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ABSTRACT

Existing Temporal Knowledge Graph (TKG) representation learning approaches
focus on modeling entity or relation correlations. However, since TKG datasets
are constructed from events, which inherently contain heterogeneous causalities,
focusing solely on entity or relation level correlations is inadequate for event pre-
diction in TKGs. Although a TKG structural causal model can be established as a
theoretical framework for event level causality disentangling, practical disentan-
glement is non-trivial due to the lack of explicit supervision signals. To this end,
we propose a Heterogeneous Event causality Disentangling Representation learn-
ing Approach (HEDRA) for TKG reasoning, which is the first work that focuses
on disentangling heterogeneous causalities at the event level in TKGs. Specif-
ically, a counterfactual detector module is proposed to disentangle non-causality
by leveraging event importance and distributional discrepancies of event represen-
tations. Moreover, an Instrumental Variable (IV)-guided disentangling module is
proposed to disentangle spurious causality by constructing IVs, which can pro-
duce robust event representations against spurious causality through multi-view
causality subgraphs. Finally, an evolutionary orthogonal module is proposed to
separate dynamic causality from static causality for event prediction. Comprehen-
sive experiments on five real-world datasets demonstrate that HEDRA achieves
the state-of-the-art performance. The source code of HEDRA is available at
https://anonymous.4open.science/r/HEDRA-8A2F.

1 INTRODUCTION

Temporal Knowledge Graphs (TKGs) are dynamic graphs composed of events (s, r, o, t), where s
and o denote subject and object entities, r specifies the relation between them, and t indicates the
timestamp (Chen & Chen, 2024). TKG representation learning maps temporally evolving entities
and relations into a continuous low-dimensional vector space to capture both temporal evolution and
structural information in TKGs (Li et al., 2022). The event prediction task then leverages the repre-
sentations learned from historical events to infer which relations are likely to occur between entities
in the future. TKG representation learning underpins downstream applications, e.g., knowledge rea-
soning and anomaly detection (Saxena et al., 2021). The variety of correlations among entities and
the complexity of temporal patterns make effective TKG representation learning challenging.

Existing TKG representation learning approaches focus on modeling correlations among entities or
relations. Some approaches construct entity graphs, where entities serve as nodes and relations be-
tween them serve as edges, and learn representations based on graph reachability (Li et al., 2022; Bai
et al., 2023; Chen et al., 2024b; Zhang et al., 2024). Other approaches introduce derived structures,
e.g., entity groups, hypergraphs, and evolutionary clusters, to capture high-order correlations among
entities or relations that are not directly connected (Zhang et al., 2022; Tang & Chen, 2024; Tang
et al., 2024; Chen & Chen, 2024). However, since TKG datasets are constructed from events, which
inherently contain heterogeneous causalities, focusing solely on entity or relation level correlations
is inadequate for event prediction in TKGs.

In fact, static causality and dynamic causality are ubiquitous in dynamic graphs. Here, static causal-
ity refers to time-invariant causal dependencies, whereas dynamic causality captures time-dependent
causal dependencies that evolve across timestamps (Zhao & Zhang, 2024). In addition, TKGs also
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Figure 1: An example of heterogeneous causalities at the event level. IAEA denotes the International
Atomic Energy Agency.

include non-causality that does not benefit event prediction and spurious causality that impedes the
model’s acquisition of causally relevant discriminative information for event prediction. Figure 1
illustrates heterogeneous causalities at the event level, i.e., static causality, dynamic causality, non-
causality, and spurious causality. First, the IAEA comprehensive safety review (Event A) provided
the institutional framework that underpinned Japan’s decision to begin the treated water release
(Event D), exemplifying static causality. Second, when Japan initiated the discharge, China an-
nounced an immediate ban on Japanese seafood imports on the same day (Event E), illustrating
dynamic causality. Third, the BRIC, i.e., an international organization comprising Brazil, Russia,
India, and China, summit held in Johannesburg (Event C) is non-causality with respect to these
events. Fourth, Typhoon “Lan” made landfall in Japan and disrupted transport (Event B). Overem-
phasis on Event B could mislead the model to attribute export changes to Typhoon effects rather
than the policy driven seafood ban, demonstrating spurious causality.

Although a structural causal model tailored to event level causalities in TKGs can be posited, it is
non-trivial to disentangle static causality, dynamic causality, non-causality, and spurious causality at
the event level in TKGs. The challenge lies in identifying and estimating them from observational
data, since existing TKGs lack explicit supervision signals to distinguish these causalities.

To address the aforementioned challenges, we propose a Heterogeneous Event causality
Disentangling Representation learning Approach (HEDRA) for temporal knowledge graph reason-
ing. To the best of our knowledge, HEDRA is the first work that focuses on disentangling heteroge-
neous causalities at the event level in TKGs, which constructs event representations from quadru-
ples and progressively disentangles non-causality, spurious causality, static causality, and dynamic
causality among TKG events. Our contributions are summarized as follows:

• We propose a TKG structural causal model to formally define non-causality, spurious
causality, static causality, and dynamic causality, which establishes a theoretical framework
for event level causality disentangling in TKGs.

• We propose a counterfactual detector module to disentangle non-causality in TKGs by
leveraging event importance and distributional discrepancies of event representations,
which includes a contrastive loss to encourage event pairs with low non-causality weights
to be closer and those with high non-causality weights to be more separated.

• We propose an Instrumental Variable (IV)-guided disentangling module to disentangle
spurious causality in TKGs by constructing IVs, which can produce robust event repre-
sentations against spurious causality through multi-view causality subgraphs. In addition,
we propose an evolutionary orthogonal module to separate dynamic causality from static
causality for downstream event prediction.

• Experiments on five real-world datasets demonstrate that HEDRA achieves the state-of-
the-art performance. HEDRA outperforms the runner-up by an average of 5.70%, 7.51%,
7.21%, and 2.30% in MRR, Hits@1, Hits@3, and Hits@10, respectively.

2 RELATED WORK

TKG Representation Learning. TKG representation learning approaches modeling pairwise cor-
relations typically combine Graph Convolutional Networks (GCNs) and Recurrent Neural Networks

2
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to capture structural information and temporal evolution, respectively (Li et al., 2021b; Sun et al.,
2021; Li et al., 2022; Bai et al., 2023; Chen et al., 2024b). In addition to pairwise correlations,
high-order correlations among three or more entities or relations are modeled through derived struc-
tures, i.e., communities, hypergraphs, and evolutionary clusters (Zhang et al., 2022; Tang & Chen,
2024; Tang et al., 2024; Chen & Chen, 2024). However, TKG datasets, e.g., ICEWS, centered on
international political events, inherently involve complex causal dependencies. Focusing solely on
entity or relation level correlations is therefore inadequate for event prediction in TKGs. To address
this, we propose HEDRA, the first framework to disentangle heterogeneous causalities at the event
level in TKGs.

