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Abstract

Bivariate causal discovery is challenging when
unmeasured confounders exist. To adjust for the
bias, previous methods employed the proxy vari-
able (i.e., negative control outcome (NCO)) to test
the treatment-outcome relationship through inte-
gral equations – and assumed that violation of this
equation indicates the causal relationship. Upon
this, they could establish asymptotic properties for
causal hypothesis testing. However, these meth-
ods either relied on parametric assumptions or
required discretizing continuous variables, which
may lead to information loss. Moreover, it is
unclear when this underlying integral-related as-
sumption holds, making it difficult to justify the
utility in practice. To address these problems,
we first consider the scenario where only NCO is
available. We propose a novel non-parametric pro-
cedure, which enjoys asymptotic properties and
preserves more information. Moreover, we find
that when NCO affects the outcome, the above
integral-related assumption may not hold, render-
ing the causal relation unidentifiable. Informed
by this, we further consider the scenario when the
negative control exposure (NCE) is also available.
In this scenario, we construct another integral re-
striction aided by this proxy, which can discover
causation when NCO affects the outcome. We
demonstrate these findings and the effectiveness
of our proposals through comprehensive numeri-
cal studies.
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1. Introduction
When the causal sufficiency is violated (Spirtes et al., 2001),
constraint-based causal discovery is challenging due to the
potential bias introduced by unmeasured confounders in
conditional independence testing. As a foundational step,
this paper focuses on the bivariate case, aiming to identify
causal relationships in the presence of unobserved variables.
To adjust for the bias, (Miao et al., 2018) leveraged observed
proxy variables (Kuroki & Pearl, 2014; Tchetgen et al.,
2024) to examine the existence of causal relations over
discrete variables. Later, (Miao et al., 2023; Liu et al., 2023)
extended them to continuous variables, by investigating the
existence of solutions to integral equations.

Specifically, the integral equation examines whether the re-
lationship between the treatment and the outcome can be
fully explained by the proxy, a.k.a, negative control outcome
(NCO) (Lipsitch et al., 2010). If there is no causal relation,
the relationship remains consistent across changes in treat-
ment. Upon this, (Miao et al., 2023) tested the causal null
hypothesis by goodness-of-fit, which relied on parametric
assumptions. To allow for nonparametric testing, (Liu et al.,
2023) proposed a discretization approach to approximate the
equation, and established asymptotic properties. However,
it may require a large number of bins and substantial data to
control the approximation error.

To address these issues when only the NCO is available,
we propose a non-parametric testing procedure based on
a kernel estimator called Proxy Maximum Characteristic
Restriction (PMCR), to examine the integral equation. With-
out discretization, our approach preserves more information
from the original data. After computing the least-square
residues via PMCR, we construct the statistics and estab-
lish its asymptotic properties. Compared to other first-order
moment restriction methods (Mastouri et al., 2021), our
procedure leverages the characteristic function to capture
all order moments, offering greater power in identifying the
causal relation.

Nevertheless, we proceed to note that, regarding the power
analysis, both our method and others, are built upon a basic
assumption that the integral equation does not hold when the
causal relation exists. However, by studying the solvability
of the integral equation, we surprisingly find that this as-
sumption may not hold, if the NCO’s effect on the outcome
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is strong enough to account for the effect of the treatment,
making it fail to discover the causal relation with only the
NCO. This inspires us to leverage the additional negative
control exposure (NCE), that was commonly used in causal
inference (Miao et al., 2018; Tchetgen et al., 2024). In this
scenario, we introduce another integral equation aided by
such NCE, which can effectively discriminate the alternative
hypothesis from the null, thereby enabling causal identifica-
tion when NCO has a strong effect on the outcome.

To demonstrate our findings and the effectiveness of our
approach, we test it in two scenarios–one in which the NCO
influences the outcome and one in which it does not. We
find that the procedure using only NCO performs well when
the NCO has no effect on the outcome, but fails when it
does influence the outcome. In this case, our procedure that
additionally leverages the NCE can successfully discover
the causal relationship.

We summarize our contributions as follows:

1. We propose a non-parametric procedure to solve the
integral equation, which is more efficient and effective
in learning causal relations when only NCO is available.

2. We study the solvability of the integral equation and find
that it may not be able to identify the causal relation
when the NCO’s effect on the outcome is strong enough.

3. When NCE is available, we leverage it to construct an-
other integral restriction, which can recover causal rela-
tionships when NCO strongly affects the outcome.

4. We thoroughly verify our findings, utility, and effective-
ness of our proposed methods on synthetic data.

2. Related works
To adjust for the bias caused by unmeasured confounding,
(Miao et al., 2018) leveraged proxy variables (Kuroki &
Pearl, 2014; Tchetgen et al., 2024) to test the causal null
hypothesis over discrete variables. Later, (Miao et al., 2023;
Liu et al., 2023) extended their procedure to continuous
variables by examining the integral equation. While their
methods established asymptotic properties with only a sin-
gle proxy, their methods either relied on parametric assump-
tions or the discretization process that may lead to infor-
mation loss. To address these issues, we propose a novel
non-parametric procedure to examine the integral equation
without discretization, hence is more sample efficient in
learning causal relationships when only the NCO is avail-
able. Additionally, by comprehensively studying the solv-
ability of the integral equation, we surprisingly find that
previous methods may not be able to identify the causal
relation when NCO influences the outcome. When the NCE
is available, we further construct another integral equation
that can discriminate the alternative hypothesis from the
null, enabling causal identification when NCO has a strong
influence on the outcome.

3. Preliminary
Problem setup. We consider the problem of testing whether
the causal relation X → Y exists, under the unmeasured
confounder U . Under Markovian and faithfulness condi-
tions, this is equivalent to testing the causal null hypothesis
H0 : X ⊥⊥ Y |U . To adjust for the confounding bias, we
assume the availability of a proxy variable W such that
X ⊥⊥ W |U (Kuroki & Pearl, 2014), which also serves as
the negative control outcome in causal inference. Fig. 1
(a) shows the causal diagram over X,Y, U,W . Besides, in
some scenarios, we may have access to an additional proxy
variable Z (i.e., negative control exposure), which satisfies
Z ⊥⊥ (W,Y )|{U,X} as illustrated in Fig. 1 (b). Through-
out, we assume X,Y, U,W,Z are continuous variables.

Notations. Suppose X,Y, U,W,Z are continuous random
variables over the probability space (Ω,F ,P), with domains
X ,Y,U ,W,Z , respectively. For any variable U , we denote
L2{F (u)} as the space of square-integrable functions with
respect to the cumulative distribution function F (u). For
any space W , let kW be its positive semi-definite kernel.
We denote ϕW as its associated canonical feature map, i.e.,
ϕW (w) := kW (w, ·) for any w ∈ W . Besides, we de-
note HW as the corresponding reproducing kernel Hilbert
space (RKHS). For any operator A : HW → HX , we
denote A∗ as its adjoint operator. For any discrete vari-
ables X,Y with respectively i, j categories, we denote
P(y|X) := {p(y|x1), ..., p(y|xi)}, the probability matrix
P(Y |X) :=

{
p(y1|X)⊤, ..., p(yj |X)⊤

}⊤
.

Figure 1. Causal diagrams over X,Y, U,W,Z. W (resp. Z) de-
note the negative control outcome (resp. exposure). The dotted
line indicates its potential presence or absence.

Previous studies and limitations. For discrete variables,
(Miao et al., 2018) proposed to test H0 by examining
whether P(W |Z, x) can fully explain the variability of
P(y|Z, x) as x varies. Specifically, given X,Z,W with
respectively i, j, k categories, they performed a linear re-
gression of qy := {P(y|Z, x1), ...,P(y|Z, xi)}⊤ on Q⊤ :=
{P(W |Z, x1), ....,P(W |Z, xi)}⊤, and tested the linearity
based on the least-square residues. If Q⊤ is the full-column
rank when ij > k, they derived the null-limiting distribution
of the statistics based on these residues.

Later, (Liu et al., 2023) noticed that the rank constraint
satisfies when i > k, allowing to test the linearity between
P(y|X) and P(W |X) without Z. Inspired by this, they
extended to continuous variables by discretizing X,Y,W
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and performed the linearity testing. While it could establish
asymptotic properties for hypothesis testing, the method
was constrained by the need for both a large number of bins
and a substantial sample size to ensure accurate probability
estimation. Similarly, (Miao et al., 2023) used goodness-of-
fit to examine the following integral equation:

p(y|x) =
∫
h(w, y)p(w|x)dw for some h(w, y), (1)

which serves as the theoretical foundation of the discretiza-
tion approach in (Liu et al., 2023). However, its goodness-
of-fit procedures relied on the parametric assumption.

Does (1) holds under H1? To discover the causal relation-
ship, these methods assumed that (1) does not hold under H1.
However, it is unclear when this condition holds, making it
hard to justify the validity during practical implementations.

Overview of our contributions. To address problems of
existing works when only W is available, Sec. 4 propose
a novel non-parametric approach based on Proxy Maxi-
mum Characteristic Restriction (PMCR), which can test
(1) without discretization, thereby avoiding information loss
in causal discovery.

Further, through comprehensively studying the solvability
of (1) in Sec. 5, we find that when W → Y (the dotted
edge in Fig. 1 (a)), the above integral may have a solution
even under H1, making all procedures fail to discover the
causal relation using only W . This inspires us to consider
the scenario where the proxy Z is available, as commonly
adopted in causal inference (Tchetgen et al., 2024). In this
scenario, Sec. 6 leveraged Z to construct another integral
equation to examine the solution’s property that involves U .
Thanks to this auxiliary information, we can discover the
causal relation that may not be identifiable with only W .

4. Hypothesis testing with a single proxy
We first consider the scenario when only the proxy W (i.e.
NCO) is available. To test the causal null hypothesis, we
propose to examine whether the integral equation (1) exists.
To this end, Sec. 4.1 first shows that under H0, the solution
exists under some completeness conditions. To solve the
equation, Sec. 4.2 introduces a novel estimation method
and constructs the testing statistics. Sec. 4.3 establishes
its asymptotic level and power for such statistics. Finally,
Sec. 4.4 summarizes the algorithm for implementations.

4.1. Solution existence under the null hypothesis
We show that H0 can be tested by examining the integration
equation (1), which can hold under H0 as the absence of di-
rect effect from X to Y allows p(w|x) to fully explain away
the variability of p(y|x). To formally claim this statement,
we require the completeness condition.
Assumption 4.1 (Completeness of P(U |W )). For any

square-integrable function g, we assume E{g(u)|w} = 0
almost surely if and only if g(u) = 0 almost surely.

Completeness 4.1 is a standard assumption in causal hy-
pothesis testing (Miao et al., 2018; 2023; Liu et al., 2023).
This condition is widely applicable, as shown by examples
provided in (Newey & Powell, 2003; D’Haultfoeuille, 2011;
Hu & Shiu, 2018; Andrews, 2017). Here, it means W car-
ries all the variability of U . When W,U are discrete with
i, j categories (i > j), it reduces to the full-column rank of
P(W |U), as used in (Liu et al., 2023) for identification.
Proposition 4.2. Under assumption 4.1 and some regularity
conditions in B.1, there exists a g(w, u) ∈ L2{F (w)} for
all u, such that it solves the following integral equation for
all (u, x):

p(u|x) =
∫
g(w, u)p(w|x). (2)

Remark 4.3. When W,X,U are discrete, this result reduces
to P(U |X) = P(W |U)−1P(W |X) to establish linear rela-
tion under H0 (Liu et al., 2023).

By p(y|x) =
∫
p(y|u)p(u|x)du under H0, h(w, y) :=∫

g(w, u)p(y|u)du solves (1). To further ensure h(w, y)
is square integrable, we require the bounded likelihood ratio
condition (Kato et al., 2021) for p(u|y)/p(u), which holds
except for the extreme dependency between U and Y .
Assumption 4.4 (Bounded likelihood ratio). There exists
C > 0 such that 0 < p(u|y)

p(u) ≤ C almost surely for u and y.

Under these conditions, Theorem 4.5 establishes the exis-
tence of a solution to the integral equation in (1).
Theorem 4.5. Suppose assumptions 4.1, 4.4 and the reg-
ularity condition B.1 hold. If g(w, u) in (2) satisfies∫∫

| g(w,u)
p(u) |2p(w)p(u)dwdu < ∞, then under H0, there

exists a h(w, y) ∈ L2{F (w)} for all y, such that it solves
the integral equation in (1) for all (x, y).
Remark 4.6. Condition g(W,U)/p(U) ∈ L2{F (w)F (u)}
imposes a regularity requirement on the solution g(W,U)
in (2). In Appx. B, we show that this condition easily holds
under linear models.

This result suggests that we can reject H0 when the discrep-
ancy between p(y|u, x) and p(y|u) is sufficiently large to
make p(w|x) fails to account for all the variability encoded
in p(y|x). It has been similarly employed for testing H0

(Miao et al., 2023; Liu et al., 2023). However, (Miao et al.,
2023) additionally required the equivalence condition for
identification, which may not hold beyond factor models.

In particular, (Liu et al., 2023) proposed a discrete approxi-
mation of (1) and tested the linearity between P(y|X) and
P(W |X). However, this method may suffer from informa-
tion loss due to the discretization. In the subsequent section,
we propose a novel estimation method to solve the integral
equation for testing.
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4.2. Testing statistics via integral solving
In this section, we construct the test statistics to examine
whether the solution exists in (1). To this end, we propose
to solve the equation and measure its residue. When the
equation (1) holds, previous studies proposed Maximum
Moment Restriction (MMR) (Mastouri et al., 2021; Kallus
et al., 2021) for integral solving. In our scenario, it involves
solving h(W ) from the following moment restriction:

EY,W

{
Y − h(W )|X

}
= 0. (3)

However, as it only leverages the first-order moment in-
formation, it will lose the testing power, as illustrated by
example B.3 in Appx. B, where (3) holds under H1. To
address this, we propose a novel estimation method, which
leverages the information of all order moments.

Proxy Maximum Characteristic Restriction. To test
whether p(y|x) equals to

∫
h(w, y)p(w|x)dw := q(y|x),

we consider the following equation:

EY,W {φ(Y, t)−H(W, t)|X} = 0 ∀ t ∈ T , (4)

where we choose φ(Y, t) to contain more information than
the first-order moment (Stinchcombe & White, 1998), and
set H(W, t) as

∫
φ(y, t)h(w, y)p(y|x)dy to make (4) holds.

A common choice for φ(Y, t) is exp(ity), where T can
be an arbitrarily chosen neighborhood around 0. In this
case, EY {φ(Y, t)} is the characteristic function, and we
hence call (4) the Proxy Maximum Characteristic Restric-
tion. Since the characteristic function can uniquely deter-
mine the probability density and therefore all order mo-
ments, solving (4) offers greater utility to identify causal
relations. In practice, we can set φ(Y, t) = sin(ty) and
cos(ty), and test whether (4) holds for these choices.

Corollary 4.7 shows that H(w, t) belongs to L2{F (w)} for
all t, which ensures that (4) is solvable.

Corollary 4.7. Suppose conditions in Theorem 4.5 hold.
For any t, H(w, t) in (4) exists and belongs to L2{F (w)}.

As demonstrated by (Horowitz, 2012), achieving uniform
consistency in testing the existence of a solution to the condi-
tional equation is impossible. Therefore, certain smoothness
conditions must be imposed to ensure the feasibility of solv-
ing the equation. Following existing studies (Mastouri et al.,
2021; Ghassami et al., 2022), we solve the solution in the
reproducing kernel Hilbert space (RKHS) denoted by HW .

Formally, let kW be the reproducing kernel for the
RKHS HW . By the spectral theorem, we can rewrite
kW (w,w′) in terms of the eigenvalues and continuous
eigenfunctions as kW (w,w′) =

∑∞
j=1 ηjφj(w)φj(w

′),
where {φj}j is the orthonormal basis of L2{F (w)}.
We can therefore characterize HW as HW :={
H ∈ L2{F (w)}

∣∣∣∣∑∞
i=1

⟨H,φi⟩2L2{F (w)}
ηi

<∞
}

.

Assumption 4.8 (Smoothness). For H(W, t) in (4), we
assume H(W, t) ∈ HW for all t. This implies that there
exists a solution within the RKHS that satisfies (4).

To solve H(w, t) from (4), we employ recently developed
nonparametric methods designed to estimate such condi-
tional restrictions (Zhang et al., 2020; Mastouri et al., 2021;
Kallus et al., 2021; Ghassami et al., 2022). Unlike these
methods, we do not require the completeness of W |X to
ensure the uniqueness of the solution. This distinction arises
because most of these methods focus on causal inference,
where the goal is to accurately identify the bridge function
to compute the causal effect. In contrast, our objective is to
determine whether a solution exists. Therefore, it suffices
for our estimate to approximate any valid solution to achieve
this goal. In this paper, we estimate the least norm solution:

H0(W, t) := argmin
H(W,t)∈HW,0

∥H(W, t)∥HW
,

where HW,0 ⊂ HW contains all solutions in (4). We leave
more details in Appx. C.4.

Equivalently speaking, given RKHS HW and HX ⊂
L2{F (x)} with kernels kW and kX , respectively, the goal
is to solve H(W, t) from AH(·, t) = b(·, t), where A :
HW 7→ HX is a compact operator such that AH(W, t)(·)
:= E{H(W, t)ϕX(X)}, and b(·, t) := E{φ(Y, t)ϕX(X)}.
To solve H , we first note that (4) means, for any g ∈ HX ,
we have EY,W,X [{φ(Y, t)−H(W, t)}g(X)] = 0 for al-
most all t. Therefore, similar to (Mastouri et al., 2021), we
take g over a unit-ball of HX , and minimizes:

R(H) = sup
g∈HX ,∥g∥HX

≤1

(E [{φ(Y, t)−H(W, t)}g(X)])
2
.

Let ∆(W,Y, t) := φ(Y, t) − H(W, t). (Mastouri et al.,
2021) provided an equivalent form of the risk:

R(H) = E{∆(W,Y, t)∆(W ′, Y ′, t)kX(X,X ′)},

where X ′, Y ′,W ′ are independent copies of X,Y,W . Fur-
ther, (Zhang et al., 2020) demonstrated that under some
conditions for kX , minimizing R(H) ensures us to find
the solution. To implement, we propose to minimize the
regularized empirical risk:

R̂λ(H) :=

n∑
i,j=1

∆i∆j

n2
KX,ij + λ∥H∥HW

, (5)

where ∆i := φ(yi, t)−H(wi, t) and KX,ij := kX(xi, xj).
Using the representer theorem (Schölkopf et al., 2001),
the estimated function Ĥλ(w, t) for a fixed t can be
written as Ĥλ(w, t) = α⊤kW (w), where kW (w) :=
{kW (wi, w)}i ∈ Rn and the coefficient α is given
by α := (KWKXKW + n2λKX)−1KXKWφ(y, t).
Here, KX := {kX(xi, xj)}ij ∈ Rn×n and KW :=
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{kW (wi, wj)}ij ∈ Rn×n are Gram matrices, and
φ(y, t) := (φ(y1, t), . . . , φ(yn, t))

⊤. The optimal λ is cho-
sen via cross-validation.

Constructing the testing statistics. Ideally, if Ĥλ can well
approximate the solution, the equation (4) approximately
holds for Ĥλ. Therefore, we can assess the validity of H0

by evaluating the residue of the equation. To this end, we
employ the conditional moment test procedure (Bierens,
1982; Bierens & Ploberger, 1997).

To enhance the power, we choose a weight function m(·, s)
that transforms the conditional restriction to unconditional
one. Commonly chosen weight function includes char-
acteristic function, exponential function, sine and cosine
functions. According to (Stinchcombe & White, 1998),
these functions ensure that for any U(W,Y, t) := φ(Y, t)−
H0(W, t) with E{U(W,Y, t)|X} ≠ 0, the set of s ∈ T
such that E{U(W,Y, t)m(X, s)} = 0 has Lebesgue mea-
sure zero. Let Û(W,Y, t) := φ(Y, t)−Ĥλ(W, t), we define

Tn(s, t) =
1√
n

n∑
i=1

Û(wi, yi, t)m(xi, s), s, t ∈ T . (6)

Since testing (4) for all t ∈ T is equivalent to evaluating
the maximum of the residuals over T , we define the final
statistics for testing H0 as:

∆φ,m = max
t∈T

∫
T
|Tn(s, t)|2dµ(s), (7)

where µ denotes the measure of T (e.g., Lebesgue measure).

4.3. Asymptotic behavior
We study asymptotic properties of ∆φ,m. We first introduce
some regularity conditions.

Assumption 4.9. We assume EX{m(X, s)|W} and
EX{|m(X, s)|2|W} are uniformly bounded for all s.

Assumption 4.10. nλ→ ∞, nλ2 → 0.

Assumption 4.11. For any s, t ∈ T , E{U(W,Y, t)4|X} <
∞ and E(|m(X, s)− {A(A∗A)−1gs}(X)|4) <∞, where
gs(·) := E[m(X, s)ϕW (W )](·).

Assumptions 4.9–4.10 are standard in kernel estimation
methods (Darolles et al., 2011; Babii & Florens, 2020; Bey-
hum et al., 2024). Asm. 4.9 imposes regularity conditions
on the weight function m, while Asm. 4.10 ensures that the
regularization bias vanishes asymptotically. Additionally,
Asm. 4.11 is required to control the asymptotic variance
of the test statistic, which has been similarly assumed in
(Huang et al., 2022).

Theorem 4.12. Let ηs,t(O) := U(W,Y, t)m(X, s)
−U(W,Y, t){A(A∗A)−1gs}(X), with O := (W,Y,X).
Suppose assumptions 4.9–4.11, C.2–C.4, and D.1–D.2 hold.
Under H0, we have (i). Tn(s, t) converges weakly to G(s, t)

such that
∫∫

|G(s, t)|2dµ(s)dµ(t) <∞, where G(s, t) is a
Gaussian process with zero-mean and covariance:

Σ{(s, t), (s′, t′)} = E{ηs,t(O)ηs′,t′(O
′))},

where O′ := (W ′, Y ′, X ′) is an independent copy of O;
and (ii). ∆φ,m converges weakly to max

t∈T

∫
|G(s, t)|2dµ(s).

Remark 4.13. For brevity, we only present asymptotic re-
sults for Tn(s, t) being a real-valued function, or as the real
and imaginary parts of a complex-valued function, although
they can be trivially extended to complex-valued functions.

Power analysis. We consider the power performance under
two alternatives, under which (4) has no solution. First, we
consider the global alternative that has been similarly con-
sidered in proximal causal discovery (Liu et al., 2023). That
is, for any H(w, t) ∈ HW for all t, the global alternative
Hfix

1 satisfies the following:

Hfix
1 : E{φ(Y, t)−H(W, t)|X} ≠ 0 for some t ∈ T .

Besides, we consider a sequence of local alternatives Hα
1n.

There exists H0(w, t) ∈ HW for all t, such that:

Hα
1n : E{φ(Y, t)|X} = E{H0(W, t)|X}+ r(X, t)

nα
, ∀ t

where 0 < α ≤ 1
2 and r(X, t) ∈ HX . To be a valid

alternative, r(X, t)/nα can not be written as E{H−H0|X}
for any H ∈ HW . Theorem 4.14 suggests that our statistics
has asymptotic power of one under Hfix

1 and Hα
1n when

α < 1
2 , and has nontrivial power when α = 1

2 .

Theorem 4.14. Suppose assumptions in Theorem 4.12 hold.
Besides, we assume E{r(X, t)4} <∞. Then, we have:

(i) Global alternative. limn→∞ maxt∈T |Tn(s, t)| = ∞
for almost all s under Hfix

1 .
(ii) Local alternative (α < 1/2). limn→∞ maxt∈T

|Tn(s, t)| = ∞ for almost all s under Hα
1n.

(iii) Local alternative (α = 1/2). Tn(s, t) converges
weakly to G(s, t) + µ(X, s, t) such that

∫∫
|G(s, t) +

µ(X, s, t)|2dµ(s)dµ(t) < ∞ under Hα
1n, where

G(s, t) is defined in Theorem 4.12 and µ(X, s, t) :=
E
[
{r(X, t)− (A∗A)−1A∗r(X, t)}m(X, s)

]
.

4.4. Implementations
To implement the testing, we need to compute the statistics
∆φ,m in (7) and determine the critical value.

Computing ∆φ,m. Since ∆φ,m involves the integration,
generally we should employ Monte-Carlo methods for ap-
proximation. For computational convenience, we can set
m(·, s) to the characteristic function and µ to be symmetric
around the origin (e.g., Lebesgue measure). Such choices en-
able the integration to be computed in closed form. Besides,
according to (Stinchcombe & White, 1998), this choice of
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m can preserve power when transforming the conditional
restriction to the unconditional one. To compute the max-
imal value of

∫
T |Tn(s, t)|2dµ(s) over T , we evaluate the

process at a grid of equi-distant indices {ti, i ∈ [K]} and
estimate ∆̂φ,m := maxk∈[K]

∫
T |Tn(s, tk)|2dµ(s). Corol-

lary 4.16 shows that when K is sufficiently large, ∆̂φ,m

converges to maxt∈T
∫
T |G(s, t)|2dµ(s).

Remark 4.15. If Û(W,Y, t) is a complex function, we can
respectively compute Re(∆̂φ,m) and Im(∆̂φ,m). Our test
statistic is given by Ŝ := max{Re(∆̂φ,m), Im(∆̂φ,m)}.

