allowing varying at, we can control the condition number of C(·;θ),
thereby comparing the performance of online-PGM and online-AGM for various κ’s.

We choose T = 40, k ∈ [20] and x0 = 10. In addition, since Algorithm 3 requires the function to be
κ-strongly convex and 1-smooth, we normalize each update that involves∇C by a factor (2 +A)−1

and take κ = 2
2+A

4.

For the information θ(t) at time t, in this experiment, ξ̂(t)s = ξs for s ∈ [t− 1] and ξ̂(t)s = γs−t+1ξt−1
for s ≥ t. That is, the DM has perfect information about past ξs’s, and uses the optimal prediction
(see Li & Li (2020) for more details) for prediction of unseen ξs’s.

Our experiments are run using Matlab on Macbook Pro.

In Figure 4 we provide a subset of Figures in Figure 5, and below we provide the logarithm of the
average dynamic regret and the average ∥x− x∗∥ for all 6 settings.

4The objective is not exactly 2 + A-smooth and 2-strongly convex. However, this choice of parameters
appear to work for this planning problem.
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Figure 5: Logarithm of sample-average dynamic regret.
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Figure 6: Logarithm of sample-average ∥x− x∗∥.
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