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ABSTRACT

Traditional on-policy Reinforcement Learning with Verifiable Rewards (RLVR)
frameworks suffer from experience waste and reward homogeneity, which di-
rectly hinders learning efficiency on difficult samples during large language mod-
els post-training. In this paper, we introduce Batch Adaptation Policy Optimiza-
tion (BAPO), an off-policy RLVR framework to improve the data efficiency in
large language models post-training. It dynamically selects training batches by re-
evaluating historically difficult samples and reusing high-quality ones, while hold-
ing a lower bound guarantee for policy improvement. Extensive experiments fur-
ther demonstrate that BAPO achieves an average 12.5% improvement over GRPO
across mathematics, planning, and visual reasoning tasks. Crucially, BAPO suc-
cessfully resolves 40.7% of problems that base models consistently fail to solve.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has emerged as a transformative paradigm
for aligning Large Language Models (LLMs) with human preferences and improving their per-
formance on complex reasoning tasks (Ouyang et al., 2022; Bai et al., 2022). A significant recent
evolution is Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert et al., 2024), which
replaces costly neural reward models with deterministic verification functions for more efficient and
reliable training (Guo et al., 2025). Numerous on-policy RL optimization methods, particularly
Group Relative Policy Optimization (GRPO) (Shao et al., 2024), and its variants like Dynamic
Sampling Policy Optimization (DAPO) (Yu et al., 2025), Group Sequence Policy Optimization
(GSPO) (Zheng et al., 2025), have demonstrated remarkable success in LLM post-training scenar-
ios, achieving exceptional performance on mathematical reasoning, code generation, and various
downstream applications (Yang et al., 2025; Chen et al., 2025a; Shen et al., 2025).

Figure 1: Tracking the sample counts across
accuracy groups of the mathematical dataset
before and after GRPO post-training.

Although with lower bound guarantees of policy
improvement theoretically (Mroueh, 2025), existing
RL post-training frameworks still face significant ef-
ficiency challenges in practice. As shown in Fig-
ure 1, models after GRPO post-training struggle to
handle difficult samples, especially those with zero
accuracy in the initial rollout group. The reasons
are twofold: (1) homogeneous rewards: Investiga-
tion from (Hong et al., 2025; Simoni et al., 2025)
reveals that both overly difficult and overly simple
samples are detrimental to RL post-training, provid-
ing minimal policy improvement benefits. This oc-
curs because most RLVR methods’ advantage es-
timation relies heavily on relative reward diversity
within each group. When the reward distribution
within a rollout group is homogeneous (e.g., entirely
identical reward signals), the lower bound guarantee
for policy improvement will diverge (Zhang et al.,
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2025; Mroueh et al., 2025), resulting in minimal effective gradient contribution (Liu et al., 2025;
Yu et al., 2025). (2) waste of experience: Owing to the sensitivity of policy improvement to intra-
group rewards, uneven difficulty distributions within training batches result in substantially fewer
actual high-quality samples than the configured batch size. Crucially, being primarily on-policy and
lacking experience replay, each rollout group is utilized only once, further wasting valuable training
samples (Sun et al., 2025; Li et al., 2025).

A straightforward solution is to adopt off-policy rather than on-policy training paradigms, which
has been established in traditional RL tasks as a viable solution to increase sample efficiency and
diversity in the training phase (Queeney et al., 2021; Hilton et al., 2022; Meng et al., 2023). However,
naively applying sample-reusing schemes to RL frameworks may exacerbate instability during LLM
post-training, leading to entropy collapse, and ultimately performance degradation (Yu et al., 2025;
He et al., 2025; Chen et al., 2025c).

Thus, to systematically exploring the utility of stale off-policy experience in RLVR post-training,
we incorporates multiple off-policy strategies into on-policy RLVR framework to dissect effective
pathways for historical data utilization from different dimensions. The main contributions of this
paper are as follows:

(1) We propose a difficulty-aware historical experience replay mechanism as a concrete realization
of effective off-policy data utilization. Unlike the simple mixing of the buffer’s data and online data,
we introduce the dynamic selection of high-quality historical samples and online re-evaluation of
difficult historical samples to fully harness the power of off-policy experience.

(2) Theoretically, we prove that under certain assumptions, the proposed adaptive construction
mechanism can always guarantee that the training batch has a lower bound for policy improvement,
thereby laying a theoretical foundation for the framework’s stability.

(3) By integrating it into multiple reasoning tasks with different LLM backbones, we validate the
proposed Batch Adaptation Policy Optimization (BAPO) method achieves better convergence and
yields greater improvements on solving difficult samples compared to existing on-policy and off-
policy RLVR frameworks.

2 RELATED WORK

2.1 ON-POLICY RL POST-TRAINING FRAMEWORK

We first review the concept of on-policy RLVR, where the core objective is to optimize an LLM
policy to maximize the outcome response reward. Let x ∈ X represent the input prompts, and
y ∈ Y denote responses generated by the LLM policy πθ. The terminal reward r(x, y) ∈ {0, 1}
is determined by a deterministic verification function (Lambert et al., 2024; Guo et al., 2025).
Following the setting of GRPO (Shao et al., 2024), the objective is formulated as:

1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min
(
ρi,t(θ)Âi,t, clip(ρi,t(θ), 1− ε, 1 + ε)Âi,t

)
− β · DKL(πθ||πref) (1)

where G = {y1, y2, . . . , yG} represents a G-size group of responses sampled from πθt(·|x) for each

input x; ρi,t(θ) is the probability ratio
πθ(yt

i |y
<t
i ,x)

πθold(y
t
i |y

<t
i ,x)

between current policy and old policy πθold

for the i-th responses’ t-th token, ε limits the magnitude of policy updates; and DKL constrains the
policy πθ from deviating too far from a reference policy πref. Crucially, Âi,t denotes the estimated
advantage of response yi for input x, which is derived from the standardization of rewards using
the statistical properties of group G. For the i-th response yi ∈ G with reward ri = r(x, yi), the
estimated advantage is:

Âi,t =
ri −mean({rℓ})√

std2({rℓ}) + ε
(2)

where mean({rℓ}) and std2({rℓ}) are the empirical mean and variance of rewards in group G, re-
spectively.
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To enhance the practical efficiency of GRPO, a series of improved on-policy frameworks has been
proposed. For instance, DAPO (Yu et al., 2025) sets distinct clipping ranges εlow and εhigh, and
employs a dynamic sampling strategy to ensure Âi,t ̸= 0. However, it consumes approximately four
times the number of rollouts (Qu et al., 2025) compared to GRPO. Meanwhile, GSPO (Zheng et al.,
2025) abandons the token-level ratio ρi,t(θ) and shifts to the sequence level si(θ), which has been
validated to maintain more stable training, particularly in Mixture-of-Experts (MoE) architectures.

While the details of these methods vary, they all adhere to the on-policy framework for sampling
and updates: the inference server is updated in synchronization with the trainer parameters, and the
sampling strategy follows the “ use-once-and-discard” principle throughout the training process.