Critical value. Since it is difficult to obtain the explicit
form of G(s, t), we employ the residue-based wild boot-
strap procedure for approximation under the null-limiting
distribution. We repeat the procedure for B times. For the
b-th time, we first employ the empirical process T̂ b

n(s, t) =
1√
n

∑n
i=1 ω

b
i Û(wi, yi, t)m(xi, s) to approximate Tn(s, t)

for each (s, t), where {ωb
i }ni=1 is a sequence of zero-mean,

unit variance variables. Here, we follow (Mammen, 1993)
to set P(ωi = 1− κ) = κ/

√
5 and P(ωi = κ) = 1− κ/

√
5

with κ =
√
5+1
2 . The bootstrapped statistic is given by:

∆̂b
φ,m = max

k∈[K]

∫
T
|T̂ b

n(s, tk)|2dµ(s). (8)

Given the level of significance α, the critical value is com-
puted as the (1 − α)-quantile of

{
∆̂1

φ,m, ..., ∆̂
B
φ,m

}
, de-

noted by ∆̃1−α
φ,m . We then reject the null hypothesis if

∆̂φ,m ≥ ∆̃1−α
φ,m . Corollary 4.16 shows that the bootstrap

statistics ∆̂b
φ,m converges to maxt∈T

∫
T |G(s, t)|2dµ(s).

Corollary 4.16. Suppose assumptions in Theorem 4.12 hold.
If φ(y, t) is continuous with respect to t for each y, then
∆̂φ,m is weakly convergent to maxt∈T

∫
T |G(s, t)|2dµ(s)

under H0, as n,K → ∞. Besides, conditional on the origi-
nal sample {yi, wi, xi}ni=1, the bootstrapped statistics (8) is
also weakly convergent to the maxt∈T

∫
T |G(s, t)|2dµ(s).

Remark 4.17. Many choices of φ(y, t) satisfy the continuity
condition, including characteristic function, sine and cosine
functions, etc.

5. Nonidentifiability with only NCO
To identify the causal relation, our method and previous
studies in proximal causal discovery (Miao et al., 2023; Liu
et al., 2023) rely on the assumption that the integral equation
(1) has no solution under H1. However, it remains unclear
when this condition holds. To clarify this, we explore the
condition under the linear model.

Proposition 5.1 suggests that the direct effect needs to be
sufficiently large for the condition to hold. Additionally,
we surprisingly find that when the effect from W to Y is
strong enough, even if the effect from X to Y is also strong,

equation (1) will also have a solution, rendering the causal
relationship non-identifiable.

Proposition 5.1. SupposeU,X, Y,W follow from the linear
Gaussian model, i.e. U = εU , X = αUU +α0 + εX ,W =
βUU + β0 + εW , Y = γUU + γXX + γXW + γ0 + εY ,
where εU , εX , εW , εY ∼ N (0, 1). When γW = 0, as long
as |γX | > gX(αU , βU , γU ), the integration equation (1)
has no solution. Further, if |γW | > gW (αU , βU , γU )

1, (1)
has a solution.

Remark 5.2. In the proof of Prop. 5.1, we also discuss when
the solution exists under H0. We find that the confound-
ing strength between W and U , specifically βU , must be
sufficiently large to make the solution exist.

To illustrate, we consider example 5.3. We find that when
γW is sufficiently large, the solution exists even when X →
Y , leading to a significant drop of power as shown in Fig. 2.

Example 5.3. Suppose that X,Y, U,W satisfy the linear
Gaussian model, i.e. U = εU , X = 2U + εX ,W = −2U +
εW , Y = X + U + γWW + εY , where εU , εY , εW , εX ∼
N (0, 1) and W,X are standardized. The integral equation
(1) has a solution if and only if γW > −15+36

√
5

72+16
√
5

≈ 0.61.

Figure 2. The change of power across γW in example 5.3.

The result suggests that, when the effect from W → Y is
strong enough, using only the NCO (i.e., W ) may fail to
identify the causal relationship. In the next section, we show
that when the additional proxy Z (i.e., NCE) is available,
the identification becomes possible again.

6. Hypothesis testing with two proxies
To discover the causal relation when (1) has a solution un-
der the alternative hypothesis, we assume Z (i.e., NCE) is
available, which has been commonly employed in proximal
causal inference (Miao et al., 2018; Cui et al., 2024). When
Z is available, we analyze the properties of the solution
under the null hypothesis to identify the causal relation.

Specifically, when h(w, y) satisfies (1), by W ⊥⊥ X|U ,
we have p(y|x) =

∫ {∫
h(w, y)p(w|u)dw

}
p(u|x)du for

all (x, y). We will examine the property of the solution∫
h(w, y)p(w|u)dw to test H0. To this end, we require the

1We leave the detailed form of gX , gW in Appx. E.3.
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following completeness condition.

Assumption 6.1 (Completeness of P(U |X)). For any
square-integrable function g, we assume E{g(u)|x} = 0
almost surely if and only if g(u) = 0 almost surely.

This assumption was also made in (Liu et al., 2023; Miao
et al., 2023). It ensures that for any h(w, y) that satisfies
(1), we must have

p(y|u) =
∫
h(w, y)p(w|u)dw under H0. (9)

Testing the null hypothesis through Z. To examine (9)
that involves the unobserved confounder U , we employ Z
to introduce another restriction. We require the following
completeness condition that is standard in proximal causal
inference (Miao et al., 2018; Tchetgen et al., 2024).

Assumption 6.2 (Completeness of P(U |Z, x)). For any
g ∈ L2{F (u)} and any x, we assume E{g(u)|z, x} = 0
almost surely if and only if g(u) = 0 almost surely.

Taking expectation over p(u|z, x) on both sides of (9), and
obtain the following for any x:

p(y|z, x) =
∫
h(w, y)p(w|z, x)dw (10)

for all (y, z). Under assumption 6.2, we can check H0 by
first solving h from (1) and examine whether it satisfies
p(y|z, x) =

∫
h(w, y)p(w|z, x)dw. We summarize it into

the following theorem.

Theorem 6.3. Suppose assumptions 6.1, 6.2 hold. For any
h(w, y) that satisfies (1), H0 holds if and only if h(w, y)
also satisfies the integral equation (10) for any fixed x.

Remark 6.4. Solving h(w, y) from (10) is different from
that of p(y|z, x) =

∫
h(w, y, x)p(w|z, x)dw in (Miao et al.,

2018). The goal of (Miao et al., 2018) is to solve h(w, y, x)
for identifying p{y|do(x)} =

∫
h(w, y, x)p(w)dw, which

thus allows h to depend on x. In contrast, our goal is testing
whether X directly affects Y , so the solution h should be
independent of X while ensuring that (10) hold as x varies.

When X , Z, and W are discrete, (Miao et al., 2018) pro-
posed testing the linear relationship between {P(y|Z, xi)}i
and {P(W |Z, xi)}i across the values of Z,X . Our proce-
dure can be seen as the continuous counterpart to this ap-
proach, with the difference being that after solving h(w, y)
from (1) for all x, we only need to examine (10) for all z
with a single x, rather than solving h(w, y) from (10) for all
pairs of (x, z).
Remark 6.5. One might argue that when W,Z are available,
the average causal effect is identifiable. In this regard, our
analysis seems redundant as the effect of causal relation
can be quantified. However, we would like to mention that
the causal discovery conceptually differs from the causal

effect. In particular, Appx. E.2 provides a counterexample
to illustrate that the causal relation may still exist even when
there is no causal effect. A more comprehensive discussion
is also provided in Appx. E.2.

Similar to Sec. C, if Ĥλ can well approximate the solution
of (4), the equation

EY,W {φ(Y, t)−H(W, t)|Z, x} = 0 ∀ t ∈ T , (11)

also approximately holds for all t ∈ T . Therefore, we can
assess the validity of H0 based on the residue Û . Based
on Û , we can construct the statistics T (Z)

n (s, t),∆
(Z)
φ,m, with

the weight function m(Z, x, s) over Z.

Asymptotic behavior. Theorem 6.6 establishes the weak
convergence of T (Z)

n (s, t) and ∆
(Z)
φ,m under H0.

Theorem 6.6. Denote ηs,t(O, x) := U(W,Y, t)[
{m(Z, x, s)− {A(A∗A)−1gs}(X,x)

]
, where gs(·, x) :=

E{m(Z, x, s)ϕW (W )}(·) and O := (W,Z, Y,X). Sup-
pose assumptions in Theorem 4.12 hold. If Asm. 6.1-6.2,
and E.6-E.8 hold, under H0 we have, (i). T (Z)

n (s, t) con-
verges weakly to G(s, t) s.t.

∫∫
|G(s, t)|2dµ(s)dµ(t) <∞,

where G(s, t) is a mean-zero Gaussian process with co-
variance Σ{(s, t), (s′, t′)} = E{ηs,t(O, x)ηs′,t′(O′, x)},
where O′ := (W ′, Z ′, Y ′, X ′) is an independent copy of O;
(ii). ∆(Z)

φ,m converges weakly to max
t∈T

∫
T |G(s, t)|2dµ(s).

Similarly, we can establish the asymptotic power for ∆(Z)
φ,m,

where the global and alternatives are defined accordingly
in terms of E{φ(Y, t)−H(W, t)|Z, x}. Due to space limit,
we leave the result and its proof in Appx. E.4.

7. Experiments
In this section, we evaluate our methods on synthetic data.
We consider two settings: (i) (Sec. 7.1) W ̸→ Y where only
the NCO W is available; (ii) (Sec. 7.2) W → Y where the
additional proxy Z (i.e., NCE) is provided2.

Compared baselines. For the single-proxy setting, we
compare our methods with: (i) Liu (Liu et al., 2023) that de-
signed a discretization method for bivariate causal discovery
over continuous variables; (ii) KCI the Kernel-based Con-
ditional Independence test (KCI) (Zhang et al., 2012) that
tested the null hypothesis of X ⊥⊥ Y |W using kernel matri-
ces. For the two-proxy setting, we also conduct (iii) Miao
(Miao et al., 2018) that was designed for causal hypothesis
testing over discrete variables using W and Z.

Implementation details. We set the significance level α
to 0.05. We choose φ and m to be complex exponential
functions. For PMCR estimation, we set K = 100 and
follow (Mastouri et al., 2021) to select the optimal λ from a

2Code is available at https://github.com/yezichu/
proximal_causal_discovery_cv.
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sequence ranging from 4.9× 10−6 to 0.25, with a step size
chosen to ensure the sequence contains 50 values. Besides,
we use Gaussian kernels with the bandwidth parameters
being initialized using the median distance heuristic. For
the procedure of Liu (Liu et al., 2023), we follow the paper
to set the bin numbers of W and X to lX = 14, lW =
12, respectively. For the procedure described in Miao,
we implement the R code released in the paper and set
lX = 3, lW = 2, lZ = 2 by default. For KCI, we adopt
the implementations provided in the causallearn packages
https://causal-learn.readthedocs.io/.

7.1. Single proxy with W ̸→ Y

We first evaluate our method in Sec. 4 to the setting where
only W is provided.

Data generation. We follow (Liu et al., 2023) to
generate V ∈ {X,Y, U,W} via V = fV (PAV ) +
εV , where PAV and εV respectively denotes the par-
ent set and the noise of V . For each V , fV is
randomly selected from {linear, tanh, sin, sqrt}. Be-
sides, the distribution of εV is randomly chosen from
{Gaussian,uniform, exponential, gamma}. To mitigate
the effect of randomness, we repeat the process 20 times.
At each time, we generate 100 replications under each H0

and H1, and record the type-I error rate and power rate.

(a) (b)

Figure 3. Type-I error rate (left) and power rate (right) of our test-
ing procedure and baseline methods in the single-proxy setting.
The solid line reports the average value over 20 times, and the
shaded area denotes the region (mean− std,mean + std).

Type-I error and power. In Fig. 3, we report the average
type-I error rate and power rate for our testing procedure and
others. As shown, the type-I error rate of our method closely
approximates α = 0.05 as n increases, while other methods
fail to control the type-I error. Specifically, conditioning on
the proxy W , KCI cannot eliminate the confounding bias,
leading to uncontrollable type-I errors; while the additional
error in Liu (Liu et al., 2023) may arise from discretization
errors with finite bin number or probability estimation error
due to limited sample size. Besides, our power approximates
to one as n increases. Compared to previous baselines Liu,
these results demonstrate the utility and its ability to make
better use of available data in causal discovery.

Comparisons with MMR. To further demonstrate the effec-

tiveness of our estimation method PMCR over the MMR, we
apply PMCR to the data generated in Example B.3, where
we have shown that the solution of the first-moment equa-
tion exists under the alternative hypothesis. As shown in
Fig. 4, although both methods can asymptotically control
the type-I error as n → ∞, the power of our procedure
approaches 1 while the first-moment method (i.e., MMR)
still approximates α = 0.05 under H1.

(a) (b)

Figure 4. Type-I error rate (left) and power rate (right) of our pro-
cedure with PMCR and the first-moment method in example B.3.

7.2. Two proxies with W → Y

In this section, we apply our method in Sec. 6 to the setting
W → Y with both W and Z are available.

Data generation. Following example 5.33, we set γW =
1, which implies there exists h that satisfies the integral
equation (1). Similar to the single-proxy setting, we repeat
the process 20 times, where at each time we generate 100
replications under H0 and H1.

(a) (b)

Figure 5. Type-I error rate (left) and power rate (right) of our pro-
cedure and baselines on synthetic data with two proxies.

Type-I error and power. We report the average results in
Fig. 5. As shown, although our single-proxy procedure can
control the type-I error, it suffers from low power in learning
the causal relation, due to the existence of solution under
H1 in this example. With additional information provided
by Z, the power significantly improves and approaches
one as n increases. This verifies our findings in Sec. 5,
and demonstrates the utility of employing Z (i.e., NCE) in
discovering the causal relation when the effect of W on Y
is strong enough to invalidate the procedure with only W .

3We also consider a nonlinear setting, as detailed in Appx. F.
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8. Conclusions and discussions
We introduce a non-parametric procedure for causal hy-
pothesis testing and establish its asymptotic properties. Ad-
ditionally, we show that causal relationships may not be
identifiable through examining the integral equation with
only NCO. We then leverage the additional NCE that can
effectively recover the causation when it exists. We believe
our findings, supported by theoretical justifications, provide
new insights into proximal causal discovery.

Currently, we only analyze the integral-related assumption
when NCO has a direct effect on the outcome. In the future,
we will extend our analysis to the case when there is a
bidirectional edge between them.
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A. Notations
We introduce notations used throughout the appendix.

Table 1: Notations.

Notation Definition

Z,W,U Negative control exposure, negative control outcome and unobserved confounder

P(X) {p(x1), ..., p(xk)}⊤ for any discrete variables X with k categories

P(Y |X)


p(y1|x1) · · · p(y1|xk)

...
. . .

...

p(yl|x1) · · · p(yl|xk)

 for any discrete variables Y,X with l, k categories

P(Y = y|X,Z)


p(y|x1, z1) · · · p(y|x1, zm)

...
. . .

...

p(y|xk, z1) · · · p(y|xk, zm)

 for any discrete variables X,Z with k,m categories

HW ,HX The reproducing kernel Hilbert spaces (RKHS) defined on the domains of W and X

ϕW (w), ϕX(x) The canonical feature map defined on the domains of W and X

kW (w,w′), kX(x, x′) The reproducing kernel for the RKHS HW and HX

R(H) The population loss function defined in Eq. (22)

R̂λ(H) The regularized empirical risk defined in Eq. (5)

A, bt(x) = b(x, t) The operator and right term defined in Eq. (24)

Â, b̂t(x) = b̂(x, t) The plugging operator and right term defined in Eq. (26)

A∗, Â∗ The adjoint operator of A and Â defined in Eq. (27) and (28)

(λj , φj , ϕj)j The singular value decomposition of the operator A

HW,0 The set of all solutions of Eq. (22) defined in Eq. (29)

Hλ
t (w) = Hλ(w, t) The population Tikhonov regularization solution defined in Eq. (31)

Ĥλ
t (w) = Ĥλ(w, t) The empirical Tikhonov regularization solution defined in Eq. (32)

H0
t (w) = H0(w, t) The least norm solution in Eq. (4)

Ker(A) Ker(A) = {H : Ah = 0} is the null space of the operator A

Ran(A) Ran(A) = {f : Ah = f} is the ranged space of the operator A

L2{F (w)},L2{F (x)} The space of square-integrable functions with respect to the cumulative distribution
function F (w) and F (x)

L2{S × T , µ× µ} We say G(s, t) ∈ L2{S × T , µ× µ} if
∫∫

|G(s, t)|2dµ(s)dµ(t) <∞

φ(·, t),m(·, s) The weight function

gs gs = E{m(X, s)ϕW (W )}

U(W,Y, t), Û(W,Y, t) The residual φ(Y, t)−H0(W, t) and estimated version φ(Y, t)− Ĥλ(W, t)

Tn(s, t) The statistics defined in Eq. (6)

∆φ,m The statistics defined in Eq. (7)

12
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Notation Definition

E(·) The expectation with respect to both a random variable and data

P(·) The expectation with respect to a random variable alone

Pn(·) The empirical expectation with respect to a random variable given data

∥ · ∥F The norm with respect to space F

13
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B. Existence of solutions with a single proxy
Let L2{F (x)} denote the space of all square-integrable functions of xwith respect to a cumulative distribution function F (x),
which is a Hilbert space with inner product ⟨g1, g2⟩ =

∫
g1(x)g2(x)p(x)dx. Let T denote the operator: L2{F (w)} →

L2{F (x)}, Tg = E{g(W )|X = ·} and let (λn, φn, ϕn)
∞
n=1 denote a singular value decomposition of T .

Assumption B.1. Assume the following conditions for all u:

(1)
∫∫

p(x|w)p(w|x)dwdx <∞ and
∫
{p(u|x)}2p(x)dx <∞;

(2)
∑∞

n=1 λ
−2
n |⟨p(u|x), ϕn⟩|2 <∞.

B.1. Proof of Theorem 4.5

We first prove that under the conditions Theorem 4.5, there exists a solution g(w, u) ∈ L2{F (w)} for all u, such that
p(u|x) =

∫
g(w, u)p(w|x)dw. Our proof is based on Picard’s Theorem, which is presented below.

Lemma B.2 (Theorem 15.18 in (Kress, 1989)). Given Hilbert spaces H1 and H2, a compact operator T : H1 → H2 and
its adjoint operator T ∗ : H2 → H1, there exists a singular system (λn, φn, ϕn)

+∞
n=1 of K with nonzero singular values

{λn} and orthogonal sequences {φn ∈ H1}, {ϕn ∈ H2}. Then the equation of the first kind Th = f with f ∈ H2, has a
solution if and only if

1. f ∈ Ker(T ∗)⊥, where Ker(T ∗) = {h : T ∗h = 0} is the null space of the adjoint operator T ∗;

2.
∑+∞

n=1 λ
−2
n |⟨f, ϕn⟩|2 < +∞.

Proposition 4.2. Under assumption 4.1 and some regularity conditions in B.1, there exists a g(w, u) ∈ L2{F (w)} for all u,
such that it solves the following integral equation for all (u, x):

p(u|x) =
∫
g(w, u)p(w|x). (2)

Proof. Our goal is to show the solution exists for the following estimator:

T : L2{F (w)} → L2{F (x)} : Tf = E{f(W )|X = ·}, f ∈ L2{F (w)}.

Besides, we consider the following operator:

S : L2{F (x)} → L2{F (w)} : Sg = E{g(X)|W = ·}, f ∈ L2{F (x)}.

By Lemma B.2 and assumption B.1 (2) for p(u|x), the conclusion holds if we can show that S is the adjoint operator of T ,
T is compact, and that p(u|x) ∈ Ker(S)⊥.

(i). S is the adjoint operator of T .

For the operator T , ∀f ∈ L2{F (w)} and ∀g ∈ L2{F (x)}, we have

⟨Tf, g⟩L2{F (x)} = EX [E{f(W )|X}g(X)]

= EX [EU |XE{f(W )|X,U}g(X)]

(1)
= EX [EU |XE{f(W )|U}g(X)]

= EU,X [E{f(W )|U}g(X)]

= EU [E{f(W )|U}E{g(X)|U}].

Similarly,
⟨f, Sg⟩L2{F (w)} = EW [f(W )E{g(X)|W}]

= EW [f(W )EU |WE{g(X)|W,U}]
(2)
= EW [f(W )EU |WE{g(X)|U}]
= EU,W [f(W )E{g(X)|U}]
= EU [E{f(W )|U}E{g(X)|U}],

14
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where (1) and (2) follow from W ⊥⊥ X|U . Therefore, we have

⟨Tf, g⟩L2{F (x)} = ⟨f, Sg⟩L2{F (w)}.

(ii). T is compact.

We define the integral kernel

K(w, x) =
p(w, x)

p(w)p(x)
. (12)

Then for the operator defined previously, we have the following form:

Tf =

∫
K(w, x)f(w)dP(w) = E{f(W )|X}, f ∈ L2{F (w)}, (13)

Sg =

∫
K(w, x)g(x)dP(x) = E{g(X)|W}, g ∈ L2{F (x)}. (14)

By the definition of K in (12), we have:∫∫
|K(w, x)|2p(w)p(x)dwdx =

∫∫
p(w|x)p(x|w)dwdx.

Under assumption B.1 (1), we can apply Theorem 2.34 in (Carrasco et al., 2007) to obtain that the operator T is a
Hilbert-Schmidt operator, which implies that T is a compact operator, according to Theorem 2.32 in (Carrasco et al., 2007).

(iii). p(u|x) ∈ Ker(S)⊥ for any u.

For each g ∈ N (S), by iterated expectations, we have

E{g(X)|W} = EU |W [E{g(X)|W,U}]
(1)
= EU |W [E{g(X)|U}] = 0,

where (1) follows from W ⊥⊥ X|U . By the completeness assumption, we have

E{g(X)|u} = 0 a.s. (15)

Then we have

⟨g, p(u|X)⟩L2{F (x)} = EX{g(X)p(u|X)} (p(u|x) ∈ L2{F (x)} is used here.)

=

∫
g(x)p(u, x)dx =

∫
p(u)E{g(X)|u}du = 0,

which implies p(u|x) ∈ Ker(S)⊥. Combining the above three steps together, we obtain the conclusion.

Theorem 4.5. Suppose assumptions 4.1, 4.4 and the regularity condition B.1 hold. If g(w, u) in (2) satisfies∫∫
| g(w,u)

p(u) |2p(w)p(u)dwdu < ∞, then under H0, there exists a h(w, y) ∈ L2{F (w)} for all y, such that it solves
the integral equation in (1) for all (x, y).

Proof. By proposition 4.2, we have g(w, u) satisfies the integral equation p(u|x) =
∫
g(w, u)p(w|x)dw. Then under H0,

we have:

p(y|x) =
∫
p(y|u)p(u|x)du

=

∫ {∫
g(w, u)p(y|u)du

}
p(w|x)dw.

Therefore, we write an expression h(w, y) :=
∫
g(w, u)p(y|u)du that satisfies a solution of the integral Eq. (1).

15
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We first prove that h(w, y) is well-defined for any fixed y. To be specific,∣∣∣∣∫ g(w, u)p(y|u)du
∣∣∣∣ ≤ ∫ |g(w, u)| p(y|u)du

=

∫ ∣∣∣∣g(w, u)p(u)

∣∣∣∣ p(u) · p(u|y)p(u)
p(y)du

(1)

≤ Cp(y) ·
∫ ∣∣∣∣g(w, u)p(u)

∣∣∣∣ p(u)du,
where (1) follows from assumption 4.4. Since we have assumed

∫∫
|g(w, u)/p(u)|2p(w)p(u)dwdu < ∞, there holds∫

|g(w, u)/p(u)|2p(u)du <∞ for a.e w by Fubini’s theorem. Applying the Cauchy-Schwarz inequality, we have:

∫ ∣∣∣∣g(w, u)p(u)

∣∣∣∣ p(u)du ≤

{∫ ∣∣∣∣g(w, u)p(u)

∣∣∣∣2 p(u)du
}1/2{∫

p(u)du

}1/2

<∞. (16)

Thus, h(w, y) is well-defined for any y.

Next, we show that h(w, y) ∈ L2{F (w)} for any y. By Cauchy-Schwarz inequality, we have

∫
|h(w, y)|2p(w)dw =

∫ {∫
g(w, u)p(y|u)du

}2

p(w)dw

=

∫ {∫
g(w, u)

p(u)
p(y|u)p(u)du

}2

p(w)dw

≤
∫ {∫ ∣∣∣∣g(w, u)p(u)

∣∣∣∣2 p(u)du
}{∫

|p(y|u)|2p(u)du
}
p(w)dw

=

{∫∫ ∣∣∣∣g(w, u)p(u)

∣∣∣∣2 p(w)p(u)dwdu
}{∫ ∣∣∣∣p(u|y)p(u)

∣∣∣∣2 p(y)2p(u)du
}

≤

{∫∫ ∣∣∣∣g(w, u)p(u)

∣∣∣∣2 p(w)p(u)dwdu
}{∫

C2p(y)2p(u)du

}
.

Since
∫∫ ∣∣∣ g(w,u)

p(u)

∣∣∣2 p(w)p(u)dwdu <∞, we complete the proof.

B.2. Proof of Corollary 4.7

Corollary 4.7. Suppose conditions in Theorem 4.5 hold. For any t, H(w, t) in (4) exists and belongs to L2{F (w)}.

