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ABSTRACT

Retrieval-augmented generation (RAG) enhances the response quality of large lan-
guage models (LLMs) when handling domain-specific tasks, yet raises significant
privacy concerns. This is because both the user query and documents within the
knowledge base often contain sensitive or confidential information. To address
these concerns, we propose Pisces, the first practical cryptography-based RAG
framework that supports dual-path retrieval, while protecting both the query and
documents. Along the semantic retrieval path, we reduce computation and com-
munication overhead by leveraging a coarse-to-fine strategy. Specifically, a novel
oblivious filter is used to privately select a candidate set of documents to reduce the
scale of subsequent cosine similarity computations. For the lexical retrieval path,
to reduce the overhead of repeatedly invoking labeled PSI, we implement a multi-
instance labeled PSI protocol to compute term frequencies for BM25 scoring in a
single execution. Pisces can also be integrated with existing privacy-preserving
LLM inference frameworks to achieve end-to-end privacy. Experiments demon-
strate that Pisces achieves retrieval accuracy comparable to the plaintext base-
lines, within a 1.14% margin.

1 INTRODUCTION

Although large language models (LLMs) (Achiam et al., 2023; Liu et al., 2024) have achieved
remarkable success in natural language processing tasks, they still exhibit significant limitations in
domain-specific tasks (e.g., healthcare diagnostics). In particular, LLMs may produce hallucinations
due to a lack of domain-specific knowledge (Huang et al., 2025; Li et al., 2024a). To mitigate these
limitations, retrieval-augmented generation (RAG) (Lewis et al., 2020; Gao et al., 2023; Jiang et al.,
2023) has emerged as a promising paradigm. It enhances the response quality of LLMs by retrieving
relevant documents from external knowledge bases and integrating the query with these documents.

However, there are several significant privacy concerns (Huang et al., 2023; Zeng et al., 2024) dur-
ing the RAG retrieval process. The query may contain sensitive and personal information, such
as symptoms or genetic profiles, which the user wishes to be hidden from the knowledge base.
The knowledge base, on the other hand, contains confidential and proprietary data, such as patient
records, that should not be leaked in accordance with data privacy regulations like GDPR (Parlia-
ment & of the Council of the European Union), PIPL (Congress, a), and HIPAA (Congress, b).

Prior works (Grislain, 2025; He et al., 2025; Cheng et al., 2025; Yao & Li, 2025) primarily apply
differential privacy (DP) to address privacy concerns about the RAG retrieval process, as listed in
Table 1. Nevertheless, there are practical limitations to these works. Firstly, they consider only
semantic retrieval, whereas a dual-path retrieval, such as a combination of semantic and lexical
retrieval, is known to perform better (Kuzi et al., 2020). The noise introduced by DP disrupts exact
term matching, making lexical retrieval difficult to support. Secondly, these works only ensure the
privacy of either the query or the documents. As discussed above, it is essential that both the query
and documents be protected.

In this paper, we ask: How can we maintain retrieval performance while ensuring privacy for both
the query and documents during retrieval?

To this end, we propose Pisces, a cryptography-based private RAG framework that supports dual-
path retrieval, while protecting the privacy of both the query and documents. Unlike approaches
that merely combine existing components, Pisces introduces customized cryptographic protocols
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Table 1: Comparison with prior works.

Framework Retrieval Path Privacy MechanismSemantic Lexical Query Documents

DP-RAG (Grislain, 2025) DP
LPRAG (He et al., 2025) DP
RemoteRAG (Cheng et al., 2024) DP, Cryptography
(Yao & Li, 2025) DP
Pisces (Ours) Cryptography