2.2 OFF-POLICY RL POST-TRAINING FRAMEWORK

In contrast, as shown in Figure 2, off-policy RL post-training frameworks operate under a distinct
paradigm, characterized by two core components: off-policy rollout for generating responses and
off-policy training for constructing the training batch, as detailed below.

Figure 2: The overview of the (a) on-policy and (b) off-
policy RL Post-training framework

Off-policy Rollout avoids exclusive
reliance on the current policy for
sample generation, instead leverag-
ing past policies or external guid-
ance. For example, AReaL (Fu et al.,
2025) employs a fully asynchronous
architecture that decouples genera-
tion from training, allowing rollout
workers to use past policy. Mroueh
et al. (Mroueh et al., 2025) also
fix the rollout policy on the vLLM
inference server for multiple itera-
tions to ensure stable sample gener-
ation. LUFFY (Yan et al., 2025) in-
corporates traces from stronger exter-
nal policies to enhance reasoning ca-
pabilities beyond the model’s initial
limits. Guide-GRPO (Nath et al., 2025) selectively generates additional rollouts with other guid-
ance when standard rollouts fail.

Off-policy Training uses replay buffers to manage samples from historical policies with varying
activation strategies. ARPO (Lu et al., 2025) dynamically samples non-zero reward samples from
the buffer only when current batches contain all-zero rewards. DOTS (Sun et al., 2025) maintains
a FIFO buffer that consistently reuses recent valid rollouts. RePO (Li et al., 2025) mixes buffer
samples with on-policy samples using diverse retrieval strategies. ReMix (Liang et al., 2025) blends
samples at fixed ratios while increasing the update-to-data ratio for efficiency. ReLIFT (Ma et al.,
2025) stores high-quality solutions to challenging problems in its buffer and refines them through
interleaved supervised fine-tuning. Kimi k1.5 (Team et al., 2025) stores both complete and partial
trajectories to reduce temporal correlations while maintaining computational efficiency.

However, most off-policy RLVR methods ignore the policy stability of experiences. Samples en-
tering the buffer at different training steps may exhibit varying policy distributions. These discrep-
ancies introduce excessive noise into policy learning, which in turn exacerbates training instability.
More importantly, simply reusing historical samples may even hinder the policy’s improvement. The
high-accuracy historical samples may cause the model to overly focus on existing reasoning paths
with high advantages, suppressing the model’s exploration capability and resulting in premature
convergence to suboptimal solutions (Cui et al., 2025).

3 METHOD

In this section, we detail the core components of BAPO, particularly the adaptive construction strat-
egy for the training batch, and provide a theoretical guarantee for the training stability of BAPO’s
policy update. Figure 3 provides an overview of the off-policy rollout and training workflow.
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Figure 3: The workflow of (a) off-policy rollout and (b) off-policy training in our RLVR framework

3.1 FORMAL DEFINITIONS

We first formalize our training objective Lα(πθ) as a combination of online rollout-derived and
historical buffer-derived contributions:

Lα(πθ) = E(x,y)∼α

[
ρα(θ) · Â(x, y)

]
︸ ︷︷ ︸

Contribution from fresh samples

+E(x,y)∼B

[
ραB(θ) · Â(x, y)

]
︸ ︷︷ ︸

Contribution from historical samples

−β · DKL(πθ∥α) (3)

where (x, y) ∼ α refers to filtered online samples from the delayed rollout policy α = πθt−v with
v > 0 representing the delay timesteps. (x, y) ∼ B denotes historical samples from the replay
buffer B. The importance sampling ratios are defined as ρα = πθ(y|x)

α(y|x) for the online rollout samples

and ραB = πθ(y|x)
αB(y|x) for buffer samples, αB is the historical rollout policies that generated the buffer.

Each entity in the buffer B is formally defined as:

B = {(ui, {xi,j}Gj=1, {yi,j}Gj=1, {ri,j}Gj=1, {αB(yi,j |xi)}Gj=1)}
|B|
i=1 (4)

where ui is the unique identifier of each prompt, {xi,j}, {yi,j}, {ri,j} represent the set of prompts,
generated responses, and corresponding rewards, respectively. {αB(yi,j |xi)}Gj=1 is the rollout pol-
icy’s probability, which is stored for calculating ραB(θ) when reusing, and |B| is the buffer size.

3.2 ADAPTIVE TRAINING BATCH CONSTRUCTION

The core of off-policy RLVR lies in how to integrate historical experiences with online samples, to
maintain non-homogeneous rewards and an appropriate difficulty distribution in each training step.
For BAPO, we introduce a filter function I(x) in Definition 3.1 that decomposes the data selection
criteria for each training step’s batch into three parts.
Definition 3.1 (Training Batch Filtering Function). Define µπ,r(x) = Ey∼π(·|x)[r(x, y)] as the
expected reward under policy π for input x. The training batch indicator function I : X → {0, 1} is
formulated as:

I(x) = 1{ 1
G≤µα,r(x)≤G−1

G }︸ ︷︷ ︸
Filtered Fresh

+1{µαB,r(x)≤c1∧µπθt
,r(x)>c1}︸ ︷︷ ︸

Improved Historical Difficult

+1{c2≤µαB,r(x)≤c3}︸ ︷︷ ︸
Historical High-quality

(5)

where α denotes the delayed rollout policy and αB denotes the policy associated with buffer samples.
The function selects samples based on three criteria, yielding subsets X1, X2 and X3 respectively.

Next, we explain the selection principles for I(x) and derive three categories of samples, namely
X1, X2, and X3, which are obtained from these three conditions, respectively.

(1) Filtered Fresh Samples (X1). To prevent gradient vanishing and maintain training stability, we
filter the online rollout batch to exclude samples with zero variance (i.e., all correct or all incorrect
responses). Specifically, we retain fresh samples where the group mean reward satisfies µα,r(x) ∈

4
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[ 1G , G−1
G ]. While other filtering strategies (e.g., Gaussian sampling or uniform sampling) can be

applied, we find that simple truncation sufficient for effective learning. A detailed discussion and
comparison of different online filtering functions are provided in Appendix A.3.

(2) Improved Historical Difficult Samples (X2). Samples exhibiting extremely low group mean
rewards, where µα,r(x) ∈ [0, c1], present significant challenges to the current policy and typically
yield negligible training gradients. However, as the model evolves, these historically difficult queries
may eventually become solvable, transforming into high-value samples for policy improvement. To
harness this, we periodically re-generate responses using the current policy πθt every m training
steps and construct the subset X2 based on the observable improvement.

Let Bbad ⊆ B denote the buffer for difficult samples. To manage the computational overhead as-
sociated with the re-evaluation process, we limit the buffer capacity |B| to be equal to the training
batch size. A First-In-First-Out (FIFO) mechanism is employed to automatically discard outdated
samples when the buffer reaches capacity. X2 is formulated as:

X2 =
{
(x, y′) | (x, y) ∈ Bbad, y

′ ∼ πθt(· | x), c1 < µπθt ,r
(x) < 1

}
(6)

where y′ represents the new response generated by πθt , and we specifically select samples that show
improvement such that c1 < µπθt ,r

(x) < 1.