Proof. (i). We first prove that H(w, t) is well-defined. To be specific, we take φ to be the complex exponential function
eity . Then, by H(w, t) =

∫
φ(y, t)h(w, y)dy, we have∣∣∣∣∫ eityh(w, y)dy

∣∣∣∣ ≤ ∫ |eity| ·
∣∣∣∣∫ g(w, u)p(y|u)du

∣∣∣∣ dy ≤
∫

|eity| ·
∫

|g(w, u)| p(y|u)dudy

≤
∫

|eity| ·
{∫ ∣∣∣∣g(w, u)p(u)

∣∣∣∣ p(u) · p(u|y)p(u)
p(y)du

}
dy

(1)

≤ C ·
∫

|eity| · p(y)
{∫ ∣∣∣∣g(w, u)p(u)

∣∣∣∣ p(u)du} dy,
where (1) follows from assumption 4.4. Since |eity| = 1,

∫
p(y) dy = 1, and by Eq. (16), it follows that H(w, t) is

well-defined.

16



Bivariate Causal Discovery with Proxy Variables: Integral Solving and Beyond

(ii). We proof H(w, t) ∈ L2{F (w)}. By Cauchy-Schwarz inequality, we have:∫
|H(w, t)|2p(w)dw =

∫ {∫
g(w, u)eityp(y|u)dudy

}2

p(w)dw

=

∫ {∫
g(w, u)

p(u)
eityp(y|u)p(u)dudy

}2

p(w)dw

≤
∫ {∫ ∣∣∣∣g(w, u)p(u)

∣∣∣∣2 p(u)du
}{∫ ∣∣∣∣∫ eityp(y|u)dy

∣∣∣∣2 p(u)du
}
p(w)dw

=

{∫∫ ∣∣∣∣g(w, u)p(u)

∣∣∣∣2 p(w)p(u)dwdu
}{∫ ∣∣∣∣∫ eityp(y|u)dy

∣∣∣∣2 p(u)du
}
.

(17)

The proof is completed as
∣∣∫ eityp(y|u)dy∣∣ ≤ 1 and

∫∫ ∣∣∣ g(w,u)
p(u)

∣∣∣2 p(w)p(u)dwdu <∞.

B.3. Counter-example to the solvability of the first-order moment equation under H1

Example B.3. Suppose that X,Y, U,W satisfy the linear Gaussian model, i.e. X = εX , U = αXX + α0 + εU ,W =
βUU + β0 + εW , Y = γUU + γXX + γ0 + εY , where εU , εX , εW , εY are Gaussian noises. Then the solution of
E(Y |X) = E{h(W )|X} is given by h(w) := γX+γUαX

µUαX
w + γ0 + γUα0 − (β0 + µUα0)

γX+γUαX

µUαX
.

Proof. We show that E{Y |X} = E(bwW + b0|X), where

(b0, bw) =

{
γ0 + γUα0 − (β0 + µUα0)

γX + γUαX

µUαX
,
γX + γUαX

µUαX

}
.

In fact, this can be achieved by solving (b0, bw) in the following integral equation:

E(Y |X) = E(bwW + b0|X).

For the left-hand side, we have
E(Y |X) = γ0 + γXX + γUE(U |X)

= γ0 + γXX + γUE(α0 + αXX|X)

= (γ0 + γUα0) + (γX + γUαX)X.

For the right-hand side, we have

E{g(W )|X} = E(b0 + bwW |X)

= b0 + bwE(β0 + µUU |X)

= b0 + bw{β0 + µUE(α0 + αXX|X)}
= (b0 + bwβ0 + bwµUα0) + (bwµUαX)X,

{
bwµUαX − (γX + γUαX) = 0

(b0 + bwβ0 + bwµUα0)− (γ0 + γUα0) = 0
=⇒


bw =

γX + γUαX

µUαX

b0 = γ0 + γUα0 − (β0 + µUα0)
γX + γUαX

µUαX

.

B.4. Verification of
∫∫ g(w,u)

p(u) |2p(w)p(u)dwdu <∞ in Theorem 4.5

Lemma B.4 ((Miao et al., 2018)). If W |X ∼ N (β′
0+β

′
1X,σ

2
2) and Y |X ∼ N (γ′0+γ

′
1X,σ

2
3), then one can verify integral

equation p(y|x) =
∫
h(w, y)p(w|x)dw has a unique solution h(w, y):

h(w, y) =
1

σwx
ϕ

(
y − γwx − γ′1/β

′
1w

σwx

)
, (18)
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where ϕ is the probability density function (pdf) of the standard normal distribution, γwx = γ′0 − γ′1β
′
0/β

′
1 and σ2

wx =
σ2
3 − (γ′1)

2σ2
2/(β

′
1)

2.

Example B.5. We consider the linear Gaussian generation mechanism:
U ∼ N (0, σ2)

X = α0 + αUU +N (0, 1)

W = β0 + βUU +N (0, 1)

Y = γ0 + γUU +N (0, 1).

Then h(w, y) given by the following has a unique solution to the integral equation (1):

h(w, y) =
1√

1−
(

γU

βU

)2ϕ
y − γU

βU
+ γU

βU
β0 − γ0√

1−
(

γU

βU

)2
 .

Besides, at this time, the assumption in Theorem 4.5 has∫ {
g(w, u)

p(u)

}2

p(w)p(u)dwdu =
σ2 − σ2k + k2/α2

U

1− σ2k − kσ2β2
U

<∞, (19)

where k := (σαU )
2/(σ2α2

U + 1).

Proof. Based on the data generation structure, we can obtain joint distribution
U
X
W
Y

 ∼ N




0
α0

β0
γ0

 ,


σ2 σ2αU σ2βU σ2γU

σ2αU σ2α2
U + 1 σ2αUβU σ2αUγU

σ2βU σ2αUβU σ2β2
U + 1 σ2βUγU

σ2γU σ2αUγU σ2βUγU σ2γ2U + 1


 .

We now get the conditional distributions p(w|x) and p(y|x) according to the joint distribution

W |X = x ∼ N
{
µW +

Cov(W,X)

Var(X)
(x− µx),Var(W )

(
1− Cov2(W,X)

Var(X) ·Var(W )

)}
∼ N

{
σ2αUβU
σ2α2

U + 1
x− σ2αUβU

σ2α2
U + 1

α0 + β0, σ
2β2

U + 1−
(
σ2αUβU

)2
σ2α2

U + 1

}

Y |X = x ∼ N
{
µy +

Cov(Y,X)

Var(X)
(x− µx),Var(Y )

(
1− Cov2(Y,X)

Var(X) ·Var(Y )

)}
∼ N

{
σ2αUγU
σ2α2

U + 1
x− σ2αUγU

σ2α2
U + 1

α0 + γ0, σ
2γ2U + 1−

(
σ2αUγU

)2
σ2α2

U + 1

}
.

By Lemma B.4, the solution to (1) with h(w, y) given above is

h(w, y) =
1√

1−
(

γU

βU

)2ϕ
y − γU

βU
+ γU

βU
β0 − γ0√

1−
(

γU

βU

)2
 .

Next, we prove (19). We will first obtain g(w, u). Specifically, we first get p(u|x):

U |X = x ∼ N
{
µU +

Cov(U,X)

Var(X)
(x− µx),Var(U)

(
1− Cov2(U,X)

Var(X) ·Var(U)

)}
∼ N

{
σ2αU

σ2α2
U + 1

x− σ2αU

σ2α2
U + 1

α0, σ
2 − σ2 (σαU )

2

σ2α2
U + 1

}
.
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Similarly, by applying Lemma B.4 with the form of Y |X replaced by that of U |X above, we have:

g(w, u) =
1√

(σ2αU )2

σ2α2
U+1

(1− σ2)−
(

1
βU

)2ϕ
 u− 1

βU
w + β0

βU√
(σ2αU )2

σ2α2
U+1

(1− σ2)−
(

1
βU

)2
 .

We can easily verify that the following integration is finite, by the following:

∫ {
g(w, u)

p(u)

}2

p(w)p(u)dwdu =
σ2 − σ2k + k2

α2
U

1− σ2k − kσ2β2
U

,

where k := (σαU )2

σ2α2
U+1

.
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C. Proxy Maximum Characteristic Restriction
For the sake of completeness, we introduce some preliminary concepts that are necessary to understand the theoretical
analysis of our PMCR method. First, in section C.1–C.3, we introduce some background knowledge of the linear operators
and Reproducing Kernel Hilbert Spaces required in this article. Upon this, we provide details on the derivation of our
empirical loss (5) in section C.4. Section C.5 rewrites the loss into the Tikhonov regularized form, which serves as the
foundation of our theoretical analysis for Theorem 4.12.

C.1. Bounded linear operator

For two normed linear spaces F and G over R, a function A : F → G (where F and G are both normed linear spaces over
R) is called a linear operator if it satisfies the following properties:

1. Homogeneity: A(αf) = α(Af), for any α ∈ R, f ∈ F ;

2. Additivity: A(f + g) = Af +Ag, for any f, g ∈ F .

Operator Norm and Boundedness. The operator norm of a linear operator A : F → G is defined as

∥A∥op = sup
f∈F

∥Af∥G
∥f∥F

.

A linear operator A is called bounded if there exists a finite constant C such that for all f ∈ F , we have

∥Af∥G ≤ C∥f∥F .

In terms of the operator norm, this condition is equivalent to saying that ∥A∥op <∞.

C.2. Hilbert space

We begin by introducing definitions and basic properties of an inner product space. Based on this, we introduce the Hilbert
space.

A function ⟨·, ·⟩F : F × F → R is said to be an inner product on F if it satisfies the following three properties

1. ⟨α1f1 + α2f2, g⟩F = α1⟨f1, g⟩F + α2⟨f2, g⟩F .

2. ⟨f, g⟩F = ⟨g, f⟩F .

3. ⟨f, f⟩F ≥ 0 and ⟨f, f⟩F = 0 if and only if f = 0.

One can always define a norm induced by the inner product: ∥f∥F = ⟨f, f⟩1/2F . For this norm, the following Cauchy-
Schwarz inequality holds, i.e., |⟨f, g⟩F | ≤ ∥f∥F · ∥g∥F .

A Hilbert space is a complete inner product space. This means, a Hilbert space is an inner product space in which every
Cauchy sequence (a sequence where the elements get arbitrarily close to each other) converges to an element within the
space. An orthonormal basis of a Hilbert space H is a set of vectors {ei}, such that ∥ei∥H = 1 for each i and ⟨ei, ej⟩H = 0
for each i ̸= j. Besides, each f ∈ H can be expanded in a Fourier series:

φ =
∑
j

⟨f, ei⟩Hei.

Hilbert adjoint operator. In the context of Hilbert spaces, we can define the adjoint operator. Let H1 and H2 be Hilbert
spaces, and let A : H1 → H2 be a linear operator. The adjoint operator A∗ : H2 → H1 is defined by the property that for all

⟨Af, g⟩H2 = ⟨f,A∗g⟩H1 .

The operator enjoys a number of important properties:

1. If A is bounded, so is A∗, and ∥A∥op = ∥A∗∥op;

2. (A∗)∗ = A;

3. If A is invertible, so is A∗, and (A∗)−1 = (A−1)∗.
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C.3. Reproducing Kernel Hilbert Space

For any space W , let kW : W × W → R be a positive semi-definite kernel. A kernel is called characteristic if
P 7→ EW∼P[kW (W, ·)] is injective (Fukumizu et al., 2004). We denote by ϕW its associated canonical feature map
ϕW (w) = kW (w, ·) for any w ∈ W , and HW its corresponding RKHS of real-valued functions on W . The space HW is a
Hilbert space with inner product ⟨·⟩HW

and norm ∥ · ∥HW
. It satisfies two important properties:

1. kW (w, ·) ∈ HW for all w ∈ W;

2. reproducing property: for all f ∈ HW and w ∈ W , f(w) = ⟨f, kW (w, ·)⟩HW
.

Since the Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space, it satisfies all properties in secion C.2. Besides, we
can define the kernel mean embedding, which helps to take the expectation of a function. Suppose we wish to calculate
E{f(W )} for any f ∈ HW . By the reproducing property and linearity of the inner product, we have

E{f(W )} =

∫
f(w)dP(w) =

∫
⟨f, ϕW (w)⟩HW

dP(w) =
〈
f,

∫
ϕW (w)dP(w)

〉
HW

= ⟨f, µW ⟩HW
.

The object µW :=
∫
ϕW (w)dP(w) is called the mean embedding of the distribution P(w). This property of RKHS implies

that, to calculate the expectation of a function, it suffices to take the inner product between the function and the mean
embedding of the corresponding distribution. Following this property, we can also calculate the expectation E{f(W )g(X)}
for any f ∈ HW :

E{f(W )m(X)} =

∫
f(w)m(x)dP(w, x) =

∫
⟨f, ϕW (w)⟩HW

m(x)dP(w, x) =
〈
f,

∫
m(x)ϕW (w)dP(w, x)

〉
HW

.

(20)
Finally, we introduce properties for the norm ∥ · ∥HW

. A function f ∈ HW if and only if ∥f∥2HW
= ⟨f, f⟩HW

< ∞.
Further, if kW (w, ·) is bounded, we have ∥f∥L2{F (w)} ≲ ∥f∥HW

. To see this, note that by Cauchy-Schwarz inequality, for
any f ∈ HW , we get:

|f(w)|2 = ⟨kW (w, ·), f⟩2HW
≤ ∥kW (w, ·)∥2HW

∥f∥2HW
.

Therefore, we have
∥f∥L2{F (w)} ≲ ∥f∥HW

. (21)

C.4. Validity of optimizing (5)

Since (4) implies E[{φ(Y, t) −H(W, t)}g(X)] = 0 holds for any measurable functions g : X → R, we follow (Zhang
et al., 2020; Mastouri et al., 2021) to take g over a unit-ball of RKHS HX with a fixed kernel kg , and minimizes

R(H) = sup
g∈HX ,∥g∥≤1

(E [{φ(Y, t)−H(W, t)}g(X)])
2
. (22)

(Mastouri et al., 2021) provides an equivalent form of this risk, which is the population version of our empirical loss (5).

Lemma C.1 (Lemma 2 in (Mastouri et al., 2021)). Assume that E[{φ(Y, t)−H(W, t)}2kX(X,X ′)] <∞ and denote byX ′

an independent copy of the random variable X . Then R(H) = E[{φ(Y, t)−H(W, t)}{φ(Y ′, t)−H(W ′, t)}kX(X,X ′)].

(Zhang et al., 2020; Mastouri et al., 2021) demonstrated that if the kernel function kX derived from the conditional variable
X in the conditional moment equation (4) is integrally strictly positive definite (ISPD defined in Asm. C.4), continuous, and
bounded, then the conditional moment equation (4) shares the same solution with R(H). That means, optimizing R(H)
ensures us to find the right solution.

C.5. Tikhonov regularization

In this section, we rewrite our loss (5) into the following Tikhonov regularized form, which serves as the foundation to prove
Theorem 4.12.

R̂λ(H) = ∥b̂(x, t)− ÂH(w, t)(x)∥2HX
+ λ∥H(w, t)∥2HW

. (23)
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This can be achieved by reformulating the PMCR into a linear ill-posed inverse problem in the RKHS. Specifically, let
ϕX(x) := kX(x, ·) and ϕW (w) := kW (w, ·) be the canonical feature maps. Then, by ⟨ϕX(x), ϕX(x′)⟩HX

= kX(x, x′),
R(H) of Lemma C.1 can be rewritten in terms of mean square error:

R(H) = ∥E[{φ(Y, t)−H(W, t)}ϕX(X)]∥2HX

= ∥E{φ(Y, t)ϕX(X)} − E{H(W, t)ϕX(X)}∥2HX

= ∥b(X, t)−AH(W, t)(X)∥2HX
,

where
b(·, t) :=

∫
φ(y, t)ϕX(x)p(x, y)dxdy, AH(W, t)(·) :=

∫
H(w, t)ϕX(x)p(x,w)dxdw. (24)

According ϕX(x) = kX(x, ·), we can treat ϕX(x) as ϕX(x)(·). Therefore, we have b(x′, t) :=∫
φ(y, t)kX(x, x′)p(x, y)dxdy and AH(w, t)(x′) :=

∫
H(w, t)kX(x, x′)p(x,w)dxdw for all x′.

Thus, we can treat PMCR as a linear ill-posed inverse problem in the RKHS by the operator A. To ensure that A is a
bounded linear operator, we require some standard assumptions (Zhang et al., 2020; Mastouri et al., 2021):

Assumption C.2. ∃cY <∞, |Y | < cY a.s. and E(Y ) < cY .

Assumption C.3. (i). kX(x, ·) and kW (w, ·) are continuous and bounded, i.e., there exists κ > 0 such that:

sup
w

∥ϕW (w)∥HW
≤ κ, sup

x
∥ϕX(x)∥HX ≤ κ.

(ii). Feature maps ϕW (W ) and ϕX(X) are measurable. (iii). ϕW (W ) and ϕX(X) are characteristic kernels.

Assumption C.4. The kernel kX(x, x′) is integrally strictly positive definite (ISPD), i.e., for any function f that satisfies
0 < ∥f∥2L2{F (x)} <∞, we have

∫∫
f(x)kX(x, x′)f(x′)dxdx′ > 0.

By assumptions C.2 and C.3, b(x, t) ∈ HX and A is a bounded linear operator from HW to HX . Based on the above
formulation, we can rewrite R(H) of Lemma C.1 with regularized term as follow:

Rλ(H) = ∥b(x, t)−AH(w, t)(x)∥2HX
+ λ∥H(w, t)∥2HW

. (25)

Plugging the estimates of b̂(x, t) and Â into the loss, we have (23). Based on the i.i.d. samples (xi, wi, yi)
n
i=1 and ϕX(xi),

the estimates Â(·, t) and Â are given by:

b̂(x, t) :=
1

n

n∑
i=1

φ(yi, t)kX(x, xi), ÂH(W, t)(x) :=
1

n

n∑
i=1

H(wi, t)kX(x, xi). (26)

In the following, we derive the minimizer of the risk (25).

Let A∗ : HX → HW be an adjoint operator of A such that ⟨Au, v⟩HX
= ⟨u,A∗v⟩HW

for all u ∈ HW and v ∈ HX . And
we denote Â∗ as an adjoint operator of Â. By (Mastouri et al., 2021), for any m(w, t) ∈ HW , we have:

A∗m(X, t)(w′) :=

∫
m(x, t)kW (w,w′)p(x,w)dxdw. (27)

Since ϕW (w) = kW (w, ·), we have A∗m(x, t)(w′) :=
∫
m(x, t)kW (w,w′)p(x,w)dxdw for all w′. The estimate Â is

given by its empirical form:

Â∗m(X, t)(w′) :=
1

n

n∑
i=1

m(xi, t)kW (wi, w
′). (28)

C.6. Ill-posed inverse problem and solutions

Solving R(H) is generally an ill-posed inverse problem, as it may not have a unique solution (Carrasco et al., 2007). We
allow the Conditional Characteristic Restrictions (4) to be ill-posed and have non-unique solutions. Thus, the set of all
solutions is given by

HW,0 = {H(·, t) ∈ HW : AH(·, t) = b(·, t)} = H0(·, t) + Ker(A), (29)
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where Ker(A) = {H(·, t) : AH(·, t) = 0} is the null space of the adjoint operator A. This solution consists of two parts,
one is a special solution H0

t ∈ Ran(A), and the other is the elements of the null space.

If the solution exists, we can express the solution in the form of the singular value decomposition of A. Let (λj , φj , ϕj)j
be the singular value decomposition of the operator A. Then, if we define the orthogonal projection operator Q : HW →
Ker(A), we have:

H(·, t) =
∑
j

⟨H(·, t), φj⟩HW
φj +QH(·, t) =

∑
j

1

λj
⟨b(·, t), ϕj⟩HX

φj +QH(·, t).

Thus, we target at the special solution H0(W, t), which achieves the least norm, i.e.,

H0(W, t) = argmin
H(W,t)∈HW,0

∥H(W, t)∥HW
. (30)

By solving for Rλ(H) of Eq. (25), we attempt to estimate the minimum norm solution H0(W, t) in (30) via the Tikhonov
regularization solutions in respectively the population and in the finite sample regime:

Hλ(W, t) := argmin
H(W,t)∈HW

Rλ(H) = {(A∗A+ λI)−1A∗b}(W, t), (31)

Ĥλ(W, t) := argmin
H(W,t)∈HW

R̂λ(H) = {(Â∗Â+ λI)−1Â∗b̂}(W, t). (32)
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D. Proofs of Asymptotic Properties
In this section, we study the asymptotic properties of the testing statistics ∆φ,m. Since ∆φ,m depends on Tn(s, t) through
(7), we first study the asymptotic properties of Tn(s, t).

Notations. For a generic random vector W ∈ W , we use L2{F (w)} to denote the space of square integrable functions
of W with respect to the cumulative distribution of W . For any f(W ), g(W ) ∈ L2{F (w)}, we denote the L2-norm
by ∥f∥L2{F (w)} =

√
E{f(W )2} and inner product by ⟨f, g⟩L2{F (w)} = E{f(W )g(W )}. We use HW to denote the

reproducing kernel Hilbert spaces of W . For any f(W ), g(W ) ∈ HW , we denote the HW -norm by ∥f∥HW
and inner

product by ⟨f, g⟩HW
. We let P denote the probability. We let P{f(W )} =

∫
f(w)dP(w) be the expectation with respect to

W alone. We differentiate this from E{f(W )}, which we use to denote full expectation with respect to both W and data
w1, ..., wn. Thus if Ĥ depends on the data w1, ..., wn, then P{f(W ; Ĥ)} remains a function of Ĥ (and thus the data) but
E{f(W ; H̃)} is a nonrandom scalar. We use both Pn to denote the empirical expectation with respect to W given data
w1, ..., wn: Pn{f(W )} = 1

n

∑n
i=1 f(Wi).

For A, bt(w) := b(w, t) defined in (24), and A∗ in (28), the estimates Â, b̂t(w) := b̂(w, t) given by (26), and the estimates
Â∗ is given by (28). Besides, for the operator A, its singular value decomposition is given by (λn, φn, ϕn)

+∞
n=1. We

denote H0
t = H0(w, t) as the least norm solution is defined in (30). The population Tikhonov regularization solution

Hλ
t (w) := Hλ(w, t) and the empirical Tikhonov regularization solution Ĥλ

t (w) := Ĥλ(w, t) are respectively defined
in (31) and (32). Further, recall that

gs = E{m(X, s)ϕW (W )} (assumption 4.11), (33)

U(W,Y, t) = φ(Y, t)−H0(W, t) (section 4.2), (34)

Û(W,Y, t) = φ(Y, t)− Ĥλ(W, t)(section 4.2). (35)

D.1. Proof roadmap and key assumptions

In this section, we introduce the overview of our proof and the required assumptions to derive the asymptotic distribution of
Tn(s, t). Define U(W,Y, t) = φ(Y, t)−H0(W, t), we decompose Tn(s, t) as follows:

Tn(s, t) =
1√
n

n∑
i=1

Û(wi, yi; t)m(xi, s)

=
√
nPn

{
Û(W,Y, t)m(X, s)

}
=

√
nPn

[{
φ(Y, t)− Ĥλ(W, t)

}
m(X, s)

]
=

√
nPn

[
{φ(Y, t)−H0(W, t) +H0(W, t)− Ĥλ(W, t)}m(X, s)

]
=

√
nPn{U(W,Y, t)m(X, s)}+

√
nP
[
{H0(W, t)− Ĥλ(W, t)}m(X, s)

]
︸ ︷︷ ︸

Expected risk difference

+
√
n(Pn − P)

[
{H0(W, t)− Ĥλ(W, t)}m(X, s)

]
︸ ︷︷ ︸

Empirical process

.

(36)

To derive the asymptotic distribution of Tn(s, t), we first investigate the last two terms in (36):

• Empirical process (Proposition D.3): (Pn − P)
[
{H0(W, t)− Ĥλ(W, t)}m(X, s)

]
= op(n

−1/2).

• Expected risk difference (Proposition D.4):

√
nP
[
{H0(W, t)− Ĥλ(W, t)}m(X, s)

]
= − 1√

n

n∑
i=1

U(wi, yi, t){A(A∗A)−1gs}(xi) + op(1),

where gs is defined in (46).
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Lastly, we show that − 1√
n

∑n
i=1 U(wi, yi, t){A(A∗A)−1gs}(xi) plus the remaining term

√
nPn{U(W,Y, t)m(X, s)}

converges to the zero-man Gaussian process Gs,t, i.e.,

lim
n→∞

√
nPn{U(W,Y, t)m(X, s)} − 1√

n

n∑
i=1

U(wi, yi, t){A(A∗A)−1gs}(xi) →d Gs,t.

Since ∆φ,m = maxt∈T
∫
S |Tn(s, t)|2dµ(s) in (7), we show that ∆φ,m converges to maxt∈T

∫
|Gs,t|2dµ(s) in Theo-

rem 4.12.

Before proving these properties, we first introduce some regularity conditions. Let HW denote the function space such that
H0(W, t) ∈ HW for each t.
Assumption D.1. Let N[·] (ϵ,HW , ∥ · ∥HW

) be the bracketing number of size ϵ of HW . We assume∫ 1

0

√
logN[·](ϵ,HW , ∥ · ∥L2{F (w)}dϵ <∞ and P(Ĥλ ∈ HW ) → 1.

Assumption D.2. Let (λj , φj , ϕj)j be the singular value decomposition of the operator A described in section C. Then we
assume: (a). For some η > 2,

∑
j λ

−2η
j |⟨gs, φj⟩HW

|2 <∞; (b) For some θ ≥ 2,
∑

j λ
−2θ
j |⟨H0

t , φj⟩HW
|2 <∞.