Graph Causality Learning. Static graph causal learning approaches primarily focus on modeling
spatial causality within static graphs. These approaches generally aim to reveal causality by gener-
ating interpretable subgraphs (Luo et al., 2020; Yuan et al., 2020; Ying et al., 2019; Fan et al., 2022;
Gao et al., 2023). Dynamic graphs, prevalent in real-world scenarios, have motivated research on
dynamic graph causal learning, which typically explores both spatial causality and temporal causal-
ity (Zhao & Zhang, 2024; Chen et al., 2024a). Despite progress in dynamic graph causal learning,
most approaches mainly model static and dynamic causalities while overlooking spurious causal-
ity, which impedes the acquisition of causally relevant information for event prediction. Moreover,
there is no theoretical framework to disentangle heterogeneous causalities at the event level in TKGs.
To fill this gap, we propose HEDRA, which constructs event representations from quadruples and
progressively disentangles non-causality, spurious causality, static causality, and dynamic causality
among events in TKGs. The comprehensive related works can be found in Appendix A.

3 PRELIMINARIES

3.1 DEFINITIONS

Definition (TKG). A TKG is defined as a sequence of timestamped events, each represented as
G = {(s, r, o, t)|s ∈ E , r ∈ R, o ∈ E , t ∈ T }, where E , R, and T denote the sets of entities,
relations, and timestamps, respectively. Gt denotes the set of events at timestamp t.

Task (Event Prediction). The event prediction task in TKGs aims to estimate the probability distri-
bution over candidate relations between a subject entity s and an object entity o, conditioned on the
historical event sequence G1:T−1. Formally, this task can be expressed as p(r̂|s, o,G1:T−1), where
T denotes the total number of historical timestamps.

3.2 EVENT LEVEL TKG STRUCTURAL CAUSAL MODEL

Figure 2: Event level TKG SCM.

The event level TKG structural causal model
(SCM) is shown in Figure 2, which comprises
nine variables: TKG G, historical events H,
non-causality N , causality C, spurious causal-
ity P , dynamic causality D, static causality S,
representation R, and prediction Y . The di-
rected edges denote cause-effect. The explana-
tions of the TKG SCM are as follows:

• G → H → C: Historical events H are derived from the TKG G, within which the genuine causal
regularities are distilled as causality C.

• P ← H → N : Historical events H give rise to both non-causality N and spurious causality P .
Specifically, N denotes correlations irrelevant to event prediction, while P denotes correlations
that obstruct the model from capturing causally relevant discriminative information.

• D ← C → S: Causality C can be disentangled into dynamic causality D and static causality S,
both of which jointly drive the learning of high-quality entity and relation representationsR.

• N → R ← P: Non-causality N and spurious causality P interfere with the representation
learning process, introducing noise and consequently diminishing the quality of representationR.

• R → Y: The objective of HEDRA is to leverage the learned representations R for event pre-
diction, where the target Y is ideally determined by dynamic causality D and static causality S
throughR, with the effects of non-causality N and spurious causality P suppressed.
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From the TKG SCM, two backdoor paths exist between C and Y , i.e., C ← H → N → R→ Y and
C ← H → P → R → Y , where N and P act as confounders that bias the estimation of the causal
effect C → Y and thereby interfere with event prediction. Moreover, when estimating the effect of
D on Y , the path D ← C → S → R → Y makes S a confounder; symmetrically, when estimating
the effect of S on Y , the path S ← C → D → R→ Y makes D a confounder.

Backdoor Adjustment. HEDRA aims to progressively disentangle non-causality, spurious causal-
ity, static causality, and dynamic causality, ultimately leveraging static and dynamic causalities for
event prediction. To this end, it is essential to block backdoor paths so that the model focuses on the
causal effect of C. Within this framework, do-calculus (Pearl et al., 2000) provides a principled tool
to eliminate the influence of confounders. Specifically, when estimating the causal effect of C on Y ,
adjustments for N and P are required, while estimation of the effect of D on Y requires adjusting
for S. Formally, the backdoor adjustment is expressed as (see Appendix B for derivation):

P (Y| do(D)) =
∑

P
(
Y|do(D),S

)
P
(
S| do(D)

)
=

∑
P (S)

∑
P (T )

∑
P (P)

∑
P
(
Y|G

)
. (1)

However, implementing such backdoor adjustments in TKGs poses significant challenges, since
existing TKGs lack explicit supervision signals to distinguish non-causality, spurious causality, static
causality, and dynamic causality.

Our Solution. To address the above challenge, we propose HEDRA, a framework designed to pro-
gressively disentangle heterogeneous event causalities in TKGs. At each timestamp, entity and re-
lation representations are updated through a relation-aware GCN, followed by event representation
construction. The counterfactual detector module disentangles non-causality by leveraging event
importance and distributional discrepancies, guided by a contrastive loss. The Instrumental Variable
(IV)-guided disentangling module introduces IVs to disentangle spurious causality, with a robust-
ness loss based on multi-view causality subgraphs. The evolutionary orthogonal module further
disentangles dynamic and static causalities under orthogonality constraints, while an evolutionary
loss preserves the temporal dependence of dynamic components and the temporal independence of
static components. Finally, by modeling dynamic and static causalities across timestamps, an event
graph is constructed and processed with event GCNs to refine entity and relation representations for
event prediction. The framework of HEDRA is illustrated in Figure 3.

4 METHODOLOGY

4.1 EVENT REPRESENTATION CONSTRUCTION MODULE

Relational Message Passing. Structural dependencies among entities and re-
lations at timestamp t are modeled by a relation-aware GCN as: ht,l+1

o =

RReLU
(

1
do

∑
(s,r)∈N t

o
W1

(
ht,l

s + ht,l
r
)
+W2h

t,l
o

)
, where N t

o = {(s, r)|(s, r, o) ∈ Gt} denotes

the set of subject–relation pairs forming incoming edges to object at timestamp t. ht,l
s , ht,l

o , and
ht,l

r represent the layer-l representations of subject, object, and relation at timestamp t, respectively.
W1 and W2 are learnable parameters for neighbor aggregation and the self-loop, respectively. do is
the in-degree of object. Entity and relation representations are randomly initialized. For brevity, the
layer index l is omitted in subsequent sections.

Relation Update. The relation representation at timestamp t is influenced jointed by the r-related
entity representations at the same timestamp and its historical representation. Formally, let ht

Vent(r)
denote the r-related entity representations at timestamp t. The update of relation representation is
formulated as ht

r = pool
(
[ ht

Vent(r); h
t−1
r ]

)
, where [; ] denotes concatenation. pool is mean pooling.

Event Representation Construction. To capture the semantic interactions among subjects, rela-
tions, and objects at each timestamp, event representations are constructed by jointly encoding the
three components of a TKG fact. Formally, for the quadruple (s, r, o, t) with subject representation
ht

s , relation representation ht
r , and object representation ht

o, the event representation is formulated
as ht

event = fMLP

(
[ ht

s ; h
t
r ; h

t
o ]
)
, where fMLP denotes a multi-layer perceptron.

4.2 COUNTERFACTUAL DETECTOR MODULE

Candidate Graph. To avoid the quadratic complexity of fully connecting all event pairs, a candidate
graph is constructed through k-nearest-neighbors (Cover & Hart, 1967) in the representation space.