(3) Reused Historical High-quality Samples (X3). Since the re-evaluation of difficult samples
(X2) occurs intermittently, and the filtered fresh samples (X1) may not suffice to fill the training
batch, particularly in the early stages of training, we maintain a separate buffer Bhigh ⊆ B for storing
the high-quality historical samples with µα,r(x) ∈ [c2, c3].

Unlike the replayed difficult queries, these historical samples are reused directly. Therefore, to
mitigate training instability caused by excessive distributional shift between the historical rollout
policy and the current policy, we set the capacity of Bhigh to |B| aligned with the training batch size,
and also utilize a FIFO eviction strategy to maintain policy relevance. The subset X3 is defined as:

X3 = {S (Bhigh,max (0, |X | − |X1| − |X2|))} (7)

where S(Bhigh, k) represents k elements randomly sampled from Bhigh, ensuring batch size for stable
distributed training.

As the model’s capabilities improve, the definition of a “high-quality” sample effectively shifts to-
wards more difficult instances. To adapt to this, we employ a linear mapping function to dynamically
adjust the acceptance interval (c2, c3) based on the global average performance rtot of the buffer:

c2 = rtot · (chigh
2 − clow

2 ) + clow
2 (8)

c3 = rtot · (chigh
3 − clow

3 ) + clow
3 (9)

where chigh and clow are hyperparameters. This mechanism ensures that as rtot increases, the interval
(c2, c3) shifts to capture harder samples, thereby sustaining the learning challenge.

3.3 THEORETICAL ANALYSIS

In this section, we further provide theoretical analysis in Theorem 3.2 to establish BAPO’s training
stability based on (Mroueh et al., 2025)’s theorem. We show that, under certain assumptions, our
constructed adaptive batches can consistently maintain guaranteed bounded policy improvement.

Theorem 3.2 (Policy Improvement Lower Bound with Adaptive Training Batch). Assume re-
wards are bounded: 0 ≤ r ≤ 1. Let πθt be the current policy, α1 = πθt−v

be the delayed rollout
policy, α2 = πθt be the current policy for re-evaluation, α3 = αB be the buffer policy distribution,
and I(x) be the filtering function partitioning samples into X1, X2, and X3.

Suppose c1, c2, c3 ∈ (0, 1) with c2 < c3, and the following TV distance constraints hold:

TV(πθt(·|x), πθt−v
(·|x)) ≤ δ1 ∀x ∈ X1 (10)

TV(πθt(·|x), αB(·|x)) ≤ δ3 ∀x ∈ X3 (11)

where δ1, δ3 > 0 are sufficiently small such that the variance lower bounds remain positive.
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Then, for the policy update objective in Equation 3, the expected policy improvement over filtered
samples satisfies:

Ex∼ρX [I(x)(J(πθ(·|x))− J(πθt(·|x)))] ≥
3∑

i=1

Li(πθ, αi)

where:

J
(
πθ(· | x)

)
= Ey∼πθ(·|x) r(x, y)

Li(πθ, αi) = Ex∈Xi
[Lαi

(πθ(·|x))− 2Ki · TV(πθ(·|x), αi(·|x))− 2TV(πθt(·|x), αi(·|x))]
with Lαi(πθ(·|x)) = 1

σαi,r,ε
(x) (J(πθ(·|x))− J(αi(·|x))). The constants are:

K1 =
1−

√
G−1
G2 + ε√

G−1
G2 + ε

(12)

K2 =
1−

√
c1(1− c1) + ε√

c1(1− c1) + ε
(13)

K3 =
1−

√
min(c2(1− c2), c3(1− c3)) + ε√

min(c2(1− c2), c3(1− c3)) + ε
(14)

More importantly, we highlight several properties from this theorem:

Bounded Stability. All constants K1, K2, and K3 are finite positive values, which guarantee that
the training process remains numerically stable and theoretically bounded.

Flexible Tightness. The dependence of K3 on c2 and c3 directly reflects our difficulty-aware strat-
egy. When the interval [c2, c3] is closer to the boundary values (0 or 1), the resulting bounds become
looser but can include more diverse samples.

Off-policy Tolerance. The stability of trust-region methods inherently constrain the magnitude
of single-step policy updates. Consequently, the divergence between the current policy πθt and
the delayed rollout policy α remains bounded over short intervals. Furthermore, the strict FIFO
mechanism with limited buffer capacity ensures that only samples from recent policies are retained,
thereby maintaining policy consistency within the training batch.

4 EXPERIMENTAL SETUP

To comprehensively evaluate the effectiveness of our off-policy RLVR framework, we conduct
extensive experiments across different tasks and backbones, following the experimental setup de-
scribed in (Qu et al., 2025).

First, we select three representative reasoning tasks, as detailed below:

Mathematics. Following prior work (Luo et al., 2025), we use the DeepSeek R1 Distilled
1.5B (Guo et al., 2025) as the base model, and conducted post-training on the DeepScaleR-Preview-
Dataset (Aggarwal & Welleck, 2025), which contains 40 thousand question-answer pairs sourced
from several mathematics competitions. Evaluation is performed on multiple mathematics bench-
marks, including AIME24, AMC23, MATH500 (Hendrycks et al., 2021), Minerva Math (Min-
erva) (Lewkowycz et al., 2022), and OlympiadBench (Olympiad)He et al. (2024).

Planning. We choose Qwen2.5 Math 1.5B and 7B (Yang et al., 2024) as the backbone, and adopted
the Countdown Number Game as the specific task. For training, we used a 10,000-problem subset
of the Countdown-34 dataset, where each problem provides 3-4 source numbers. Evaluation was
conducted on two variants: Countdown-3to4 (CD-34) test set using a 200-problem held-out split,
and the more challenging Countdown-4 (CD-4) test set with 200 problems that consistently provide
four source numbers (Chen et al., 2025b).

Visual Geometry. We train Qwen2.5 VL 3B and 7B (Bai et al., 2025) on the 2,101-problem training
split of the Geometry3K dataset (Lu et al., 2021), where each problem consists of a geometric

6
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diagram paired with a natural language question requiring spatial and logical reasoning. Evaluation
was performed on the official 300-problem validation split (Geo-3K val) and 601-problem test split
of Geometry3K (Geo-3K test).

Besides, we select several on-policy and off-policy RLVR frameworks as baselines:

On-policy. We select GRPO (Shao et al., 2024), DAPO (Yu et al., 2025), and MoPPS (Qu et al.,
2025) as representative on-policy RLVR methods. GRPO is the first to integrate group-relative
advantage estimation into the RLVR framework, while DAPO further improves training stability
and efficiency. MoPPS incorporates difficulty-aware prediction into prompt selection.

Off-policy. We compare our approach with three representative off-policy methods: GRPO (v =
5) (Mroueh et al., 2025), RePO (Li et al., 2025), and Remix-GRPO (Liang et al., 2025). Specifically,
GRPO (v = 5) delays the rollout policy with a frequency of 5, whereas RePO and Remix-GRPO
adopt diverse replay strategies to retrieve off-policy samples from a replay buffer.

Implementation Details. All comparative experiments were run on 8 A100 GPUs with 80GB
memory based on the Verl framework (Sheng et al., 2025). Identical parameters were used to ensure
fair comparison, with specific details in Appendix A.7.

