GraphChain: Large Language Models for Large-scale
Graph Analysis via Tool Chaining

Chunyu Wei', Wenji Hu', Xingjia Hao?, Xin Wang', Yifan Yang®, Yueguo Chen'
Yang Tian?, Yunhai Wang'*
'Renmin University of China, China >’Guangxi University, China
3Beijing Jiaotong University, China
weicyl15@icloud. com, 2024000991@ruc.edu.cn, haoxingjia@st.gxu.edu.cn
2023103702@ruc.edu.cn, 232810270@bjtu.edu.cn
chenyueguo@ruc.edu.cn, ytian@gxu.edu.cn, cloudseawang@gmail . com

Abstract

Large Language Models (LLMs) face significant limitations when applied to large-
scale graphs, struggling with context constraints and inflexible reasoning. We
present GraphChain, a framework that enables LLMs to analyze complex graphs
through dynamic sequences of specialized tools, mimicking human exploratory
intelligence. Our approach introduces two key innovations: (1) Progressive Graph
Distillation, a reinforcement learning mechanism that generates optimized tool se-
quences balancing task relevance with information compression, and (2) Structure-
aware Test-Time Adaptation, which efficiently tailors tool selection strategies to
diverse graph topologies using spectral properties and lightweight adapters without
costly retraining. Experiments show GraphChain significantly outperforms prior
methods, enabling scalable and adaptive LLM-driven graph analysis.

1 Introduction

Graph-structured data represents a fundamental paradigm across diverse domains, from social
networks and molecular structures to knowledge bases and recommendation systems. While large
language models (LLMs) have demonstrated remarkable reasoning capabilities, they encounter
significant challenges when processing graph data.

Recent approaches to enhancing LLMs’ graph processing capabilities have taken two primary
directions. The first attempts to adapt LLMs to directly process graph structures—either through
tokenization or natural language descriptions [[Chai et al., 2023 [Wang et al.| 2023b]. However, this
approach faces Context Exhaustion: large-scale graphs with millions of nodes and edges cannot be
effectively compressed within LLMs’ context limitations, making it computationally infeasible to
load entire subgraphs into their context windows (Figure[T] left).

Recognizing these limitations, a second direction draws inspiration from tool learning paradigms.
Approaches like Graph-ToolFormer [Zhang|,|2023al] and GraphForge [Wang et al.||2024b|| pioneered
integrating specialized tools with LLMs for graph reasoning, enabling models to call external graph
processing functions. However, these methods primarily conceptualize tool learning as text generation,
relying on single-step tool invocations with textually described graph structures. This approach leads
to Reasoning Hallucination (Figure[I] middle), as it places unrealistic demands on individual tools
to provide comprehensive functionality for complex graph analysis.

*Corresponding author.
2The code is available in https:/github.com/wuanjunruc/GraphChain

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/wuanjunruc/GraphChain

Large-scale Complex Graph GraphChain

Describing graphs in natural language

s |
& D | Prompt: Structured
. H | You are going to... The graph is Tool List '
Which account has the most . loaded ter G
L .
transactions in the network? . | [oaded in memory as parameter +

& you can use the tool to analyze
H Identify potential fraud accounts
H
.
H
y
\.

R

I;.E:. I need to find potential fraud

'
'
.
| Prompt: | H
| The network contains 500,000 accounts H Sescesccsccccccascane? accounts by multiple steps:
| Account A connects to accounts B, C, D, and E [
with transaction values of $500, $300... | 11K Gool Call: <ap1>find751mp1e7cycles(G)<ap1)
| Account B connects... [1IH Identify potential fraud accounts.
. '
H Single-Tool Approach Result: [circle_list] y‘
o O
i | | Prompt S(ructured' AP " "
4 | | Youare going to... The graph is Tool List | (Tool Call: <avp1>ﬂl‘tor([clmc‘loih.st],)
([loaded in memory as parameter G, | value=time, filter='>5")<api>
.
.

you Ld! use the tool to dm\ yze. |

| Result: [filter list] %
.
.

; Graph Jw .
: Prompt:

| Given ansactio iph: <graph>

| need to find potential fraud accounts
: by analyzing circular patterns.

retwc 8
[| The fraud accounts is 'EI . According to the analysis, there are
: Account F has the most transactions <api>find_circulgr patterns(G)</api> + ° following potential fraud account:
\ X) X AK, CF, DD, ...
\)
@ Context Exhaustion 2) Reasoning Hallucination Graph analysis complete J

Figure 1: Comparison of Graph Processing Approaches with LLMs. Left: Methods suffer from Context
Exhaustion where large graphs exceed LLM context windows. Center: Single-tool approaches face Reasoning
Hallucination with fixed, predefined tools. Right: Our GraphChain framework enables human-like exploratory
analysis through sequential tools that progressively narrow focus in large-scale graphs.

Complex graph analysis parallels human exploration of unknown environments. Just as humans
navigate unfamiliar territories through interactive, adaptive exploration—where each step reveals in-
formation that guides subsequent decisions—effective graph analysis requires progressive, sequential
information gathering rather than comprehensive analysis in one operation. A field researcher might
first survey an area broadly before focusing on regions of interest; similarly, graph analysis benefits
from incremental understanding built through sequential operations.

Inspired by human exploratory cognition, we propose GraphChain, a novel framework enabling
LLMs to process large-scale graphs through dynamic tool-chaining (Figure] right). GraphChain
decomposes complex graph problems into sequences of specialized operations, activating LLMs’
reasoning capabilities to create, refine, and execute chains of graph processing tools. This approach
allows progressive refinement and deeper exploration of graph structures, mimicking how human
experts methodically investigate complex systems layer by layer.

The implementation of GraphChain addresses two significant technical challenges:

1. Informative Tool Sequence Generation requires determining optimal tool sequences for diverse
analytical tasks, navigating an exponentially growing space of possible combinations. Traditional
approaches struggle with this challenge due to scarce labeled data for complex graph analysis.

2. Adaptive Graph Structure Sensing must address real-world graph data exhibiting distributional
shifts and structural variations. Unlike natural data types, graph structures are heavily human-
defined with domain-specific schemas, leading to severe distribution shifts across domains.

To generate informative tool sequences, we propose a progressive graph distillation training mecha-
nism. Our key insight is that effective graph analysis mirrors human exploration: beginning broadly
and systematically narrowing focus as relevant information emerges. This approach transforms the
exponential tool-selection problem into a principled information bottleneck optimization, iteratively
refining both structural scope and representational complexity while preserving only task-critical
information—similar to how humans selectively attend to relevant environmental cues.

For adapting to diverse graphs, we introduce a structure-aware test-time adaptation mechanism. We
leverage the insight that graph topology fundamentally influences optimal analysis strategies, just as
explorers adjust techniques for different terrains. Our lightweight adapter dynamically modifies tool
selection policy based on spectral properties capturing essential structural characteristics, enabling
GraphChain to maintain effectiveness across diverse graphs while preserving efficiency.

Our main contributions include:

* GraphChain, a novel framework leveraging Graph-Oriented Reinforcement Learning with pro-
gressive information distillation, enabling systematic exploration of large-scale graphs through
interconnected tool sequences.

* A structure-aware test-time adaptation mechanism that adjusts tool-chaining strategies based on
graph topology, enabling efficient transfer to diverse graph structures without costly retraining.

» Extensive experimentation demonstrating that GraphChain significantly outperforms existing
methods by an average of 20.7%, with exceptional scalability handling graphs up to 200,000 nodes
while maintaining consistent performance.

2 Related Work

Tool Learning for LLMs Tool learning for LLMs encompasses tuning-free methods using prompt-
ing strategies like Chain-of-Thought [Wei et al., 2022]], ReAct [Yao et al.;,|2023[], and DFSDT [Qin
et al., [2023]], alongside approaches integrating tools into conversations [[Chen et al., [2023]] or em-
ploying structured selection via graphs [Liu et al.| [2024]], hierarchies [Du et al., |2024]], or intent
filtering [Fore et al., [2024]]. Meanwhile, tuning-based methods directly adapt LLM parameters [Xu
et al 2023] through behavior cloning with reinforcement learning [Qiao et al., 2024, [Yu et al.|
2024], fine-tuning on specialized decision data [Qin et al.l [2023]], frameworks for varying tool
complexities [Gao et al., 2024], and self-verification mechanisms [Mekala et al.|[2024].

Graph Processing with LLMs Recent work enhances LLMs for graph processing via: (1) Direct
processing with text or visual graph descriptions [Wang et al.l 2023b, |Guo et al.|[2023] or specialized
token sequences [Chen et al., [2024b| [Wang et al.| |2024a]; (2) Tool integration and agent-based
methods for external function calls [Zhang] 2023b]] or multi-step reasoning [Gu et al.l [2024]]; (3)
GNN-LLM combinations using GNNs as encoders [[Tang et al.| [2024]] or aligning representation
spaces [Su et al.} 2022].

Test-time Adaptation Traditional machine learning assumes identical training and testing distribu-
tions, but real-world deployments often encounter distribution shifts [Kulinski and Inouyel [2023]].
Test-Time Adaptation (TTA) addresses this challenge [Liang et al., 2025| |Alfarra et al.,|2025[]. For
LLMs, adaptation techniques include test-time prompt tuning [Shu et al., 2022}, Ma et al., [2023]],
Parameter-Efficient Fine-Tuning methods like adapters or LoRA [Hu et al.| 2022]] for efficient updates
[Shi et al., 2024, Muhtar et al.| [2024]], and "test-time compute scaling" with iterative refinement,
search, or self-correction [Jaech et al., 2024} |Guo et al.| 2025| [Suzgun et al., [2025]].