4
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Figure 3: The framework of HEDRA, illustrated with timestamp T−1 as an example.

Let {ht
event,i}Ei=1 denote the set of event representations at timestamp t, where E is the number of

events. The binary adjacency matrix is C∈{0, 1}, with Cij = 1 indicating a candidate edge i→j.

Event Importance. Higher edge importance implies increased probability of causal dependency
between events. For each candidate edge i→j, the event importance is computed as:

eij = LeakyReLU
(
a⊤[W3h

t
event,i; W4h

t
event,j

])
, Aij =

exp(eij)∑
k∈N in(j) exp(ekj)

, (2)

where W3,W4, and a are learnable parameters. N in(j) = {k |Ckj = 1} means the in-degree of
event j. Aij ∈ [0, 1] is the importance weight on edge i→j.

Distributional Discrepancy. Larger distributional discrepancy between event representations im-
plies decreased probability of causal dependency. Each event representation is mapped to parameters
of a diagonal Gaussian posterior through multi-layer perceptrons fµ and fσ as:

µi = fµ
(
ht

event,i
)
, σi = softplus

(
fσ
(
ht

event,i
))
, (3)

where µi and σi are the mean and standard deviation vectors of the Gaussian qi = N (µi, diag(σ
2
i )),

respectively. For a candidate edge i → j, the distributional discrepancy is the Kullback–Leibler
divergence (Kullback & Leibler, 1951) between qi and qj as:

Dij = KL
(
qi ∥ qj

)
=

1

2

D∑
d=1

[
log

σ2
j,d

σ2
i,d

+
σ2
i,d + (µi,d − µj,d)

2

σ2
j,d

− 1

]
, (4)

where D is the dimension of representations.

Non-causality Mask. Event importance and distributional discrepancy are fused on the candidate
graph to produce a soft non-causality mask as:

S =
(
αattn · logit(A+ ε)− βKL ·D

)
⊙C, MNC = 1− σ(S), (5)

where αattn and βKL are fixed loss-weight coefficients satisfying αattn + βKL = 1 and are set to
0.5 in all experiments to give equal weight to event importance and distributional discrepancy. ε is
a small constant for numerical stability. σ is the sigmoid function and logit is its inverse. ⊙ denotes
the Hadamard product. 1 is the all ones matrix. The larger Aij decreases MNC

ij and indicates

5
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higher causal dependency likelihood, whereas the larger Dij increases MNC
ij and indicates higher

non-causality likelihood.

Contrastive Loss. A contrastive loss is proposed to encourage event pairs with low non-causality
weights to be closer and those with high non-causality weights to be more separated. Let sij =
cos

(
ht

event,i,h
t
event,j

)
denote cosine similarity, let τ > 0 be the temperature, and let P = {(i, j) |

i ̸= j, Cij = 1} be the set of candidate pairs. The contrastive loss is formulated as:

Lcon =
1

|P|
∑

(i,j)∈P

[
(1−MNC

ij )
(
− log σ(sij/τ)

)
+MNC

ij

(
− log(1− σ(sij/τ))

)]
. (6)

4.3 IV-GUIDED DISENTANGLING MODULE

Instrumental Variable Score. After non-causality has been disentangled, edges between event
pairs may still mix genuine and spurious causalities. In causal learning, the Instrumental Variable
(IV) approach is commonly employed to disentangle them (Gao et al., 2023). Accordingly, an IV
encoder fIV, implemented as a multi-layer perceptron, is adopted to produce the IV score for each
edge i→j as:

Πij = fIV
(
ht

event,i, h
t
event,j , logit(Aij + ε), −Dij

)
. (7)

Herein, only standard TKG quadruples are observed, and no causality labels are available. The IV
encoder produces scores that are used solely inside the IV-guided disentangling module (IVDM) to
separate genuine from spurious causalities. This design enforces a neural analogue of the exclusion
restriction, since Πij does not directly enter the final scoring function. Conditioned on the observed
history graph and current event representations, Πij is assumed to be approximately independent
of the unobserved noise in the genuine-versus-spurious split, playing the role of the standard IV
independence assumption.

Spurious Causality Mask. Let MC = 1 −MNC denote the complement of the non-causality
mask. Based on the IV score, the gated matrix Π̃ = MC ⊙Π is employed to disentangle genuine
and spurious causalities as:

θα = Quantileα
(
{Π̃ij : MC

ij > 0}
)
, MP = I

{
Π̃ ≥ θα1

}
, M

P
= 1−MP, (8)

where α∈ (0, 1) specifies the fraction of top-scoring edges. θα is the α-quantile of IV scores. MP

selects the top-α edges as genuine causality while M
P

retains the remainder as spurious causality.

Multi-view Propagation. Although the spurious causality mask partitions the edges into genuine
and spurious causalities, the IV scores may be imperfect in practice. To enhance robustness, three
subgraphs are constructed: the genuine-view subgraph Ggen with MP, the spurious-view subgraph

Gspur with M
P

, and the all-view subgraph Gall combining both. Heterogeneous convolution is
applied on each subgraph to derive complementary event representations, which is formulated as:

Ht
gen = HConv

(
Ggen,H

t
event

)
, Ht

spur = HConv
(
Gspur,H

t
event

)
, Ht

all = HConv
(
Gall,H

t
event

)
, (9)

where HConv(·) denotes heterogeneous event convolution.

Robustness Loss. To enhance robustness under imperfect IV estimation, a robustness loss is de-
signed based on different subgraph propagation views, consisting of alignment and separation terms.
The alignment term draws the all-view representations toward the genuine-view representations,
while the separation term pushes the spurious-view representations away from the genuine-view
representations. This process is formulated as:

Lrob = λalign
1

E

E∑
i=1

[
− log σ

(
s(ht

all,i,h
t
gen,i)/τ

)]
︸ ︷︷ ︸

Lalign

+λsep
1

E

E∑
i=1

[
− log

(
1− σ

(
s(ht

spur,i,h
t
gen,i)/τ

))]
︸ ︷︷ ︸

Lsep

,

(10)
where λalign and λsep are fixed trade-off coefficients with λalign + λsep = 1 and are set to 0.5 in all
experiments to give equal weight to the alignment and separation terms.

4.4 EVOLUTIONARY ORTHOGONAL MODULE

Static and Dynamic Causalities Masks. To disentangle static and dynamic causalities, each event
representation is projected into a static component and a raw dynamic component by two multi-layer

6
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perceptron encoders fstat and fdyn as:

hS,t
event,i = fstat(h

t
gen,i), hraw,D,t

event,i = fdyn(h
t
gen,i). (11)

Then, the dynamic component is obtained by orthogonalizing the raw dynamic component with
respect to the static component as:

hD,t
event,i = hraw,D,t

event,i −
⟨hraw,D,t

event,i , hS,t
event,i⟩

∥hS,t
event,i∥22 + ε

hS,t
event,i. (12)

A classifier fMLP is employed to distinguish dynamic from static causality, as follows:

pDij = σ
(
fMLP

(
[ |hD,t

event,i − hD,t
event,j |; |h

S,t
event,i − hS,t

event,j |]
))

. (13)

Herein, the dynamic causality mask is defined as MD = I{pDij > 0.5} ⊙MP, and the static
causality mask as MS = 1−MD.