tailored to the specific requirements of semantic and lexical retrieval paths, achieving significant
improvements in both privacy and efficiency. Specifically, along the embedding-based semantic
retrieval path, we propose a coarse-to-fine strategy to reduce computation and communication com-
plexity when dealing with large-scale knowledge bases. Concretely, we first designed a novel obliv-
ious filter over Hamming distance to privately select a candidate set of documents to significantly
reduce the scale of potential matching documents. Then, the cosine similarities are computed be-
tween the query and the candidates with secure multi-party computation (MPC). For the lexical
retrieval path, we design a multi-instance labeled PSI protocol that obtains all necessary term fre-
quencies for best matching 25 (BM25) scoring in a single execution, avoiding the cost of repeated
labeled PSI invocations. BM25 scoring is subsequently performed under MPC. Notably, Pisces
can be seamlessly integrated with existing privacy-preserving LLM inference frameworks, enabling
end-to-end private retrieval and generation. Pisces provides strong privacy guarantees for both
the query and documents while maintaining high retrieval performance, offering a practical solution
for privacy-sensitive RAG applications.

Our contributions are summarized as follows:

• We propose the first cryptography-based RAG retrieval framework with dual-path retrieval, while
ensuring privacy for both the query and documents.

• We propose a coarse-to-fine strategy for the semantic retrieval path with an oblivious filter to
reduce computation and communication complexity.

• We first leverage an efficient multi-instance labeled PSI protocol for the lexical retrieval path to
reduce computation overhead.

We conducted comprehensive experiments to evaluate the performance of Pisces. For accuracy,
the results show that Pisces achieves retrieval accuracy comparable to plaintext baselines over
the ground-truth of the dataset, within a 1.14% margin. At the same time, we observe that combin-
ing semantic and lexical paths significantly improves retrieval accuracy. For efficiency, the experi-
ments demonstrate that our coarse-to-fine strategy saves retrieval time by 41.21%, reduces upload
and download overhead by 68.77% compared to the fine-only strategy on the large-scale dataset.
Additionally, our proposed multi-instance labeled PSI outperforms state-of-the-art labeled PSI pro-
tocol (Yang et al., 2024), achieving 496.03× speedup in runtime, and reducing upload and download
overhead by 70733× and 2.84×, respectively. Overall, Pisces is practical in both accuracy and
efficiency.

2 PRELIMINARIES

In this work, we use a variety of cryptographic primitives to achieve a private RAG retrieval process.
Below we briefly summarize each primitive, and further details can be found in Appendix B.1.

• Secure Multi-Party Computation (Ma et al., 2023). A cryptographic technology that enables
multiple mutually distrustful parties to cooperatively compute a predefined function while keeping
their data private.

• Secret Sharing (Keller, 2020). A critical primitive of MPC, that breaks a secret value into multiple
shares held by different parties. The secret value can only be reconstructed when a sufficient
number of shares are combined.
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• Labeled Private Set Intersection (Chen et al., 2018). PSI (Jarecki & Liu, 2010) allows two
parties to learn the intersection of their sets without revealing any information outside the inter-
section. Labeled PSI extends the traditional PSI by returning the label that is associated with each
element in the intersection.

• Oblivious Pseudorandom Function (OPRF) (Naor et al., 1999). Enables two parties to jointly
compute a pseudorandom function such that one party learns the output, while the other learns
nothing about the input or output.

• Oblivious Key-Value Store (OKVS) (Garimella et al., 2021). A data structure that encodes a set
of key-value pairs into a compact representation while preserving the privacy of both keys and
values.

• Batch PIR-to-Share (Song et al., 2025). A cryptographic primitive that enables a client to pri-
vately retrieve the values corresponding to its queries from the server. After the execution, both
parties obtain the secret shares of the retrieved values.

Additionally, we provide detailed descriptions of the semantic similarity and BM25 for lexical re-
trieval in Appendix B.2 and Appendix B.3, respectively.

3 PROPOSED METHOD

3.1 OVERVIEW

Pisces involves two parties: a server S, who holds a sensitive knowledge base (a large corpus
of textual documents D), and a user C, who holds a private query Q. Pisces ensures that neither
party learns the other’s sensitive information during the RAG retrieval process in both retrieval paths
(semantic and lexical).