5 RESULTS ANALYSIS

5.1 MAIN RESULTS

We evaluate BAPO across three reasoning tasks to demonstrate its broad applicability. Experimental
results show that BAPO consistently outperforms existing baselines throughout training (Figure 4)
and testing (Figure 11). Notably, in mathematical tasks, the GRPO baseline exhibits severe training
instability, as evidenced by significant oscillations in its early-stage training curve. This is attributed
to the high variance in problem difficulty within the DeepScalerR dataset. Under the same settings,
BAPO achieves smoother convergence and higher reward bounds.

In test benchmarks (Tables 1), BAPO achieves an average 12.5% accuracy improvement over
baselines. Crucially, while DAPO approaches BAPO’s performance in some metrics, it requires ap-
proximately 2.5× more rollouts (as visualized in Figure 12), imposing a substantial computational
burden.

Takeaway 1: Efficiency & Stability

BAPO significantly outperforms on-policy baselines GRPO in convergence stability and
exceeds heavy-sampling methods DAPO with significantly fewer rollout costs.

Figure 4: Training Curves of Reward Changes for mathematics, planning, and geometry tasks
using DeepSeek Distilled Qwen 1.5B, Qwen2.5 Math 1.5B, and Qwen2.5 VL 3B, respectively.

5.2 MECHANISM ANALYSIS

To deeply investigate whether BAPO’s success stems from sensitive hyperparameter tuning or its
core batch reconstruction mechanism, we conducted both Minimalist Verification and Hyperpa-
rameter Robustness experiments.

7
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Table 1: Comprehensive Evaluation Results. ’+’ indicates fine-tuning via the corresponding
method. Accuracy is averaged over 32 runs. The bold value denotes the top result, and the
underlined value denotes the second-top result.

(a) Mathematics Benchmarks
Method AIME24 AMC MATH500 Minerva. Olympiad. Avg. ↑ Rollouts ↓ Type

DeepSeek R1 Distill Qwen 1.5B 28.80 62.90 82.80 26.50 44.42 48.90 - -
+GRPO (Guo et al., 2025) 30.73 67.47 85.40 28.95 45.33 51.58 677k on

+DAPO (Yu et al., 2025) 35.73 70.08 86.05 30.70 48.48 54.20 1921k on
+MoPPS∗ (Qu et al., 2025) 33.33 65.29 84.94 28.88 45.93 51.67 737k on

+GRPO (v = 5) (Mroueh et al., 2025) 30.49 65.09 86.72 28.16 46.18 51.57 677k off
+RePO (Li et al., 2025) 30.42 64.76 83.75 28.33 45.44 50.54 677k off

+Remix-GRPO∗ (Liang et al., 2025) 33.33 65.06 84.60 26.10 43.55 50.53 - off
+BAPO (Ours) 38.54 72.74 89.18 29.55 50.06 56.01 733k off

(b) Planning and Visual Geometry Benchmarks
Method CD-34 CD-4 Avg Method Geo-3K(val) Geo-3K(test) Avg

Qwen2.5 Math 1.5B 1.12 0.37 0.75 Qwen2.5 VL 3B 14.77 19.18 16.98
+GRPO (Guo et al., 2025) 62.94 35.88 49.41 +GRPO (Guo et al., 2025) 36.44 43.12 39.78

+DAPO (Yu et al., 2025) 70.56 45.87 58.22 +DAPO (Yu et al., 2025) 40.11 45.18 42.65
+BAPO w/o X2 (Ours) 60.31 35.31 47.81 +BAPO w/o X2 (Ours) 30.57 36.92 33.75
+BAPO w/o X3 (Ours) 64.43 38.75 51.59 +BAPO w/o X3 (Ours) 32.22 39.79 36.01

+BAPO (Ours) 73.00 47.50 60.25 +BAPO (Ours) 40.11 46.33 43.22
Qwen2.5 Math 7B 2.68 0.94 1.81 Qwen2.5 VL 7B 30.40 36.10 33.25

+GRPO (Guo et al., 2025) 70.75 50.25 60.50 +GRPO (Guo et al., 2025) 40.79 47.15 43.97
+DAPO (Yu et al., 2025) 78.75 57.43 68.09 +DAPO (Yu et al., 2025) 40.87 47.02 43.95

+BAPO (Ours) 79.13 57.13 68.13 +BAPO (Ours) 41.89 48.77 45.33
*This method’s performance is taken from the corresponding paper.

Takeaway 2: Off-policy Components > Off-policy Hyperparameters

The performance gains of BAPO primarily stem from the structural logic of its off-policy
components rather than specific hyperparameter settings. The framework remains effective
even under rigid, parameter-free conditions.

Figure 5: Test Curves of Group Accuracy Changes on AIME for different RLVR methods based
on Qwen3 8B. Left: Standard BAPO vs. GRPO. Medium: BAPO (mini test) vs. GRPO. Right:
Standard BAPO vs. DAPO. Even with fixed, theoretically-derived selection criteria, BAPO (mini
test) yields higher rewards than GRPO.

Minimalist Verification. To validate the theoretical implications of Theorem 3.2 without relying
on hyperparameter engineering, specifically avoiding the tuning of thresholds c1, c2, c3 and update
frequencies, we devised a “Mini-test” experiment. We trained Qwen3 8B on the mathematics task
under 4K length constraints using a stripped-down, parameter-free BAPO logic for constructing
training batch:

X1: We apply strictly standard zero-advantage filtering, removing only the prompts where all G
responses are entirely correct or entirely wrong. This ensures non-vanishing gradients without addi-
tional selection criteria.
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X2: We replay exclusively historical all-wrong samples (µα,r(x) = 0). These correspond exactly to
the difficult cases discarded by X1, creating a closed-loop system that recovers waste data without
requiring a “difficulty threshold”.

X3: Instead of a dynamic accuracy range, we reuse historical samples with exactly 50% accuracy.
As formally proven in Proposition A.3, samples with accuracy µα,r(x) = 1

2 maximize the reward
variance, thereby providing the theoretical maximum potential for single-step policy improvement
J(πθ)− J(πθt).

The results in Figure 5 (Right) demonstrate that even in the hyperparameter-free “Mini-test”, BAPO
maintains a clear advantage over GRPO. This confirms that the structural introduction of X2 and X3

drives the performance, not the specific tuning of c values.

Component Efficacy. To evaluate the contribution of X2 (re-evaluated difficult samples) and X3

(reused high-quality samples), we conduct ablation studies shown in Table 1. Both components are
essential: removing X2 causes a∼21% performance drop, underscoring the importance of explicitly
targeting difficult samples.

Hyperparameter Robustness. We further evaluate the sensitivity of BAPO to its key hyperparame-
ters: rollout delay v, re-rollout frequency m, and difficulty thresholds. Frequency (v,m): As shown
in Figure 6 (Column 1), performance remains stable within reasonable ranges (e.g., v = 5,m = 5).
Extreme delays only degrade performance when policy divergence becomes excessive, aligning with
our theoretical analysis regarding the trust region. Difficulty Thresholds (c2, c3): While our adap-
tive boundary mechanism yields the best convergence, Figure 6 (Column 3) shows that using fixed
ranges still significantly outperforms baselines. This indicates that the presence of diverse historical
data is more critical than the precise values of the thresholds.