Evolutionary Loss. An evolutionary loss is designed to preserve the temporal dependence of dy-
namic components and the temporal independence of static components as:

Levo = λdyn
1

|G|
∑
g∈G

∥∥∥hD,t
event,g − fGRU(h̃

D,1:t−1
event,g )

∥∥∥2

2︸ ︷︷ ︸
Ldyn

+λstat
1

|G|
∑
g∈G

∥∥∥hS,t
event,g − h̄S,1:t−1

event,g

∥∥∥2

2︸ ︷︷ ︸
Lstat

, (14)

where λdyn and λstat are fixed trade-off coefficients satisfying λdyn + λstat = 1 and are set to
0.5 in all experiments to give equal weight to the dynamic and static components. G is the set of
(s, r, o) groups. h̄S,1:t−1

event,g denotes the group-level mean of the static components, and h̃D,1:t−1
event,g is

the historical memory of the dynamic components.

Static and Dynamic Causalities Modeling. Static and dynamic causalities are essential for event
prediction in TKGs. To exploit them explicitly, message passing is conducted in the static-view
subgraph Gstat and the dynamic-view subgraph Gdyn. Heterogeneous convolution is applied to the
genuine-view representations Ht

gen, and the resulting static-view and dynamic-view representations
are fused and normalized to update event representations as:

Ht
evo = Norm

(
W5

[
HConv(Gdyn,H

t
gen); HConv(Gstat,H

t
gen)

])
. (15)

Updated entity and relation representations He and Hr are obtained via inverse event construction.

4.5 EVENT PREDICTION

ConvTransE (Shang et al., 2019) is employed as the decoder to estimate the relation probability
distribution for a given entity pair as p(r̂|s, o,G1:T−1) = σ

(
H r ConvTransE(ēs, ēo)

)
, where r̂ denotes

the predicted probability vector over relations and H r is the relation representation matrix. The
training objective for event prediction is to minimize the cross-entropy loss:

LTKG = − 1

NS

NS∑
i=1

Nr∑
j=1

(
yi,j log pi,j + (1− yi,j) log(1− pi,j)

)
, (16)

where NS and Nr denote the number of training samples and relations, respectively. yi,j is the
ground-truth label for relation j in sample i (1 if the event occurs, 0 otherwise), and pi,j is the
predicted probability. The overall training objective of HEDRA integrates multiple components:

L = (1− λcon − λrob − λevo)LTKG + λconLcon + λrobLrob + λevoLevo, (17)

where λcon, λrob, and λevo are scalar coefficients for contrastive, robustness, and evolutionary losses,
respectively. All hyperparameters are constrained within [0, 1].

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Experimental Settings. HEDRA is evaluated on five widely adopted real-world
TKG datasets: ICEWS14, ICEWS18, GDELT, WIKI, and YAGO (Trivedi et al., 2017; Li et al.,

7
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Table 1: The performance of HEDRA and the compared approaches on ICEWS14 and ICEWS18.
An asterisk (“*”) indicates that HEDRA significantly outperforms the compared approaches based
on pairwise t-tests at a 95% confidence level. The best performance is highlighted in bold, while the
runner-up is underlined.

ICEWS14 ICEWS18
Approach

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TTransE (WWW 2018) 22.36* 13.41* 24.40* 39.64* 16.39* 8.43* 17.21* 31.72*
TA-TransE (EMNLP 2018) 20.94* 13.77* 24.11* 36.06* 21.64* 14.11* 24.89* 37.64*

RE-NET (EMNLP 2020) 38.53* 22.53* 44.47* 74.05* 39.63* 23.55* 45.70* 75.66
Glean (KDD 2020) 36.07* 22.17* 39.52* 64.75* 35.15* 22.02* 38.07* 64.24*
RE-GCN (SIGIR 2021) 40.85* 28.15* 45.33* 68.53* 40.68* 27.01* 46.31* 69.51*
DACHA (TKDD 2022) 40.69* 27.28* 45.79* 68.44* 40.80* 27.83* 45.26* 69.21*
TiRGN (IJCAI 2022) 41.28* 29.52* 46.69* 70.66* 42.26* 30.19* 46.99* 73.90*

EvoExplore (KBS 2022) 28.11* 13.97* 33.45* 57.67* 29.82* 18.50* 30.08* 58.01*
GTRL (TKDE 2024) 38.57* 27.36* 42.15* 66.35* 38.43* 27.48* 43.06* 67.82*
DHyper (TOIS 2024) 41.71* 29.37* 45.69* 69.32* 42.84* 29.96* 47.52* 70.82*
DECRL (NeurIPS 2024) 42.90* 30.49* 47.06* 70.01* 43.36* 30.64* 47.96* 71.12*
HEDRA 47.86 35.28 53.32 75.65 46.77 33.66 52.33 75.64

Improvement 11.56% 15.71% 13.30% 2.16% 7.86% 9.86% 9.12% -0.03%

2021b). ICEWS14 and ICEWS18 are derived from the Integrated Crisis Early Warning System
(Boschee et al., 2015), which records political events at daily granularity. GDELT, sourced from
the Global Database of Events, Language, and Tone (Leetaru & Schrodt, 2013), captures human
activities with timestamps at 15-minute intervals. WIKI and YAGO are organized at the yearly
level, which are constructed from Wikipedia and YAGO3 (Mahdisoltani et al., 2013), respectively.
The Mean Reciprocal Rank (MRR) and Hits@1/3/10 are adopted as evaluation metrics. Detailed
statistics of the datasets and other experimental settings are provided in Appendix C.1. Unless
otherwise stated, all loss-weight coefficients in HEDRA, including αattn and βKL, and λalign and
λsep, are treated as fixed design choices and set to 0.5 in all experiments. They are introduced to
balance the corresponding components and keep them on a comparable scale, rather than to serve as
dataset-specific tuning knobs. A representative sensitivity study on αattn and λalign on ICEWS14
dataset is reported in Appendix C.4, indicating that HEDRA is robust to moderate changes of these
coefficients within a reasonable range.

Baselines. HEDRA is compared with eleven representative TKG representation learning ap-
proaches, grouped as follows: shallow encoder based approaches, i.e., TTransE (Leblay & Chekol,
2018) and TA-TransE (Garcia-Duran et al., 2018); GNN based approaches, i.e., RE-NET (Jin et al.,
2020), Glean (Deng et al., 2020), RE-GCN (Li et al., 2021b), DACHA (Chen et al., 2021), and
TiRGN (Li et al., 2022); and derived structure approaches, i.e., EvoExplore (Zhang et al., 2022),
GTRL (Tang & Chen, 2024), DHyper (Tang et al., 2024), and DECRL (Chen & Chen, 2024). De-
tailed descriptions of these baselines are provided in Appendix C.2. Since some approaches do not
target event prediction task and others collapse relations into four coarse-grained categories that
differs from our settings, to ensure a fair comparison, we follow the official implementations of all
baselines and tune hyperparameters to report the results.