3 Preliminaries and Problem Formulation

Graph Notation Let G = (V, &) represent a graph, where V = {v1,va,...,v,} is the set of
n = |V|nodes and £ C V x V is the set of m = |€| edges. The adjacency matrix A € {0,1}"*™ (or
R™*™ for weighted graphs) has entries A;; = 1 (or edge weight) if (v;,v;) € &, and 0 otherwise.
Node features are represented by matrix X € R™*“, The degree matrix D is diagonal with D;; =
>_7_1 Aij, and the normalized graph Laplacian is defined as L = T — D~'/2AD~!/2. A node’s
neighborhood is N'(v) = {u € V | (v,u) € £}, and a subgraph G’ = (V',£’) consists of node
subset V' C V and edge subset &’ C £N (V' x V).

Graph Processing Tool Library We define a library of graph processing tools 7 =
{Th,Ts,...,Tk}, which are implemented based on functions from the NetworkX libraryﬂ and
operate on tensor representations within the current memory state m. NetworkX is a widely-used
open-source Python library that provides a comprehensive set of graph processing functions, including
node and edge operations, graph property calculations, and advanced analytical tools. The tools in the
library are based on 45 carefully selected NetworkX functions, with details provided in Appendix
The tools operate on tensor representations, typically containing the adjacency matrix A’ and feature
matrix X' for a subgraph G' = (V', £):

m~ (A e R"* X e RV) wheren = |V)]

*https://networkx.org.

Step1 ——— Step2 —— Step N-1

my
______________ X
Task
Tool 2 Graph Graph Graph my <
Query Distilling pistilling | **® |Distilling Thres
o - .
. Execution Execution Execution .
. Success Success Success .
Tool K
A A E .
| PPO |

> Optimization |

[: Action [: State I:‘ I:‘ e ° Reward |E.-_||_ GraphChain

Large-scale Complex Graph U e RNxk E € Rkxk V e RN * _
& ; 500 | e
E DD : ;"' e
| — - Graph @ G Task
E Xy X uJ X : - :‘aa;t:ure enerate Quaesry
= ° V.
H ,] | () | N .
Sasransassssssaaaet T @ Test-Time Adaption

k

Figure 2: (1) Training Phase: Progressive graph distillation where the RL agent learns to select tool sequences
that iteratively reduce the memory state’s (m) Graph Description Length (GDL) while maximizing task relevance.
(2) Structure-aware Test-Time Adaptation: A lightweight adapter (A,;) tuned by minimizing chain length and
KL divergence generates a structure-specific soft prompt P based on the graph’s SVD-derived fingerprint z¢.

A tool T takes the current memory state m and tool-specific parameters 07 as input, producing
two outputs: (1) A concise natural language summary d of the execution outcome; (2) An updated
memory state m’. Formally, the tool function is defined as: T : (m, 07) — (d, m’).

This dual output mechanism allows our framework to provide context-window-friendly summaries to
the LLM via d, while managing potentially large-scale intermediate graph data within m’, mitigating
context exhaustion when processing large graphs.

Sequential Graph Exploration as an MDP Given an analytical query Q and input graph G, we
model sequential graph exploration as a Markov Decision Process (MDP) M = (S, A, P, R,~):

« State Space S: State s; encapsulates query Q, graph reference, action history {(a;,d;)}!Z;, and
memory state my;_1.

* Action Space A: Actions a; = (T, 0r) select atool T' € T with parameters 67, or "TERMINATE’.

* Transition Dynamics P: Tool execution produces (d¢, m;) = T'(m;_1, 1), updating state s;41
with new history and memory.

* Reward Function R(s¢, at, s¢+1): Evaluates actions based on progress and task success.

* Discount Factor y € [0, 1]: Balances immediate vs. future rewards.

The agent’s policy mg(a¢|s;), parameterized by 6, generates a trajectory 7 =
{s1, a1, s2,aa, ..., s7, ar } representing sequential tool interactions. To maximize performance, we
optimize the expected reward:

T
VRy = R(T)Vro(1) = Erromg.(sp.ar)mr |R(T) Y Vologmo(asls:) 2)

t=1

4 Methodology

GraphChain addresses the challenges of applying LLMs to large-scale graph analysis by formulating
the problem as a sequential decision-making task solvable via reinforcement learning. Our approach
centers on two core technical innovations: (1) Progressive Graph Distillation, which promotes
informative yet compact state representations, and (2) Structure-aware Test-Time Adaptation,
enabling dynamic adjustment to diverse graph topologies. Figure 2] provides a conceptual overview.

4.1 Progressive Graph Distillation

Generating effective tool sequences for complex graph queries involves navigating an exponentially
large action space. To provide denser learning signals and emulate human-like analytical workflows
that progress from coarse to fine, we introduce Progressive Graph Distillation.

This approach incentivizes the RL agent to pursue both the query objective and manage the complexity
of its memory state m. We train the agent to prioritize tool sequences that systematically reduce m’s
data volume while retaining task-critical information, transforming exploration into a guided search
characterized by iterative refinement. The aim is to progressively shrink m step-by-step, eventually
yielding a compact final state m suitable for direct processing within the LLM’s context window.

4.1.1 Quantifying Memory State Volume and Relevance

Implementing progressive distillation requires quantifying two key aspects of memory state m; at
each step ¢: its data volume and its relevance to query Q.

Graph Description Length (GDL(m;)): Drawing from the Minimum Description Length princi-
ple, we introduce Graph Description Length to measure the data size needed to represent the current
graph state. Assuming memory state m; contains subgraph G} = (V}, £;) with n; = |V/| nodes and

m), = |&!| edges, plus node features X € R™ ¥4 we define:
GDL(m;) = L(structure) + L(features) =~ agsmy + apnydy 3)

Coefficients o, oy > 0 weight the relative contribution of structural versus feature information.

Task Relevance (Rel(m;, Q)): We employ an auxiliary LLM scorer to assess the utility of m, for
answering query Q. Since m; may exceed the LLM’s context limits, we use the concise description
d; produced by the executed tool. We estimate the task relevance by:

Rel(m,, Q) ~ LLMScore(prompt(Q, Hy,d;)) € [0, 1] 4)
where H; = {dp, ...,ds—1} is the history of preceding descriptions.

4.1.2 Distillation-based Reward Shaping
We incorporate progressive distillation into the RL reward function R; = R(sy, at, S¢+1). The reward
structure provides feedback during exploration while assessing final task completion:

&)

R, — wl-f,gsucc+w2-f,5AGDL+W3-fngRel ift< N
* 7) Weone - EvaluateTaskSuccess(Q, sy11) ift = N

where N is the final step index, and the intermediate reward components are:

o 79U = T(ExecutionSuccess(as, si11)): Binary reward for valid tool execution.

o #AGDL — tanh (ﬁ GDLC(;B};‘(;);??EE(W)) € (—1,1): Rewards reduction in relative GDL.

. ftAREI = Rel; — Rel;_1: Rewards increase in estimated task relevance.
Weights wi, wy, w3 balance the importance of execution success, volume reduction, and relevance
gain. Weight wgye scales the final reward based on overall success in addressing query Q.

4.1.3 Information Bottleneck Perspective

Our progressive distillation mechanism aligns with the Information Bottleneck principle, advocating
for representations that are maximally informative about a target while being maximally compressive
of input. Our reward function operationalizes this trade-off by incentivizing high task relevance while
rewarding reductions in state volume.

Proposition 4.1. Let the input be X = (G, Q), containing task-relevant information Y = Ag
(the answer) and task-irrelevant information IR, with the Markov structure (Y, IR) — X — my.
Assuming the relevance proxy Rel; positively correlates with the mutual information I(my;Y') and
the GDL serves as a complexity measure encouraging smaller I(X; my), optimizing policy mg with
reward function R; guides the generation of memory states m; that tend to minimize irrelevant
information I(IR; m|Y") while preserving relevant information I(m,;Y").

Detailed proof is provided in Appendix [A] This proposition provides theoretical support for our
distillation approach. By rewarding both relevance gain and volume reduction, the RL process steers
the agent toward behaviors that effectively filter graph data—reducing the representational footprint
of task-irrelevant components while preserving critical information.

4.1.4 Policy Optimization

To optimize the LLM agent’s policy 7y, we implement Proximal Policy Optimization (PPO), using
Generalized Advantage Estimation (GAE) for improved stability:
R N—t
AP0, w) = > " (YN)'641, where 8¢ = Riyr + Vi (se41) — Vio(s1) (6)
=0
Here, A € [0, 1] is the GAE trace decay parameter, V,, is the learned value function, +y is the discount
factor, and R, is the distillation-aware reward.

Following the PPO-clip approach, we maximize a clipped surrogate objective based on trajectories T
sampled from policy 7y:

LOP(0) — o, {Z min (mo(at|st) AGAE clip(mo(at|st) 1—e1 +e> AtGAE) e

T 601 (at|5t) TOo1a (at|5t)

where 7y, is the old policy used for generating trajectories, and € is the clipping hyperparameter.

old

4.2 Structure-aware Test-Time Adaptation
4.2.1 Graph Structural Fingerprinting

To provide global structural awareness for large-scale graphs, we derive a concise graph fingerprint.
We compute the normalized graph Laplacian L = I—D~/2AD~!/2 and consider its Singular Value
Decomposition, L = UXV7. The smallest singular values o; capture dominant, low-frequency
components reflecting macroscopic graph properties. We define the structural fingerprint as:
Zg = (0‘0, (o4 TN 0’]»[) € RM+1,

While full SVD is intractable for very large graphs, these M + 1 smallest singular values (where
M < N) can be computed efficiently using iterative algorithms, effectively distilling essential global
topology into a compact vector. We provide complexity analysis in Appendix [G]

4.2.2 Structure-Conditioned Prompt Generation

STTA employs a continuous adaptation mechanism through adapter network .4,,, which maps the
graph’s structural fingerprint z¢ to a soft prompt P = Ay (zg) € REvXdems:

This generated prompt is prepended to the standard embedding E'(s;) of the agent’s state, modifying
the input to the frozen LLM policy: LLMInput(s,, G) = [Pg; E(s¢)] = [Ay(za); E(st)]-

The agent’s action is then sampled from the policy conditioned on this augmented input. During
adaptation, only the smaller set of adapter parameters 1) are tuned, enabling efficient adaptation.