Assumption D.1 restricts the complexity of HW and ensures HW is a P -Donsker class (vd Vaart, 1998), which was a
standard assumption to analyze the empirical process (Beyhum et al., 2024; Lapenta & Lavergne, 2022).

Assumption D.2 is the source condition that is commonly assumed in nonparametric regression (Carrasco et al., 2007;
Florens et al., 2012). These have also been employed in (Florens et al., 2012; Beyhum et al., 2024) to obtain a faster
convergence rate for nonparametric instrumental regression. Here, we require gs and H0

t to satisfy the source condition, for
establishing the asymptotic properties of the statistic in examining the integral equation. Since gs := E{m(X, s)ϕW (W )},
the source condition for gs puts requirement on the smoothness for the space HW when m(·, s) is chosen properly.

Compared to (Beyhum et al., 2024; Mastouri et al., 2021) that allowed η = 2, we require η > 2 in the source condition for
gs. This is because, after investigating the proof of (Beyhum et al., 2024; Mastouri et al., 2021), we find that their conclusion
may not hold for η = 2. Specifically, similar to our analysis, a key step in their proofs that related to the source condition is
∥(λI + A∗A)−1A∗Ag̃ − g̃∥HW

= op(1) (in our scenario, it refers to (51)) for g̃ ∈ HW . Here, g̃ :=
∑

j λ
−2
j ⟨g, φj⟩φj (g̃

refers to g̃s in our scenario), where the source condition was assumed on g (gs in our scenario). To prove the property, they
leveraged the property in Lemma 2.5 (d) of (Beyhum et al., 2024) that ∥(λI +A∗A)−1A∗Ag̃ − g̃∥HW

= Op

{
λ

min(γ,2)
2

}
for g̃ such that ∥g̃∥2W,γ :=

∑
j λ

−2γ
j |⟨g, φj⟩|2 <∞. Since g satisfies the source condition and g̃ :=

∑
j λ

−2
j ⟨g, φj⟩φj , to

apply the above property, we should take γ ≤ η − 2 to ensure that ∥g̃∥2W,γ < ∞. That means, we should take η > 2 to

make that γ = η − 2 > 0, in order to ensure that Op

{
λ

min(γ,2)
2

}
= op(1). Besides, while this condition is stronger than the

case of η = 2, we emphasize that requiring η > 2 only slightly increases the smoothness requirement of the HW , making it
a modestly stronger condition.

D.2. Empirical process

Proposition D.3. Under assumptions 4.9, C.2-C.4, and D.1-D.2, the empirical process
√
n(Pn − P)[{H0(W, t) −

Ĥλ(W, t)}m(X, s)] = op(1).

Proof. We first proof ∥{H0(W, t)− Ĥλ(W, t)}m(X, s)∥2L2{F (x,w)} = op(1). In fact, we have

∥{H0(W, t)− Ĥλ(W, t)}m(X, s)∥2L2{F (x,w)} =

∫
{H0(W, t)− Ĥλ(W, t)}2|m(X, s)|2dP(W,X)

=

∫
{H0(W, t)− Ĥλ(W, t)}2E{|m(X, s)|2|W}dP(W )

(1)

≤ C∥H0(·, t)− Ĥλ(·, t)∥2L2{F (w)}

(2)

≲ ∥H0(·, t)− Ĥλ(·, t)∥2HW
,

where (1) follows from assumption 4.9 and (2) follows from (21) by assumption C.3. Since assumptions C.2-C.4 and D.2
are satisfied, we have ∥H0(w, t)− Ĥλ(w, t)∥2HW

= op(1) by Lemma D.17. Therefore, all conditions in Lemma D.14 are
satisfied and we obtain √

n(Pn − P)[{H0(W, t)− Ĥλ(W, t)}m(X, s)] = op(1).
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The proof is completed.

D.3. Expected risk difference

Proposition D.4 is our main result in this section, whose proof is decomposed into Lemmas D.5-D.9.

Proposition D.4. Under assumptions 4.10, C.2–C.3, and D.2, the expected risk difference term has:

√
nP
[{
H0(W, t)− Ĥλ(W, t)

}
m(X, s)

]
= − 1√

n

n∑
i=1

U(wi, yi, t){A(A∗A)−1gs}(xi) + op(1).

Proof. For simplicity, we denote H0
t (w) := H0(w, t), bt(x) := b(x, t). Based on the interpretation of PMCR as a linear

ill-posed problem and the form of Tikhonov regularization solutions in (31)–(32), we have the following decomposition
(Babii & Florens, 2017; 2020):

Ĥλ(w, t)−H0(w, t) = G1 +G2 +G3 +G4 +G5, (37)

where

G1 :=(λI +A∗A)−1A∗(̂bt − ÂH0
t ); (38)

G2 :=(λI +A∗A)−1(Â∗ −A∗)(̂bt − ÂH0
t ); (39)

G3 :=
{
(λI + Â∗Â)−1 − (λI +A∗A)−1

}
Â∗(̂bt − ÂH0

t ); (40)

G4 :=(λI + Â∗Â)−1Â∗ÂH0
t − (λI +A∗A)−1A∗bt; (41)

G5 :=(λI +A∗A)−1A∗bt −H0
t . (42)

Therefore, we have
√
nP[{Ĥλ(W, t)−H0(W, t)}m(X, s)] =

5∑
i=1

Sni(s, t),

where Sni(s, t) is define as
√
nP{Gim(X, s)}. By applying Lemmas D.9, D.5, D.6, D.7 and D.8 to Sn1(s, t), Sn2(s, t),

Sn3(s, t), Sn4(s, t) and Sn5(s, t), respectively, we have:

√
nP[{H0(W, t)− Ĥλ(W, t)}m(X, s)] = − 1√

n

n∑
i=1

U(wi, yi, t){A(A∗A)−1gs}(xi) + op(1).

The proof is completed.

Next, we provide proofs for Lemmas D.5–D.8.

Lemma D.5. Under assumptions C.2, C.3 and D.2, Sn2(s, t) = op(1) as n→ ∞.

Proof. By the reproducing property that f(w) = ⟨f, kW (w, ·)⟩HW
for each f ∈ HW , we have (λI + A∗A)−1(Â∗ −

A∗)(̂bt − ÂH0
t )(w) = ⟨(λI + A∗A)−1(Â∗ − A∗)(̂bt − ÂH0

t ), kW (w, ·)⟩HW
. Therefore, we have the following for

Sn2(s, t) :=
√
nP{G2m(X, s)}:

|P{G2m(X, s)}| =
∣∣∣E{(λI +A∗A)−1(Â∗ −A∗)(̂bt − ÂH0

t )(W ) ·m(X, s)
}∣∣∣

=
∣∣∣E{⟨(λI +A∗A)−1(Â∗ −A∗)(̂bt − ÂH0

t ), ϕW (W )⟩HW
·m(X, s)

}∣∣∣
(1)
=
∣∣∣⟨(λI +A∗A)−1(Â∗ −A∗)(̂bt − ÂH0

t ),E{m(X, s)ϕW (W )}⟩HW

∣∣∣
(2)
=
∣∣∣⟨(Â∗ −A∗)(̂bt − ÂH0

t ), (λI +A∗A)−1E{m(X, s)ϕW (W )}⟩HW

∣∣∣ ,
26
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where (1) follows from (20) and (2) follows from {(λI +A∗A)−1}∗ = (λI +A∗A)−1 in Sec. C.2. Thus, we have:

|P{G2m(X, s)}|
(1)

≤ ∥(Â∗ −A∗)(̂bt − ÂH0
t )∥HW

· ∥(λI +A∗A)−1E{m(X, s)ϕW (W )}∥HW

≤ ∥Â∗ −A∗∥op · ∥b̂t − ÂH0
t ∥HX

· ∥(λI +A∗A)−1E{m(X, s)ϕW (W )}∥HW

(2)
= ∥Â−A∥op · ∥b̂t − ÂH0

t ∥HX
· ∥(λI +A∗A)−1E{m(X, s)ϕW (W )}∥HW

,

where (1) follows from the Cauchy-Schwartz inequality and (2) follows from ∥A∗∥op = ∥A∥op in Sec. C.4. By Lem-
mas D.12, we have ∥b̂t − bt∥HX

= Op(1/
√
n) and ∥A− Â∥op = Op(1/

√
n). With these properties, we have:

∥b̂t − ÂH0
t ∥HX

= ∥b̂t − bt + bt −AH0
t +AH0

t − ÂH0
t ∥HX

= ∥b̂t − bt +AH0
t − ÂH0

t ∥HX

≤ ∥b̂t − ÂH0
t ∥HX

+ ∥AH0
t − ÂH0

t ∥HX

≤ ∥b̂t − bt∥HX
+ ∥A− Â∥op · ∥H0

t ∥HW
= Op(1/

√
n).

(43)

By assumption D.2 (a) with gs := E{m(X, s)ϕW (W )}, we apply Lemma D.10 (d) to obtain that ∥(λI +

A∗A)−1E{m(X, s)ϕW (W )}∥HW
= Op{λ

min(η,2)
2 −1}. Combining all the inequalities, we get

√
n |P{G2m(X, s)}| ≤

√
n ·Op

(
1√
n

)
·Op

(
1√
n

)
·Op{λ

min(η,2)
2 −1}. (44)

Since we require η ≥ 2 in assumption D.2 (a), the last term is op(1).

Lemma D.6. Under assumptions 4.10, C.2, C.3 and D.2, Sn3(s, t) = op(1) as n→ ∞.

Proof. By Lemma D.16, we have:

G3 =
{
(λI + Â∗Â)−1 − (λI +A∗A)−1

}
Â∗(̂bt − ÂH0

t )

= (λI +A∗A)−1(A∗A− Â∗Â)(λI + Â∗Â)−1Â∗(̂bt − ÂH0
t ).

By the reproducing property that f(w) = ⟨f, kW (w, ·)⟩HW
for any f ∈ HW , we have (λI +A∗A)−1(A∗A− Â∗Â)(λI +

Â∗Â)−1Â∗(̂bt − ÂH0
t )(w) = ⟨(λI +A∗A)−1(A∗A− Â∗Â)(λI + Â∗Â)−1Â∗(̂bt − ÂH0

t ), kW (w, ·)⟩HW
. Therefore, we

have the following for Sn3(s, t) :=
√
nP{G3m(X, s)}:

|P{G3m(X, s)}| =
∣∣∣E [(λI +A∗A)−1(A∗A− Â∗Â)(λI + Â∗Â)−1Â∗(̂bt − ÂH0

t )(W )m(X, s)
]∣∣∣

=
∣∣∣E{⟨(λI +A∗A)−1(A∗A− Â∗Â)(λI + Â∗Â)−1Â∗(̂bt − ÂH0

t ), ϕW (W )⟩HW
·m(X, s)

}∣∣∣
(1)
=
∣∣∣⟨(λI +A∗A)−1(A∗A− Â∗Â)(λI + Â∗Â)−1Â∗(̂bt − ÂH0

t ),E{m(X, s)ϕW (W )}⟩HW

∣∣∣
(2)
=
∣∣∣⟨̂bt − ÂH0

t , Â(λI + Â∗Â)−1(A∗A− Â∗Â)(λI +A∗A)−1E{m(X, s)ϕW (W )}⟩HX

∣∣∣ ,
where (1) follows from (20), and (2) follows from {(λI + A∗A)−1}∗ = (λI + A∗A)−1 and {(λI + Â∗Â)−1}∗ =

(λI + Â∗Â)−1. Thus, we have:

|P{G3m(X, s)}|
(1)

≤∥b̂t − ÂH0
t ∥HX

· ∥Â(λI + Â∗Â)−1(A∗A− Â∗Â)(λI +A∗A)−1E{m(X, s)ϕW (W )}∥HX

(2)

≤∥b̂t − ÂH0
t ∥HX

· ∥Â(λI + Â∗Â)−1∥op · ∥A∗A− Â∗Â∥op · ∥(λI +A∗A)E{m(X, s)ϕW (W )}∥HW
,

where (1) follows from the Cauchy-Schwartz inequality and (2) follows from operator norm inequality.

According to the paragraph above equation (97) in (Mastouri et al., 2021), Â is a compact operator. By Lemma D.10
(c), we have ∥Â(λI + Â∗Â)−1∥op = Op(1/

√
λ), ∥(λI + Â∗Â)−1Â∗∥op = Op(1/

√
λ). According to assumption D.2
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(a) and Lemma D.10 (d), we have ∥(λI +A∗A)−1E{m(X, s)ϕW (W )}∥ = Op{λ
min(η,2)

2 −1}. Finally, By Lemmas D.12,
we have ∥b̂t − bt∥HX

= Op(1/
√
n) and ∥A − Â∥op = Op(1/

√
n). With these properties, we can similarly obtain that

∥b̂t − ÂH0
t ∥HX

≤ ∥b̂t − bt∥HX
+ ∥A − Â∥op · ∥H0

t ∥HW
= Op(1/

√
n). Combining all the inequalities and η ≥ 2 in

assumption D.2 (a), we get

√
n |P{G3m(X, s)}| =

√
n ·Op

(
1√
n

)
·Op

(
1√
λ

)
·Op

(
1√
n

)
·Op{λ

min(η,2)
2 −1}

= Op

(
1√
nλ

)
(∗)
= op(1),

(45)

where (∗) follows from assumption 4.10.

Lemma D.7. Under assumptions 4.10, C.2, C.3 and D.2, Sn4(s, t) = op(1) as n→ ∞.

Proof. By the reproducing property, we have {(λI + Â∗Â)−1Â∗ÂH0
t − (λI + A∗A)−1A∗bt}(w) = ⟨((λI +

Â∗Â)−1Â∗ÂH0
t − (λI +A∗A)−1A∗bt, kW (w, ·)⟩HW

. Therefore, we have the following for Sn4(s, t):

|P{G4m(X, s)}| =
∣∣∣E [{(λI + Â∗Â)−1Â∗ÂH0

t − (λI +A∗A)−1A∗bt}(W ) ·m(X, s)
]∣∣∣

=
∣∣∣E [⟨(λI + Â∗Â)−1Â∗ÂH0

t − (λI +A∗A)−1A∗bt, ϕW (W )⟩HW
·m(X, s)

]∣∣∣
(1)
=
∣∣∣⟨(λI + Â∗Â)−1Â∗ÂH0

t − (λI +A∗A)−1A∗bt,E{m(X, s)ϕW (W )}⟩HW

∣∣∣ ,
where (1) follows from (20). To establish the upper bound for the right-hand side, we derive the form of the operator A∗A.
First, for the operator A : HW → HX defined in (24), its singular value decomposition given by (λn, φn, ϕn)

+∞
n=1. For

gs(w
′) := E [m(X, s)ϕW (W )] (w′), we first proof ∥gs∥HW

<∞. In fact, since E{m(X, s)|W} and kernel k are assumed
to bounded in assumption C.2, we have:

∥gs∥HW
= ∥E{m(X, s)ϕW (W )}∥HW

= ∥E [E{m(X, s)|W}ϕW (W )] ∥HW

≤ C∥E{ϕW (W )}∥HW
= C

√
⟨E{ϕW (W )},E{ϕW (W )}⟩HW

= C
√

E {⟨ϕW (W ), ϕW (W ′)⟩HW
} = C

√
E{kW (W,W ′)} <∞.

(46)

Thus, ∥gs∥HW
<∞ imply gs ∈ HW , which can write the expansion of the basis functions as gs =

∑
j⟨gs, φj⟩HW

φj by
sec. C.2. Besides, by the properties of singular value decomposition, we have Aφj = λjϕj and A∗ϕj = λjφj . Therefore,
for each gs ∈ HW , we have:

A∗Ags =
∑
j

λ2j ⟨gs, φj⟩HW
φj . (47)

Let g̃s(w′) :=
∑

j λ
−2
j ⟨gs, φj⟩HW

φj . By assumption D.2, we have:

∥g̃s∥2HW
=

〈∑
j

λ−2
j ⟨gs, φj⟩HW

φj ,
∑
j

λ−2
j ⟨gs, φj⟩HW

φj

〉
HW

=
∑
j

λ−4
j |⟨gs, φj⟩HW

|2 <∞. (48)

Besides, we have:

A∗Ag̃s =
∑
j

∑
i

λ2jλ
−2
i ⟨gs, φi⟩HW

⟨φi, φj⟩HW
ψj =

∑
j

⟨gs, φj⟩HW
φj = gs.

Thus, if we define Pt := (λI + Â∗Â)−1Â∗ÂH0
t − (λI +A∗A)−1A∗bt, then by the Cauchy-Schwartz inequality, we have:

|P{G4m(X, s)}| = |⟨Pt,E{m(X, s)ϕW (W )}⟩HW
| = |⟨Pt, A

∗Ag̃s⟩HW
|

≤
∣∣∣⟨Pt, (A

∗ − Â∗)Ag̃s⟩HW

∣∣∣+ ∣∣∣⟨Pt, Â
∗Ag̃s⟩HW

∣∣∣
=
∣∣∣⟨Pt, (A

∗ − Â∗)Ag̃s⟩HW

∣∣∣+ ∣∣∣⟨ÂPt, Ag̃s⟩HW

∣∣∣
(1)

≤ ∥Pt∥HW
· ∥Â−A∥op · ∥Ag̃s∥HX

+ ∥ÂPt∥HX
· ∥Ag̃s∥HX

,
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where (1) follows from ∥Â∗ −A∗∥op = ∥Â−A∥op. By AH0
t = bt, we can decompose Pt as follows by Lemma D.16:

Pt =(λI + Â∗Â)−1Â∗ÂH0
t − (λI +A∗A)−1A∗AH0

t

=
{
(λI + Â∗Â)−1(λI + Â∗Â− λI)− (λI +A∗A)−1(λI +A∗A− λI)

}
H0

t

=λ
{
(λI +A∗A)−1 − (λI + Â∗Â)−1

}
H0

t

=λ(λI + Â∗Â)−1{Â∗Â−A∗A}(λI +A∗A)−1H0
t .

Therefore, we have:

∥Pt∥HW
= ∥λ(λI + Â∗Â)−1(Â∗Â−A∗A)(λI +A∗A)−1H0

t ∥HW

≤ ∥λ(λI + Â∗Â)−1∥op · ∥A∗A− Â∗Â∥op · ∥(λI +A∗A)−1H0
t ∥HW

.

Since Â is a compact operator as shown in the proof of Lemma D.5, by Lemma D.10 (b), we have ∥(λ(λI+Â∗Â)−1∥op ≤ 2.
By assumption D.2 (b), we can apply Lemma D.10 (d) to obtain that ∥(λI +A∗A)−1H0

t ∥HW
= Op{λ

min(θ,2)
2 −1}. Finally,

by Lemma D.13, we have ∥A∗A− Â∗Â∥op = Op(1/
√
n). Combining all the inequalities, we get

∥Pt∥HW
≤ 2 ·Op

(
1√
n

)
· λ

min(θ,2)
2 −1.

Next, we prove ∥Ag̃s∥HX
<∞. In fact, since A is bounded linear operators, we have ∥A∥op <∞. Besides, by Eq. (48),

we have ∥g̃s∥HW
<∞. Thus, we have ∥Ag̃s∥HX

≤ ∥A∥op · ∥g̃s∥HW
<∞.

Next we provide the bound for ∥ÂPt∥HX
.

∥ÂPt∥HX
= ∥λÂ(λI + Â∗Â)−1(Â∗Â−A∗A)(λI +A∗A)−1H0

t ∥HX

≤ λ · ∥Â(λI + Â∗Â)−1∥op · ∥Â∗Â−A∗A∥op · ∥(λI +A∗A)−1H0
t ∥HW

.

Since Â is a compact operator, by Lemma D.10 (c), we have ∥Â(λI+ Â∗Â)−1∥op = Op(1/
√
λ), ∥(λI+ Â∗Â)−1Â∗∥op =

Op(1/
√
λ). By assumption D.2 (2), we can apply Lemma D.10 (d) to have ∥(λI +A∗A)−1H0

t ∥HW
= Op{λ

min(θ,2)
2 −1}.

Finally, by Lemma D.13, we have ∥A∗A− Â∗Â∥op = Op(1/
√
n). Combining all the inequalities, we get:

∥ÂPt∥ ≤ λ ·Op

(
1√
λ

)
·Op

(
1√
n

)
·Op{λ

min(θ,2)
2 −1}.

Therefore, substituting all inequalities to Sn4(s, t) and θ ≥ 2 in assumption D.2 (b), we have
√
n |P{G4m(X, s)}| ≤

√
n · ∥Pt∥HW

· ∥Â−A∥op · ∥Ag̃s∥HX
+

√
n · ∥ÂPt∥HX

· ∥Ag̃s∥HX

≤
√
n ·
{
2 ·Op

(
1√
n

)
· λ

min(θ,2)
2 −1

}
·Op

(
1√
n

)
+

√
n ·
{
λ · λ−1/2 ·Op

(
1√
n

)
· λ

min(θ,2)
2 −1

}
= Op

(
1√
n

)
+ λ1/2 = op(1) + λ1/2.

(49)
By assumption 4.10, the last term is op(1).

Lemma D.8. Under assumptions 4.10, C.2, C.3 and D.2, Sn5(s, t) = op(1) as n→ ∞.

Proof. By the reproducing property, we have
{
(λI +A∗A)−1A∗bt −H0

t

}
(w) = ⟨(λI + A∗A)−1A∗bt −

H0
t , kW (w, ·)⟩HW

. Thus, we have the following for Sn5(s, t):

|P{G5m(X, s)}| =
∣∣E [{(λI +A∗A)−1A∗bt −H0

t }(W ) ·m(X, s)
]∣∣

=
∣∣∣E [〈(λI +A∗A)−1A∗bt −H0

t , ϕW (W )
〉
HW

·m(X, s)
]∣∣∣

(1)
=
∣∣⟨(λI +A∗A)−1A∗bt −H0

t ,E{m(X, s)ϕW (W )}⟩HW

∣∣ ,
29
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where (1) follows from (20).

By assumption D.2 (b) and AH0
t = bt, we can apply Lemma D.11 to obtain that ∥(λI + A∗A)−1A∗bt − H0

t ∥HW
=

∥(λI +A∗A)−1A∗AH0
t −H0

t ∥HW
= Op{λ

min(θ,2)
2 }. Combining this rate with the Cauchy-Schwartz inequality and and

θ ≥ 2 in assumption D.2 (a), we have

√
n |P{G5m(X, s)}| =

√
n
∣∣⟨(λI +A∗A)−1A∗bt −H0

t ,E{m(X, s)ϕW (W )}⟩HW

∣∣
≤

√
n · ∥(λI +A∗A)−1A∗bt −H0

t ∥HW
· ∥gs∥HW

(1)
= Op(

√
nλ2)

(2)
= op(1),

(50)

where (1) follows from ∥gs∥HW
<∞ by Eq. (46) in Lemma D.7 and (2) follows from assumption 4.10.

Lemma D.9. Under assumptions 4.10 C.2 and C.3, Sn1(s, t) = 1√
n

∑n
i=1 U(wi, yi, t){A(A∗A)−1gs}(xi) + op(1) as

n→ ∞, where gs(·) := E{m(X, s)kW (W, ·)}.

Proof. By the reproducing property, we have (λI + A∗A)−1A∗(̂bt − ÂH0
t )(W ) = ⟨(λI + A∗A)−1A∗(̂bt −

ÂH0
t ), ϕW (W )⟩HW

. Therefore, we have the following for Sn1(s, t):

P{G1m(X, s)} = E
[
(λI +A∗A)−1A∗(̂bt − ÂH0

t )(W )m(X, s)
]

= E
[
⟨(λI +A∗A)−1A∗(̂bt − ÂH0

t ), ϕW (W )⟩HW
·m(X, s)

]
(1)
=
〈
(λI +A∗A)−1A∗(̂bt − ÂH0

t ),E{m(X, s)ϕW (W )}
〉
HW

(2)
= ⟨A∗(̂bt − ÂH0

t ), (λI +A∗A)−1gs⟩HW

= ⟨A∗(̂bt − ÂH0
t ), {(λI +A∗A)−1 − (A∗A)−1}gs⟩HW

+ ⟨A∗(̂bt − ÂH0
t ), (A

∗A)−1gs⟩HW
,

where (1) follows from (20) and (2) follows from {(λI +A∗A)−1}∗ = (λI +A∗A)−1.