Figure 6: Ablation Studies for BAPO. The first column presents ablations on frequency-related
hyperparameters (m, v). The second column shows ablations on buffer subsets (X2,X3). The third
column compares fixed vs. adaptive difficulty thresholds.

5.3 DETAILED ANALYSIS

We analyze BAPO’s internal mechanisms below. For extended analysis on training dynamics, com-
putation, and visualization, please refer to Appendices A.4, A.5 and A.6.

Tracking Difficult Samples. We visualize the training dynamics in Figure 7. BAPO exhibits a
superior capability to ”unlock” difficult problems: after 3 epochs, BAPO successfully improves 31%
of the samples that were initially unsolvable (0/8 accuracy), compared to only 19% for GRPO.

9
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Figure 7: Tracking changes in the Number of Different Accuracy Bins on the DeepScalerR training
subset. Special attention is paid to the reduction of bad samples (red bars).

Sample Distribution & Efficiency. To uncover the source of BAPO’s efficiency, we analyze the
dynamic batch construction in Figure 8 alongside the rollout costs in Figure 12.

As observed in Figure 8, the assembled training batch size frequently fluctuates below the maxi-
mum configured capacity. This reduction in backward propagation load effectively offsets the com-
putational overhead caused by off-policy re-evaluation and log-probability re-computation. Con-
sequently, as detailed in Table. 2, BAPO maintains a training speed comparable to GRPO while
requiring significantly fewer rollouts than DAPO, achieving a superior trade-off between conver-
gence performance and computational cost.

Figure 8: Dynamic Sample Distribution. The composition of BAPO’s X1,X2,X3 and the total
samples compared to the fixed GRPO batch size (Red line).

Takeaway3: Efficient Batch Adaptation

BAPO optimizes efficiency by dynamically balancing fresh and historical data. By often
training on effective batches smaller than the maximum capacity, it offsets replay overheads,
achieving superior performance with training speeds comparable to the lightweight GRPO
baseline.

6 CONCLUSION

In this paper, we propose BAPO, an off-policy RL framework for LLM post-training. It aims to
utilize historical training data better and thereby improve training efficiency. Specifically, we ap-
propriately delay the rollout policy to stabilize the policy discrepancies of buffer samples. More
importantly, we construct training batches by re-evaluating difficult samples and reusing historical
high-quality ones, thereby enhancing the efficiency of post-training. We validate the strong adapt-
ability of the BAPO framework through experiments on three distinct reasoning tasks using different
LLM backbones, and the results demonstrate that BAPO significantly outperforms baselines in both
convergence performance and training efficiency. Nevertheless, exploring how to adapt BAPO to
large models with MoE architectures, as well as how to tailor BAPO to agent-based RL frameworks,
remains a significant challenge.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors of this study strictly adhere to the ICLR code of ethics. Our research does not involve
any potential conflicts of interest or sponsorship issues. We have carefully considered and addressed
concerns related to discrimination, bias, and fairness in our methodology. The study raises no pri-
vacy or security concerns, maintains full legal compliance, and upholds the highest standards of
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REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, we provide comprehensive implementation details of
the proposed BAPO training algorithm in the supplementary materials. All experimental settings,
hyperparameters, and dataset specifications are clearly documented. For our theoretical contribu-
tions, complete proofs and clear explanations of all assumptions are included in the appendix. Code
and data will be made available upon acceptance to facilitate replication of our findings.

THE USE OF LARGE LANGUAGE MODELS

In this research, we employed LLMs solely as language editing tools to improve the clarity and read-
ability of our manuscript. LLMs were used for grammar checking, style refinement, and language
polishing purposes only. All core research ideas, experimental design, analysis, and conclusions are
entirely the original work of the authors. The use of LLMs did not contribute to the conceptual or
technical content of this study.
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A APPENDIX

A.1 GLOSSARY OF TERMS AND NOTATIONS

Term Definition
c1, c2, c3 Thresholds for classifying historical samples by difficulty (group mean

reward).
X1,X2,X3 Subsets of training batch: fresh, re-evaluated difficult, and historical

high-quality samples.
m Re-evaluation frequency for historically difficult samples.
v Delay steps for updating the rollout policy.
G Group size, number of responses generated per prompt during rollout.
B Replay buffer storing historical samples.
Âi,t Estimated advantage for token t in response i.
ε Clipping parameter in PPO-style objectives.
β Coefficient for KL penalty in the objective function.
I(x) Filter function for constructing BAPO’s training batch.
DKL Kullback–Leibler divergence, used to constrain policy deviation.
α Rollout policy for BAPO, which synchronizes to πθ every v steps.
πθ LLM policy parameterized by θ.
πref Reference policy (e.g., initial pre-trained model).
ρ(θ) Importance sampling ratio: πθ(y|x)

πold(y|x) .
r(x, y) Reward function, we set to binary (0/1) based on correctness.
µα,r(x) Expected reward under policy π for input x. We approximate this value

using the mean of r(x, y) corresponding to G responses y generated by
the rollout policy α for each prompt x.

σα,r,ε(x) Standard deviation of rewards under policy α for input x, with smooth-
ing ε.

J(π(·|x)) Expected reward of policy π for input x: Ey∼π(·|x)[r(x, y)].
N (µα,r(x) | µ, σ2) A sampling method that assigns weights to online rollouts based on a

normal distribution centered at µ with standard deviation σ, used to
filter samples by their group mean reward µα,r(x).

A.2 THEORETICAL ANALYSIS

Lemma A.1 (Kantorovich-Rubenstein duality of total variation distance). The Kantorovich-
Rubinstein duality (variational representation) of the total variation distance is as follows:

TV(m1,m2) =
1

2L
sup
g∈GL

{EZ∼m1
[g(Z)]− EZ∼m2

[g(Z)]} , (15)

where GL = {g : Z → R, ∥g∥∞ ≤ L}.
Theorem A.2 (Policy Improvement Lower Bound with Adaptive Training Batch). Assume re-
wards are bounded: 0 ≤ r ≤ 1. Let πθt be the current policy, α1 = πθt−v

be the delayed rollout
policy, α2 = πθt be the current policy for re-evaluation, α3 = αB be the buffer policy distribution,
and I(x) be the filtering function partitioning samples into X1, X2, and X3.

Suppose c1, c2, c3 ∈ (0, 1) with c2 < c3. and the following TV distance constraints hold:

TV(πθt(·|x), πθt−v
(·|x)) ≤ δ1 ∀x ∈ X1 (16)

TV(πθt(·|x), αB(·|x)) ≤ δ3 ∀x ∈ X3 (17)

where δ1, δ3 > 0 are sufficiently small such that the variance lower bounds remain positive.