4.2.3 Self-Supervised Adaptation

Given the absence of ground-truth rewards for user query Q on unseen test graph Gys, STTA employs
a self-supervised strategy using auxiliary queries. We leverage a general-purpose LLM to generate
diverse auxiliary graph analysis queries relevant to Gye’s structure.

For each auxiliary query, we perform rollouts using the frozen base policy conditioned on the graph-
specific prompt, yielding trajectories. The adaptation objective balances planning efficiency and
policy regularization:

Ny, —1

Lstia(¥) = Egy rimmy (1siGen) |WENT +wrr Y Drr(my(-|se; Gies)l|Torg(-[s¢)) ®)

t=0

The components of this objective are: (1) Chain Length (IV;,) encouraging efficient planning, and
(2) KL Divergence Regularization ensuring helpful but not drastic changes.

We minimize this objective using the REINFORCE algorithm, tuning .A,, to generate prompts that
enhance efficiency while maintaining fidelity to learned behaviors, effectively adapting the frozen
policy to Gy ’s specific structure.

S Experiment

5.1 Experimental Setting

Graph Dataset. We evaluate GraphChain on five diverse graph datasets representing different
real-world domains, as illustrated in Table

Table 1: Statistics of graph datasets used in our experiments.

Scenario Dataset #Nodes #Edges #Features Type Description
Cora 2,708 10,556 1,433 Academic papers connected by
Citation Graphs CiteSeer 3,327 9,104 3,703 Directed citation relationships [[Yang
PubMed 19,717 88,648 500 et al.|[2016]
Social Networks Facebook 4,039 88,234 - Undirected Online interactions [Leskovec
. Twitter 81,306 1,768,149 - Directed and Mcauley||2012]
Chemical Molecules QM9 ~18.0/graph ~37.3/graph 11 Undirected Molecular structures with bonds
between atoms [Wu et al.|[2018]
Traffic Networks METR-LA 207 1,515 - Directed Road networks with geographic
constraints [Chen et al.|[2020]
Financial Networks Elliptic 203,769 234,355 165 Directed Transaction networks [Weber
et al.|[2019]

Instruction Data. We constructed two complementary datasets: (1) an SFT dataset comprising
9,986 (query, tool sequence, answer) triplets based on 45 carefully selected NetworkX functions, and
(2) an RL dataset containing 3,000 expert-annotated (query, answer) pairs (600 per graph scenario).
We allocated 500 pairs per scenario for training and 100 for testing, with domain experts crafting
exemplary instruction templates to ensure ecological validity. See Appendix [F|for details.

Baselines. We evaluated GraphChain against state-of-the-art methods from two categories:

(1). For Text-Instruction methods, we tested leading closed-source LLMs (Claude-series [An;
thropic, |2024]], GPT-series [OpenAll 2023], and GLM4-0520 [GLM, 2024]) using two-shot
prompting with Chain-of-Thought reasoning, and reproduced specialized graph reasoning meth-
ods (NLGraph [Wang et al.l 2023a]], GraphWiz [Chen et al., 2024al]).

(2). For Tool-Instruction methods, we compared against recent tool-augmented approaches
(Graph-ToolFormer [Zhang| [2023a]], GraphForge [Wang et al.| 2024b], and ToolGen [Wang
et al.| 2025])).

To ensure fair comparisons with existing baselines—all requiring the entire graph in the context
window—we partitioned original graphs into subgraphs with fewer than 100 nodes for overall
comparison. We use the same input for both baseline methods and GraphForge. In our scalability
experiment (Section [5.4), GraphChain maintains comparable performance even when scaling to
graphs with approximately 200,000 nodes. Further details are provided in Appendix

Training Setup. We used two NVIDIA A800 GPUs with LoRA-based fine-tuning (rank r=16,
alpha=32) on the Qwen2.5-7B-instruction model. Further details are provided in Appendix [C}

5.2 Main Results

Table 2] presents performance comparisons of GraphChain against state-of-the-art baselines, with
statistical significance confirmed by two-sample t-tests (p < 0.05). Key insights include:

* GraphChain substantially outperforms all baselines, achieving 84.7% average accuracy compared
to 70.2% for the best baseline (GraphForge), representing a 20.7% relative improvement.

* Among text-instruction baselines, GPT-40 with approximately 200B parameters demonstrates
superior performance (59.4% average accuracy), confirming the applicability of scaling laws to
graph reasoning tasks.

Table 2: Performance comparison (accuracy %) across five real-world graph reasoning scenarios.
Text-Instruction Methods

Model Parameters Financial Network Chemical Molecule Social Network Citation Graph Traffic Network Average

Claude-3-Sonnet - 217+1.8 47.0+£22 21.5+32 17.7+2.1 16.8 £2.0 249 £23
GPT-3.5-turbo ~175B 36.6 £ 2.1 23.0+3.7 182 +3.6 122 +0.8 194+19 219+24
Claude-3-Haiku ~20B 122 +3.0 529+32 503+34 19.8 £2.0 139+24 29.8+2.8
Claude-3-Opus ~137B 23.6 +2.1 24+ 14 519+ 1.3 36.7+ 3.1 434+33 39.6+22
GraphWiz 13B 41.1+39 524426 61.5+35 68.0 £2.1 384+19 523+29
NLGraph ~100B 52.1+34 584+25 65.2+23 594 +£0.5 39.8+18 55.0+£2.1
GPT-40 ~200B 575+ 19 62.7+3.6 65.2+39 71.5+34 434+ 1.6 594 +£26
Claude-4-Sonnet - 582+21 629+ 1.7 61.7+43 77.5+14 328+19 58.6 +2.3
GPT-4.1 - 522+15 63.4+2.6 674+23 700+ 1.9 555+3.1 61.7+22
Gemini-2.5-Flash - 251413 673+ 1.6 28.1+2.1 241+ 1.8 249+ 1.8 339+ 1.7

Tool-Instruction Methods

Graph-ToolFormer 8B 475+ 19 68.1 +4.8 747+ 42 61.4+34 65.8+45 624 +£35
GraphForge 8B 63.5+3.5 709 +54 804 +4.2 634 +44 735 +£3.1 702 +£3.8
ToolGen 8B 758+ 1.1 579 +29 794 +23 612+13 627+ 1.5 674+ 1.8
GraphChain 7B 81.5+2.2 81.1 £+ 0.7 89.6 + 2.0 83.6 + 2.6 84.1+0.3 84.7+18
Relative improvement (%) - +7.5% +14.4% +11.4% +7.9% +14.4% +20.7%

T Boldface denotes the highest score, and underline indicates the best result among baselines.

* Specialized graph reasoning approaches like GraphForge (70.2% average accuracy) significantly
outperform even the largest general-purpose LLMs.

* GraphChain achieves these results with only 7B parameters, compared to GraphForge’s 8B and
GPT-40’s 200B, demonstrating remarkable parameter efficiency.

5.3 Ablation Study

We introduced two variants: (1) w/o graph distillation, where the progressive graph distillation
mechanism is disabled; and (2) w/o test-time adaptation, where the Structure-aware Test-Time
Adaptation (STTA) component is removed during inference. Figure [3|reveals several key insights:

First, GraphChain consistently outperforms GraphForge across all graph scenarios, demonstrating
the superiority of our approach. Second, Removing either component leads to performance degra-
dation, confirming that both play critical roles in enabling effective tool-chaining and structural
understanding. Third, The performance drop is more severe when graph distillation is removed
compared to when disabling STTA, highlighting that progressive distillation is particularly crucial
for graph analysis. Lastly, GraphChain without test-time adaptation still outperforms GraphForge
in most scenarios, indicating that our multi-step tool-chaining approach with graph distillation is
inherently more effective than single-step tool invocation patterns.

Traffic Network Traffic Network
B GraphForge mm w/o graph distillation
GraphChain B wj/o test-time adaptation 851 " 920 .\
g \\\.\ Qoo
<5 i g
90 1 > = X 70
@ 70 i ©
e e
365 3
1% O
804 < 60 . —e— GPT-4 < 50{ —= GPT4
i —=— GraphForge —=— GraphForge
55 | GraphChain 40 GraphChain
R 70 50 100 150 200 1 2 3 2 5
< Graph Size (#Node) Query Complexity (#Tool)
8 % Financial Network 0 Financial Network
5
5 601 79.5% @200k
< 80
< R0
504 70 >
E .\./\\L § 70
3] X 3
0 60 ' o
[} [}
40 1 < . —o— GPT-4 < 60 —o— GPT-4
50 | x —=— GraphForge —=— GraphForge
! GraphChain GraphChain
Financial Social Citation Traffic % o0 150 200 200k 50 I 3 3 7 T
Network Network Graph Network . .
p Graph Size (#Node) Query Complexity (#Tool)

Figure 3: Impact of removing graph distillation

:) Figure 4: Comparison with varying Graph Sizes and Query
or test-time adaptation.

Complexity.

5.4 Scalability Analysis

We stratified our evaluation dataset based on graph size (node count) and reasoning complexity (tool
sequence length) to assess how performance scales with these dimensions. Figure] reveals:

(1). As graph size increases, baselines exhibit significant performance degradation, with GPT-40
declining more dramatically, demonstrating the limitations of text-instruction for larger graphs.