5.2 PERFORMANCE COMPARISON

The performance of HEDRA with the compared approaches on the ICEWS14, ICEWS18, WIKI,
YAGO, and GDELT datasets is presented in Tables 1, 2, and 3. It can be observed that HEDRA
achieves average improvements of 5.70%, 7.51%, 7.21%, and 2.30% over the runner-up in terms
of MRR and Hits@1/3/10 on five datasets, respectively. On ICEWS18 dataset, HEDRA yields a
slightly lower Hits@10 than RE-NET. This difference can be attributed to RE-NET’s global graph
mechanism, which aggregates broader historical information and tends to retain more potentially
relevant candidates within the top-10 range, whereas HEDRA is designed to emphasize event level
causality disentanglement and improve the quality of the top ranks, leading to more pronounced
gains in MRR, Hits@1, and Hits@3. Overall, these results show that disentangling heterogeneous
event level causalities while discarding non-causality and spurious causality enables HEDRA to
capture more discriminative entity and relation representations. The computational complexity of
HEDRA can be found in Appendix C.3. The observed runtime increase is acceptable in light of the
significant performance gains.
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Table 2: The performance of HEDRA and the compared approaches on WIKI and YAGO. Since the
YAGO dataset contains only 10 relation types, the Hits@10 metric is not statistically meaningful
and is therefore denoted as “–”. Other notations follow Table 1.

WIKI YAGO
Approach

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TTransE (WWW 2018) 69.64* 62.54* 71.57* 84.84* 88.35* 81.49* 94.24* –
TA-TransE (EMNLP 2018) 70.76* 66.26* 74.32* 88.47* 87.16* 85.53* 90.50* –

RE-NET (EMNLP 2020) 75.29* 57.08* 90.25* 97.64* 92.24* 89.43* 92.43* –
Glean (KDD 2020) 91.76* 86.18* 90.55* 92.84* 90.19* 88.90* 91.71* –
RE-GCN (SIGIR 2021) 98.24* 97.60* 98.68* 99.41* 98.45* 97.75* 98.89* –
DACHA (TKDD 2022) 75.86* 68.91* 78.79* 90.91* 92.54* 89.17* 94.77* –
TiRGN (IJCAI 2022) 99.00* 98.53* 99.35* 99.53* 98.53* 97.91* 98.90* -

EvoExplore (KBS 2022) 78.71* 73.13* 81.42* 88.43* 93.92* 91.47* 95.21* –
GTRL (TKDE 2024) 92.68* 89.18* 92.34* 95.63* 92.36* 90.71* 93.95* –
DHyper (TOIS 2024) OOM OOM OOM OOM 94.38* 92.03* 96.01* –
DECRL (NeurIPS 2024) 93.20* 90.91* 94.33* 98.14* 95.84* 94.15* 97.09* –
HEDRA 99.14 98.73 99.48 99.79 99.12 98.77 99.31 –

Improvement 0.14% 0.20% 0.13% 0.26% 0.60% 0.88% 0.41% –

Table 3: The performance of HEDRA and the compared approaches on GDELT. “TLE” indicates a
single epoch exceeded 24 hours. “OOM” indicates out of memory. Other notations follow Table 1.

Approach MRR Hits@1 Hits@3 Hits@10

TTransE (WWW 2018) 15.09* 4.71* 13.69* 39.72*
TA-TransE (EMNLP 2018) 20.67* 10.23* 19.88* 35.89*

RE-NET (EMNLP 2020) TLE TLE TLE TLE
Glean (KDD 2020) 17.91* 8.21* 16.65* 39.18*
RE-GCN (SIGIR 2021) 21.35* 11.20* 21.73* 44.53*
DACHA (TKDD 2022) TLE TLE TLE TLE
TiRGN (IJCAI 2022) 22.46* 12.10* 22.33* 45.89*

EvoExplore (KBS 2022) 18.72* 7.71* 18.37* 43.87*
GTRL (TKDE 2024) 19.51* 8.40* 19.26* 41.07*
DHyper (TOIS 2024) OOM OOM OOM OOM
DECRL (NeurIPS 2024) 22.74* 12.56* 22.57* 45.07*
HEDRA 24.64 13.93 25.53 49.02

Improvement 8.36% 10.91% 13.11% 6.82%

5.3 ABLATION STUDY

Table 4: The performance of HEDRA and its variants.
The best performance is highlighted in bold.

Approach MRR Hits@1 Hits@3 Hits@10

HEDRA-w/o-CDM 47.11 34.25 52.12 75.04
HEDRA-w/o-EI 47.34 34.65 52.33 75.39
HEDRA-w/o-DD 47.25 34.46 52.63 75.35
HEDRA-w/o-IVDM 46.47 33.77 51.65 74.75
HEDRA-w/o-EOM 46.24 33.49 51.79 74.10
HEDRA 47.86 35.28 53.32 75.65

To assess the contribution of each com-
ponent in HEDRA, ablation studies are
performed on the ICEWS14 dataset,
as shown in Table 4. Specifically,
HEDRA-w/o-CDM removes the coun-
terfactual detector module with the
contrastive loss. HEDRA-w/o-EI and
HEDRA-w/o-DD remove the event im-
portance and the distributional discrep-
ancy for constructing the non-causality mask, respectively. HEDRA-w/o-IVDM removes the IV-
guided disentangling module with the robustness loss, and HEDRA-w/o-EOM excludes the evolu-
tionary orthogonal module with the evolutionary loss. Since all ablated variants still share the same
event level causality disentanglement framework, which provides a strong backbone compared with
traditional entity level baselines, module-wise ablations tend to result in numerically modest perfor-
mance drops and at the same time reflect the robustness of HEDRA.

The ablation results show that HEDRA-w/o-CDM exhibits only a modest performance drop, sug-
gesting that the non-causality removed by the counterfactual detector module provides limited ben-
efit to event prediction. In contrast, HEDRA-w/o-IVDM suffers a substantial performance degra-
dation, demonstrating that the IV-guided disentangling module plays a critical role in eliminating
spurious causality that impedes the model’s acquisition of causally relevant discriminative informa-
tion, which is essential for event prediction in TKGs. The hyperparameter sensitivity analysis can
be found in Appendix C.4. The results indicate that the performance of HEDRA is insensitive to the
history window length but shows a notable dependence on the neighbor count which is defined in
the candidate graph.
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Table 5: Top-5 predicted relations for two representative test samples on ICEWS14. Correctly
predicted relations are indicated by a leading check mark (✓) and highlighted in bold.