Then, for the policy update objective in Equation 3, the expected policy improvement over filtered
samples satisfies:

Ex∼ρX [I(x)(J(πθ(·|x))− J(πθt(·|x)))] ≥
3∑

i=1

Li(πθ, αi)
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where:
Li(πθ, αi) = Ex∈Xi [Lαi(πθ(·|x))− 2Ki · TV(πθ(·|x), αi(·|x))− 2TV(πθt(·|x), αi(·|x))]

with Lαi
(πθ(·|x)) = 1

σαi,r,ε
(x) (J(πθ(·|x))− J(αi(·|x))). The constants are:

K1 =
1−

√
G−1
G2 + ε√

G−1
G2 + ε

(18)

K2 =
1−

√
c1(1− c1) + ε√

c1(1− c1) + ε
(19)

K3 =
1−

√
min(c2(1− c2), c3(1− c3)) + ε√

min(c2(1− c2), c3(1− c3)) + ε
(20)

Proof. We prove the bound by analyzing each filtered sample set separately, applying off-policy
policy improvement bounds tailored to the reference distribution used in each region.

Step 1: Core inequality for off-policy samples. For any x such that I(x) = 1, we establish the
fundamental inequality:

J(πθ(·|x))− J(πθt(·|x)) ≥ Lαi
(πθ(·|x))− 2Ki · TV(πθ(·|x), αi(·|x)) (21)

− 2TV(πθt(·|x), αi(·|x)) (22)

where Ki =
1−σαi,r,ε

(x)

σαi,r,ε
(x) is a constant that depends on the variance of rewards in each filtered subset.

First, we expand the advantage objective. By definition:

Lαi
(πθ(·|x)) = Ey∼αi(·|x)

[
πθ(y|x)
αi(y|x)

Aαi
(x, y)

]
(23)

= Ey∼αi(·|x)

[
πθ(y|x)
αi(y|x)

· r(x, y)− µαi,r(x)

σαi,r,ε(x)

]
(24)

=
1

σαi,r,ε(x)
(J(πθ(·|x))− J(αi(·|x))) (25)

Next, we establish the key algebraic identity relating Lαi(πθ(·|x)) to J(πθ(·|x))− J(πθt(·|x)):
Lαi

(πθ(·|x))− (J(πθ(·|x))− J(πθt(·|x))) (26)

=
1− σαi,r,ε(x)

σαi,r,ε(x)
(J(πθ(·|x))− J(αi(·|x))) + (J(πθt(·|x))− J(αi(·|x))) (27)

Application of Kantorovich-Rubenstein duality: For bounded rewards with ∥r∥∞ = 1, the
Kantorovich-Rubenstein duality Lemma A.1 provides:

|J(πθ(·|x))− J(αi(·|x))| ≤ 2 · TV(πθ(·|x), αi(·|x)) (28)
|J(πθt(·|x))− J(αi(·|x))| ≤ 2 · TV(πθt(·|x), αi(·|x)) (29)

Since 0 ≤ r ≤ 1, we have σαi,r,ε(x) < 1, ensuring Ki =
1−σαi,r,ε

(x)

σαi,r,ε
(x) ≥ 0. Combining these

bounds yields the desired inequality.

Step 2: Analysis for X1 (Filtered fresh samples). For x ∈ X1, samples are generated by the
delayed rollout policy α1 = πθt−v

and selected via Gaussian sampling with group-level accuracy
µα1,r(x) ∈ { 1

G , 2
G , . . . , G−1

G }, excluding extremes {0, 1}.
Variance analysis on discrete set: For the variance function f(p) = p(1 − p) over the discrete
set { 1

G , 2
G , . . . , G−1

G }, the minimum value occurs at the boundary points p = 1
G or p = G−1

G , both
yielding f(p) = G−1

G2 . Therefore:

σ2
α1,r(x) = µα1,r(x)(1− µα1,r(x)) ≥

G− 1

G2
(30)
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Thus: σα1,r,ε(x) ≥
√

G−1
G2 + ε, yielding:

K1 =
1−

√
G−1
G2 + ε√

G−1
G2 + ε

Step 3: Analysis for X2 (Re-evaluated difficult samples). For x ∈ X2, samples are generated
by the current policy α2 = πθt through re-evaluation of historically difficult samples. The selection
criterion ensures that historically difficult samples (µαB ,r(x) ≤ c1) now achieve improved perfor-
mance (c1 < µπθt ,r

(x) < 1) under the current policy.

Since these samples are directly generated by πθt , we have α2 = πθt , and the constraint c1 <
µπθt ,r

(x) < 1 provides a natural lower bound, yielding:

σ2
α2,r(x) = µα2,r(x)(1− µα2,r(x)) > c1(1− c1) (31)

Therefore: σα2,r,ε(x) >
√
c1(1− c1) + ε, giving us:

K2 =
1−

√
c1(1− c1) + ε√

c1(1− c1) + ε

Step 4: Analysis for X3 (Historical high-quality samples). For x ∈ X3, samples are generated
by historical buffer policies α3 = αB with µαB ,r(x) ∈ [c2, c3].

Since µα3,r(x)(1− µα3,r(x)) achieves its minimum at the endpoints of the interval [c2, c3]:

σ2
α3,r(x) ≥ min(c2(1− c2), c3(1− c3)) (32)

Therefore: σα3,r,ε(x) ≥
√
min(c2(1− c2), c3(1− c3)) + ε, yielding:

K3 =
1−

√
min(c2(1− c2), c3(1− c3)) + ε√

min(c2(1− c2), c3(1− c3)) + ε

Step 5: Combining the results. Taking expectations over x ∼ ρX and applying the indicator
function decomposition:

Ex∼ρX [I(x)(J(πθ(·|x))− J(πθt(·|x)))] (33)

=

3∑
i=1

Ex∼ρX [1{x∈Xi}(J(πθ(·|x))− J(πθt(·|x)))] (34)

≥
3∑

i=1

Ex∈Xi
[Lαi

(πθ(·|x))− 2Ki · TV(πθ(·|x), αi(·|x))− 2TV(πθt(·|x), αi(·|x))] (35)

=

3∑
i=1

Li(πθ, αi) (36)

All constants K1, K2, K3 are finite, since denominators are strictly positive by construction and
numerators are bounded by 1 under c1, c2, c3 ∈ (0, 1), completing the proof.

Proposition A.3. For binary reward tasks where r(x, y) ∈ {0, 1}, the contribution to the policy
improvement lower bound is maximized when the expected group reward of the sample is µ = 0.5.

Proof. Recalling Theorem 3.2, the lower bound for policy improvement on a specific data distribu-
tion involves the constant K, which scales the penalty for policy divergence. The tightness of this
bound is governed by the standard deviation of the rewards σα,r(x).
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Due to advantage standardization Â ∝ 1
σ , the effective step size in the advantage estimation and

consequently the gradient magnitude is proportional to the inverse of the standard deviation. How-
ever, in the context of the lower bound analysis in Theorem 3.2, the stability constant K is defined
as:

K(µ) =
1− σ(µ)

σ(µ)
(37)

where a smaller K indicates a tighter bound and thus a larger guaranteed improvement step. For
a binary reward function r ∈ {0, 1}, the reward distribution follows a Bernoulli distribution with
parameter µ(x) = E[r|x]. The variance is given by:

σ2(µ) = µ(1− µ) (38)

To find the µ that maximizes variance, we take the derivative with respect to µ:

d

dµ
(µ− µ2) = 1− 2µ (39)

Setting the derivative to zero:

1− 2µ = 0 =⇒ µ = 0.5 (40)

Since the second derivative d2

dµ2 = −2 < 0, this is a global maximum.