(2). GraphChain maintains its performance advantage consistently across all graph sizes tested,
including graphs with up to 200,000 nodes. This exceptional scalability stems from representing
memory states through concise natural language summaries rather than direct graph descriptions.

(3). While all methods perform well on simple queries (requiring 1-2 tool calls), performance
disparities increase with query complexity. Both GPT-40 and GraphForge show steep declines
for queries requiring 4-5 tool calls, while GraphChain maintains higher accuracy, demonstrating
superior capability for multi-step reasoning.

5.5 Transfer Learning Evaluation

To assess transfer capabilities, we fine-tuned GraphChain exclusively on Financial Network and
evaluated on three unseen domains, comparing performance with and without the STTA module.

Table 3: Results (accuracy %) when training on Financial Network and testing on other domains.

Model Social Network Citation Graph Traffic Network
GraphChain (in-domain) 89.6 83.6 84.1
GraphChain w/ STTA 86.8 (-3.1%) 79.2 (-4.3%) 80.3 (-4.5%)
GraphChain w/o STTA 84.5 (-5.7%) 75.1 (-10.2%) 77.4 (-8.0%)

Results in Table[3|demonstrate GraphChain’s strong transfer learning capabilities, with cross-domain
performance closely approaching in-domain results. The STTA mechanism substantially improves
transfer performance, reducing accuracy drops by 2.6%, 5.9%, and 3.5% across the three target
domains compared to the variant without STTA, confirming its effectiveness in adapting to diverse
graph structures without domain-specific retraining.

5.6 Tool Chain Analysis

To understand how GraphChain adapts its exploration strategy across domains, we categorized tools
into six functional clusters and analyzed their usage patterns.

s Graph Statistics ~ mEE Subgraph Extraction Path Planning ~ mmm Centrality Measures W Community Detection Connectivity

Financial Network Social Network Citation Graph Traffic Network

oo, OB o I

11.0% 10.2%
26.7% 18.9%

20.9%

W

Yo

Figure 5: Distribution of tool types utilized by GraphChain across different graph domains.

Figure 5| reveals distinct exploration patterns adapted to each domain’s characteristics. Path Planning
tools dominate in Traffic Network (33.8%) and Financial Network (26.7%), reflecting the importance
of traversal analysis. Social Network analysis relies on Centrality Measures (28.8%) and Community
Detection (20.4%), aligning with the importance of influence and clustering. Citation Graph process-
ing shows a more balanced distribution with significant usage of Connectivity tools (18.9%). These
domain-specific variations demonstrate GraphChain’s ability to adaptively construct appropriate
tool sequences on different graph scenarios.

Our framework is designed to be inherently robust to variations in the tool library. The core of
GraphChain employs a reinforcement learning policy that learns to select optimal tool sequences
from the available action space, rather than being hard-coded to specific tools.To empirically validate

this robustness, we conducted an additional experiment with a reduced toolset (removing 50% of
tools from Centrality and Community Detection categories). Table @ demonstrate that GraphChain
maintains strong performance even with a reduced toolset, showcasing the adaptability of our RL
agent in finding alternative tool sequences to solve tasks.

Table 4: Robustness to Tool Library Composition (accuracy %).

Financial

Chemical

Social

Citation Traffic

Model Network Molecule Network Graph Network Average
GraphForge (Baseline) 63.5+£3.5 709454 80.4+42 634444 735431 702438
GraphChain (Full Toolset) 81.5+2.2 81.1+0.7 89.6+2.0 83.6+2.6 84.1+0.3 84.7+1.8
GraphChain (Reduced Toolset) 77.3+2.8 78.44+1.8 82.7+3.1 80.1+3.2 80.6+0.9 79.8+2.4

5.7 Robustness Study

In order to validate the robustness of GraphChain, we evaluated GraphChain with different base
models. The results are shown in Table

Table 5: Performance with Different Base LLMs (accuracy %)

Base Model Financial Chemical Social Citation Traffic Average
Network Molecule Network Graph Network g
Qwen2.5-7B 70.5 81.1 90.4 79.0 82.0 80.6
Llama3.1-8B 69.3 81.7 93.7 82.5 81.7 81.8
GLM4-9B 70.2 78.9 93.8 79.7 79.9 80.5

The consistent superior results across different base models demonstrate the robustness and general
applicability of our approach. We also conducted supplementary experiments using Qwen2.5 models
of varying sizes (3B, 7B, and 14B). The Table [6] show that GraphChain’s performance improves
with larger model sizes. Notably, even the smaller 3B model still maintain reasonable performance
under our framework.

Table 6: Comparison of Base Models with Different Sizes (accuracy %)

Model Financial Chemical Social Citation Traffic
Size Network Molecule Network Graph Network
Qwen2.5-3B 63.1% 56.9% 70.2% 74.4% 73.4%
Qwen2.5-7B 81.5% 81.1% 89.6% 83.6% 84.1%
Qwen2.5-14B 85.7% 85.4% 92.2% 83.2% 89.7%

6 Conclusions and Limitation

In this paper, we introduced GraphChain, a novel framework that enables LLMs to effectively
process and reason over large-scale graph data through dynamic tool-chaining. By integrating
progressive graph distillation with structure-aware test-time adaptation, GraphChain addresses the
fundamental challenges of context exhaustion and reasoning hallucination that plague existing
graph processing approaches. Our extensive experiments across diverse domains demonstrate that
GraphChain significantly outperforms prior methods.

Our current implementation primarily focuses on static graphs and may require adaptation for
dynamic or temporal graph structures that evolve over time. The tool library used in our experiments,
though comprehensive, could be expanded to include more domain-specific operations for specialized
applications. These limitations present valuable directions for future research.

Acknowledgments and Disclosure of Funding

This research was supported by NSFC (No0.6250072448, No.62132017 and No.U2436209), the
Shandong Provincial Natural Science Foundation (N0.ZQ2022JQ32), the Beijing Natural Science

10

Foundation (L247027), the Fundamental Research Funds for the Central Universities, the Research
Funds of Renmin University of China, and the Young Elite Scientists Sponsorship Program by CAST
under contract No. 2022QNRCO001. It was also supported by Big Data and Responsible Artificial
Intelligence for National Governance, Renmin University of China.

References

M. Alfarra, A. Correia, B. Ghanem, and C. Louizos. Test-time adaptation with source based auxiliary
tasks. Transactions on Machine Learning Research, 2025.

A. Anthropic. The claude 3 model family: Opus, sonnet, haiku. In Claude-3 Model Card, 2024.

N. J. Beaudry and R. Renner. An intuitive proof of the data processing inequality. arXiv preprint
arXiv:1107.0740, 2011.

Z. Chai, T. Zhang, L. Wu, K. Han, X. Hu, X. Huang, and Y. Yang. Graphllm: Boosting graph
reasoning ability of large language model. arXiv preprint arXiv:2310.05845, 2023.

N. Chen, Y. Li, J. Tang, and J. Li. Graphwiz: An instruction-following language model for graph
problems. CoRR, abs/2402.16029, 2024a.

R. Chen, T. Zhao, A. K. Jaiswal, N. Shah, and Z. Wang. Llaga: Large language and graph assistant.
In International Conference on Machine Learning, pages 7809-7823. PMLR, 2024b.

W. Chen, L. Chen, Y. Xie, W. Cao, Y. Gao, and X. Feng. Multi-range attentive bicomponent graph
convolutional network for traffic forecasting. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 3529-3536, 2020.

Z. Chen, K. Zhou, B. Zhang, Z. Gong, W. X. Zhao, and J.-R. Wen. Chatcot: Tool-augmented chain-
of-thought reasoning on chat-based large language models. arXiv preprint arXiv:2305.14323,
2023.

Y. Du, F. Wei, and H. Zhang. Anytool: Self-reflective, hierarchical agents for large-scale api calls. In
International Conference on Machine Learning, pages 11812—-11829. PMLR, 2024.

M. Fore, S. Singh, and D. Stamoulis. Geckopt: Llm system efficiency via intent-based tool selection.
In Proceedings of the Great Lakes Symposium on VLSI 2024, pages 353-354, 2024.

S. Gao, Z. Shi, M. Zhu, B. Fang, X. Xin, P. Ren, Z. Chen, J. Ma, and Z. Ren. Confucius: Iterative
tool learning from introspection feedback by easy-to-difficult curriculum. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pages 18030-18038, 2024.

T. GLM. Chatglm: A family of large language models from glm-130b to glm-4 all tools, 2024.

Y. Gu, Y. Shu, H. Yu, X. Liu, Y. Dong, J. Tang, J. Srinivasa, H. Latapie, and Y. Su. Middleware for
llms: Tools are instrumental for language agents in complex environments. In Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, pages 7646-7663, 2024.

D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al.
Deepseek-rl: Incentivizing reasoning capability in 1lms via reinforcement learning. arXiv preprint
arXiv:2501.12948, 2025.

J. Guo, L. Du, H. Liu, M. Zhou, X. He, and S. Han. Gpt4graph: Can large language models
understand graph structured data? an empirical evaluation and benchmarking. arXiv preprint
arXiv:2305.15066, 2023.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3, 2022.

A. Jaech, A. Kalai, A. Lerer, A. Richardson, A. El-Kishky, A. Low, A. Helyar, A. Madry, A. Beutel,
A. Carney, et al. Openai ol system card. arXiv preprint arXiv:2412.16720, 2024.

S. Kulinski and D. I. Inouye. Towards explaining distribution shifts. In International Conference on
Machine Learning, pages 17931-17952. PMLR, 2023.

11

J. Leskovec and J. Mcauley. Learning to discover social circles in ego networks. Advances in neural
information processing systems, 25, 2012.

J. Liang, R. He, and T. Tan. A comprehensive survey on test-time adaptation under distribution shifts.
International Journal of Computer Vision, 133(1):31-64, 2025.