Test sample 1: ⟨Barack Obama, ?, Xi Jinping, 2014/11/13⟩
DECRL HEDRA

✓Sign formal agreement ✓Sign formal agreement
Host a visit Express intent to meet or negotiate

Express intent to meet or negotiate ✓Make statement
✓Consult ✓Make a visit

✓Make statement ✓Consult
Test sample 2: ⟨Police (Hong Kong), ?, Protester (Hong Kong), 2014/11/29⟩

DECRL HEDRA

✓Make statement ✓Make statement
Arrest, detain, or charge with legal action Arrest, detain, or charge with legal action

Investigate Fight with small arms and light weapons
Return, release person(s) ✓Use conventional military force

✓Use conventional military force Investigate

5.4 CASE STUDY

Table 5 compares the predictions of HEDRA and the runner-up approach DECRL on
two representative ICEWS14 test samples, one exhibiting a positive relational trend and
the other a negative trend. Specifically, the table lists the top five predicted re-
lations for test sample 1 ⟨Barack Obama, ?,Xi Jinping, 2014/11/13⟩ and test sample 2
⟨Police (Hong Kong), ?, Protester (Hong Kong), 2014/11/29⟩. For test sample 1, more ground-
truth relations are correctly identified by HEDRA, which predicts “Make a visit” rather than the
inverse “Host a visit”, indicating that event level causal disentangling better models relation direc-
tionality. By contrast, DECRL, which primarily captures entity correlations, struggles to distinguish
relation directions. For test sample 2, only negative relations are predicted by HEDRA, whereas
DECRL outputs the positive relation “Return, release person(s)”, likely because it does not con-
sider heterogeneous causalities at the event level in TKGs, which can lead to predictions with senti-
ment opposite to the ground-truth relations. In Appendix C.5, additional diagnostics of the training
dynamics and IV-guided disentangling behavior are presented, together with few-shot robustness
experiments on ICEWS14 and ICEWS18 datasets. Another case study can be found in Appendix
C.6.

6 CONCLUSIONS AND FUTURE WORK

In this paper, based on a TKG structural causal model that establishes the theoretical framework for
event level causality disentangling, a Heterogeneous Event causality Disentangling Representation
learning Approach (HEDRA) is proposed, which is the first work that focuses on disentangling
heterogeneous causalities at the event level in TKGs. Comprehensive experiments are conducted
on five real-world datasets, including the comparison with baselines, ablation study, hyperparameter
sensitivity analysis, running time analysis, training dynamics analysis, few-shot relations prediction,
and case studies, which demonstrate the superior performance of HEDRA.

Future work includes replacing the fixed quantile rule in the IV-guided module with a learned, data-
driven calibration mechanism for selecting genuine edges, designing lightweight global memory
modules to enhance long-range history modeling and Hits@10 on large-scale datasets, and fur-
ther reducing computational overhead via sparser causal subgraph construction, more efficient event
causality disentangling, and sparsity-aware distributed implementations on datasets such as GDELT.
Another promising direction is to combine HEDRA with LLM-based event prediction frameworks,
using LLMs to provide semantic priors for event and relation representations and to leverage tex-
tual context for data-sparse and long-tail relations, while preserving explicit event level causality
disentangling.

7 ETHICS STATEMENT

All authors have read and adhere to the ICLR Code of Ethics. This work uses publicly available
benchmarks and introduces no new data collection. It involves no human subjects, no personally
identifiable information, and no sensitive attributes. There are no conflicts of interest. We do not
identify any ethical concerns specific to this submission.
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8 REPRODUCIBILITY STATEMENT

The source code of HEDRA is available at https://anonymous.4open.science/r/
HEDRA-8A2F. Hyperparameters and protocol details are described in the paper and the appendix
to facilitate end-to-end reproduction.
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A COMPREHENSIVE RELATED WORK

A.1 TKG REPRESENTATION LEARNING

Current TKG representation learning approaches primarily aim to model correlations among entities
or relations, which can be categorized into two main categories: modeling pairwise correlations
between entities or relations and modeling high-order correlations among entities or relations.

TKG representation learning approaches modeling pairwise correlations typically combine Graph
Convolutional Networks (GCNs) and Recurrent Neural Networks to capture structural information
and temporal evolution, respectively (Li et al., 2021b; 2022; Bai et al., 2023). For example, RE-GCN
(Li et al., 2021b) combines GCNs with Gated Recurrent Units (GRUs) to capture structural and tem-
poral information, respectively. Similarly, TiRGN (Li et al., 2022) uses multi-relational GCNs and
GRUs to capture the structural information of entities across different temporal patterns. These ap-
proaches generally stack multiple layers of networks to model pairwise correlations between distant
entities, which can result in over-smoothing. To address this, some TKG representation learning
approaches introduce paths or subgraphs to model pairwise correlations between distant entities or
relations more effectively (Li et al., 2021a; Sun et al., 2021; Chen et al., 2024b; Zhang et al., 2024).
For example, CluSTeR (Li et al., 2021a) and TITer (Sun et al., 2021) utilize reinforcement learn-
ing to discover cross-temporal clue paths that model pairwise correlations between entities. LogCL
(Chen et al., 2024b) constructs both local and global subgraphs based on queries to achieve a similar
goal.

In addition to pairwise correlations, high-order correlations among three or more entities or relations
are modeled through derived structures, i.e., communities, hypergraphs, and evolutionary clusters
(Zhang et al., 2022; Tang & Chen, 2024; Tang et al., 2024; Chen & Chen, 2024). For example,
EvoExplore (Zhang et al., 2022) leverages dynamic communities based on soft modularity to model
implicit correlations among multiple entities. DHyper (Tang et al., 2024) introduces hypergraph neu-
ral networks to capture high-order correlations among entities and among relations. DECRL (Chen
& Chen, 2024) uses deep evolutionary clustering to construct evolutionary clusters for capturing
high-order correlations among entities.

However, TKG datasets, e.g., ICEWS, centered on international political events, inherently involve
complex causal dependencies. Focusing solely on entity or relation level correlations is therefore
inadequate for event prediction in TKGs. To address this, we propose HEDRA, the first framework
to disentangle heterogeneous causalities at the event level in TKGs.

A.2 GRAPH CAUSALITY LEARNING

Graph causal learning approaches can be divided into static graph causal learning approaches and
dynamic graph causal learning approaches.

Static graph causal learning approaches primarily model spatial causality in static graphs by gen-
erating interpretable subgraphs (Luo et al., 2020; Yuan et al., 2020; Ying et al., 2019; Fan et al.,
2022; Gao et al., 2023). For example, PGExplainer (Luo et al., 2020) employs prior knowledge
to pre-define subgraphs, thereby providing interpretability to static graphs. XGNN (Yuan et al.,
2020) employs reinforcement learning to iteratively expand interpretable subgraphs. More recent
approaches generate subgraphs using learnable methods. For example, GNNExplainer (Ying et al.,
2019) uses mutual information to add or remove nodes and edges to generate subgraphs. RCGRL
(Gao et al., 2023) relies on GNN-derived edge weights for generating subgraphs.
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Table 6: The statistics of datasets.