We first analyze the second term in RHS. By (26), we obtain:

(̂bt − ÂH0
t )(X) =

{
1

n

n∑
i=1

φ(yi, t)ϕX(xi)−
1

n

n∑
i=1

H0(wi, t)ϕX(xi)

}
(X)

=
1

n

n∑
i=1

U(wi, yi, t)kX(xi, X),

where U is defined in (34). Since A∗mt :=
∫
m(X, t)ϕW (W )dP(X,W ) in (27), we have:

{
A∗(̂bt − ÂH0

t )
}
(·) = 1

n

n∑
i=1

U(wi, yi, t)

∫
kX(xi, X)ϕW (W )dP(X,W )

=
1

n

n∑
i=1

U(wi, yi, t)A
∗{kX(xi, X)}(·),
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Therefore, we obtain:
√
n
〈
A∗(̂bt − ÂH0

t ), (A
∗A)−1gs

〉
HW

=
√
n
〈
(A∗A)−1A∗(̂bt − ÂH0

t ),E{m(X, s)ϕW (W )}
〉
HW

(1)
=
√
nE
{
(A∗A)−1A∗(̂bt − ÂH0

t )(W )m(X, s)
}

=
√
nE

[
(A∗A)−1

{
1

n

n∑
i=1

U(wi, yi, t)A
∗{kX(xi, X)}(W )

}
m(X, s)

]

=
1√
n

n∑
i=1

U(wi, yi, t)

∫
(A∗A)−1A∗{kX(xi, X)}(W )m(X, s)dP(X,W )

(2)
=

1√
n

n∑
i=1

U(wi, yi, t)
〈
(A∗A)−1A∗{kX(xi, X)},E{m(X, s)ϕW (W )}

〉
HW

=
1√
n

n∑
i=1

U(wi, yi, t)
〈
kX(xi, ·), A(A∗A)−1gs

〉
HX

(3)
=

1√
n

n∑
i=1

U(wi, yi, t){A(A∗A)−1gs}(xi),

where (1), (2), (3) follows from reproducing property f(x) = ⟨f, kX(x, ·)⟩HX
and g(w) = ⟨g, kW (w, ·)⟩HW

for each
f ∈ HX and g ∈ HW . Besides, for

√
n∥A∗(̂bt − ÂH0

t )∥HW
, we have:

∥A∗(̂bt − ÂH0
t )∥HW

= ∥A∗b̂t −A∗bt +A∗bt −A∗ÂH0
t ∥HW

≤ ∥A∗b̂t −A∗bt∥HW
+ ∥A∗AH0

t −A∗ÂH0
t ∥HW

≤ ∥A∗∥op · ∥b̂t − bt∥HX
+ ∥A∗∥op · ∥A− Â∥op · ∥H0

t ∥HW
.

Since H0
t ∈ HW , we must have ∥H0

t ∥HW
<∞. Besides, according to Sec. C.2, we have ∥A∗∥op = ∥A∥op <∞ since A is

a bounded linear operator. Therefore, the last term isOp

(
1√
n

)
. By Lemma D.12, we have

√
n∥A∗(̂bt−ÂH0

t )∥HW
= Op(1).

By the Cauchy-Schwartz inequality, we have:∣∣∣∣〈√nA∗(̂bt − ÂH0
t ), {(λI +A∗A)−1 − (A∗A)−1}gs

〉
HW

∣∣∣∣
≤

√
n∥A∗(̂bt − ÂH0

t )∥HW
·
∥∥{(λI +A∗A)−1 − (A∗A)−1

}
gs
∥∥
HW

≤ Op

{∥∥{(λI +A∗A)−1 − (A∗A)−1
}
gs
∥∥
HW

}
.

By A∗Ag̃s = gs in Lemma D.7, we have:

{(λI +A∗A)−1 − (A∗A)−1}gs = (λI +A∗A)−1A∗(Ag̃s)− g̃s. (51)

Since (λI +A∗A)−1A∗ is a Tikhonov regularization scheme, the RHS of the above display converges to 0 as λ→ 0. In
fact, according to Lemma D.11, we have ∥(λI +A∗A)−1A∗Ag − g∥2HW

≤ λmin{θ,2} since g satisfies assumption D.2 (b).
By (48), g̃s =

∑
j λ

−2
j ⟨gs, φj⟩HW

φj . Thus, similar to the proof of Lemma D.11, we have

∥{(λI +A∗A)−1 − (A∗A)−1}gs∥2HW
=
∑
j

{(
1

λ2j + λ
− 1

λ2j

)
⟨gs, φj⟩HW

}2

≤ sup
j

{
λληj

λ2j (λ
2
j + λ)

}2∑
j

|⟨gs, φj⟩HW
|2

λ2ηj
.

If η ≥ 4, since the maximum singular value of the operator equals ∥A∥op <∞, we have

sup
j

{
λληj

λ2j (λ
2
j + λ)

}2

≤ λ2sup
j

{
ληj

λ2j (λ
2
j + λ)

}2

≤ λ2sup
j
λ2η−8
j = O(λ2).
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If 2 < η < 4, we define x := λ2j . Plugging it into
{

λλη
j

λ2
j (λ

2
j+λ)

}2

, we define f(x) = λ2xη−2

(x+λ)2 . Noted that f(x) is maximized

(by using the first order condition) at x = λ(2− η)(η − 4)−1. Thus, the maximum value of f(x) is

xη−2λ2

(x+ λ)2
≤ (η − 2)η−2(4− η)4−η

4
· λη−2 = O(λη−2).

Thus, {(λI +A∗A)−1 − (A∗A)−1}gs → 0 by assumption 4.10. Therefore, we have

√
nP{G1m(X, s)} =

1√
n

n∑
i=1

U(wi, yi, t){A(A∗A)−1gs}(xi) + op(1).

D.4. Proofs in section 4.3

Theorem 4.12. Let ηs,t(O) := U(W,Y, t)m(X, s) −U(W,Y, t){A(A∗A)−1gs}(X), with O := (W,Y,X). Suppose
assumptions 4.9–4.11, C.2–C.4, and D.1–D.2 hold. Under H0, we have (i). Tn(s, t) converges weakly to G(s, t) such that∫∫

|G(s, t)|2dµ(s)dµ(t) <∞, where G(s, t) is a Gaussian process with zero-mean and covariance:

Σ{(s, t), (s′, t′)} = E{ηs,t(O)ηs′,t′(O
′))},

where O′ := (W ′, Y ′, X ′) is an independent copy of O; and (ii). ∆φ,m converges weakly to max
t∈T

∫
|G(s, t)|2dµ(s).

Proof. By (36), we have

Tn(s, t) =
√
nPn{U(W,Y, t)m(X, s)}+ (Expected risk difference) + (Empirical process) .

By Propositions D.3 and D.4, we have:

Tn(s, t) =
1√
n

n∑
i=1

U(wi, yi, t)
[
m(xi, s)−

{
A(A∗A)−1gs

}
(xi)

]
+ op(1).

Next, we apply Lemma D.15 to
{
U(wi, yi, t)

[{
m(xi, s)−A(A∗A)−1gs

}
(xi)

]}
i

to obtain the result. To this end, we
need to verify U(W,Y, t)[{A(A∗A)−1gs}(X) +m(X, s)] is zero mean and

E
[∥∥U(wi, yi, t)[m(xi, s− {A(A∗A)−1gs}(xi))]

∥∥
L2{T ×T ,µ×µ}

]
<∞. (52)

Notice that the zero-mean is met by E{U(W,Y, t)|X} = E{φ(Y, t) − H0(W, t)|X} = 0 under H0. Be-
sides, by assumption 4.11, we have Var(U(wi, yi, t)[m(xi, s) − {A(A∗A)−1gs}(xi)]) = E(U(wi, yi, t)[m(xi, s) −
{A(A∗A)−1gs}(xi)])2 < E{U(wi, yi, t)

4|Xi} + E[m(xi, s) − {A(A∗A)−1gs}(xi)]4 < ∞ for any (s, t). Therefore,
exchanging the order of integration, taking the maximum value of t, and setting the measure to be a probability measure, we
get (52). Thus, we have Tn(s, t) converges weakly to G(s, t) in L2{T × T , µ× µ}, where G(s, t) is a Gaussian process
with zero-mean.

For any fixed t and Tn(s, t) ∈ L2{T , µ}, we use the continuous mapping theorem (Theorem 1.3.6 of (Wellner et al., 2013))
to obtain ∫

|Tn(s, t)|2dµ(s)
d−→
∫

|G(s, t)|2dµ(s),

by the continuity of the integral functional. Next, for
∫
|Tn(s, t)|2dµ(s) ∈ L2{T , µ}, noted that t in

∫
|Tn(s, t)|2dµ(s) is

determined by U(w, y, t) = φ(y, t)−H0(w, t). To ensure that taking the max operation is meaningful, we need to prove
that if U(w, y, t) ∈ L2{F (w, y)} for any t, max

t∈T
|U(w, y, t)| ∈ L2{F (w, y)}. By (17), we have:∫

|φ(y, t)−H(w, t)|2p(w, y)dwdy ≤ 2

∫
|φ(y, t)|2p(y)dy + 2

∫
|H(w, t)|2p(w)dw

≤ 2 +

{∫∫ ∣∣∣∣g(w, u)p(u)

∣∣∣∣2 p(w)p(u)dwdu
}{∫ ∣∣∣∣∫ eityp(y|u)dy

∣∣∣∣2 p(u)du
}
<∞,
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where the second inequality follows from (a− b)2 ≤ 2a2 + 2b2 and |eity|2 = 1. Thus, taking max operation on both sides,
we have max

t∈T

∫
|U(w, y, t)|2p(w, y)dwdy <∞.

Next, we prove the continuity of the max functional in metric d. Next, we prove the continuity of the max functional. If
d(f1, f2) < δ given any δ > 0, we have max

t∈T
|f1(t)| −max

t∈T
|f2(t)| ≤ max

t∈T
|f1(t) − f2(t)| = d(f1, f2) < δ. Applying the

continuous mapping theorem to such continuous metric max, we have:

max
t∈T

∆(t)
d−→ max

t∈T

∫
|G(s, t)|2dµ(s).

The proof is complete.

Theorem 4.14. Suppose assumptions in Theorem 4.12 hold. Besides, we assume E{r(X, t)4} <∞. Then, we have:

(i) Global alternative. limn→∞ maxt∈T |Tn(s, t)| = ∞ for almost all s under Hfix
1 .

(ii) Local alternative (α < 1/2). limn→∞ maxt∈T |Tn(s, t)| = ∞ for almost all s under Hα
1n.

(iii) Local alternative (α = 1/2). Tn(s, t) converges weakly to G(s, t) + µ(X, s, t) such that
∫∫

|G(s, t) +
µ(X, s, t)|2dµ(s)dµ(t) < ∞ under Hα

1n, where G(s, t) is defined in Theorem 4.12 and µ(X, s, t) :=
E
[
{r(X, t)− (A∗A)−1A∗r(X, t)}m(X, s)

]
.

Proof. (i). The case of Hfix
1 .

We first decompose Tn(s, t) as follows

Tn(s, t) =
1√
n

n∑
i=1

Û(wi, yi; t)m(xi, s)

=
√
nPn

[
{φ(Y, t)− Ĥλ(W, t)}m(X, s)

]
=

√
nPn

[
{φ(Y, t)− Ĥ0(W, t) +H0(W, t)− Ĥλ(W, t)}m(X, s)

]
=

√
nPn

[
{φ(Y, t)− Ĥ0(W, t)}m(X, s)

]
−
√
nP
[
{Ĥλ(W, t)− Ĥ0(W, t)}m(X, s)

]
−
√
n(Pn − P)

[
{Ĥλ(W, t)− Ĥ0(W, t)}m(X, s)

]
.

where Ĥ0(W, t) is the least squares solution.

We first analyze P
[
{Ĥλ(W, t)− Ĥ0(W, t)}m(X, s)

]
.

For Ĥλ(w, t)− Ĥ0(w, t), we can decompose bt = brant + bkert , where bkert ∈ Ker(A∗) and brant ∈ Ker(A∗)⊥ = Ran(A).
By using a bεt ∈ Ran(A) to approximate brant , we get bt = brant − bεt + bεt + bkert . By this decomposition, we have the
following for Ĥλ(w, t)− Ĥ0(w, t):

Ĥλ(w, t)− Ĥ0(w, t) = (λI + Â∗Â)−1Â∗b̂t − Ĥ0(w, t)

= (λI + Â∗Â)−1Â∗(̂bt − bt) + (λI + Â∗Â)−1Â∗bt − (A∗A)−1A∗bt

= (λI + Â∗Â)−1Â∗(̂bt − bt) + {(λI + Â∗Â)−1Â∗ − (A∗A)−1A∗}(brant + bkert )

= (λI + Â∗Â)−1Â∗(̂bt − bt) + {(λI + Â∗Â)−1Â∗ − (A∗A)−1A∗}(brant − bεt + bεt + bkert ).

Thus, we have

P
[
{Ĥλ(W, t)− Ĥ0(W, t)}m(X, s)

]
= P

([
{(λI + Â∗Â)−1Â∗ − (A∗A)−1A∗}(brant − bεt )

]
m(X, s)

)
+ P

([
{(λI + Â∗Â)−1Â∗ − (A∗A)−1A∗}bkert

]
m(X, s)

)
+ P

([
{(λI + Â∗Â)−1Â∗ − (A∗A)−1A∗}bεt

]
m(X, s)

)
+ P

[
{(λI + Â∗Â)−1Â∗(̂bt − bt)}m(X, s)

]
.
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For the first term, since we can always make bεt arbitrarily close to brant , which causes brant − bεt < ε. Thus, we only need to
consider the last three terms.

For the second term, since bkert ∈ Ker(A∗), we have

{(λI + Â∗Â)−1Â∗ − (A∗A)−1A∗}bkert = (λI + Â∗Â)−1Â∗bkert .

Then, we have

P
{
(λI + Â∗Â)−1Â∗bkert ·m(X, s)

}
(1)
= ⟨(λI + Â∗Â)−1Â∗bkert ,E [m(X, s)ϕW (W )]⟩HW

= ⟨(λI + Â∗Â)−1(Â∗ −A∗)bkert , gs⟩HW
+ ⟨(λI + Â∗Â)−1A∗bkert , gs⟩HW

(2)
= ⟨(Â∗ −A∗)bkert , (λI + Â∗Â)−1gs⟩HW

= −⟨(Â∗ −A∗)bkert , {(λI +A∗A)−1 − (λI + Â∗Â)−1}gs⟩HW︸ ︷︷ ︸
(I)

+ ⟨(Â∗ −A∗)bkert , (λI +A∗A)−1gs⟩HW︸ ︷︷ ︸
(II)

,

where (1) follows from (20) and (2) follow from bkert ∈ Ker(A∗).

According to Lemma D.16, for the first term, we have

(I) = ⟨(Â∗ −A∗)bkert , {(λI + Â∗Â)−1(Â∗Â−A∗A)}(λI +A∗A)−1gs⟩HW
.

By Lemma D.10 (d) and assumption D.2 (b), we have
∥∥(λI +A∗A)−1gs

∥∥
HW

= Op{λ
min(η,2)

2 −1}. Since η > 2 in

assumption D.2 (a), we have
∥∥(λI +A∗A)−1gs

∥∥
HW

= Op(1). By Lemma D.12 and D.13, we have ∥Â∗ − A∗∥op =

Op(1/
√
n) and ∥Â∗Â−A∗A∥op = Op(1/

√
n). By Lemma D.10 (b), we have ∥(λI + Â∗Â)∥op = Op(1/λ). Combining

all these results, we get

(I) ≤ ∥Â∗ −A∗∥op · ∥bkert ∥ · ∥(λI + Â∗Â)−1∥op · ∥Â∗Â−A∗A∥op ·
∥∥(λI +A∗A)−1gs

∥∥
HW

= Op(1/
√
n) ∗Op(1/λ) ∗Op(1/

√
n) ∗Op(1) = Op

(
1

nλ

)
.

By assumption 4.10, we have (I) = op(1). For (II), by Lemma D.10 (d) and assumption D.2 (b), we have∥∥(λI +A∗A)−1gs
∥∥
HW

= Op

{
λ

min(η,2)
2 −1

}
. By Lemma D.12 and, we have ∥Â∗ −A∗∥op = Op(1/

√
n).

(II) ≤ ∥Â∗ − Â∥op · ∥bkert ∥HW
·
∥∥(λI +A∗A)−1gs

∥∥
HW

= Op(1/
√
n) ∗Op{λ

min(η,2)
2 −1} = op(1).

Next, we consider {(λI + Â∗Â)−1Â∗ − (A∗A)−1A∗}bεt . In fact, we have the following decomposition

{(λI + Â∗Â)−1Â∗ − (A∗A)−1A∗}bεt = S1 + S2 + S3,

where
S1 : = {(λI + Â∗Â)−1Â∗ − (λI +A∗A)−1Â∗}bεt ;

S2 : = (λI +A∗A)−1(Â∗ −A∗)bεt ;

S3 : =
{
(λI +A∗A)−1 − (A∗A)−1

}
A∗bεt .

For S2. we have
P{S2m(X, s)} = ⟨(λI +A∗A)−1(Â∗ −A∗)bεt ,E{m(X, s)ϕW (W )}⟩HW

= ⟨(Â∗ −A∗)bεt , (λI +A∗A)−1gs⟩HW

≤ ∥Â∗ −A∗∥op · ∥bεt∥HX
· ∥(λI +A∗A)−1gs∥HW

.
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By Lemma D.10 (d) and assumption D.2 (b), we have
∥∥(λI +A∗A)−1gs

∥∥
HW

= Op{λ
min(η,2)

2 −1}. By Lemma D.12, we

have ∥Â∗ − A∗∥op = Op(1/
√
n). Combining all these results and according to assumption D.2 (a) with η > 2, we get

P{S2m(X, s)} = Op(1/
√
n) = op(1).

For S3, since A∗Ag̃s = gs, we have

P{S3m(X, s)} = ⟨
{
(λI +A∗A)−1 − (A∗A)−1

}
A∗bεt ,E{m(X, s)ϕW (W )}⟩HW

= ⟨A∗bεt ,
{
(λI +A∗A)−1 − (A∗A)−1

}
gs⟩HW

= ⟨A∗bεt ,
{
(λI +A∗A)−1 − (A∗A)−1

}
A∗Ag̃s⟩HW

= ⟨A∗bεt , (λI +A∗A)−1A∗Ag̃s − g̃s⟩HW
.

By Lemma D.9, we have ∥(λI + A∗A)−1A∗Ag̃s − g̃s∥HW
= op(1). Besides, since ∥A∗∥op = ∥A∥op < ∞ and

∥bεt∥HX
<∞, we have

P{S3m(X, s)} ≤ ∥A∥op · ∥bεt∥HX
· ∥(λI +A∗A)−1A∗Ag̃s − g̃s∥HW

= op(1).

For S1, we have

P{S1m(X, s)} = ⟨{(λI + Â∗Â)−1Â∗ − (λI +A∗A)−1Â∗}bεt ,E{m(X, s)ϕW (W )}⟩HW

= ⟨{(λI + Â∗Â)−1 − (λI +A∗A)−1}Â∗bεt , gs⟩HW

= ⟨(λI +A∗A)−1{A∗A− Â∗Â}(λI + Â∗Â)−1Â∗bεt , gs⟩HW

= ⟨{A∗A− Â∗Â}(λI + Â∗Â)−1Â∗bεt , (λI +A∗A)−1gs⟩HW

≤ ∥A∗A− Â∗Â∥op · ∥(λI + Â∗Â)−1Â∗∥op · ∥bεt∥HX
· ∥(λI +A∗A)−1gs∥HW

.

By Lemma D.10 (d), we have ∥(λI + A∗A)−1gs∥HW
= Op{λ

min(η,2)
2 −1}. By Lemma D.10 (c), we have ∥Â(λI +

Â∗Â)−1∥op = ∥(λI + Â∗Â)−1Â∗∥op ≲ 1/
√
λ. By Lemma D.13, we have ∥A∗A− Â∗Â∥op = Op(1/

√
n). Combining

these results and according to assumption D.2 (a) with η > 2, we get P{S1m(X, s)} = Op(1/
√
nλ) = op(1).

Thus, we have
P
([

{(λI + Â∗Â)−1Â∗ − (A∗A)−1A∗}bεt
]
m(X, s)

)
= op(1).

For the last term, we have

P
[
{(λI + Â∗Â)−1Â∗(̂bt − bt)}m(X, s)

]
= ⟨(λI + Â∗Â)−1Â∗(̂bt − bt),E{m(X, s)ϕW (W )}⟩HW

≤
∥∥∥(λI + Â∗Â)−1Â∗

∥∥∥
op

· ∥b̂t − bt∥HX
· ∥gs∥HW

.

By Lemma D.10 (c), we have ∥(λI + Â∗Â)−1Â∗∥op ≲ 1/
√
λ. By Lemma D.12, we have ∥b̂t − bt∥op = Op(1/

√
n).

Combining these results, we get P
[
{(λI + Â∗Â)−1Â∗(̂bt − bt)}m(X, s)

]
= Op(1/

√
nλ) = op(1).

Thus, we have
P
[
{Ĥλ(W, t)− Ĥ0(W, t)}m(X, s)

]
= op(1).

By the above proof, we similarly have P
∣∣∣{Ĥλ(W, t)− Ĥ0(W, t)}m(X, s)

∣∣∣ = op(1), and therefore (Pn −

P)
[
{Ĥλ(W, t)− Ĥ0(W, t)}m(X, s)

]
= op(1).

Besides, for the first term of Tn(s, t), there exists t, we have

Pn

[
{φ(Y, t)− Ĥ0(W, t)}m(X, s)

]
= Pn

[
{φ(Y, t)−H0(W, t) +H0(W, t)− Ĥ0(W, t)}m(X, s)

]
.

According to the definition of Hfix
1 , there exists r(X, t) such that E{φ(Y, t) − H0(W, t)|X} = r(X, t), where r(X, t)

cannot be written as E{H(W, t)−H0(W, t)|X} for any t.
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We first prove E[|{r(X, t) +H0(W, t)− Ĥ0(W, t)}m(X, s)|] <∞. In fact, we only proof E[|r(X, t)m(X, s)|] <∞ and
E[|{H0(W, t)− Ĥ0(W, t)}m(X, s)|] <∞.

For E[|r(X, t)m(X, s)|], we have

E{|r(X, t)m(X, s)|} ≤ ∥r(X, t)∥1/2L2{F (x)} · ∥m(X, s)∥1/2L2{F (x)}

≤ ∥r(X, t)∥1/2HX
· ∥m(X, s)∥1/2L2{F (x)},

where the last inequality follows from (21) by assumption C.3. Since ∥r(X, t)∥HX
<∞ and the selected weight function

m satisfies ∥m(X, s)∥L2{F (x)} <∞, we have E{|r(X, t)m(X, s)|} <∞.

For E[|{H0(W, t)− Ĥ0(W, t)}m(X, s)|], we have

E[|{H0(W, t)− Ĥ0(W, t)}m(X, s)|] = E[|{H0(W, t)− Ĥ0(W, t)}E{m(X, s)|W}|]

≤ C · E{|H0(W, t)− Ĥ0(W, t)|}

≤ C · ∥H0(W, t)− Ĥ0(W, t)∥HW
,

where the second inequality follows from assumption 4.9 and the last inequality follows from (21) by assumption C.3. Since
H0(W, t)− Ĥ0(W, t) ∈ HW , we have E

[
{H0(W, t)− Ĥ0(W, t)}m(X, s)

]
<∞.

According to the law of large numbers, we know that it converges to E
[
{r(X, t) +H0(W, t)− Ĥ0(W, t)}m(X, s)

]
. We

assert that if Hfix
1 holds, then exists t satisfies E

[
{r(X, t) +H0(W, t)− Ĥ0(W, t)}|X

]
̸= 0. Proof by contradiction. If

r(X, t) = E
[
{H0(W, t)− Ĥ0(W, t)}|X

]
holds for any t, we have:

E
{
φ(Y, t)−H0(W, t)|X

}
= E{Ĥ0(W, t)−H0(W, t)|X},

which implies E {φ(Y, t)|X} = E{Ĥ0(W, t)|X} for any t. This is not consistent with Hfix
1 .

Combining these results, we have:

lim
n→∞

max
t∈T

|Tn(s, t)| = lim
n→∞

√
n{Op(1) + op(1)} = ∞.

for almost all s under Hfix
1 .

(ii). The case of Hα
1n with 0 < α < 1/2.

We first decompose the term into P
[
{Ĥλ(W, t)− Ĥ0(W, t)}m(X, s)

]
into

∑6
i=1Gi, where

G1 :=(λI +A∗A)−1A∗(̂bt − ÂH0
t )

G2 :=(λI +A∗A)−1(Â∗ −A∗)(̂bt − ÂH0
t );

G3 :=
{
(λI + Â∗Â)−1 − (λI +A∗A)−1

}
Â∗(̂bt − ÂH0

t );

G4 :=(λI + Â∗Â)−1Â∗ÂÂH0
t − (λI +A∗A)−1A∗bt;

G5 :=(λI +A∗A)−1A∗bt − ÂH0
t .

G6 :=H0 (w, t)− Ĥ0 (w, t) = H0 (w, t)− (A∗A)
−1
A∗bt.

We define ℓ(X, t) = E{r(X, t)ϕX(X)}.
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For P{G2m(X, s)}, following Lemma D.5, we have

P{G2m(X, s)} = ⟨(λI +A∗A)−1(Â∗ −A∗)(̂bt − ÂH0
t ), gs⟩HW

= ⟨̂bt − ÂH0
t , (Â−A)(λI +A∗A)−1gs⟩HX

= ⟨̂bt − bt + bt − ÂH0
t , (Â−A)(λI +A∗A)−1gs⟩HX

= ⟨̂bt − bt +AH0
t + ℓ(X, t)/nα − ÂH0

t , (Â−A)(λI +A∗A)−1gs⟩HX

= ⟨ℓ(X, t)/nα, (Â−A)(λI +A∗A)−1gs⟩+ ⟨̂bt − bt, (Â−A)(λI +A∗A)−1gs⟩HX

+ ⟨AH0
t − ÂH0

t , (Â−A)(λI +A∗A)−1gs⟩HX
.