X. Liu, Z. Peng, X. Yi, X. Xie, L. Xiang, Y. Liu, and D. Xu. Toolnet: Connecting large language
models with massive tools via tool graph. arXiv preprint arXiv:2403.00839, 2024.

X. Ma, J. Zhang, S. Guo, and W. Xu. Swapprompt: Test-time prompt adaptation for vision-language
models. Advances in Neural Information Processing Systems, 36:65252-65264, 2023.

D. Mekala, J. Weston, J. Lanchantin, R. Raileanu, M. Lomeli, J. Shang, and J. Dwivedi-Yu. Toolveri-
fier: Generalization to new tools via self-verification. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pages 5026-5041, 2024.

D. Muhtar, Y. Shen, Y. Yang, X. Liu, Y. Lu, J. Liu, Y. Zhan, H. Sun, W. Deng, F. Sun, et al. Strea-
madapter: Efficient test time adaptation from contextual streams. arXiv preprint arXiv:2411.09289,
2024.

OpenAl. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

S. Qiao, H. Gui, C. Lv, Q. Jia, H. Chen, and N. Zhang. Making language models better tool learners
with execution feedback. In Proceedings of the 2024 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pages 3550-3568, 2024.

Y. Qin, S. Liang, Y. Ye, K. Zhu, L. Yan, Y. Lu, Y. Lin, X. Cong, X. Tang, B. Qian, et al. Toolllm: Facil-
itating large language models to master 16000+ real-world apis. arXiv preprint arXiv:2307.16789,
2023.

W. Shi, R. Xu, Y. Zhuang, Y. Yu, H. Sun, H. Wu, C. Yang, and M. D. Wang. Medadapter: Efficient
test-time adaptation of large language models towards medical reasoning. In Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, pages 22294-22314,
2024.

M. Shu, W. Nie, D.-A. Huang, Z. Yu, T. Goldstein, A. Anandkumar, and C. Xiao. Test-time prompt
tuning for zero-shot generalization in vision-language models. Advances in Neural Information
Processing Systems, 35:14274-14289, 2022.

B. Su, D. Du, Z. Yang, Y. Zhou, J. Li, A. Rao, H. Sun, Z. Lu, and J.-R. Wen. A molecular
multimodal foundation model associating molecule graphs with natural language. arXiv preprint
arXiv:2209.05481, 2022.

M. Suzgun, M. Yuksekgonul, F. Bianchi, D. Jurafsky, and J. Zou. Dynamic cheatsheet: Test-time
learning with adaptive memory. arXiv preprint arXiv:2504.07952, 2025.

J. Tang, Y. Yang, W. Wei, L. Shi, L. Su, S. Cheng, D. Yin, and C. Huang. Graphgpt: Graph instruction
tuning for large language models. In Proceedings of the 47th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 491-500, 2024.

H. Wang, S. Feng, T. He, Z. Tan, X. Han, and Y. Tsvetkov. Can language models solve graph
problems in natural language? In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023a.

H. Wang, S. Feng, T. He, Z. Tan, X. Han, and Y. Tsvetkov. Can language models solve graph problems
in natural language? Advances in Neural Information Processing Systems, 36:30840-30861, 2023b.

J. Wang, J. Wu, Y. Hou, Y. Liu, M. Gao, and J. McAuley. Instructgraph: Boosting large language mod-
els via graph-centric instruction tuning and preference alignment. In Findings of the Association
for Computational Linguistics ACL 2024, pages 1349213510, 2024a.

12

R. Wang, S. Liang, Q. Chen, J. Zhang, and K. Qin. Graphtool-instruction: Revolutionizing graph
reasoning in llms through decomposed subtask instruction. arXiv preprint arXiv:2412.12152,
2024b.

R. Wang, X. Han, L. Ji, S. Wang, T. Baldwin, and H. Li. Toolgen: Unified tool retrieval and calling
via generation. In The Thirteenth International Conference on Learning Representations, ICLR
2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.

M. Weber, G. Domeniconi, J. Chen, D. K. I. Weidele, C. Bellei, T. Robinson, and C. E. Leiserson.
Anti-money laundering in bitcoin: Experimenting with graph convolutional networks for financial
forensics. arXiv preprint arXiv:1908.02591, 2019.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-thought
prompting elicits reasoning in large language models. Advances in neural information processing
systems, 35:24824-24837, 2022.

Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing, and V. Pande.
Moleculenet: a benchmark for molecular machine learning. Chemical science, 9(2):513-530,
2018.

Q. Xu, F. Hong, B. Li, C. Hu, Z. Chen, and J. Zhang. On the tool manipulation capability of
open-source large language models. arXiv preprint arXiv:2305.16504, 2023.

Z. Yang, W. Cohen, and R. Salakhudinov. Revisiting semi-supervised learning with graph embeddings.
In International conference on machine learning, pages 40—-48. PMLR, 2016.

S. Yao, J. Zhao, D. Yu, N. Du, L. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing reasoning
and acting in language models. In International Conference on Learning Representations (ICLR),
2023.

Y. Yu, Z. Wang, W. Ma, Z. Guo, J. Zhan, S. Wang, C. Wu, Z. Guo, and M. Zhang. Steptool:
A step-grained reinforcement learning framework for tool learning in llms. arXiv preprint
arXiv:2410.07745, 2024.

J. Zhang. Graph-toolformer: To empower llms with graph reasoning ability via prompt augmented
by chatgpt. CoRR, abs/2304.11116, 2023a.

J. Zhang. Graph-toolformer: To empower llms with graph reasoning ability via prompt augmented
by chatgpt. arXiv preprint arXiv:2304.11116, 2023b.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction clearly claim our task (scope), contributions and
solutions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in Conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: We provide all the proof in Appendix [A]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide our code in the supplementary material.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: We provide our code in the supplementary material. And we provide a github
repository containing the code in https://github.com/GraphChain65 1/GraphChain.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In the Appendix [C|and[F]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct two-sample t-tests, and p-value < 0.05 indicates that the improve-
ments are statistically significant.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In the Appendix [C]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This research conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: In appendix [H]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Not Applicable.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original papers or website links about the dataset and open-source
codes.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Not Applicable.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Not Applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not Applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

19

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Not Applicable.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Proof of Proposition 4.1]

We start with the fundamental assumptions:

1. The input X is generated from underlying factors including task-relevant information Y and
task-irrelevant information I R.

2. The process forms a Markov chain: (Y, IR) — X — m;. This signifies that the memory
state m; is generated based on the input X, which itself is derived from the underlying
factors (Y, IR).

3. The optimization objective derived from the reward function R; (Eq.[5) encourages policies
that produce trajectories where intermediate states m; have high task relevance Rel(m;, Q)
and low complexity/volume GDL(my).

4. Based on the proposition’s statement, maximizing relevance correlates with maximizing
I1(Y'; m;), and minimizing GDL correlates with minimizing the overall information captured
from the input, I(X;m;).

According to the Data Processing Inequality (DPI) [Beaudry and Renner, |2011|] applied to the Markov
chain (Y, IR) — X — my, the information that the final representation m; retains about the initial
factors (Y, I R) cannot exceed the information it retains about the intermediate variable X:

I(Y,IR);m;) < I(X;my) 9)

Now, we apply the chain rule for mutual information to the term on the left-hand side:
I((Y,IR);my) = I(Y;my) + I(1R;my|Y) (10)

Here, I(Y; m;) represents the information that the memory state m; contains about the relevant
variable Y. The term I(IR; m,|Y") represents the additional information that m, contains about
the irrelevant variable IR, given that the relevant information Y is already known. This term
quantifies the amount of irrelevant information captured by m; beyond what is already explained by
its correlation with Y.

Substituting the expansion from Eq. [I0]into the DPI (Eq. 0], we obtain:
I(Yi;my) + I(IR;my|[Y) < I(X;my) (1D

Rearranging this inequality gives us an upper bound on the conditional mutual information involving
the irrelevant component:

I(IR;my|Y) < I(X;my) — I(Y;my) (12)

This inequality shows that the amount of irrelevant information retained in m; (conditioned on the
relevant part Y') is upper-bounded by the difference between the total information m; captures from
the input X and the useful information it captures about the target Y.

Now, let’s consider the optimization objective implied by the progressive distillation reward function
(Eq. E]) This objective aims to find a policy 74 that maximizes the expected return. The reward
structure encourages steps that increase relevance (proxy for I(Y; m;)) and decrease GDL (proxy
for I(X; m;)). Thus, the optimization process implicitly seeks intermediate states m; that achieve a
trade-off, aiming for:

* High I(Y; m;) (maximize information about the answer)

* Low I(X; m;) (minimize total information stored, i.e., compress the input)
By striving to maximize (Y’; m;) and minimize I(X; m,), the optimization process is effectively
attempting to minimize the upper bound I(X;m;) — I(Y; m;) found in Eq.

Minimizing this upper bound serves as a direct mechanism to suppress the amount of irrelevant
information I (I R; m,;|Y’) contained in the memory state m,. Therefore, optimizing the distillation-
aware reward function encourages the policy to generate representations that form an information
bottleneck, preserving task-relevant information while actively discarding task-irrelevant information,
as quantified by the bound derived from the Data Processing Inequality.

21

Query:
E—ielp me identify the largest simple cycle in this transfer graph, and then determine which transactions within this cycle have amounts exceeding 1,000,000.]

(C in’ i N
GraphChain’ s Analysis Process Step 1

Thought:

First, clarify that the type of the graph is a multidigraph. To facilitate the subsequent cycle detection, it needs to be converted to an undirected graph, which
can avoid the complexity caused by direction issues during cycle detection. Use the to_undirected function from the NetworkX library to convert the
multidigraph G into an undirected graph.