Dataset #Entity #Relation #Training #Validation #Test Interval

ICEWS14 7,128 230 74,845 8,514 7,371 24 hours
ICEWS18 23,033 256 373,018 45,995 49,545 24 hours
GDELT 7,691 240 1,734,399 238,765 305,241 15 mins
WIKI 12,554 24 539,286 67,538 63,110 1 year
YAGO 10,623 10 161,540 19,523 20,026 1 year

Dynamic graphs, prevalent in real-world scenarios, have motivated research on dynamic graph
causal learning, which typically explores both spatial causality and temporal causality (Zhao &
Zhang, 2024; Chen et al., 2024a). For example, DyGNNExplainer (Zhao & Zhang, 2024) utilizes
disentangling methods to uncover spatio-temporal causality. CSI (Chen et al., 2024a) generates
causal subgraphs by deriving query-related subgraphs and applying attention mechanisms to model
spatio-temporal causality within dynamic graphs.

Despite progress in dynamic graph causal learning, most approaches mainly model static and dy-
namic causalities while overlooking spurious causality, which impedes the acquisition of causally
relevant information for event prediction. Moreover, no theoretical framework exists to disentangle
heterogeneous causalities at the event level in TKGs. To fill this gap, we propose HEDRA, which
constructs event representations from quadruples and progressively disentangles non-causality, spu-
rious causality, static causality, and dynamic causality among events in TKGs.

B BACKDOOR ADJUSTMENT DERIVATION

The detailed derivation process of backdoor adjustment is shown as follows:

P (Y| do(D)) =
∑

P
(
Y| do(D),S

)
P
(
S| do(D)

)
=

∑
P
(
Y| do(C)

)
P (S)

=
∑

P (S)
∑

P
(
Y| do(C), T ,P

)
P
(
T ,P| do(C)

)
=

∑
P (S)

∑
P
(
Y|G

)
P (T ,P)

=
∑

P (S)
∑

P (T )
∑

P (P)
∑

P
(
Y|G

)
.

(18)

This derivation illustrates how the adjustment effectively blocks the backdoor paths involvingN , P ,
and S, thereby ensuring unbiased estimation of causal effects.

C EXPERIMENTS APPENDIX

C.1 DATASET STATISTICS AND EXPERIMENTAL SETTINGS

Detailed statistics of the datasets are summarized in Table 6. HEDRA is implemented in Python
with PyTorch and trained on an NVIDIA RTX 5090 GPU. The Neural Network Intelligence (NNI)1

toolkit is employed to automatically explore hyperparameter configurations. The search spaces of
key hyperparameters are defined as follows: Nlayer, the number of layers, ranges from 1 to 5 with
a step size of 1; Nwindow, the length of historical windows, ranges from 1 to 14 with a step size of
1; and k, the number of k-nearest neighbors in the candidate graph, ranges from 3 to 15 with a step
size of 2. A maximum of 30 trials are conducted in the NNI search process, with the Tree-structured
Parzen Estimator (Bergstra et al., 2015) employed as the optimization algorithm. The final selected
hyperparameters are summarized in Table 7.

Hyperparameters λcon, λrob, and λevo are all set to 0.1, controlling the magnitude of contrastive,
robustness, and evolutionary losses, respectively. The Adam optimizer (Kingma & Ba, 2014) is
applied with an initial learning rate of 0.01. The batch size is 16, and the representation dimension
is 200. Results are averaged over five independent runs.

1https://github.com/microsoft/nni
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Table 7: The final choices of key hyperparameter values.

Hyperparameter Search space ICEWS14 ICEWS18 GDELT WIKI YAGO

Nlayer {1, 2, 3, 4, 5} 2 2 1 1 2
Nwindow {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} 10 2 2 4 6

k {3, 5, 7, 9, 11, 13, 15} 13 11 9 7 9

C.2 DESCRIPTION OF BASELINES

To validate the effectiveness of HEDRA, we compare it against eleven representative TKG repre-
sentation learning approaches, which are summarized as follows:

Shallow Encoder based Approaches:

• TTransE (Leblay & Chekol, 2018) augments TransE by embedding temporal information
into entity representations.

• TA-TransE (Garcia-Duran et al., 2018) extends TransE by incorporating RNN-based mod-
eling to capture time-aware relation representations.

GNN based Approaches:

• RE-NET (Jin et al., 2020) combines GCNs for capturing structural information together
with RNNs to model temporal dependencies.

• Glean (Deng et al., 2020) leverages composition-based GCNs to encode entity interactions
and employs GRUs to model temporal evolution.

• RE-GCN (Li et al., 2021b) integrates relation-aware GCNs with autoregressive GRUs to
jointly capture structural and temporal dependencies.

• DACHA (Chen et al., 2021) introduces dual GCNs for structure information encoding and
incorporates a self-attentive mechanism to learn relation-aware temporal representations.

• TiRGN (Li et al., 2022) introduces RGCNs to capture graph structural information and a
double recurrent mechanism to model temporal dependencies.

Structure Derived Approaches:

• EvoExplore (Zhang et al., 2022) employs dynamic community structure to characterize
the evolution of local structural patterns.

• GTRL (Tang & Chen, 2024) introduces group structure to model distant and indirectly
connected entities, and integrates GRUs for temporal reasoning.

• DHyper (Tang et al., 2024) leverages hypergraph neural networks to model high-order
dependencies among entities and relations.

• DECRL (Chen & Chen, 2024) represents the SOTA structure derived approach by employ-
ing deep evolutionary clustering to trace the temporal evolution of high-order correlations
among entities.

C.3 COMPLEXITY ANALYSIS

The time complexity of relation-aware GCN is O((Ne +Nr)D
2), where Ne and Nr are the numbers

of entities and relations, respectively. D is the dimension of representations. The time complexity
of the event representation construction module is O(E2D + ED2), where E is the number of
events. The time complexity of the counterfactual detector module is O(E2D + ED2). The time
complexity of the IV-guided disentangling module is O((E +Nr)D

2). The time complexity of the
evolutionary orthogonal module is O(ED2). For the event prediction module, the time complexity
is O(D). Therefore, the total time complexity of HEDRA is O(E2D + (Ne +Nr + E)D2).

A comparison of the per-epoch training and inference times of DHyper, DECRL, and HEDRA on
the ICEWS14 dataset is provided in Table 8. Compared with DECRL, HEDRA improves MRR and
Hits@1 by 11.56% and 15.71%, respectively, and provides more accurate predictions of relation
directionality and sentiment, which are crucial for real-world applications. Plotted as latency–MRR
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Table 8: Running time (in seconds) comparison.
Approach Traning time Inference time

DHyper (TOIS 2024) 636.85 91.43
DECRL (NeurIPS 2024) 907.47 142.82
HEDRA 1226.63 195.15

600 800 1000 1200

Training Latency (s)

42

44

46

48

M
R

R

DHyper

DECRL

HEDRA

Figure 4: Latency–MRR Pareto frontier comparing DHyper, DECRL, and HEDRA.

points, these three approaches form a clear Pareto frontier, as shown in Figure 4. DHyper occupies
the low-latency, lower-accuracy end, DECRL provides an intermediate trade-off, and HEDRA lies
at the high-accuracy, higher-latency corner. On ICEWS14 dataset, HEDRA improves MRR over
DHyper from 41.71 to 47.86, yielding an absolute gain of 6.15 MRR points (approximately 15%
relative improvement), and over DECRL from 42.90 to 47.86, corresponding to an absolute gain
of 4.96 MRR points (approximately 12% relative improvement). These gains come at the cost of
roughly 2× and 1.3× higher training latency, respectively. Overall, this latency–accuracy trade-
off suggests that the additional runtime of HEDRA is justified when higher predictive accuracy is
prioritized over absolute latency.