By Lemma D.12, we have ∥b̂t − bt∥HX
= Op(1/

√
n) and ∥Â − A∥op = Op(1/

√
n). By Lemma D.10 (d), we have

∥(λI +A∗A)−1gs∥HW
= Op{λ

min(η,2)
2 −1}. Therefore, we have

P{G2m(X, s)} ≤ ⟨ℓ(X, t)/nα, (Â−A)(λI +A∗A)−1gs⟩HX
+ ∥b̂t − bt∥HX

· ∥Â−A∥op · ∥(λI +A∗A)−1gs∥HW

+ ∥Â−A∥op · ∥H0
t ∥HW

· ∥Â−A∥op · ∥(λI +A∗A)−1gs∥HW

≤ ⟨ℓ(X, t)/nα, (Â∗ −A∗)(λI +A∗A)−1gs⟩HX
+Op(1/n).

For P{G3m(X, s)}, following Lemma D.6, we have

P{G3m(X, s)} =
〈{

(λI + Â∗Â)−1 − (λI +A∗A)−1
}
Â∗(̂bt − ÂH0

t ), gs

〉
HW

=
〈
(λI +A∗A)−1(A∗A− Â∗Â)(λI + Â∗Â)−1Â∗(̂bt − ÂH0

t ), gs

〉
HW

= ⟨̂bt − bt + bt − ÂH0
t , Â(λI + Â∗Â)−1(A∗A− Â∗Â)(λI +A∗A)−1gs⟩HX

= ⟨̂bt − bt +AH0
t + ℓ(X, t)/nα − ÂH0

t , Â(λI + Â∗Â)−1(A∗A− Â∗Â)(λI +A∗A)−1gs⟩HX

= ⟨ℓ(X, t)/nα, Â(λI + Â∗Â)−1(A∗A− Â∗Â)(λI +A∗A)−1gs⟩HX

+ ⟨̂bt − bt, Â(λI + Â∗Â)−1(A∗A− Â∗Â)(λI +A∗A)−1gs⟩HX

+ ⟨AH0
t − ÂH0

t , Â(λI + Â∗Â)−1(A∗A− Â∗Â)(λI +A∗A)−1gs⟩HX
.

By Lemma D.12, we have ∥b̂t − bt∥HX
= Op(1/

√
n) and ∥Â − A∥op = Op(1/

√
n). By Lemma D.10 (d), we have

∥(λI +A∗A)−1gs∥HW
= Op{λ

min(η,2)
2 −1}. By Lemma D.10 (c), we have ∥Â(λI + Â∗Â)−1∥op = Op(1/

√
λ). Therefore,

we have

P{G3m(X, s)} ≤ ⟨ℓ(X, t)/nα, Â(λI + Â∗Â)−1(A∗A− Â∗Â)(λI +A∗A)−1gs⟩HX

+ ∥b̂t − bt∥HX
· ∥Â(λI + Â∗Â)−1∥op · ∥A∗A− Â∗Â∥op · ∥(λI +A∗A)−1gs∥HW

+ ∥Â−A∥op · ∥H0
t ∥HW

· ∥Â(λI + Â∗Â)−1∥op · ∥A∗A− Â∗Â∥op · ∥(λI +A∗A)−1gs∥HW

≤ ⟨ℓ(X, t)/nα, Â(λI + Â∗Â)−1(A∗A− Â∗Â)(λI +A∗A)−1gs⟩HX
+Op

(
1

n
√
λ

)
.

For G4 and G5, noted that

G4 +G5 = (λI + Â∗Â)−1Â∗ÂH0
t − (λI +A∗A)−1A∗bt + (λI +A∗A)−1A∗bt −H0

t

= (λI + Â∗Â)−1Â∗ÂH0
t − (λI +A∗A)−1A∗(AH0

t + r/
√
n) + (λI +A∗A)−1A∗(AH0

t + r/
√
n)−H0

t

= (λI + Â∗Â)−1Â∗ÂH0
t − (λI +A∗A)−1A∗AH0

t︸ ︷︷ ︸
G4

+(λI +A∗A)−1A∗AH0
t −H0

t︸ ︷︷ ︸
G5

,

where G4 and G5 are those defined in Proposition D.4. Therefore, we have P{G4m(X, s)} = Op (1/n) + λ1/2/
√
n and

P{G5m(X, s)} = Op(λ).
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For P{G1m(X, s)}, following Lemma D.9, we have

P{G1m(X, s)} =⟨(λI +A∗A)−1A∗(̂bt − ÂH0
t ), gs⟩HW

=⟨A∗(̂bt − ÂH0
t ), (λI +A∗A)−1gs⟩HW

= ⟨A∗(̂bt − ÂH0
t ),
{
(λI +A∗A)−1 − (A∗A)−1

}
gs⟩HW︸ ︷︷ ︸

(I)

+ ⟨A∗(̂bt − ÂH0
t ), (A

∗A)−1gs⟩HW︸ ︷︷ ︸
(II)

.

For (II), following Lemma D.9, we have

⟨A∗(̂bt − ÂH0
t ), (A

∗A)−1gs⟩HW
=

〈
A∗

{
1

n

n∑
i=1

φ(yi, t)ϕX(xi)−
1

n

n∑
i=1

H0(wi, t)ϕX(xi)

}
, (A∗A)−1gs

〉
HW

=

〈
A∗

{
1

n

n∑
i=1

{U (wi, yi, t) + r (xi, t) /n
α}ϕX(xi)

}
, (A∗A)−1gs

〉
HW

=

〈
A∗

{
1

n

n∑
i=1

{U (wi, yi, t)}ϕX(xi)

}
, (A∗A)−1gs

〉
HW

+

〈
A∗

{
1

n

n∑
i=1

r (xi, t) /n
αϕX(xi)

}
, (A∗A)−1gs

〉
HW

=
1

n

n∑
i=1

U(wi, yi, t){A(A∗A)−1gs}(xi)

+

〈
A∗

{
1

n

n∑
i=1

r (xi, t) /n
αϕX(xi)

}
, (A∗A)−1gs

〉
HW

.

For (I), we have

⟨A∗(̂bt − ÂH0
t ),
{
(λI +A∗A)−1 − (A∗A)−1

}
gs⟩HW

= ⟨A∗(̂bt − bt + bt − ÂH0
t ),
{
(λI +A∗A)−1 − (A∗A)−1

}
gs⟩HW

= ⟨A∗(̂bt − bt +AH0
t + ℓ(X, t)/nα − ÂH0

t ),
{
(λI +A∗A)−1 − (A∗A)−1

}
gs⟩HW

= ⟨A∗(̂bt − bt,
{
(λI +A∗A)−1 − (A∗A)−1

}
gs⟩HW

+ ⟨A∗(AH0
t − ÂH0

t ),
{
(λI +A∗A)−1 − (A∗A)−1

}
gs⟩HW

+ ⟨A∗ℓ(X, t)/nα,
{
(λI +A∗A)−1 − (A∗A)−1

}
gs⟩HW

.

By Lemma D.12, we have ∥b̂t − bt∥HX
= Op(1/

√
n) and ∥Â − A∥op = Op(1/

√
n). By Lemma D.9, we have

∥
{
(λI +A∗A)−1 − (A∗A)−1

}
gs∥ = op(1). Thus, we have

⟨A∗(̂bt−ÂH0
t ),
{
(λI +A∗A)−1 − (A∗A)−1

}
gs⟩HW

≤ op(1/
√
n)+⟨A∗ℓ(X, t)/nα,

{
(λI +A∗A)−1 − (A∗A)−1

}
gs⟩HW

.

For P{G6m(X, s)}, we have

⟨(A∗A)−1A∗bt −H0
t , gs⟩HW

= ⟨(A∗A)−1A∗ (AH0
t + ℓ (X, t) /nα

)
−H0

t , gs⟩HW

= ⟨A∗ (ℓ (X, t) /nα) , (A∗A)−1gs⟩HW
.
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Combining these results, we get

√
n

6∑
i=1

P{Gim(X, s)} =
1√
n

n∑
i=1

U(wi, yi, t){A(A∗A)−1gs}(xi) +
√
n

nα
⟨ℓ(X, t), (Â∗ −A∗)(λI +A∗A)−1gs⟩HX︸ ︷︷ ︸

(I)

+

√
n

nα
⟨ℓ(X, t), Â(λI + Â∗Â)−1(A∗A− Â∗Â)(λI +A∗A)−1gs⟩HX︸ ︷︷ ︸

(II)

+

√
n

nα
⟨A∗ℓ(X, t),

{
(λI +A∗A)−1 − (A∗A)−1

}
gs⟩HW︸ ︷︷ ︸

(III)

+

√
n

nα
⟨A∗

{
1

n

n∑
i=1

r (xi, t)ϕX(xi)

}
, (A∗A)−1gs⟩HW

−
√
n

nα
⟨A∗ (ℓ (X, t)) , (A∗A)−1gs⟩HW

.

By Lemma D.12, we have ∥b̂t − bt∥HX
= Op(1/

√
n) and ∥Â − A∥op = Op(1/

√
n). By Lemma D.13, we have

∥A∗A− Â∗Â∥ = Op(1/
√
n). By Lemma D.10 (d), we have ∥(λI +A∗A)−1gs∥HW

= Op{λ
min(η,2)

2 −1}. By Lemma D.10
(c), we have ∥Â(λI + Â∗Â)−1∥op = Op(1/

√
λ). By Lemma D.9, we have ∥

{
(λI +A∗A)−1 − (A∗A)−1

}
gs∥ = op(1).

Thus, for the term (I), we have

(I) ≤
√
n

nα
· ∥ℓ(X, t)∥ · ∥Â∗ −A∗∥op · ∥(λI +A∗A)−1gs∥HW

≤
√
n

nα
·Op(1/

√
n) = op

(√
n

nα

)
.

For term (II), we have

(II) ≤
√
n

nα
· ∥ℓ(X, t)∥ · ∥Â(λI + Â∗Â)−1∥op · ∥A∗A− Â∗Â∥op · ∥(λI +A∗A)−1gs∥HW

≤
√
n

nα
·Op(1/

√
nλ) = op

(√
n

nα

)
.

For term (III), we have

(III) ≤
√
n

nα
· ∥A∗∥ · ∥ℓ(X, t)∥ · ∥

{
(λI +A∗A)−1 − (A∗A)−1

}
gs∥HW

≤
√
n

nα
· op(1) = op

(√
n

nα

)
.

For the last term, we have
√
n

nα

〈
A∗

{
1

n

n∑
i=1

r (xi, t)ϕX(xi)

}
, (A∗A)−1gs

〉
HW

−
√
n

nα
〈
A∗ (ℓ (X, t)) , (A∗A)−1gs

〉
HW

=

√
n

nα

〈{ 1

n

n∑
i=1

r (xi, t)ϕX(xi)

}
− E[r (X, t)ϕX(X)], A(A∗A)−1gs

〉
HW

 .
By Lemma 11 of (Mastouri et al., 2021), we have

∥∥ 1
n

∑n
i=1 r (xi, t)ϕX(xi)− E[r (X, t)ϕX(X)]

∥∥ = Op(1/
√
n). Com-

bining all these results, we have:

√
n

6∑
i=1

P{Gim(X, s)} =
1√
n

n∑
i=1

U(wi, yi, t){A(A∗A)−1gs}(xi) + op

(√
n

nα

)
+ op(1). (53)
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Besides, for the first term of Tn(s, t), we have

Pn

[
{φ(Y, t)− Ĥ0(W, t)}m(X, s)

]
= Pn

[
{φ(Y, t)−H0(W, t) +H0(W, t)− Ĥ0(W, t)}m(X, s)

]
= Pn

[
{U(W,Y, t) + r(X, t)/nα +H0(W, t)− Ĥ0(W, t)}m(X, s)

]
.

Therefore, combining (53), we have

Tn(s, t) =
√
nPn

(
U(W,Y, t)

[
m(X, s)− {A(A∗A)−1gs}(xi)

])
+
√
nPn

[
{r (X, t) /nα +H0(W, t)− Ĥ0(W, t)}m(X, s)

]
+ op

(√
n

nα

)
+ op(1).

For the first term, according to Theorem 4.12, we have
√
nPn

(
U(W,Y, t)

[
m(X, s)− {A(A∗A)−1gs}(xi)

])
converges

weakly to G(s, t). For the second term, we have
√
nPn

[
{r (X, t) /nα +H0(W, t)− Ĥ0(W, t)}m(X, s)

]
=

√
nPn

[
{r (X, t) /nα +H0(W, t)−A∗A)−1A∗ {AH0(W, t) + r(X, t)/nα

}
}m(X, s)

]
=

√
n

nα
Pn

[
{r(X, t)− (A∗A)−1A∗r(X, t)}m(X, s)

]
.

According to the law of large numbers, we know that it converges to E
[
{r(X, t)/nα +H0(W, t)− Ĥ0(W, t)}m(X, s)

]
.

We assert that if Hα
1n holds, then for any t E

[
{r(X, t)/nα +H0(W, t)− Ĥ0(W, t)}|X

]
̸= 0. Proof by contradiction. If

r(X, t)/nα = E
[
{H0(W, t)− Ĥ0(W, t)}|X

]
for any t, we have

E{φ(Y, t)−H0(W, t)|X} = E{Ĥ0(W, t)−H0(W, t)|X} for any t.

This implies E{φ(Y, t) − Ĥ0(W, t)|X} = 0 for any t, which is not consistent with Hα
1n. Thus, we have

E
[
{r(X, t)/nα +H0(W, t)− Ĥ0(W, t)}|X

]
̸= 0, which implies E

[
{r(X, t)− (A∗A)−1A∗r(X, t)}m(X, s)

]
̸= 0.

Combining these results, we have

lim
n→∞

max
t∈T

|Tn(s, t)| = Op(1)︸ ︷︷ ︸
(⋆)

+ lim
n→∞

√
n

{
1

nα
Op(1) + op

(√
n

nα

)
+ op(1)

}
= ∞.

for almost all s under Hα
1n(0 < α < 1/2), where (⋆) follows from the Gaussian process.

(iii). The case of Hα
1n with α = 1/2.

Following the proof of Hα
1n with 0 < α < 1/2, we have

Tn(s, t) =
√
nPn

(
U(W,Y, t)

[
m(X, s)− {A(A∗A)−1gs}(xi)

])
+
√
nPn

[
{r (X, t) /nα +H0(W, t)− Ĥ0(W, t)}m(X, s)

]
+ op

(√
n

nα

)
+ op(1).

Taking α = 1/2, we obtain

Tn(s, t) =
√
nPn

(
U(W,Y, t)

[
m(X, s)− {A(A∗A)−1gs}(xi)

])
+
√
nPn

[
{r (X, t) /n1/2 +H0(W, t)− Ĥ0(W, t)}m(X, s)

]
+ op(1).

For the first term, according to Theorem 4.12, we have
√
nPn

(
U(W,Y, t)

[
m(X, s)− {A(A∗A)−1gs}(xi)

])
converges

weakly to G(s, t). For the second term, we have
√
nPn

[
{r (X, t) /n1/2 +H0(W, t)− Ĥ0(W, t)}m(X, s)

]
=

√
nPn

[
{r (X, t) /n1/2 +H0(W, t)−A∗A)−1A∗

{
AH0(W, t) + r(X, t)/n1/2

}
}m(X, s)

]
= Pn

[
{r(X, t)− (A∗A)−1A∗r(X, t)}m(X, s)

]
.
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Thus, we have

Tn(s, t) =
1√
n

n∑
i=1

{U(wi, yi, t)} [{A(A∗A)−1gs}(xi) +m(xi, s)]

+
1

n

n∑
i=1

{r(xi, t)− (A∗A)−1A∗r(X, t)}m(xi, s) + op(1).

Besides, we have:

E
({
U(wi, yi, t)− r(xi, t)/

√
n}
[
m(xi, s)− {A(A∗A)−1gs

}
(xi)

])2
= E(U(wi, yi, t)[m(xi, s)− {A(A∗A)−1gs}(xi)])2 + n−1E

(
r(xi, t)

2[m(xi, s){A(A∗A)−1gs}(xi)]2
)

− 2n−1/2E
(
E{U(wi, yi, t)|xi}r(xi, t)[m(xi, s)− {A(A∗A)−1gs}(xi)]2

)
(1)
= E(U(wi, yi, t)[m(xi, s)− {A(A∗A)−1gs}(xi)])2︸ ︷︷ ︸

(I)

− n−1E
(
r(xi, t)

2[m(xi, s)− {A(A∗A)−1gs}(xi)]2.
)︸ ︷︷ ︸

(II)

,

where (1) follows from E{U(wi, yi, t)|xi} = r(xi, t)/
√
n under Hα

1n. Following 4.12, we have (I) < ∞. Besides, for
the second term, we have (II) ≤ 2E{r(xi, t)4} + 2E

(
[m(xi, s)− {A(A∗A)−1gs}(xi)]4

)
< ∞ by inequality a2b2 ≤

(a4 + b4)/2 and assumption 4.11. Thus, we have E({U(wi, yi, t) − r(xi, t)/
√
n}[m(xi, s) − {A(A∗A)−1gs}(xi)])2 →

E({U(wi, yi, t)}[m(xi, s)− {A(A∗A)−1gs}(xi)])2 as n→ ∞. Therefore, the first term of Tn(s, t) converges weakly to
G(s, t) in L2{T × T , µ× µ} by Lemma D.15, where G(s, t) is defined Theorem 4.12.

Besides, we need to prove E
[
{r(X, t)−A(A∗A)−1r(X, t)}m(X, s)

]
<∞. In fact, we only proof E [r(X, t)m(X, s)] <

∞ and E
[
(A∗A)−1A∗r(X, t) ·m(X, s)

]
<∞.

For E[|r(X, t)m(X, s)|], we have

E{|r(X, t)m(X, s)|} ≤ ∥r(X, t)∥1/2L2{F (x)} · ∥m(X, s)∥1/2L2{F (x)}

≤ ∥r(X, t)∥1/2HX
· ∥m(X, s)∥1/2L2{F (x)},

where the last inequality follows from (21) by assumption C.3. Since ∥r(X, t)∥HX
<∞ and the selected weight function

m satisfies ∥m(X, s)∥L2{F (x)} <∞, we have E{|r(X, t)m(X, s)|} <∞.

For E|
[
(A∗A)−1A∗r(X, t) ·m(X, s)|

]
, we have

E|
[
(A∗A)−1A∗r(X, t) ·m(X, s)|

]
= E[|{(A∗A)−1A∗r(X, t)}E{m(X, s)|W}|]
≤ C · E{|(A∗A)−1A∗r(X, t)|}
≤ C · ∥(A∗A)−1A∗r(X, t)∥HW

,

where the second inequality follows from assumption 4.9 and the last inequality follows from (21) by assumption C.3. Since
(A∗A)−1A∗r(X, t) ∈ HW , we have E

[
{(A∗A)−1A∗r(X, t)}m(X, s)

]
<∞.

Therefore, the second term of Tn(s, t) converges weakly to µ(X, s, t) := E
[
{r(X, t)− (A∗A)−1A∗r(X, t)}m(X, s)

]
.

By Slutsky’s theorem, we have Tn(s, t) converges weakly to G(s, t) + µ(X, s, t) in L2{T × T , µ× µ} under Hα
1n with

α = 1/2.

Corollary 4.16. Suppose assumptions in Theorem 4.12 hold. If φ(y, t) is continuous with respect to t for each y, then ∆̂φ,m

is weakly convergent to maxt∈T
∫
T |G(s, t)|2dµ(s) under H0, as n,K → ∞. Besides, conditional on the original sample

{yi, wi, xi}ni=1, the bootstrapped statistics (8) is also weakly convergent to the maxt∈T
∫
T |G(s, t)|2dµ(s).

Proof. (i). ∆̂φ,m is weakly convergent to maxt∈T
∫
|G(s, t)|2dµ(s).

We denote Xn(t) :=
∫
T {Tn(s, t)}2 dµ(s) and Xn(t) weakly converges to X(t) =

∫
T |G(s, t)|2 dµ(s). Since

integral of the Gaussian process G(s, t) still a Gaussian process with respect to t, we can obtain the variance∫
T |Var{η(X,W, Y, s, t)}|2 dµ(s). Besides, for the Gaussian process, X(t) is continuous in probability if and only if
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its mean and variance are continuous following (Seeger, 2004). Since φ(y, t) is continuous with respect to t, the vari-
ance is continuous. Therefore, X(t) is continuous in probability. Assume that we obtains the maximum value at t0, i.e.
maxt∈T X(t) = X(t0). Since the process X(t) is continuous in probability, we have that, for any ε > 0, there exists δ such
that as long as |t− t0| < δ, P(|X(t)−X(t0)| > ε/3) < ε.

Since {t1, ..., tK} are evaluated at a grid of equidistant indices, for any t0 ∈ T , we have limK→∞ mink |t0 − tk| =
0. That means, for any δ > 0, there exists K0, such that as long as K > K0, there exists tk with 1 ≤ k ≤ K,
|tk − t0| < δ. Further, for any finite t1, ..., tK , denote TK := {k : X(tk) = maxj≤K X(tj)} and set δ0 := X(tk0

) −
X(tk1

), where tk0
∈ TK and X(tk1

) := argmaxtj ̸∈TK
X(tj). For such K, there exists NK , such that when n > NK ,

P [|Xn(tk)−X(tk)| > min{ε/3, δ0/2}] < ε
2K for any k ≤ K. Therefore, for any ε > 0, there exists K > K0 such that

mink≤K |tk − t0| < δ, and NK such that for any n > NK , we have:

P(|max
k≤K

Xn(tk)−X(t0)| > ε) ≤ P(|max
k≤K

Xn(tk)−Xn(tk0
)| > ε/3)

+ P(|Xn(tk0)−X(tk0)| > ε/3) + P(|X(tk0)−X(t0)| > ε/3)

≤ ε+ P(|max
k≤K

Xn(tk)−Xn(tk0)| > ε/3) + P(|X(tk0)−X(t0)| > ε/3).

For P(|maxk≤K Xn(tk)−Xn(tk0
)| > ε/3), we have:

P(|max
k≤K

Xn(tk)−Xn(tk0
)| > ε/3) ≤ P(max

k≤K
Xn(tk) ̸= Xn(tk0

))

≤ P{∃tj ̸∈ TK ,max
k≤K

Xn(tk) = Xn(tj)}

≤
∑
j≤K

P{max
k≤K

Xn(tk) = Xn(tj)}

=
∑
j≤K

P{Xn(tj)−X(tj) +X(tj)−X(tk0
) +X(tk0

)−Xn(tk0
) > 0}

≤
∑
j≤K

P{Xn(tj)−X(tj) +X(tk0
)−Xn(tk0

) > δ0}

≤
∑
j≤K

[P{|Xn(tj)−X(tj)| > δ0/2}+ P{|Xn(tk0
)−X(tk0

)| > δ0/2}]

≤
∑
j≤K

( ε

2K
+

ε

2K

)
= ε.

Denote k′ := argmink≤K |tk − t0|. Then for P(|X(tk0)−X(t0)| > ε/3), we have:

P(|X(tk0
)−X(t0)| > ε/3) = P{X(t0)−X(tk0

) > ε/3}
= P{X(t0)−X(tk′) +X(tk′)−X(tk0

) > ε/3}
≤ P{X(t0)−X(tk′) > ε/3} ≤ ε.

Combining these results together, we have limn→∞ limK→∞ maxk≤K Xn(tk) =d maxt∈T X(t).

(ii). Bootstrapped statistics (8) is also weakly convergent to the maxt∈T
∫
|G(s, t)|2dµ(s).

By Theorem 2.9.2 of (Wellner et al., 2013), T̂ b
n(s, t) =

1√
n

∑n
i=1 ω

b
i Û(wi, yi, t)m(xi, s) is weakly convergent to G(s, t)

conditional the original sample. Applying the continuous mapping theorem,
∫
|T̂ b

n(s, t)|2dµ(s) is weakly convergent to∫
|G(s, t)|2dµ(s). Using the proof in (i) again, we can obtain that ∆̂b

φ,m = maxk∈[K]

∫
T |T̂ b

n(s, tk)|2dµ(s) is weakly
convergent to maxt∈T

∫
|G(s, t)|2dµ(s), conditional the original sample.

D.5. Auxiliary lemmas

We provide some auxiliary lemmas needed for the theoretical analysis above.

Lemma D.10 (Lemma 2.5 of (Beyhum et al., 2024)). Let (W, ∥·∥W) and (X , ∥·∥X ) be two Hilbert spaces andA : W 7→ X
be a linear compact operator with singular value decomposition given by (λn, φn, ϕn)

+∞
n=1, ∥ · ∥2op be operator norm. Let

I : W 7→ W be the identity operator. For each λ > 0, we have the following results:
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(a)
∥A(λI +A∗A)−1A∗∥op ≤ 1.

(b)
∥λ(λI +A∗A)−1∥op ≤ 2.

(c)

∥(λI +A∗A)−1A∗∥op = ∥A(λI +A∗A)−1∥op ≤ 1

2
√
λ
.

(d) For any γ > 0 and g ∈ W such that ∥g∥2γ :=
∑

j λ
−2γ
j |⟨g, φj⟩|2 <∞, there holds:

∥λ(λI +A∗A)−1g∥W = O
{
λ

min(γ,2)
2

}
.

Lemma D.11. If H0(w, t) is the least norm solution to the linear inverse problem and satisfies assumption D.2 (b), then the
solution to the Tikhonov regularization Hλ(w, t) satisfies that:

∥Hλ(w, t)−H0(w, t)∥2HW
≤ Op{λmin(θ,2)}.

Proof. For the operator A : HW → HX defined in (24), its singular value decomposition given by (λn, φn, ϕn)
+∞
n=1.