Action

<API>to_undirected()</API>

Result

The result is not a dictionary object, but a graph object named undirectedgraph.

Result_Description

undirectedgraph is the undirected graph obtained after conversion, with the direction of edges removed to facilitate subsequent cycle detection operations.
You can proceed with cycle detection and other operations on undirectedgraph, such as using other functions from NetworkX to process this graph.

(The number of tokens in the result exceeds the limit of the context window at this point.)

Thought: Step 2
After obtaining the undirected graph, it is necessary to find all the simple cycles within the graph. The simple_cycles function is used for this purpose, which
returns a list of all simple cycles in the graph, with each simple cycle represented as a list of nodes.

Action

<API>simple_cycles()</API>

Result

The variable largestcycle stores the list of the largest cycle, where the cycle is represented as a list of nodes.

Result_Description:

largestcycle contains the largest cycle in the graph, represented as a list of nodes.

You can proceed with further operations on largestcycle, such as checking the weights of the edges within the cycle.

(The number of tokens in the result exceeds the limit of the context window at this point.)

Step 3
Thought: P

For the largest cycle, it is necessary to tally the weights of all edges within the cycle. The get_edge_data() function is required to obtain the weight of each
edge. Subsequently, each edge in the cycle is iterated over to determine whether its weight exceeds 1,000,000.

Action

<API>get_edge_data()</API>

Result

For the largest cycle, it is necessary to tally the weights of all edges within the cycle. The get_edge_data() function is required to obtain the weight of each
edge, and then determine whether the weight of an edge exceeds 1,000,000 by iterating through each edge in the cycle.

Result_Description

filteredges is a list that stores the filtered edges. Each edge is represented as a dictionary composed of source, target, and weight.

You can iterate through filteredges to output the final results.

(The number of tokens in the result is less than the limit of the context window, and the input to the large language model is in the form of text.)

Thought: Step 4

Through the first three steps, we have successfully extracted the largest cycle in the graph and filtered out the edges with weights exceeding 1,000,000,

which are as follows:[{"source": 249, "target": 963, "weight": 6393000}, {"source™: 1, "target": 92, "weight": 8975610}, {"source": 72, "target": 647, "weight":

2402500}, {"source": 31, "target": 96, "weight": 1297921}, {"source": 96, "target": 0, "weight": 2553000}]

Action

<API>Finish->answer</API>

Answer: After analyzing the cycles in the given transfer graph, we identified the largest cycle and filtered it based on weight. The results are as follows:

The list of edges with weights exceeding 1,000,000 is [{"source": 249, "target": 963, "weight": 6393000}, {"source™: 1, "target": 92, "weight": 8975610},
Q"source": 72, "target": 647, "weight": 2402500}, {"source": 31, "target": 96, "weight": 1297921}, {"source": 96, "target": 0, "weight": 2553000}], J

Figure 6: A typical case of GraphChain on Financial Networks.

B Case Study

We present a case study in Figure [f] involving a transmission network from the Elliptic Dataset,
comprising 11,896 nodes and 31,054 edges—exceeding the context processing capabilities of current
LLMs. GraphChain demonstrates robust capability to systematically handle this task through a
series of tool invocations. The Progressive Graph Distillation mechanism enables iterative reduction
of information complexity, focusing on the most salient features.

Due to context window limitations, we store intermediate processing results in memory rather than
directly inputting them into the LLM. The model outputs detailed descriptions of current processing
results and their usage methods to facilitate further analysis. Only when intermediate results’ token
count falls below the maximum context window limit are they directly input into the LLM, maximizing
the model’s advantages while minimizing limitations.

C Details of Experimental Setup

We provide comprehensive details on our experimental setup to ensure reproducibility. All experi-
ments were conducted on 2 NVIDIA A800 80GB GPUs, using LoRA-based fine-tuning (rank r=16,
alpha=32) on the Qwen2.5-7B-instruction model.

C.1 Training Configuration

Our training pipeline consisted of three main stages:

22

Table 7: Comparison of baseline methods and their corresponding models for graph reasoning.

LLM Type Open Source Method Base Model
X Two-shot Claude-series [Anthropic/[2024]
. X Two-shot GPT-series [OpenAl![2023]
Text Instruction
v NLGraph [Wang et al.|[2023a] GPT-4-turbo
v GraphWiz [[Chen et al.|[2024a] Llama2-13B
X Function Calling GPT-3.5-turbo [OpenAl|[2023]
. X Function Calling GPT-4o [[OpenAl![2023]
Tool Instruction))]
X Function Calling GLM4-0520 [GLM.|2024]
v Graph-ToolFormer [Zhang|2023a] Llama3-8B
v GraphForge [Wang et al.||2024b)| Llama3-8B

* Supervised Fine-Tuning (SFT) Stage: We used a learning rate of 5 x 10~° with 4% warmup and
a cosine scheduler for 8 epochs. This initial phase established the model’s ability to follow graph
reasoning instructions.

* Reinforcement Learning (RL) Stage: We implemented Proximal Policy Optimization (PPO) with
step-level rewards, departing from traditional RLHF approaches that apply rewards solely to the
final step. Our implementation used:

- Learning rate: 1 x 107
— Batch size: 8

Initial KL coefficient: 0.3

Loss coefficient (3): 0.15

GAE parameter (\): 0.95

Discount factor (7): 0.99

* Test-Time Adaptation Stage: For the structure-aware adaptation mechanism, we configured:

— Learning rate: 0.01
— Batch size: 10

C.2 Inference Settings

During inference, we used a temperature of 0.7 and top-p value of 1.0, optimizing for a balance
between diversity and coherence in the generated tool chains.

Complete configuration files and scripts are available in our code repository to facilitate reproduction
of our results.

D Baseline Implementation

To comprehensively evaluate GraphChain, we implemented several state-of-the-art graph reasoning
baselines spanning both Text-Instruction and Tool-Instruction paradigms. Table[7]summarizes these
baseline methods and their corresponding backbone models.

D.1 Text-Instruction Methods

For closed-source LLMs (Claude-series, GPT-series, and GLM4-0520), we employed two-
shot Chain-of-Thought (CoT) prompting to stimulate structured reasoning. Table [§]illustrates our
prompting approach with an example.

For specialized graph reasoning methods, we reproduced:

* GraphWiz: We reimplemented using the L1ama2-13B backbone with a learning rate of 2e-5 for 3
epochs and maximum sequence length of 2048. During inference, temperature was set to 0 with
maximum output tokens of 1024 to ensure stable generation.

23

Table 8: Example of two-shot prompting used for text-instruction baselines.

Prompt Template

You are an Al assistant specialized in graph reasoning. For each problem, first extract the graph structure,
then solve the task step by step.
Example 1:
Input: Given a weighted directed graph with edges: [(0, 2, {’weight’: 3}), (0, 3,
{’weight’: 7}), (1, 0, {’weight’: 2}), (1, 4, {’weight’: 8}), (2, 4,
{’weight’: 1}), (3, 4, {’weight’: 3})]. Find the shortest path from node 1 to
node 4.
Reasoning: First, I'll extract the graph structure.
Graph: [(0, 2, {’weight’: 3}), (0, 3, {’weight’: 73}), (1, O,
{’weight’: 2}), (1, 4, {’weight’: 8}), (2, 4, {’weight’: 13}), (3,
4, {’weight’: 3})]
Now I'll find the shortest path from node 1 to node 4.
 Direct path: 1 -+ 4 with weight 8
* Indirect path: 1 = 0 + 2 + 4 with weight2 + 3 + 1
* Indirect path: 1 - 0 -+ 3 -+ 4 with weight2 + 7 + 3

The shortest pathis 1 + 0 + 2 -+ 4 with total weight 6.

Answer: The shortest path from node 1 tonode 4is1 + 0 =+ 2 - 4 with total weight 6.
Example 2:

Input: Given an undirected graph with edges: [(0, 1), (0, 3), (1, 2), (1, 4), (2,
5), (3, 4), (4, 5)]. Determine if there exists a cycle in this graph.

Reasoning: Let me extract the graph structure.

Graph: [(0, 1), (0, 3), (1, 2), (1, 4), (2, 5), (3, 4), (4, 5)]

To check for cycles, I'll trace possible paths:

Starting fromnode 0: 0 = 1 + 2 2 5 +4 + 3 20

This formsacycle: 0 = 1 = 2 +5 +4 + 3 >0

Answer: Yes, there exists a cycle in the graph.

Now solve the following problem:

Input: [Problem description]

6
12

* NLGraph: Following the original implementation, we provided 4 exemplars for connectivity and
cycle tasks, and 5 exemplars for other tasks due to context size limitations. For fair comparison, we
used the standardized test set across all experiments.

D.2 Tool-Instruction Methods
We implemented tool-augmented approaches including:

* Graph-ToolFormer: We reimplemented this approach based on the L1ama3-8B model using
LoRA (rank r=16, alpha=32) with a learning rate of le-5 and weight decay of le-2 for 3 epochs.
For generation, we used beam search with 5 beams, top-k of 5, top-p of 0.95, and temperature of
0.7.

* GraphForge: We implemented based on L1ama3-8B using LoRA (rank =16, alpha=32) with a
learning rate of 5e-5 for 5 epochs. Inference settings matched our GraphChain configuration with
temperature of 0.7 and top-p of 1.0.

* Function Calling: For closed-source models supporting function calling (GPT-3.5-turbo, GPT-4o,
and GLM4-0520), we implemented the same graph processing functions used in GraphChain as
external API tools, allowing these models to leverage structured tool invocation capabilities during
inference.