At µ = 0.5, the variance is maximized (σ2 = 0.25, σ = 0.5). This corresponds to the state of max-
imum entropy, where the model is most ”uncertain” about the outcome. Training on these samples
provides the strongest gradient signal for distinguishing between correct and incorrect reasoning
paths, effectively maximizing the information gain per step. Conversely, as µ → 0 or µ → 1,
σ → 0, causing the advantage estimates to numerical instability or the gradient signal to vanish.
Therefore, selecting samples with µ = 0.5 theoretically offers the most efficient learning signal and
the most favorable stability bound.

A.3 ONLINE FILTER MECHANISM ANALYSIS

To investigate the impact of fresh sample selection on training stability and convergence, we conduct
an ablation study using Qwen3 8B with a 4K response length limit. We compare three distinct
filtering strategies for the online component (X1):

Mode 1 (Range Filter): It retains samples with group mean rewards µ ∈ [ 1G , G−1
G ]. This effec-

tively removes only the zero-advantage samples (all-correct or all-incorrect) that contribute minimal
gradients.

Mode 2 (Gaussian Filter): A difficulty-weighted strategy that prioritizes samples with high vari-
ance (accuracy near 0.5) using a Gaussian distribution, thereby reducing the proportion of extremely
easy or hard samples.

Mode 3 (Uniform Filter): A baseline that randomly selects 60% of the fresh samples regardless of
their quality. This ratio was chosen to match the approximate data retention rates of Mode 1 and
Mode 2 (approximately 40%–60%) for a fair comparison of data volume.

The Value of Quality over Randomness. As illustrated in Figure 9, the uniform filter mechanism
exhibits severe instability, characterized by exploding gradient norms and a complete collapse in
performance after 150 steps. Since this strategy blindly includes all-wrong samples (where µ = 0),
the model is forced to update based on low-quality, zero-advantage signals. Suppressing the token
probabilities of incorrect responses without a corresponding positive signal introduces significant
noise and uncertainty, ultimately destabilizing the policy. This failure highlights that the quality of
the training batch, particularly the exclusion of zero-advantage noise, is crucial.

Convergence Speed and Final Performance. The Gaussian filter demonstrates faster convergence
in the early stages. By focusing heavily on samples with the highest variance (accuracy ≈ 0.5), it
provides the steepest learning signal initially. However, its final convergence performance is lower
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Figure 9: Ablation on Online Filtering Strategies. Comparison of Range Filter, Gaussian Filter,
and Uniform Filter on training stability (Grad Norm) and performance (Mean@8). The star symbol
indicates the best checkpoint for BAPO.

than that of the range filter. We hypothesize that the Gaussian filter restricts sample diversity by ag-
gressively filtering out samples that are slightly easier or harder but still informative. In contrast, the
range filter retains a broader spectrum of valid samples. While it learns slightly slower initially, it
maintains a rich distribution of training data, preventing premature plateauing and ultimately achiev-
ing the highest asymptotic performance.

A.4 TRAINING DYNAMICS AND TEST CURVES

As illustrated in Figure 10 and Figure 11, we present more detailed training dynamics and test
curves for the Planning and Vision Geometry tasks. The results indicate that both BAPO and DAPO
consistently outperform GRPO in terms of training rewards. Interestingly, BAPO exhibits higher
entropy, reflecting better exploration capability compared to other algorithms, which also results in
longer response lengths.

Figure 10: Training Dynamics during BAPO, GRPO, and DAPO post-training, including training
rewards, training entropy, and response lengths.
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Figure 11: Test Curves of Group Accuracy Changes for mathematics, planning, and geometry
tasks among AMC, CD-4 test set, and Geo-3K test set, respectively.

A.5 COMPUTATION ANALYSIS

From Table 2, we observe that BAPO’s computational overhead correlates with the number of sam-
ples requiring re-evaluation and the actual training batch size. For the Planning task, BAPO (w/oX2)
achieves the fastest training time by eliminating bad case re-evaluation, but this comes at the cost of
reduced performance. For the Mathematics task, the high number of bad cases (as shown by the 0/8
accuracy samples in Figure 7) means that under our re-evaluation frequency setting of m = 5, infer-
ence time exceeds that of GRPO. However, this additional time investment proves valuable, yielding
better bad-case handling rates and overall test performance, as shown in Figure 4 and Table ??. We
plan to explore lower re-evaluation frequencies to assess the performance trade-offs.

BAPO (c2 = 0.375, c3 = 0.5) runs significantly faster than BAPO (c2 = 0, c3 = 0.25) due to the
larger historical data volume in the latter configuration. This causes BAPO (c2 = 0, c3 = 0.25) to
maintain a larger effective batch size than BAPO (c2 = 0.375, c3 = 0.5). Training logs also confirm
this observation: BAPO (c2 = 0, c3 = 0.25) consistently utilizes 100% of the configured batch
size (equivalent to on-policy methods’ batch size), while BAPO (c2 = 0.375, c3 = 0.5) operates at
approximately 70% capacity.

Table 2: Computational Overhead Analysis. “Batch size” (a, b) represents the sample batch size a
and train mini batch size b. “Time” is measured in total training time (d=days, h=hours, m=minutes)
on 8 A100 GPUs.

Tasks Methods Batch Size Num Epoch Time

Mathematics GRPO (256, 64) 3 1d 16h 58m
DAPO (256, 64) 3 2d 15h 30m
BAPO (256, 64) 3 1d 22h 37m

Planning

GRPO (256, 64) 3 3h 47m
DAPO (256, 64) 3 6h 35m
BAPO (256, 64) 3 3h 23m
BAPO (w/o X2) (256, 64) 3 2h 38m
BAPO (w/o X3) (256, 64) 3 3h 4m
BAPO (c2 = 0, c3 = 0.25) (256, 64) 3 3h 54m
BAPO (c2 = 0.375, c3 = 0.5) (256, 64) 3 3h 4m

Visual Geometry

GRPO (256, 64) 30 7h 55m
DAPO (256, 64) 30 12h 19m
BAPO (256, 64) 30 5h 50m
BAPO (w/o X2) (256, 64) 30 3h 42m
BAPO (w/o X3) (256, 64) 30 4h 31m

A.6 VISUALIZATION

We present additional visualization details, including the sample accuracy tracking for the Count-
down and Geometry3K datasets, as shown in Figure 13. Meanwhile, we visualize the source of

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 12: Cumulative Rollout Batches Comparison between BAPO and DAPO. The maximum
rollout time for DAPO is set to 4.

Figure 13: Tracking changes in the Number of Different Accuracy Bins on the Countdown (up-
per) and Geometry3K training sets (lower) for the baseline model, GRPO, and our BAPO method.
Special attention is paid to the change in the number of bad samples (red bars) that the base model
fails to handle.