Thus, we have H0
t =

∑
j⟨H0

t , φj⟩HW
φj . Besides, according to Aφn = λnϕn and A∗ϕn = λnφn, we have Hλ

t =

(A∗A+ λI)−1A∗f =
∑

j

λ2
j

λ2
j+λ

⟨H0
t , φj⟩HW

φj . Thus, we have

∥Hλ(w, t)−H0(w, t)∥2HW
=

∥∥∥∥∥∥
∑
j

(
λ2j

λ2j + λ
− 1

)
⟨H0

t , φj⟩HW
φj

∥∥∥∥∥∥
2

HW

=
∑
j

{(
λ2j

λ2j + λ
− 1

)
⟨H0

t , φj⟩HW

}2

=
∑
j

λ2λ2θj
(λ2j + λ)2

|⟨H0
t , φj⟩HW

|2

λ2θj

≤ sup
j

(
λλθj
λ2j + λ

)2∑
j

|⟨H0
t , φj⟩HW

|2

λ2θj
.

Applying assumption D.2 (b) for θ ≥ 2, and the maximum singular value of the operator equals ∥A∥op <∞, we have

sup
j

(
λλθj
λ2j + λ

)2

= λ2sup
j

(
λθj

λ2j + λ

)2

≤ λ2sup
j
λ2θ−4
j = O(λ2).

For 0 < θ < 2, we define x = λ2j and f(x) = λ2xθ

(x+λ)2 . Noted that f(x) is maximized (by using the first order condition) at
x = λθ(2− θ)−1. Thus, the maximum value of f(x) is

xθλ2

(x+ λ)2
≤ λθ

θθ(2− θ)2−θ

4
≤ O(λθ).

The proof is complete.

Lemma D.12 (Lemma 12 of (Mastouri et al., 2021)). Suppose assumptions C.2 and C.3 hold for constants cY and κ,
respectively. Define σ2

f and σ2
A as follows:

σ2
f := E{∥φ(Y, t)ϕX(X)∥2}, σ2

A := E{∥ϕX(X)∥2∥ϕW (W )∥2}.
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For A, f defined in Eq.(24), and A∗ in (28), the estimates Â, f̂ given by (26) satisfy the following properties with probability
at least 1− δ:

∥b̂t − bt∥HX
≤ 2cY κ

3 log(2/δ)

n
+

√
2σ2

f log(2/δ)

n
= Op

(
1√
n

)
∥Â−A∥op ≤ 2κ6 log(2/δ)

n
+

√
2σ2

A log(2/δ)

n
= Op

(
1√
n

)
∥Â∗ −A∗∥op ≤ 2κ6 log(2/δ)

n
+

√
2σ2

A log(2/δ)

n
= Op

(
1√
n

)
.

Lemma D.13 (Lemma 13 of (Mastouri et al., 2021)). Suppose assumptions C.2 and C.3 hold. ForA,A∗ defined respectively
in (24) and (28), the estimates Â given by (26) satisfies:

∥Â∗Â−A∗A∥op = Op

(
1√
n

)
.

Lemma D.14 (Lemma 2.4 of (Beyhum et al., 2024)). For random variables X,W , let m(·) be the function such that
E[m(X)|W ] is bounded. Besides, we denote F as a class of functions ofW such that

∫ 1

0

√
N[](ϵ,F , ∥ · ∥L2{F (w)})dϵ <∞.

If ∥(f̂ − f0)m∥L2{F (x,w)} = op(1) and P(f̂ ∈ F) → 1, then

√
n(Pn − P){(f̂ − f0)m} = op(1).

Lemma D.15 (Lemma 2.1 of (Li et al., 2003)). Let Z1(·), · · · , Zn(·) be independent and identically distributed zero mean
random elements on L2(S, ν) such that E{∥Zi(·)∥2L2(S,ν)} := E

{∫
s
Z2
i (s)dν(s)

}
. Here, L2(S, ν) is square integrable

function space with respect to the measure ν. Then n−1/2
∑n

i=1 Zi(·) converges weakly to a zero mean Gaussian process
with the covariance function given by Ω(s, s′) = E{Zi(s)Zi(s

′)}.

Lemma D.16. For operators A and Â and their adjoint A∗ and Â∗, we have the following transformation:

(λI + Â∗Â)−1 − (λI +A∗A)−1 = (λI +A∗A)−1(A∗A− Â∗Â)(λI + Â∗Â)−1.

Proof.
(λI + Â∗Â)−1 − (λI +A∗A)−1 = I · (λI + Â∗Â)−1 − (λI +A∗A)−1 · I

=(λI +A∗A)−1(λI +A∗A)(λI + Â∗Â)−1 − (λI +A∗A)−1(λI + Â∗Â)(λI + Â∗Â)−1

=(λI +A∗A)−1{(λI +A∗A)− (λI + Â∗Â)}(λI + Â∗Â)−1

=(λI +A∗A)−1(A∗A− Â∗Â)(λI + Â∗Â)−1.

Lemma D.17. Suppose that assumptions C.2, C.3, and D.2 hold. The PMCR estimator Ĥλ(w, t) satisfies

∥Ĥλ(w, t)−H0(w, t)∥HW
= Op

{
1√
nλ

+
1

nλ
+ λ

min(θ,2)
2

}
.

In particular, if assumption 4.10 holds, we have ∥Ĥλ(w, t)−H0(w, t)∥HW
= op(1).

Proof. We first decompose the estimation bias into two parts:

∥Ĥλ(w, t)−H0(w, t)∥HW
≤ ∥Ĥλ(w, t)−Hλ(w, t)∥HW

+ ∥Hλ(w, t)−H0(w, t)∥HW
.

We first consider ∥Ĥλ(w, t)−Hλ(w, t)∥HW
. In fact, following the decomposition (37), we have

Ĥλ(w, t)−Hλ(w, t) = G1 +G2 +G3 +G4,
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where G1, G2, G3, G4 are defined in (38)-(41). For G1, we can apply Lemma D.10 (c) to have ∥(λI +A∗A)−1A∗∥op =

Op(1/
√
λ). Besides, according to (43), we have ∥b̂t − ÂH0

t ∥HW
= Op(1/

√
n). Combining these together, we get

∥G1∥HW
≤ ∥(λI +A∗A)−1A∗∥op · ∥b̂t − ÂH0

t ∥HW
= Op

(
1√
nλ

)
.

For G2, we apply Lemma D.10 (b) to obtain that ∥(λI + A∗A)−1∥op = Op(1/λ). Besides, according to (43) and
Lemma D.12, we have ∥b̂t − ÂH0

t ∥HW
= Op(1/

√
n) and ∥Â∗ − A∗∥op = Op(1/

√
n). Combining these inequalities

together, we have:

∥G2∥HW
≤ ∥(λI +A∗A)−1∥op · ∥Â∗ −A∗∥op · ∥b̂t − ÂH0

t ∥HW
= Op

(
1

nλ

)
.

For G3, we have:

∥G3∥HW
≤ ∥{(λI + Â∗Â)−1 − (λI +A∗A)−1}Â∗∥op · ∥b̂t − ÂH0

t ∥HW

= ∥(λI + Â∗Â)−1Â∗ − (λI +A∗A)−1A∗ − (λI +A∗A)−1(Â∗ −A∗)∥op · ∥b̂t − ÂH0
t ∥HW

≤ ∥(λI + Â∗Â)−1Â∗ − (λI +A∗A)−1A∗∥op · ∥b̂t − ÂH0
t ∥HW

+ ∥(λI +A∗A)−1∥op · ∥Â∗ −A∗∥op · ∥b̂t − ÂH0
t ∥HW

.

Since Â and A are compact operators, we can apply Lemma D.10 (b), (c) to obtain that ∥(λI + Â∗Â)−1Â∗ − (λI +
A∗A)−1A∗∥op = Op(1/λ) and ∥(λI + A∗A)−1∥op = Op(1/λ). Besides, according to (43) and Lemma D.12 , we have
∥b̂t − ÂH0

t ∥HW
= Op(1/

√
n) and ∥Â∗ −A∗∥op = Op(1/

√
n). Combining all the inequalities, we get

∥G3∥HW
= Op

(
1√
nλ

)
+Op

(
1

nλ

)
.

For G4, we have:

∥G4∥HW
= ∥(λI + Â∗Â)−1Â∗ÂH0

t − (λI +A∗A)−1A∗AH0
t ∥HW

(1)
= ∥λ(λI + Â∗Â)−1{Â∗Â−A∗A}(λI +A∗A)−1H0

t ∥HW

= ∥λ(λI + Â∗Â)−1{Â∗(Â−A) + (Â∗ −A∗)A}(λI +A∗A)−1H0
t ∥HW

≤ ∥λ(λI + Â∗Â)−1Â∗(Â−A)(λI +A∗A)−1H0
t ∥HW

+ ∥λ(λI + Â∗Â)−1(Â∗ −A∗)A(λI +A∗A)−1H0
t ∥HW

≤ ∥(λI + Â∗Â)−1Â∗∥op · ∥Â−A∥op · ∥λ(λI +A∗A)−1∥op · ∥H0
t ∥HW

+ ∥λ(λI + Â∗Â)−1∥op · ∥Â∗ −A∗∥op · ∥A(λI +A∗A)−1∥op · ∥H0
t ∥HW

,

where (1) follows from:

(λI + Â∗Â)−1Â∗ÂH0
t − (λI +A∗A)−1A∗AH0

t

=
[
(λI + Â∗Â)−1

{
(λI + Â∗Â)− λI

}
− (λI +A∗A)−1 {(λI +A∗A)− λI}

]
H0

t

=λ
{
(λI +A∗A)−1 − (λI + Â∗Â)−1

}
H0

t

=λ(λI + Â∗Â)−1{Â∗Â−A∗A}(λI +A∗A)−1H0
t .

Since Â and A are compact operators, we can apply Lemma D.10 (b), (c) to obtain that ∥(λI + Â∗Â)−1Â∗∥opOp(1/
√
λ),

∥(λI + A∗A)−1A∗∥op = Op(1/
√
λ), ∥λ(λI + A∗A)−1∥op ≤ 2, ∥λ(λI + Â∗Â)−1∥op ≤ 2. Besides, according to

Lemma D.12, we have ∥Â∗ −A∗∥op = ∥Â−A∥op = Op(1/
√
n). Combining all the inequalities, we get:

∥G4∥HW
= Op

(
1√
nλ

)
.
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Combining these results for G1 to G4, we have

∥Ĥλ(w, t)−Hλ(w, t)∥HW
= Op

(
1√
nλ

+
1

nλ

)
.

Next, we consider ∥Hλ(w, t)−H0(w, t)∥HW
. By assumption D.2, we can employ Lemma D.11 to obtain that:

∥Hλ(w, t)−H0(w, t)∥HW
= Op

(
λ

min(θ,2)
2

)
.

Thus, we have

∥Ĥλ(w, t)−H0(w, t)∥HW
= Op

{
1√
nλ

+
1

nλ
+ λ

min(θ,2)
2

}
.

By assumption 4.10, we have nλ→ ∞ and λ→ 0, which gives ∥Ĥλ(w, t)−H0(w, t)∥HW
= op(1).
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E. Existence of solutions with two proxies
E.1. Proof of Theorem 6.3

Theorem 6.3. Suppose assumptions 6.1, 6.2 hold. For any h(w, y) that satisfies (1), H0 holds if and only if h(w, y) also
satisfies the integral equation (10) for any fixed x.

Proof. Suppose h(w, y) satisfies p(y|x) =
∫
h(w, y)p(w|x)dw. Under H0, we have X ⊥⊥ (W,Y )|U , which leads to:∫

p(y|u)p(u|x)du = p(y|x) =
∫
h(w, y)p(w|x)dw

=

∫ {∫
h(w, y)p(w|u)dw

}
p(u|x)du.

By the completeness in assumption 6.1, h(w, y) solves the following integral equation for all (u, y).

p(y|u) =
∫
h(w, y)p(w|u)dw.

Since H0 holds, we have Y ⊥⊥ (Z,X)|U . Therefore, for any fixed x, taking expectation over p(u|z, x) on both sides, we
have:

p(y|z, x) =
∫
p(y|u)p(u|z, x)du =

∫ {∫
h(w, y)p(w|u)dw

}
p(u|z, x)du (1)

=

∫
h(w, y)p(w|z, x)dw,

where “(1)” is due to W ⊥⊥ (Z,X)|U . That means, h(w, y) solves the integral equation (10). To prove the contrary, note
that if h(w, y) (1) satisfies (10), by W ⊥⊥ (Z,X)|U and Y ⊥⊥ Z|(U,X), we have∫

p(y|u, x)p(u|z, x)du = p(y|z, x)

=

∫
h(w, y)p(w|z, x)dw

=

∫ {∫
h(w, y)p(w|u)dw

}
p(u|z, x)du.

By the completeness condition in assumption 6.2, we obtain

p(y|u, x) =
∫
h(w, y)p(w|u)dw.

Since the right side of the equation is independent of x, we get p(y|u, x) = p(y|u), and thus H0 holds.

E.2. Discussions of causal inference and causal discovery

In this section, we explore the distinction between causal discovery and causal inference, focusing on why the causal relation
cannot be identified solely through the causal effect. We begin by presenting a counter-example that demonstrates that even
when the intervention distribution for each x is identical, the independence X ⊥⊥ Y |U may still fail to hold. Following this,
we provide an in-depth discussion of the differences between causal inference and causal discovery.

We first introduce the notations. For any discrete variables X,Y, Z with k categories, we denote P(X) :=

{p(x1), ..., p(xk)}⊤, P(Y |X) = {p(yi|xj}i,j , and P(Y = y|X,Z) = {p(y|xi, zj}i,j .

Example E.1. Suppose U,X, Y are binary, and the causal diagram over (U,X, Y ) is U → X,U → Y,X → Y . The
conditional probability matrices P(U),P(X|U),P(Y |X,U) are given by:

P(U) =

(
0.4
0.6

)
, P(X|U) =

(
0.2 0.4
0.8 0.6

)
, P(Y = 0|X,U) =

(
0.5 0.1
0.2 0.3

)
.

By the definition, we know X ̸⊥⊥ Y |U . However, the intervention distribution is the same, i.e., P{y|do(X = 0)} =
P{y|do(X = 1)} for any y.
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Proof. According to the backdoor formula, we have

P{Y = y|do(X = x)} =
∑

u∈{0,1}

P(Y = y|U = u,X = x)P(U = u).

Plugging P(Y = 0|X,U) into the formula, we have:

P{Y = 0|do(X = 0)} = 0.5× 0.4 + 0.1× 0.6 = 0.26

P{Y = 0|do(X = 1)} = 0.2× 0.4 + 0.3× 0.6 = 0.26

P{Y = 1|do(X = 0)} = 0.5× 0.4 + 0.9× 0.6 = 0.74

P{Y = 1|do(X = 1)} = 0.8× 0.4 + 0.7× 0.6 = 0.74,

which implies intervention distributions are equal. However, through data generation, we know X ̸⊥⊥ Y |U .

Next, we will verify that in this example, P(Y = y|X = x) ̸=
∑

u P(Y = y|U = u)P(U = u|X = x), which implies the
example contradicts our assumption that there is no solution in (1) under H1. To this end, we need to obtain probability
matrix P(Y |X),P(Y |U), and P(U |X). First, by P(U) and P(X|U), we can get the probability matrix P(X) and P(U |X).

P(X) = P(X|U)P(U) =

(
0.2 0.4
0.8 0.6

)(
0.4
0.6

)
=

(
0.32
0.68

)
,P(U |X) =

(
0.25 8/17
0.75 9/17

)
.

Besides, we calculate the probability of P(y|x) for any y, x. According to the Bayesian formula, we have

P(Y = y|X = x) =
∑
u

P(Y = y|X = x, U = u)P(U = u|X = x)

=
∑
u

P(Y = y|X = x, U = u)
P(X = x|U = u)P(U = u)

P(X = x)
.

Therefore, we have

P(Y |X) =

(
0.2 43/170
0.8 127/170

)
.

According to the Bayesian formula, we have

P(Y = y|U = u) =
∑
x

P(Y = y|X = x, U = u)P(X = x|U = u).

Therefore, we have

P(Y |U) =

(
0.26 0.22
0.74 0.78

)
.

Thus, we can verify

P (Y = 0|X = 0) = 0.2 ̸= 0.23 = 0.26× 0.25 + 0.22× 0.75 =
∑
u

P(Y = 0|U = u)P(U = u|X = 0)

P (Y = 0|X = 1) =
43

170
̸= 203

850
= 0.26× 8

17
+ 0.22× 9

17
=
∑
u

P(Y = 0|U = u)P(U = u|X = 1)

P (Y = 1|X = 0) = 0.8 ̸= 0.64 = 0.22× 0.25 + 0.78× 0.75 =
∑
u

P(Y = 1|U = u)P(U = u|X = 0)

P (Y = 1|X = 1) =
127

170
̸= 439

850
= 0.22× 8

17
+ 0.78× 9

17
=
∑
u

P(Y = 1|U = u)P(U = u|X = 1).

More discussions about casual discovery and causal inference. Causal inference and causal discovery address funda-
mentally different problems (Guo et al., 2020). Causal inference focuses on quantifying the effects of interventions, often
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requiring strong assumptions and additional information to ensure accurate estimation. In contrast, causal discovery aims to
uncover the underlying causal structure, emphasizing the identification of causal relationships rather than their magnitudes.

It may not be feasible to infer the causal relationship from the causal effect. One key reason is that the inference is often
complicated by noise in the estimates, making it hard to determine whether a nonzero effect arises from an actual causal
relationship or random noise perturbing the estimation. Even if we can estimate a confidence interval for the effect at
each treatment value (Robins, 1988; Robins et al., 2003; Calonico et al., 2018; Colangelo & Lee, 2020), there are no valid
statistics to determine whether the relation exists. Moreover, as shown in the previous example, a causal effect of zero does
not necessarily imply the existence of the causal relation. Additionally, estimating causal effects often requires satisfying
other conditions. For example, proximal causal inference depends on additional completeness assumptions (Miao et al.,
2018; Mastouri et al., 2021). In our scenario, such conditions are assumed on Z|X,W (i.e., for any square-integrable
function g, E{g(z)|x,w} = 0 almost surely if and only if g(z) = 0 almost surely) and {X,W}|{X,Z} (Mastouri et al.,
2021).

E.3. Proof of Proposition 5.1 and example 5.3

We first prove Proposition 5.1.

Proposition E.2. We consider the linear Gaussian generation mechanism:
U ∼ N (0, 1)

X = α0 + αUU +N (0, 1)

W = β0 + βUU +N (0, 1)

Y = γ0 + γUU + γXX + γWW +N (0, 1).

When γW = 0, as long as |γX | > |B|+
√
∆

2A , where A = 1 + 1
α2

U
+ 2

β2
U
+ 1

α2
Uβ2

U
+

α2
U

β2
U

, B = 2γU

αU
+ 2γU

αUβ2
U
+ 2αUγU

β2
U

and

∆ =
4(1+α2

U+β2
U)(1+α2

U+γ2
U)

α2
Uβ2

U
, the integration equation (1) has no solution. Further, if |γW | > |C|+|B||γX |+Aγ2

X

2|D| , where

C = 1− γ2U/β
2
U and D = γX

αUβU
+ αU

βU
γX + βU

αU
γX + γU

βU
, (1) has a solution.

Proof. Based on the data generation structure, we can obtain joint distribution
U
X
W
Y

 ∼ N




0
α0

β0
γ0 + γXα0 + γWβ0

 ,


1 αU βU Cov(U, Y )
αU 1 + α2

U αUβU Cov(X,Y )
βU αUβU 1 + β2

U Cov(W,Y )
Cov(U, Y ) Cov(X,Y ) Cov(W,Y ) Var(Y )


 ,

where covariance Cov(U, Y ),Cov(X,Y ),Cov(W,Y ) and Var(Y ) are respectively
Cov(U, Y ) = γU + γXαU + γWβU

Cov(X,Y ) = αU (γU + γWβU + γXαU ) + γX

Cov(W,Y ) = βU (γU + αUγX + γWβU ) + γW

Var(Y ) = (γU + γXαU + γWβU )
2 + γ2X + γ2W + 1.

We can therefore derive the explicit form of the conditional distributions p(w|x) and p(y|x):

W |X = x ∼ N
{
µW +

Cov(W,X)

Var(X)
(x− µX),Var(W )

(
1− Cov2(W,X)

Var(X) ·Var(W )

)}
∼ N

{
µ
W |X
X x+ µ

W |X
0 , σ2

W |X

}
Y |X = x ∼ N

{
µY +

Cov(Y,X)

Var(X)
(x− µX),Var(Y )

(
1− Cov2(Y,X)

Var(X) ·Var(Y )

)}
∼ N

{
µ
Y |X
X x+ µ

Y |X
0 , σ2

Y |X

}
,
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where µW |X
X , µ

W |X
0 , σ2

W |X , µ
Y |X
X , µ

Y |X
0 and σ2

Y |X are defined as follows

µ
W |X
X = αUβU

1+α2
U

µ
W |X
0 = β0 − α0αUβU

1+α2
U

σ2
W |X = 1 + β2

U − (αUβU )2

1+α2
U

µ
Y |X
X = αU (γU+γW βU+γXαU )+γX

1+α2
U

µ
Y |X
0 = γ0 − α0αU (γU+γW βU+γXαU )+α0γX

1+α2
U

σ2
Y |X = (γU + γXαU + γWβU )

2 + γ2X + γ2W + 1− (αU (γU+γW βU+γXαU )+γX)2

1+α2
U

.

By applying Lemma B.4, the solution of (1) is given by:

h(w, y) =
1√

σ2
Y |X −

(
µ
Y |X
X

)2
σ2
W |X/

(
µ
W |X
X

)2ϕ
y −

(
µ
Y |X
0 − µ

Y |X
X µ

W |X
0 /µ

W |X
X

)
− µ

Y |X
X /µ

W |X
X w√

σ2
Y |X −

(
µ
Y |X
X

)2
σ2
W |X/

(
µ
W |X
X

)2
 ,

where ϕ is the standard normal distribution’s probability density function (pdf).

For h(w, y) to be meaningful, we need σ2
Y |X −

(
µ
Y |X
X

)2
σ2
W |X/

(
µ
W |X
X

)2
> 0, which implies

1− γ2U
β2
U

−
(
2γU
αU

+
2γU
αUβ2

U

+
2αUγU
β2
U

)
γX −

(
1 +

1

α2
U

+
2

β2
U

+
1

α2
Uβ

2
U

+
α2
U

β2
U

)
γ2X

−2

(
1

αUβU
+
αU

βU
+
βU
αU

)
γXγW − 2

γU
βU

γW > 0.

(54)

We discuss the following two cases: (i) X → Y (γX ̸= 0) and W ̸→ Y (γW = 0); (ii) X → Y (γX ̸= 0) and W ̸→ Y
(γW = 0).

1. γX ̸= 0, γW = 0.

We first rewrite (54) as:

1− γ2U
β2
U︸ ︷︷ ︸

C

−
(
2γU
αU

+
2γU
αUβ2

U

+
2αUγU
β2
U

)
︸ ︷︷ ︸

B

γX−
(
1 +

1

α2
U

+
2

β2
U

+
1

α2
Uβ

2
U

+
α2
U

β2
U

)
︸ ︷︷ ︸

A

γ2X > 0.

Noting that this is a quadratic function, we can get its discriminant

∆ := B2 − 4AC =
4
(
1 + α2

U + β2
U

) (
1 + α2

U + γ2U
)

α2
Uβ

2
U

> 0.

Besides, we can find 1 + 1
α2

U
+ 2

β2
U
+ 1

α2
Uβ2

U
+

α2
U

β2
U
> 0. Therefore, this is a quadratic function whose discriminant is

always positive and opens downward. When γX satisfies −B+
√
∆

2A < γX < −B−
√
∆

2A , (1) will have a solution. When
γX ≥ −B−

√
∆

2A or γX ≤ −B+
√
∆

2A , (1) will have no solution.

Without loss of generality, we consider the case where αU and γU have the same sign. First, we can find B = −( 2γU

αU
+

2γU

αUβ2
U
+ 2αUγU

β2
U

) < 0 since β2
U > 0. Thus, we have | −B −

√
∆| < | −B +

√
∆|. Thus, when |γX | > −B+

√
∆

2A , (1) will

have no solution. If αU and γU have the different sign, we have B = −( 2γU

αU
+ 2γU

αUβ2
U
+ 2αUγU

β2
U

) > 0 since β2
U > 0. Thus,

we have | −B −
√
∆| > | −B +

√
∆|. Thus, when |γX | > −B−

√
∆

2A , (1) will have no solution.

Combining the two cases, we can obtain that as long as |γX | > |B|+
√
∆

2A , the integration equation (1) has no solution.
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2. γX ̸= 0, γW ̸= 0.

We consider the case |γX | > −B+
√
∆

2A under αUγU > 0, since (1) have no solution. We can rewrite (54) as

2

(
γX

αUβU
+

αU

βU
γX +

βU

αU
γX +

γU
βU

)
γW < 1− γ2

U

β2
U

−
(
2γU
αU

+
2γU
αUβ2

U

+
2αUγU
β2
U

)
γX−

(
1 +

1

α2
U

+
2

β2
U

+
1

α2
Uβ

2
U

+
α2
U

β2
U

)
γ2
X .

Thus, if γX

αUβU
+ αU

βU
γX + βU

αU
γX + γU

βU
< 0, we can obtain that (1) may still have a solution, as long as

γW >
1− γ2

U

β2
U
−
(

2γU

αU
+ 2γU

αUβ2
U
+ 2αUγU

β2
U

)
γX −

(
1 + 1

α2
U
+ 2

β2
U
+ 1

α2
Uβ2

U
+

α2
U

β2
U

)
γ2X

2
(

γX

αUβU
+ αU

βU
γX + βU

αU
γX + γU

βU

) .