All baseline implementations were executed using the same hardware setup as GraphChain: two
NVIDIA A800 GPUs for fine-tuning and inference with open-source models. For closed-source
models, we utilized their respective official API interfaces. To ensure fair comparison across all
methods, we partitioned original graphs into subgraphs with fewer than 100 nodes for evaluation,

24

Table 9: NetworkX Functions Categorized by Graph Analysis Task

Category

NetworkX Functions

Basic Graph Properties

G.number_of _nodes(), G.number_of_edges(),
G.has_node(n), G.has_edge(u, v),G.degree(),
G.in_degree(), G.out_degree(),
G.get_edge_data(u, v)

Centrality Metrics

nx.
nx.
nx.
nx.
nx.
.percolation_centrality(),
nx.
nx.

nx

betweenness_centrality(),
closeness_centrality(),
degree_centrality(),
eigenvector_centrality(),
harmonic_centrality(),

second_order_centrality(),
subgraph_centrality()

Connectivity and Compo-
nents

nx.
nx.
nx.
.k_edge_components (),
nx.
.node_connectivity(),
nx.

nx

nx

strongly_connected_components(),
weakly_connected_components (),
articulation_points(), nx.bridges(),

k_node_components (),

edge_connectivity()

Shortest Paths and Distances

nx.
nx.
nx.
nx.
nx.

all_pairs_shortest_path(),
all_pairs_shortest_path_length(),
dijkstra_pathQ),
dijkstra_path_length(),
floyd_warshall()

Clustering and Communities

nx.
nx.
nx.
nx.

average_clustering(), nx.clustering(),
transitivity(), nx.triangles(),
label_propagation_communities(),
louvain_communities()

Flow Algorithms

nx.
.dinic_min_cut(),
nx.

nx

boykov_kolmogorov_min_cut (),

edmonds_karp_min_cut (), nx.minimum_cut ()

Cycle Detection

nx.

simple_cycles(), nx.cycle_basis()

Topological Sorting

nx.
nx.
nx.
.topological_generations()

nx

topological_sort(),
is_directed_acyclic_graph(),
all_topological_sorts(),

while separately testing GraphChain’s scalability on full-sized graphs with up to 200,000 nodes in

Section 5.4

E Graph Analysis Tool Library

To construct an effective graph question-answering system, we selected 45 functions from the
NetworkX library through a systematic review of graph analysis tasks prevalent in academic research
and practical applications. Table [0] shows the complete list of selected functions. The selection

process prioritized coverage of eight core dimensions of graph analytics:

* Basic Graph Properties — Functions providing structural metadata, including node/edge

counts, degree distributions, and adjacency queries.

* Centrality Metrics — Measures for node influence, spanning degree centrality to advanced

methods (eigenvector, percolation, and Katz centrality).

25

* Connectivity and Components — Tools for evaluating graph robustness, such as articulation
points, bridges, and strongly/weakly connected components.

* Shortest Paths and Distances — Algorithms for unweighted and weighted paths, critical for
routing and diffusion modeling.

* Clustering and Communities — Modular structure analysis via clustering coefficients and
detection algorithms (e.g., label propagation, Louvain).

* Flow Algorithms — Maximum flow and minimum cut computations using multiple methodolo-
gies (e.g., Edmonds-Karp).

* Cycle Analysis — Feedback loop identification in directed and undirected graphs.

» Topological Sorting - Dependency resolution for directed acyclic graphs (DAGS).

While not exhaustive, this set was carefully selected to balance analytical breadth and computational
efficiency, ensuring system responsiveness and interpretability. Future work may integrate domain-
specific or higher-order analytics, but this toolset is representative and sufficient for general-purpose
graph analysis.

F Data Construction

This section details the creation of datasets used for training and evaluating GraphChain, including
fine-tuning data and graph datasets across five real-world scenarios.

F.1 Fine-tuning Dataset

We constructed a comprehensive and robust dataset for fine-tuning GraphChain through a systematic,
multi-faceted approach:

F.1.1 SFT Dataset Construction

We curated 45 commonly used APIs from the NetworkX library based on relevance and usage
frequency in graph-related tasks. To ensure diverse instruction coverage, we employed ChatGPT to
generate various instructions tailored to these APIs. For each iteration, we randomly sampled APIs and
prompted ChatGPT to reverse-engineer instructions centered around them, ensuring comprehensive
coverage across the API set.

To enhance practical relevance, human experts crafted three exemplar instructions for each subgroup
within five distinct real-world graph scenarios. These expertly designed prompts served as high-
quality references, grounding the dataset in realistic use cases.

Our structured prompting strategy guided ChatGPT to produce outputs in a standardized format:

{Thought: ...Action: ...}

Each action explicitly invoked an API with required parameters (e.g., G.get_edge_data(8, 0,
default=None)). The outputs were fed into a code generator to produce executable code, which
was then executed to obtain results formatted as:

{"error": , "response": "..."}

These results were appended to the input for subsequent steps, creating a coherent action sequence.
We introduced two auxiliary functions: Finish->answer (signaling successful task completion) and
Finish->giveup_and_restart (allowing model reset and retry in cases of persistent errors).

Through this pipeline, we generated 9,986 (instruction, solution path) pairs that encapsulate a wide
range of API-driven tasks reflecting the complexity of real-world graph-based problem-solving.
Table [TT]shows an example from our SFT dataset.

F.1.2 RL Dataset Construction

For the reinforcement learning phase, we constructed a dataset with reward values for each step. We
used GPT-4 to score each step based on three dimensions:

26

Table 10: The prompt template for constructing the SFT dataset.

Category

Description

Dataset Name | Citation-Network.txt

Dataset Type

MultiDirected Graph

tent paper A cites paper B. The graph construction operation is:
G = nx.MultiDiGraph(), G.add_edge(paperl, paper2),
where paper1 and paper2 are research papers. String type is used to
store nodes.

Task
Output Type | JSON

Generate a complex graph problem and its step-by-step solution process.

Dataset Con- | The citation data between research papers. Directed edge A to B means that

Output Rules (1) The output must be a JSON containing a series of "from" and "value" as
shown in the example, using English.

(2) Provide the user problem in "value" under "user", generate the re-
sponse in "value" under "assistant", and generate API return results in
"value" under "function".

(3) The output can have only this JSON data with no additional informa-

tion.
(4) Follow the format of the example but exclude the key name "exam-
ple".
Special Atten- | In the "assistant" response, provide detailed thought processes without code,
tion using NetworkX methods. Mark called APIs with , e.g.,
. Format outputs as:
Thought: ... Action: <API>...</API>
When <API>...</API> is encountered, provide "function" with fabri-
cated API results:
{"error" . nn s "response" . " n}
Continue this process until final result. Final "assistant" format should
be:
Thought: ... Action: <API>Finish->answer</API>
Answer:
Or:
Thought:

Action: <API>Finish->give_up_and_restart</API>

Design Re- | Design Q&A around the {API_NUM} APIs {API_NAME}. Focus on collaboration
quirement between APIs, where later APIs utilize results from previous ones for further
reasoning.

* API Correctness: Whether the tool invocation in the current step is valid
* Thought and API Effectiveness: The relevance of the tool selection to solving the query
* Graph Distillation: Whether the tool reduces the information content of the graph data

Table [I2] shows the prompt template used for RL data construction.
Table [[3] shows two examples from our RL dataset with corresponding evaluation scores.
F.2 Graph Dataset

We extracted subgraphs from existing real-world datasets to construct graph datasets for five scenarios,
each corresponding to different graph types:

* Financial Networks: From the Elliptic dataset, containing Bitcoin transaction graphs

* Chemical Molecules: From the QM9 dataset, including molecular structure graphs where atoms
are nodes and chemical bonds are edges

27

Table 11: Example of SFT data with step-by-step reasoning and API calls.

| From | Value

User How to identify the neighbor nodes of node 15 and analyze the fund flow
between these neighbor nodes? Begin!

Assistant Thought: To identify the neighbor nodes of node 15 and analyze fund
flow between them, we need to proceed step by step. First, obtain all
direct neighbor nodes of node 15 and transaction information. Then
analyze fund flow between these neighbors.

Let’s obtain neighbor nodes and transaction information using
and
to get all outgoing
and incoming edge information.
Action:

Function {"error": "", "response": "Direct outgoing

transaction information of node 15:
- (15, 16, {’weight’: 400.0, ’date’: ’2022-06-10’})
- (15, 17, {’weight’: 200.0, ’date’: ’2022-07-01°})"}

Assistant Thought: Continue by obtaining incoming transaction information.
Action:

Function {"error": "", "response": "Direct incoming
information for node 15:

- (10, 15, {’weight’: 880.0, ’date’: 2022-05-20°})"}

Assistant Thought: Now we’ve identified neighbor nodes of 15 are 10, 16, and 17.
Next, analyze fund flow between these neighbors using
Action:

Function {"error": "", "response": "(10, 16, {’weight’:

300.0, ’date’: ’2022-06-05’1})
- (10, 17, {’weight’: 100.0, ’date’: ’2022-06-15’})
- (16, 17, {’weight’: 50.0, ’date’: ’2022-07-10’})"}

Assistant Thought: Based on this information, we can draw conclusions: Node 10
transferred 880 yuan to node 15, 300 yuan to node 16, and 100 yuan to
node 17. There is also fund flow between nodes 16 and 17, with node 16
transferring 50 yuan to node 17.

Action:

Answer: Node 10 not only transferred 880 yuan to node 15, but also
transferred 300 yuan to node 16 and 100 yuan to node 17. There is also
fund flow between nodes 16 and 17, specifically, node 16 transferred 50
yuan to node 17.

* Social Networks:

 Citation Graphs:

e Traffic Networks:

For simplicity, we simplified the graph data as shown in Figure[7} FollowingWang et al][2024b]], we

From the Facebook and Twitter datasets
From the Cora, CiteSeer, and PubMed datasets
From the METR-LA dataset

prepared two versions of each graph to accommodate different baselines:

* For text-instruction baselines, we restricted inputs to no more than 30 nodes and 300 edges due to

context length limitations

* For tool-instruction baselines, we limited inputs to no more than 100 nodes and 1000 edges

28

Table 12: The prompt template for constructing the RL dataset.