Figure 14: Batch Distribution Visualization of X1, X2, X3 for Mathematics, Planning, and Visual
Geometry Tasks (left to right) during BAPO’s training.
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Figure 15: Accuracy Migration Matrix Analysis. We track a fixed subset of 1,000 randomly
selected prompts from the training set and visualize their movement between accuracy bins (0/8 to
8/8) at Steps 0, 150, 300, and 471 (the last step). The y-axis represents the initial accuracy bin at
Step 0, while the x-axis represents the current accuracy bin. The scarcity of samples in the lower
triangle demonstrates that performance degradation is rare.

samples in each training batch and their respective proportions during the training process, as illus-
trated in Figure 11. It can be observed that approximately 40-60% of the actual training samples for
BAPO come from online samples X1, while the remaining samples are derived from X2 or X3.

Stability of Historical High-Quality Samples. A potential concern regarding the reuse of historical
high-quality samples (X3 in Eq. 5) is the assumption of policy consistency—specifically, whether
samples that were high-quality under a past policy remain valid for the current policy. To address
this, we visualize the evolution of sample difficulty in Figure 15 by tracking the accuracy migration
of a training subset.

The heatmaps in Figure 15 reveal a distinct pattern: the mass is concentrated along the diagonal
(performance maintenance) and the upper triangle (performance improvement). Crucially, the pro-
portion of samples exhibiting significant performance degradation (migrating to the lower triangle)
is negligible. For example, samples that initially achieved 8/8 accuracy predominantly remain in
the high-accuracy bins throughout the training process, with minimal regression to lower bins. This
empirical evidence demonstrates that high-quality reasoning paths learned by RL are robust and re-
sistant to forgetting. Consequently, historical high-quality samples stored in the buffer likely remain
high-quality under the current policy, validating the consistency of the X3 data source.

A.7 HYPERPARAMETER SETTING

Hyperparmeters The major hyperparameter choices are shown in Table 3.

Table 3: Hyperparameter Configuration for BAPO Framework on Mathematics Task. For plan-
ning and visual geometry tasks, some parameters differ slightly; specific configuration scripts are
provided in our code repository.

Parameter Value Parameter Value Parameter Value
Rollout Configuration

Top-p 1 Top-k -1 Temperature 1
Group size (G) 8 Max prompt length 2048 Max response length 8192
Rollout workers 8 Sample batch size 256 Seed 42

Training Configuration
Learning rate 1e-6 Train mini batch size 64 GAE lambda 1.0
Training epochs 3 KL coefficient (β) 0.001 Entropy coefficient 0.001

Off-policy Configuration
c1 threshold 1/8 c2 range [1/8, 4/8] c3 range [2/8, 5/8]
Buffer size (|B|) 256 Rollout delay (v) 5 Re-evaluation freq (m) 5
Gaussian std (σ) 0.2 Gaussian mean (µ) 0.5 Max re-evaluate prompts 128
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Reward Function To evaluate the impact of our method, we adopt a simple reward function as
below. All training experiments employ the same reward function.

r(x, y) =

{
1, if y is correct
0, otherwise

Datasets and Benchmarks To evaluate the models above, we use three training datasets and eight
benchmarks categorized into mathematical, planning and vision geometry reasoning benchmarks as
described in Table 4.

Table 4: Datasets and Benchmarks used in this study.
Dataset #Train #Test Task Type Domain License Source

Training Datasets
DEEPSCALER-1.5B-PREVIEW 40,000 – Math reasoning Mathematics Apache 2.0 Link

COUNTDOWN-TASKS-3TO4 49,000 – Logic reasoning Planning Apache 2.0 Link
GEOMETRY3K 2,100 – Visual reasoning Visual Geometry Apache 2.0 Link

Test Benchmarks
AIME24 – 30 Math competition Mathematics MIT Link

AMC – 83 Math competition Mathematics Apache 2.0 Link
MATH500 – 500 Math reasoning Mathematics - Link

MINERVA – 272 Math reasoning Mathematics Apache 2.0 Link
OLYMPIAD – 674 Math competition Mathematics Apache 2.0 Link

COUNTDOWN-TASKS-3TO4 – 200∗ Logic reasoning Planning Apache 2.0 Link
COUNTDOWN-TASKS-4 – 200∗ Logic reasoning Planning Apache 2.0 Link

GEOMETRY3K – 901 Visual reasoning Visual Geometry Apache 2.0 Link
*We only use a random subset of this benchmark for faster ablation studies.

A.8 ALGORITHM

Algorithm 1 presents the proposed BAPO, which can be seamlessly integrated with any GRPO-like
RLVR algorithm.

Algorithm 1 Batch Adaptation Policy Optimization (BAPO)
Require: Policy πθ0 , buffer B = ∅, thresholds c1, c2, c3, delay steps v, re-evaluate frequency m

1: for t = 1 to T do
2: // Off-policy Rollout Phase
3: if t mod v = 0 then
4: Synchronize rollout policy’s parameter with trainer: α = πθt
5: end if
6: Using rollout policy α to generate G responses {yj}Gj=1 for each question x
7: Compute log probabilities α(y|x) and rewards r for constructing the online batch Xon
8: Store samples into buffer Bbad ← {(x, y, α(y|x), r) ∈ Xon : µα,r(x) ≤ c1}
9: Store samples into buffer Bhigh ← {(x, y, α(y|x), r) ∈ Xon : c2 ≤ µα,r(x) ≤ c3}

10: // Off-policy Training Phase
11: X1 ← online filter on Xon with µα,r(x) ∈ { 1

G , . . . , G−1
G } (Filtered Fresh Samples)

12: X2 ← ∅
13: if t mod m = 0 then
14: Re-evaluate Bbad with πθt to get X2 using Equation 6 (Re-evaluated Difficult Samples)
15: end if
16: X3 ← Sample from {(x, y) ∈ Bhigh : µαB,r(x) ∈ [c2, c3]} (Historical High-quality Samples)

17: Final batch← X1 ∪ X2 ∪ X3

18: Compute advantages and update critic/actor with final batch
19: Add Dt to buffer B
20: end for
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A.9 GENERALIZATION ANALYSIS

To demonstrate the algorithmic generalizability of our framework, we extended the Batch Adap-
tation paradigm to Proximal Policy Optimization (PPO), denoted as BA-PPO. In this experiment,
both the Actor and Critic networks were initialized with the Qwen3-4B backbone and trained on
the DeepScaleR dataset with a maximum response length of 4K tokens. We maintained consistency
with the foundational BAPO configuration by applying standard zero-advantage filtering for X1

(removing only all-correct and all-wrong groups), utilizing the initial BAPO values for thresholds
c1, c2, c3, and setting the buffer size to 64.

Figure 16: Generalization to Actor-Critic Algorithms (BA-PPO). Performance comparison be-
tween standard PPO (orange triangles) and BA-PPO (purple circles) on the AIME 2024 benchmark
using Qwen3-4B. The star (⋆) marks the peak performance of BA-PPO (0.325).

As illustrated in Figure 16, BA-PPO achieved a remarkable performance gain of +5.5 on the AIME
2024 benchmark compared to the standard PPO baseline. This result further confirms that the core
principle of dynamic batch construction is effective not only for GRPO but also functions as a robust,
algorithm-agnostic enhancement for actor-critic methods.
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