We find that if γX

αUβU
+ αU

βU
γX + βU

αU
γX + γU

βU
< 0, the right-hand side of the above inequality is positive. That means, as

long as |γW | is sufficiently large, the solution to (1) will still exist when |γX | > −B+
√
∆

2A .

If γX

αUβU
+ αU

βU
γX + βU

αU
γX + γU

βU
> 0, we can obtain (1) may still have a solution, as long as

γW <
1− γ2

U

β2
U
−
(

2γU

αU
+ 2γU

αUβ2
U
+ 2αUγU

β2
U

)
γX −

(
1 + 1

α2
U
+ 2

β2
U
+ 1

α2
Uβ2

U
+

α2
U

β2
U

)
γ2X

2
(

γX

αUβU
+ αU

βU
γX + βU

αU
γX + γU

βU

) .

We find that if γX

αUβU
+ αU

βU
γX + βU

αU
γX + γU

βU
> 0, the right-hand side is negative. That also means, as long as |γW | is

sufficiently large, the solution to (1) will still exist when |γX | > −B+
√
∆

2A .

If αUγU < 0, the proof is similar. Besides, in the above cases, as long as |γW | > |C|+|B||γX |+Aγ2
X

2|D| with D := γX

αUβU
+

αU

βU
γX + βU

αU
γX + γU

βU
, (1) has a solution.

Remark E.3. If γX = γW = 0, (54) will become 1− γ2
U

β2
U
> 0. This means that if the strength between W − U is greater

than the confounder strength between W − U , (1) will have a solution under H0. Otherwise, similar to the case when
γX ̸= 0, if the effect of W on Y is strong enough (i.e., |γW |), the solution exists again. Specifically, if γX = 0, γW ̸= 0,
(54) will become 1− γ2

U

β2
U
− 2 γU

βU
γW > 0. If −2 γU

βU
γW is large enough, (1) still have a solution. If we γU/βU > 0, we need

γW to be as negative as possible; ifγU/βU < 0, we need γW to be as positive as possible.

Next, we prove the claims in example 5.3. We show that as long as the coefficient of W → Y is strong enough in
example 5.3, the solution of the integral equation p(y|x) =

∫
h(w, y)p(w|x)dw exists. As an explanation, we will show

that a key condition in Picard’s theorem B.2 holds, namely, the series
∑∞

n=1 λ
−2
n |⟨p(y|x), ϕn⟩|2 converges.

To compute the series, we need the singular value decomposition of the operator T : L2{F (w)} → L2{F (x)}, where
Th = E{h(W, y)|x} = p(y|x) for all (x, y). Based on the data-generating process in example 5.3, both L2{F (w)} and
L2{F (x)} are square-integrable spaces with respect to the standard Gaussian measure. For such spaces, (Carrasco et al.,
2007) derived the form of the eigenvectors ϕn, as stated in Lemma E.4. As this result builds upon the concept of generalized
Hermite polynomials, we include a brief introduction to facilitate understanding.

We first introduce the concept of Hermite polynomial, which is defined in the square-integrable function space with respect
to the standard Gaussian measure. Specifically, we say that a function f : R → R is square integrable w.r.t. the standard
Gaussian measure γ = e−x2/2/

√
2π if Ex∼N (0,1){f2(x)} < ∞. We denote by L2(R) the space of all such functions,

whose basis functions are characterized by probabilist’s Hermite polynomials

Hen(x) := (−1)kex
2/2 d

k

dxk
e−x2/2.

The first three Hermite polynomials are He0(x) = 1,He1(x) = x,He2(x) = x2 − 1. Let hek(x) :=
Hek(x)√

k!
denote the

normalized Hermite polynomials, which form a complete orthonormal basis in L2(R). Thus, the Hermite expansion of a
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function f ∈ L2(R) is given by

f(x) =

∞∑
k=1

µk−1(f)hek−1(x), µk−1(f) = EX∼N (0,1){f(X)hek−1(X)}.

Indeed, Hermite polynomials can be equivalently defined by identifying ext−t2/2 =
∑∞

k=0
Hen(x)

k! tk. We can define the
generalized Hermite polynomials Hn(x, y) as those that satisfy

ext+yt2 =

∞∑
k=0

tk

k!
Hn(x, y).

In the case when y = − 1
2 , we have Hn(x,−1/2) = Hen(x). Generally, the generalized Hermite polynomials Hn(x, y) is

related to the Hermite canonical form Hen(x) as the following way:

Hn(x, y) = ik(2y)
n
2 Hen

(
x

i
√
2y

)
. (55)

We are now ready to introduce the eigenvalue system of the operator T : L2(W ) → L2(X) derived by (Carrasco et al.,
2007).
Lemma E.4 ((Carrasco et al., 2007)). Let T : L2(W ) → L2(X), Tf = E{f(W )|X = ·}, where L2(·) is square
integrable space with respect to the standard Gaussian measure, i.e., (W,X) is jointly Gaussian with zero mean, unit
variance, and correlation ρWX . We have T is a self-adjoint operator, and the eigenvalue system for T is given by
φj(w) = hej(w), ϕj(x) = hej(x), λj = ρjWX , where ρWX is the correlation coefficient between W and X and hej is the
normalized Hermite polynomials.

Now we prove the result in example 5.3.
Example E.5. Suppose that X,Y, U,W satisfy the linear Gaussian model, i.e. U = εU , X = 2U + εX ,W = −2U +
εW , Y = X + U + γWW + εY , where εU , εY , εW , εX ∼ N (0, 1). The integral equation (1) has a solution if and only if
γW > −15+36

√
5

72+16
√
5

≈ 0.61. Besides, when γW > −15+36
√
5

72+16
√
5

, the series
∑∞

n=1 λ
−2
n |⟨p(y|x), ϕn⟩|2 converges.

Proof. We first show that even under H1, the integral equation p(y|x) =
∫
h(w, y)p(w|x)dw has a solution when the

coefficient γW is large enough. Specifically, since X and W are normalized, based on the data generation structure, we have
U
X
W
Y

 ∼ N




0
0
0
0

 ,


1 2√

5
− 2√

5
− 2√

5
γW + 1 + 2√

5
2√
5

1 − 4
5 − 4

5γW + 1 + 2√
5

− 2√
5

− 4
5 1 γW − 2

5 (2 +
√
5),

− 2√
5
γW + 1 + 2√

5
− 4

5γW + 1 + 2√
5

γW − 4
5 − 2√

5
γW

2 − 4
5 (2 +

√
5)γW + 3 + 4√

5


 .

We can therefore derive the explicit form of the conditional distributions p(w|x) and p(y|x):

W |X = x ∼ N
{
µW +

Cov(W,X)

Var(X)
(x− µX),Var(W )

(
1− Cov2(W,X)

Var(X) ·Var(W )

)}
∼ N

(
−4

5
x,

9

25

)
;

Y |X = x ∼ N
{
µY +

Cov(Y,X)

Var(X)
(x− µX),Var(Y )

(
1− Cov2(Y,X)

Var(X) ·Var(Y )

)}
,

∼ N
{(

−4

5
γW + 1 +

2√
5

)
x,

9

25
γ2w − 4

5
√
5
γW +

6

5

}
. (56)

By applying Lemma B.4, the solution of (1) is given by:

h(w, y) =
1√

9+2
√
5

10 γW + 3
16 − 9

√
5

20

ϕ

 y −
(
γW + 2

√
5−5
4

)
w

9+2
√
5

10 γW + 3
16 − 9

√
5

20

 . (57)
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For h(w, y) to be meaningful, we need 9+2
√
5

10 γW + 3
16 − 9

√
5

20 > 0, which implies γW > −15+36
√
5

72+16
√
5

≈ 0.61.

Next, we need to verify the conditions for the series in Picard’s theorem B.2, which requires proving that∑+∞
n=0 λ

−2
n |⟨f, ϕn⟩|2 < +∞ for the singular system (λn, φn, ϕn)

+∞
n=1 associated with the compact operator Th = f .

In our data generation process, operator T : L2(W,γ) → L2(X, γ) satisfies Th = E{h(W, y)|x} = p(y|x) for all (x, y)
and is characterized by the integral kernel (12). Thus, by Lemma E.4, we have T : L2(W,γ) → L2(X, γ) is a self-adjoint
operator and the eigenvalue system of operator T is given by φj(w) = hej(w), ϕj(x) = hej(x), λj = ρjWX , where ρWX

is the correlation coefficient between W and X and hej is the normalized Hermite polynomials. Thus, we show that as long
as γW > −15+36

√
5

72+16
√
5

, the following series converges, which can explain why the solution may exist under H1:

∞∑
n=0

|⟨p(y|x),hen(x)⟩|2

ρ2nWX

.

Let

In := ⟨p(y|x),hen(x)⟩ =
1√
2π

∫
p(y|x)hen(x)e−x2/2dx =

1√
2πn!

∫
p(y|x)Hen(x)e

−x2/2dx.

We will use the generating function method to derive the analytic form of integrals. By equation (6) in (Babusci et al., 2012),
we have: ∫

Hn(ax+ b,m)e−cx2+αxdx =

√
π√
c
exp

(
α2

4c

)
Hn

(
b+

αa

2c
,m+

a2

4c

)
.

Let µ := − 4
5γW + 1 + 2√

5
and σ2 := 9

25γ
2
w − 4

5
√
5
γW + 6

5 . By (56), we can obtain

In =
1√
2πn!

∫
1√
2πσ2

e−
(y−µx)2

2σ2 Hn(x)e
−x2/2dx

(1)
=

e−
y2

2σ2

2π
√
σ2n!

∫
e
−

(
σ2+µ2

2σ2

)
x2+

µy

σ2 x

Hn (x,−1/2) dx,

where (1) follows from Hn(x,−1/2) = Hen(x) by (55). By taking a = 1, b = 0, c = σ2+µ2

2σ2 , α = µy
σ2 and m = −1/2, we

have:

In =
1√

2πn!(σ2 + µ2)
e

−y2

2(σ2+µ2)Hn

{
µy

σ2 + µ2
,− µ2

2(σ2 + µ2)

}
.

We consider the case when µ ̸= 0 and µ = 0.

1. When µ ̸= 0.

By (55) we have

In =
1√

2πn!(σ2 + µ2)
e

−y2

2(σ2+µ2)

in
(
− µ2

σ2 + µ2

)n
2

Hen

 µy
σ2+µ2

i
√
− µ2

σ2+µ2


=

1√
2πn!(σ2 + µ2)

{
(−1)n

(
µ2

σ2 + µ2

)n
2

e
−y2

2(σ2+µ2)Hen

(
− µ

|µ|
√
σ2 + µ2

y

)}
.

Therefore, the series can be written as

∞∑
n=0

(
In
ρnWX

)2

=

∞∑
n=0

{
(−1)n

ρnWX

√
2π(σ2 + µ2)

(
µ2

σ2 + µ2

)n
2

e
−y2

2(σ2+µ2)

}2{
1√
n!
Hen

(
− µ

|µ|
√
σ2 + µ2

y

)}2

. (58)

According to equation (18.15.27) in (Olver, 2010), it is known that for fixed M = 0, 1, 2...,

Hn(x) = λne
1
2x

2

[
M−1∑
m=0

um(x) cosωn,m(x)

(2n+ 1)
1
2m

+O

{
1

(2n+ 1)
1
2M

}]
.
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where Hn(x) := (−1)nex
2 dn

dxn e
−x2

is physicist’s Hermite polynomials, the coefficients um(x) are polynomials in x,
u0(x) = 1, u1(x) = 1/6x3, ωn,m(x) = (2n+ 1)

1
2x− 1

2 (m+ n)π and

λn =

{
Γ(n+ 1)/Γ

(
1
2n+ 1

)
if n is even,

Γ(n+ 2)/
{
(2n+ 1)

1
2Γ
(
1
2n+ 3

2

)}
if n is odd.

By taking M = 1 and Hen(x) = 2−
n
2Hn

(
x√
2

)
, we have

Hen(x) = 2−
n
2 λne

1
4x

2

[
cosωn,m(

x√
2
) +O

{
1

(2n+ 1)
1
2M

}]
≤ 2−

n
2 λne

1
4x

2

+ 2−
n
2 λne

1
4x

2

×O

{
1

(2n+ 1)
1
2

}
≤ 2−

n
2 +1λne

1
4x

2

.

Since each term in the series
∑∞

n=0 I
2
n is positive, its odd-term series and even-term series are both positive term series. If

both subseries converge, then
∑∞

n=0 I
2
n also converges.

(i). Even term series. By Stirling’s approximation n! ∼
√
2πn

(
n
e

)n
, we have:

Γ(n+ 1)

Γ(n2 + 1)
∼

√
2πn

(n
e

)n (
2π
n

2

)− 1
2
( n
2e

)−n
2

= 2
n+1
2

(n
e

)n
2

.

Thus, we can obtain Hen(x) ≲ 2
1
2+1

(
n
e

)n
2 e

x2

4 for large values of n even. Then for even n, we have

Hen(x)Hen(x)

n!
≲

23√
2πn

ex
2/2.

Thus, we have (
In
ρnWX

)2

≲

[
1

2π(σ2 + µ2)

{
µ2

ρ2WX(σ2 + µ2)

}n
23√
2πn

]
e
− 1

2(σ2+µ2)
y2

:= Jn.

We only need to prove the convergence of the series
∑

n is even Jn. By the ratio test, we can obtain:

lim
n→∞

∣∣∣∣Jn+2

Jn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣
[

1
2π(σ2+µ2)

{
µ2

ρ2
WX(σ2+µ2)

}n+2
23√

2π(n+2)

]
e
− 1

2(σ2+µ2)
y2

[
1

2π(σ2+µ2)

{
µ2

ρ2
WX(σ2+µ2)

}n
23√
2πn

]
e
− 1

2(σ2+µ2)
y2

∣∣∣∣∣∣∣∣
= lim

n→∞

{
µ2

ρ2WX(σ2 + µ2)

}2√
n

n+ 2
.

This series absolutely converges if and only if

µ2

ρ2WX(σ2 + µ2)
< 1,

which holds if and only if γW > −15+36
√
5

72+16
√
5

≈ 0.61 by taking µ = − 4
5γW + 1 + 2√

5
, σ2 = 9

25γ
2
w − 4

5
√
5
γW + 6

5 and
ρWX = − 4

5 .

(ii). Odd term series. By Stirling’s approximation n! ∼
√
2πn

(
n
e

)n
, we have

Γ(n+ 2)√
2n+ 1 · Γ(n2 + 3

2 )
∼
√
2π(n+ 1)√
2n+ 1

(
n+ 1

e

)n+1(
2π
n+ 1

2

)− 1
2
(
n+ 1

2e

)−n+1
2

=

√
2

2n+ 1
2

n+1
2

(
n+ 1

e

)n+1
2

.

Thus, we can obtain Hen(x) ≲
√

2
2n+12

3
2

(
n+1
e

)n+1
2 e

x2

4 for large values of n odd. Then for odd n, we have

(n+ 1)
Hen(x)Hen(x)

(n+ 1)!
≲

16(n+ 1)

e(2n+ 1)

ex
2/2√

2π(n+ 1)
.
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Thus, we have(
In
ρnWX

)2

≲
∞∑

n=0

{
1

2π(σ2 + µ2)

(
µ2

ρ2WX(σ2 + µ2)

)2
16 (n+ 1)

2n+ 1

1√
2π (n+ 1)

}
e
− y2

2(σ2+µ2) := Jn.

Again, we only need to show the convergence for the series
∑

n is odd Jn. By the ratio test, we can obtain:

lim
n→∞

∣∣∣∣Jn+2

Jn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣
{

1
2π(σ2+µ2)

(
µ2

ρ2
WX(σ2+µ2)

)n+2
16(n+3)
2n+5

1√
2π(n+3)

}
e
− y2

2(σ2+µ2){
1

2π(σ2+µ2)

(
µ2

ρ2
WX(σ2+µ2)

)n
16(n+1)
2n+1

1√
2π(n+1)

}
e
− y2

2(σ2+µ2)

∣∣∣∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣
{

µ2

ρ2WX(σ2 + µ2)

}2
√

(2n+ 1)
2
(n+ 3)

(2n+ 5)
2
(n+ 1)

∣∣∣∣∣ .
We can verify

√
(2n+1)2(n+3)
(2n+5)2(n+1) =

√
4n3+16n2+13n+3
4n3+24n2+45n+25 < 1 for positive integers. Thus, this sub-series of odd terms absolutely

converges if and only if
µ2

ρ2WX(σ2 + µ2)
< 1,

which holds if and only if ρWX = − 4
5 , we have γW > −15+36

√
5

72+16
√
5

≈ 0.61, by taking µ = − 4
5γW + 1 + 2√

5
, σ2 =

9
25γ

2
w − 4

5
√
5
γW + 6

5 .

Combining two results, we know that when γW > −15+36
√
5

72+16
√
5

≈ 0.61, the original series converges.

2. When µ = 0.

Since µ = 0, we have γW = 5+2
√
5

4 > −15+36
√
5

72+16
√
5

. Thus, the distribution of p(y|x) becomes

Y |X = x ∼ N
{
0,

1

16
(29 + 4

√
5)

}
.

Thus, if we define σ2
con := 1

16 (29 + 4
√
5), we have

In =
1√
2πn!

∫
1√

2πσ2
con

e
− y2

2σ2
conHn(x)e

−x2/2dx =
e
− y2

2σ2
con

2π
√
σ2
conn!

∫
Hen(x)e

−x2/2dx.

Following Lemma 2.6 of (Davis, 2024), the integral of the stretched Hermite polynomial Sn = 1√
2π

∫
Hen(γx)e

−x2/2dx is

only non-zero for even n and has the value Sn = (n− 1)!!(γ2 − 1)n/2. We use the above results and take γ = 1, we have
In = 0 for n ≥ 1. Thus, the series is:

∞∑
n=0

(
In
ρnWX

)2

=

(
I0
ρ0WX

)2

= (I0)
2 (1)
=

e
− y2

σ2
con

4π2σ2
con

(∫
e−x2/2dx

)2
(2)
=

e
− y2

σ2
con

4π2σ2
con

2π =
1

2πσ2
con

e
− y2

σ2
con <∞.

where (1) follows from He0(x) = 1 and (2) follows from
∫
e−x2/2dx =

√
2π.

E.4. Proof of asymptotic properties with two proxies

Assumption E.6. We assume EX{m(X,Z, s)|W} and EX{|m(X,Z, s)|2|W} are uniformly bounded for all s.

Assumption E.7. For any s, t ∈ T , E{U(W,Y, t)4|X} < ∞ and E(|m(X,Z, s)− {A(A∗A)−1gs}(X)|4) < ∞, where
gs(·) = E[m(X,Z, s)ϕW (W )](·).
Assumption E.8. Let (λj , φj , ϕj)j be the singular value decomposition of the operator A described in section C. Then we
assume: (a). For some η ≥ 2,

∑
j λ

−2η
j |⟨gs, φj⟩HW

|2 <∞; (b) For some θ ≥ 2,
∑

j λ
−2θ
j |⟨H0

t , φj⟩HW
|2 <∞.
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Theorem 6.6. Denote ηs,t(O, x) := U(W,Y, t)
[
{m(Z, x, s)− {A(A∗A)−1gs}(X,x)

]
, where gs(·, x) :=

E{m(Z, x, s)ϕW (W )}(·) and O := (W,Z, Y,X). Suppose assumptions in Theorem 4.12 hold. If Asm. 6.1-6.2, and
E.6-E.8 hold, under H0 we have, (i). T

(Z)
n (s, t) converges weakly to G(s, t) s.t.

∫∫
|G(s, t)|2dµ(s)dµ(t) < ∞,

where G(s, t) is a mean-zero Gaussian process with covariance Σ{(s, t), (s′, t′)} = E{ηs,t(O, x)ηs′,t′(O′, x)}, where

O′ := (W ′, Z ′, Y ′, X ′) is an independent copy of O; (ii). ∆(Z)
φ,m converges weakly to max

t∈T

∫
T |G(s, t)|2dµ(s).

Proof. We need to replace the weight function m(x, s) with m(Z, x, s) over Z. By (36), we have

T (Z)
n (s, t) =

√
nPn{U(W,Y, t)m(Z, x, s)}+ (Expected risk difference) + (Empirical process) .

By Propositions D.3, for fixed x, we can obtain the empirical process
√
n(Pn − P)[{H0(W, t)− Ĥλ(W, t)}m(Z, x, s)] = op(1).

By Propositions D.4, for fixed x, we have

√
nP
{
(H0(W, t)− Ĥλ(W, t))m(Z, x, s)

}
= − 1√

n

n∑
i=1

U(wi, yi, t){A(A∗A)−1gs}(xi) + op(1).

Therefore, combining all the inequalities, we have

T (Z)
n (s, t) =

1√
n

n∑
i=1

U(wi, yi, t)
[
m(x, zi, s)−

{
A(A∗A)−1gs

}
(xi, x)

]
+ op(1).

Next, we apply Lemma D.15 to
{
U(wi, yi, t)

[
m(x, zi, s)−

{
A(A∗A)−1gs

}
(xi, x)

]}
i

to obtain T (Z)
n (s, t) converges

weakly to G(s, t) in L2{T × T , µ× µ}, where G(s, t) is a Gaussian process with zero-mean and covariance:

Σ{(s, t), (s′, t′)} = E{ηs,t(W,Z, Y,X, x)ηs,t(W ′, Z ′, Y ′, X ′, x)}.

To show G(s, t) is zero-mean, noted that

E
[
U(W,Y, t)

{
m(Z, x, s)− {A(A∗A)−1gs}(X,x)

]]
= E [U(W,Y, t)m(Z, x, s)]− E

[
U(W,Y, t){A(A∗A)−1gs}(X,x)

]
= E [m(Z, x, s)E [U(W,Y, t)|Z, x]]− E

[
E [U(W,Y, t)|X] {A(A∗A)−1gs}(X,x)

]
= 0,

where the last equation follows from (11) and (4).

Besides, by assumption E.7, we have Var(U(wi, yi, t)[m(x, zi, s) − {A(A∗A)−1gs}(xi, x)]) =
E(U(wi, yi, t)[m(x, zi, s) − {A(A∗A)−1gs}(xi, x)])2 < ∞ for any (x, s, t). Therefore, by continuous mapping
theorem, we have ∆

(Z)
φ,m converges weakly to max

t∈T

∫
|G(s, t)|2dµ(s).

For power analysis, we define the global alternative Hfix
1 and Hα

1n (0 < α ≤ 1/2) of (11), in terms of E{φ(Y, t) −
H(W, t)|Z, x} for fixed x.

Hfix
1 : E{φ(Y, t)−H(W, t)|Z, x} ≠ 0 for some t ∈ T ,

for any H ∈ HW . For the local alternative Hα
1n, there exists H0 ∈ HW , such that

Hα
1 : E{φ(Y, t)|Z, x} = E{H0(W, t)|Z, x}+ r(Z, x, t)

nα
, ∀t,

where 0 < α ≤ 1/2, and for any H , r(Z,x,t)
nα cannot be written as E{H(·, t)−H0(·, t)|Z, x} for some t.

Theorem E.9. Suppose assumptions in Theorem 6.6 hold. Besides, we assume E{r(Z, x, t)4} <∞ for fixed x and any t.
Then, we have:
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(i) Global alternative. limn→∞ maxt∈T |T (Z)
n (s, t)| = ∞ for almost all s under Hfix

1 .
(ii) Local alternative (α < 1/2). limn→∞ maxt∈T |T (Z)

n (s, t)| = ∞ for almost all s under Hα
1n.

(iii) Local alternative (α = 1/2). T (Z)
n (s, t) converges weakly to G(s, t)+µ(Z,X, x, s, t) in L2{T ×T , µ×µ} under Hα

1n,
where G(s, t) is defined in Theorem 6.6 and µ(Z,X, x, s, t) := E

[
{r(Z, x, t)− (A∗A)−1A∗r(Z, x, t)}m(Z, x, s)

]
.

Proof. The proof is similar to that of theorem 4.14, with the weight function m(X, s) replaced with m(Z, x, s).
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F. Additional experiments
In this section, we evaluate our two-proxy procedure to a nonlinear setting, where W → Y and both W and Z begin
available. Similar to Fig. 5, the two-proxy method outperforms the single-proxy approach by leveraging information
provided from the additional proxy, i.e., NCE.

Data generation. We generate U following a normal distribution with mean 0 and variance 1, denoted by U ∼ N (0, 1).
Similarly, we simulate W = −2 sin(U) + εW and Z = 2 sin(U) + εZ . The treatment assignment mechanism follows
the generation process: X = 2 sin(U) + εX . Under the alternative hypothesis X ̸⊥⊥ Y |U , the outcome is generated
from Y = X + sin(U) + 2W 2 + εY ; while under the null hypothesis X ⊥⊥ Y |U , the outcome is generated from
Y = sin(U) + 2W 2 + εY . In both hypotheses, the noise terms εX , εZ , εW , εY are independently drawn from a standard
normal distribution. We repeat the process 20 times, where at each time we generate 100 replications under H0 and H1.

Type-I error and power. The average results are presented in Fig. 6. As observed, while our single-proxy procedure
effectively controls the type-I error, it exhibits low power in identifying causal relationships. In contrast, by incorporating
additional information from the NCE, the power improves significantly, demonstrating its efficacy in learning causal
connections.

(b)(a)

Figure 6. Type-I error rate (left) and power rate (right) of our procedure and baselines in the nonlinear setting with two proxies.
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