Category

Description \

Dataset Name | cash_flow_graph.gexf \

Dataset Type | MultiDirected graph with weights and dates \

Dataset Con- | The fund transfer data of a specific group. Directed edge A—B means A
tent transferred funds to B. Graph construction:

G = nx.MultiDiGraph(), G.add_edge(sender, receiver,
weight=amount, date=transfer_date),

where "sender” and "receiver" are the transfer participants, "amount" is
the money amount, and "transfer_date" is the date. Integer type is used
for nodes.

Task Judge the reasonableness of thought and API names based on three dimensions:
(1) API Correctness: Whether the method exists in networkX, accepts
the specified parameters, and matches the dataset type.

(2) Thought and API Effectiveness: How directly and effectively this
step contributes to solving the user question.

(3) Graph Distillation: Whether the current thought and API can reduce
information content or narrow search scope.

Output Type | json \

Output Rules (1) Output must be json data containing "apiResult" as shown in the example.
(2) Output can have only this json data with no additional information.

Special Atten- | Output in "apiResult" should follow:
tion
{"api_Correctness": "", "thoughtAndApi_Effectiveness":
"" "Graph_Distillatiomn": ""}

This approach ensures fair comparison across all methods while allowing us to evaluate GraphChain’s
scalability advantages with full-sized graphs in our main experiments.

G Complexity Analysis of Structure-aware Test-Time Adaptation

This section analyzes the computational complexity of our Structure-aware Test-Time Adaptation
(STTA) mechanism.

G.1 Graph Structural Fingerprinting

For a graph G with N nodes and F edges, computing the M/ smallest singular values of the normalized
Laplacian has:

* Time complexity: O(E - M - Ti;), where T, is the number of iterations in the iterative
SVD algorithm

* Space complexity: O(N + E + NM)
We employ iterative methods (Lanczos algorithm or power iterations) instead of full SVD to efficiently

compute only the needed singular values. Since M < N (typically M = 10 to 50), this computation
remains efficient even for large graphs.

G.2 Structure-Conditioned Prompt Generation
The adapter network A, that maps the structural fingerprint to soft prompts has:

* Time complexity: O(M - H + H - L, - demp)
* Space complexity: O(M - H + H - Ly, - demp)

29

Table 13: Examples from the RL dataset with evaluation scores.

| Category | User Question | Thought and API
Input Please analyze whether there is a | We obtained the minimum cut of the maximum
fund circulation flow in the graph, | fund flow from node 1 to node 3 and its
and identify all nodes involved in | corresponding maximum flow value X. This
the circulation flow. Additionally, | means that, after considering all possible flow
please calculate the maximum paths, the maximum fund transfer amount on
amount of funds involved in these | the path from node 1 to node 3 is X.
circulation paths. Begin! Additionally, we obtained the two sets that
constitute the minimum cut, which helps us
understand which nodes are involved in this
maximum fund transfer process. The next step
is to list the names of all nodes involved in the
circulation flow to display directly to the user.
Output API Correctness: 0.8, Thought
and API Effectiveness: 0.9,
Graph Distillation: 0.0
Input Please analyze whether there is a | To complete this task, we need to proceed step
fund circulation flow in the graph, | by step. First, we need to determine whether
and identify all nodes involved in | there is a fund circulation flow in the graph,
the circulation flow. Additionally, | which can be achieved by calling
please calculate the maximum to return a
amount of funds involved in these | list of cycle edges if a cycle exists. Next, we
circulation paths. Begin! need to identify all nodes involved in the
circulation flow.
can be
used to find all simple cycles (i.e., cycles that do
not repeat any node) in the graph. Finally, for
each identified circulation path, we need to
calculate its maximum fund amount, which can
be done by traversing each edge in the cycle and
accumulating their weights.
Output API Correctness: 0.9, Thought
and API Effectiveness: 0.95,
Graph Distillation: 1.0

Where H is the hidden dimension, L, is the prompt length, and d.,; is the embedding dimension.

This adapter is extremely lightweight (0.01%-0.1% of LLM parameters).

G.3 Self-Supervised Adaptation

The REINFORCE-based adaptation using K auxiliary queries with R rollouts per query has:

* Time complexity: O(K - R-N -Crrym + K- R-N-Ckp)

* Space complexity: O(K - R - N + [1])

Where N is the average chain length, C'p, 1,/ is the cost of an LLM forward pass, C'kf, is the cost of
computing KL divergence, and [¢| is the parameter count of the adapter.

G.4 Opverall Efficiency
The total computational cost can be summarized as:

Ctotal = O(E -M - Titer) + O<K “R- N . C*LLM) + O(Tquery . Nquery . C'LLM) (13)

30

L L T T P T P T P P TP T PP P LT PP PT T PP PP

Financial Network ,
description

Name:Financial_Network.txt

Type:MultiDirected graph with weights and dates

Content:The fund transfer data of a specific group of people. Directed edge A->B means that A has transferred funds to B.

The graph construction operation is:

G = nx.MultiDiGraph()

G.add_edge(sender, receiver, weight=amount, date=transfer_date)

where "sender" and "receiver" are the sender and receiver of the transfer, "amount" is the amount of money, and "transfer_date" is the date of the transfer.The integer
s, typeis used to store nodes when constructing the graph.

"

SOCIAl NEtWOIK wausuusus s s ms s wmn s m s ma s m s n s m s n st s m o m o nmnm o m o E N B R RSN RN AR R AR R AR R A A AR AR R,
description
Name:Social-Network.txt
Type:Undirected graph with weights
Content:The friendship data of a social network. Undirected edge A-B means that A and B are friends.
The graph construction operation is:
G = nx.Graph()
G.add_edge(user1, user2, weight=interaction_score)
ser1" and "user2" are users, and "interaction_score" is the interaction score between them. The string type is used to store nodes when constructing the graph.

.

Traffic Network
description

Name:Traffic_Network.txt

Type:Directed graph with weights

Content:The transportation data between cities. Directed edge A->B means that there is a direct route from city A to city B.

The graph construction operation is:

G ==nx.DiGraph()

G.add_ed: ity1, city2, weight=di

where "city1" and "city2" are cities, and "distance" is the distance between them. The string type is used to store nodes when constructing the graph.

..

Citation Graph
description
Name:Citation_Graph.txt
Type:MultiDirected graph
Content:The citation data between research papers. Directed edge A->B means that paper A cites paper B.
The graph construction operation is:
G = nx.MultiDiGraph()
G.add_edge(paper1, paper2)
where "paper1" and "paper2" are research papers. The string type is used to store nodes when constructing the graph.

e

Chemical MOIECUIE 1nuuuumnssnssnsssssssssssssssassssssssssssssssssaa s assassassnnsnsssssssssssssssssssnssnssnssnsssssnssnnnnnnnnny,
& description K
Name:Chemical_Molecule.txt
Type:MultiUndirected graph with weights
Content:The chemical compound data. Undirected edge A-B means that there is a bond between atom A and atom B.
The graph construction operation is:
G = nx.MultiGraph()
G.add_edge(atom1, atom2, weight=bond_strength)
where "atom1" and "atom2" are atoms, and "bond_strength" is the strength of the bond between them. The string type is used to store nodes when constructing the
graph.

T S SIS

S

s,

Figure 7: Detailed Description of the Graph Datasets for the Five Scenarios.

Our approach is efficient because: (1) graph fingerprinting is performed only once per graph; (2)
adaptation requires few rollouts (typically K = 5, R = 3); and (3) only the small adapter network
needs updating.

31

H Broader Impact

GraphChain’s ability to process large-scale graphs efficiently could significantly enhance data analysis
capabilities in critical domains such as financial fraud detection, healthcare networks, and social net-
work analysis. By enabling more effective reasoning over complex interconnected data, GraphChain
could help identify suspicious transaction patterns, improve epidemiological network analysis, and
better understand information propagation in social networks. The framework’s adaptability across
diverse graph structures makes it particularly valuable for interdisciplinary research and applications
where domain experts need to analyze graph data without specialized technical knowledge. Moreover,
the reduced computational requirements of our approach compared to retraining models for each
new graph domain could lead to more environmentally sustainable AI deployments by decreasing
the energy consumption associated with large-scale model training. These advancements contribute
to more accessible, efficient, and effective graph analytics tools that can address various societal
challenges.

32

	Introduction
	Related Work
	Preliminaries and Problem Formulation
	Methodology
	Progressive Graph Distillation
	Quantifying Memory State Volume and Relevance
	Distillation-based Reward Shaping
	Information Bottleneck Perspective
	Policy Optimization

	Structure-aware Test-Time Adaptation
	Graph Structural Fingerprinting
	Structure-Conditioned Prompt Generation
	Self-Supervised Adaptation

	Experiment
	Experimental Setting
	Main Results
	Ablation Study
	Scalability Analysis
	Transfer Learning Evaluation
	Tool Chain Analysis
	Robustness Study

	Conclusions and Limitation
	Proof of Proposition 4.1
	Case Study
	Details of Experimental Setup
	Training Configuration
	Inference Settings

	Baseline Implementation
	Text-Instruction Methods
	Tool-Instruction Methods

	Graph Analysis Tool Library
	Data Construction
	Fine-tuning Dataset
	SFT Dataset Construction
	RL Dataset Construction

	Graph Dataset

	Complexity Analysis of Structure-aware Test-Time Adaptation
	Graph Structural Fingerprinting
	Structure-Conditioned Prompt Generation
	Self-Supervised Adaptation
	Overall Efficiency

	Broader Impact