To quantify the resource footprint of HEDRA across datasets, Table 9 summarizes the parame-
ter counts, peak CUDA memory, and wall-clock training time on ICEWS14 and GDELT datasets.
On ICEWS14 dataset, HEDRA uses 20.7M parameters, reaches a peak CUDA memory footprint
of 2.95 GB, and requires 1226.63 s (≈ 0.34 GPU hours) of training time, with an inference
time of 195.15 s. On GDELT dataset, whose number of events is about 20× that of ICEWS14
dataset, HEDRA uses 22.1M parameters, reaches a peak CUDA memory of 9.91 GB, and requires
14274.41 s (≈ 3.97 GPU hours) of training time. Consequently, when moving from ICEWS14
to GDELT, the parameter count increases only modestly (∼ 6%), peak memory grows by about
3.4×, and wall-clock training time increases by about 11.6×, which is substantially sub-linear in
the dataset size increase.

C.4 HYPERPARAMETER SENSITIVITY ANALYSIS

The sensitivity analysis of the key hyperparameters of HEDRA, i.e., the length of historical windows
Nwindow and the number of neighbors k, on the ICEWS14 dataset is shown in Figure 5. It can be
observed that the length of historical windows has only a minor impact on performance, indicating
that disentangling event level causalities enables HEDRA to learn robust entity and relation repre-
sentations. In contrast, the number of neighbors has a significant effect, as it directly determines
the size of the candidate graph. As k increases, the performance gradually improves and then re-
mains relatively stable when k > 7. In addition, Figure 6 reports a representative sensitivity study
on the loss-weight coefficients αattn and λalign on ICEWS14 dataset, using the same curve-based
visualization, indicating that HEDRA is robust to moderate changes of these coefficients within a
reasonable range and that the default symmetric setting around 0.5 lies in a near-optimal region.
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Table 9: Resource statistics of HEDRA on ICEWS14 and GDELT.

Dataset Prameters (M) Peak CUDA memory (GB) Trainning time (s)

ICEWS14 20.7 2.95 1226.63
GDELT 22.1 9.91 14274.41

(a) Hyperparameter Nwindow (b) Hyperparameter k

Figure 5: Hyperparameter sensitivity analysis.

C.5 MODEL ANALYSIS

This subsection reports additional diagnostics on the training dynamics and IV-guided disentangling
behaviour on ICEWS14 dataset, as well as the robustness of HEDRA on few-shot relations on
ICEWS14 and ICEWS18 datasets.

Training Dynamics and IV-guided Module. Four loss terms are monitored during training: the
event prediction loss LTKG, the contrastive loss Lcon, the robustness loss Lrob, and the evolutionary
loss Levo. To quantify how mass evolves on spurious causal edges inside the causal branch, a
diagnostic statistic p̄s is introduced as:

p̄s =
1

|Es|
∑
e∈Es

ps(e), (19)

where Es denote the set of edges currently assigned to the spurious-causality set, and ps(e) denote
the probability that edge e belongs to spurious causality.

Table 10 reports the evolution of the loss terms and p̄s over the 10 epochs on ICEWS14 dataset. All
four losses decrease smoothly over epochs without noticeable oscillation or divergence, indicating
that the interactions among the contrastive, robustness, and evolutionary losses keep the optimiza-
tion process stable. p̄s increases from 0.817 at epoch 1 to approximately 0.852 by epochs 7 and
then saturates. Since the fraction of edges assigned to the spurious set is approximately fixed by
construction, this increase in p̄s indicates that the IV-guided module becomes progressively more

(a) Coefficient αattn (b) Coefficient λalign

Figure 6: Coefficient sensitivity analysis.
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Table 10: Training dynamics and spurious-mass diagnostic on ICEWS14. The epoch marked with *
corresponds to the best validation MRR.

Epoch LTKG Lcon Lrob Levo p̄s

1 3.8341 0.5589 0.8724 0.3108 0.817
2 3.2442 0.2589 0.2644 0.0152 0.837
3 3.1236 0.2396 0.2350 0.0033 0.843
4 3.0461 0.2308 0.2262 0.0024 0.847
5 2.9763 0.2260 0.2210 0.0018 0.850
6 2.9166 0.2225 0.2182 0.0016 0.851
7 2.8641 0.2225 0.2159 0.0014 0.852
8* 2.8230 0.2197 0.2150 0.0014 0.852
9 2.7895 0.2192 0.2140 0.0013 0.852
10 2.7730 0.2184 0.2137 0.0013 0.852

Table 11: Few-shot relation performance of HEDRA on ICEWS14 and ICEWS18.

Dataset MRR Hits@1 Hits@3 Hits@10

ICEWS14 26.68 11.96 29.79 62.63
ICEWS18 17.44 8.53 14.64 38.44

confident about which edges are spurious and concentrates spurious-causality mass on them. As a
result, these edges are more strongly down-weighted during message passing and decoding, which
is the intended behaviour. The best validation MRR on ICEWS14 dataset is reached around epoch
8, when p̄s has essentially flattened, suggesting that performance gains coincide with the model’s
improved ability to identify and suppress spurious causality, while later epochs mainly refine repre-
sentations on top of this learned genuine-versus-spurious partition.

Few-shot Relations. To examine robustness on relations with limited supervision, a few-shot re-
lation setting is constructed on ICEWS14 and ICEWS18 datasets. For each dataset, 20% of the
relations are randomly selected, only 20% of their quadruples are retained for training, and evalua-
tion is performed solely on this subset of relations. Under this highly sparse supervision, HEDRA
achieves the results in Table 11, indicating that the model retains a non-trivial level of robustness for
relations with limited training data.

C.6 ANOTHER CASE STUDY

For each entity on the ICEWS14 dataset, all associated events are first grouped by timestamp, and
only one event per timestamp is randomly chosen and retained. The most recent 20 distinct times-
tamps are then chronologically ordered to construct trajectories that characterize the temporal evo-
lution of the entity. Figure 7 illustrates the stepwise magnitudes of change in both dynamic and
static components between consecutive events. For China and Japan, the dynamic component is
observed to vary more and by larger amounts than the static component, indicating that short-term
shocks are absorbed by the dynamic component while long-term semantics remain stable in the
static component, consistent with the goal of HEDRA to disentangle dynamic and static causalities.

(a) Entity “China”: ∥∆hD∥ vs. ∥∆hS∥. (b) Entity “Japan”: ∥∆hD∥ vs. ∥∆hS∥.

Figure 7: Case study of stepwise changes over the last 20 events. ∆ denotes the first difference
between consecutive events and ∥ · ∥ denotes the Euclidean norm.
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D THE USE OF LARGE LANGUAGE MODELS

We used a large language model (ChatGPT) only to aid writing, including grammar correction and
minor phrasing edits. All suggestions were reviewed and edited by the authors, who take full re-
sponsibility for the content.
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