……
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Figure 1: Overview of our proposed Pisces.

As shown in Figure 1, the whole process of Pisces consists of three phases:

Phase 1: Preprocessing Phase. In this phase, S preprocesses its private document corpus D for
efficient retrieval.

• Document Chunking. S break down D into N smaller chunks of text, i.e. D = {c1,c2, . . . ,cN}.
• Vector Embedding. S encodes each chunk ci (i ∈ [1,N]) into vector representations using an

embedding model, resulting in Dv = {Ii; vi; ci}i∈[1,N], where Ii and vi are the index and vector
representation corresponding to the chunk ci, respectively.

• Tokenization & Term Frequencies. S tokenizes each chunk ci (i ∈ [1,N]) with a tokenizer and
computes the term frequencies, resulting in Dt =

{
Ii;{wi,l : t fi,l}l∈[1,mi];ci

}
i∈[1,N]

, where mi is the
total number of unique tokens of ci, wi,l is the l-th token in the chunk ci and t fi,l is its term
frequency.

Phase 2: Private Retrieval Phase. In this phase, S interacts with C to retrieve the relevant chunks
for the query Q with privacy preservation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• Query’s Processing. C encodes its query Q into vector representations q and tokenizes Q to
n tokens, i.e. Qt = {q1,q2, . . . ,qn}, utilizing the same embedding model and tokenizer applied
during the preprocessing phase.

• Private Semantic Similarity. S and C invoke the private semantic similarity protocol ∏PrivateSS
(Protocol 1), where S inputs Dv and C inputs q. After execution, S obtains the encrypted top-K
chunks with the highest similarity scores.

• Private Lexical Matching. S and C invoke the private BM25 protocol ∏PrivateBM25 (Protocol 2),
where S inputs Dt and C inputs Qt . After execution, S obtains the encrypted top-K chunks with
the highest BM25 scores.

Phase 3: Private Generation Phase. In this phase, C obtains the response to its query Q while
preserving privacy.

• Context Fusion. Then S fuses the encrypted retrieved 2K chunks with the encrypted query.

• Secure Inference. S and C execute the secure LLM inference framework to generate an encrypted
response to C.

Notably, in this paper, we pay attention to the preprocessing phase and the private retrieval phase,
where the private retrieval phase is our core contribution. Furthermore, Pisces can be integrated
with the existing secure inference framework based on various technologies, such as HE Rovida &
Leporati (2024); Moon et al. (2024), MPC (Xu et al., 2025; Lu et al., 2023; Pang et al., 2024), and
DP (Koga et al., 2024), to achieve end-to-end privacy.

3.2 PRIVATE SEMANTIC SIMILARITY

Semantic retrieval aims to retrieve the top-K most semantically relevant chunks for a query issued
by a user C from a set of chunks held by a server S. We design an efficient and private semantic
similarity protocol ∏PrivateSS (Protocol 1) that leverages a coarse-to-fine pipeline. Direct computa-
tion of the cosine similarity over the entire set of chunks with cryptographic protocols (e.g., MPC)
is prohibitively expensive. To mitigate this, we first propose a novel oblivious filter (Protocol 3, de-
scribed in Appendix B.4) that privately selects a subset of candidate chunks, significantly reducing
the scale of subsequent cosine similarity computations.

Protocol 1: ∏PrivateSS

Input: S inputs the embedded chunk set Dv = {Ii; vi; ci}i∈[1,N], where Ii and vi are the
index and vector representation corresponding to the chunk ci, respectively. C inputs
embedded query q.

Output: S learns the encrypted top-K chunks {Enc(ct1),Enc(ct2), . . . ,Enc(ctK)} with the
highest cosine similarities.

1: S computes vb
i ← SimHash(vi) = {0,1}L for i ∈ [1,N]. C computes qb ←

SimHash(q) = {0,1}L.
2: S and C invoke the obvious filter ∏Oblivious Filter (Protocol 3) with

{
Ii; vb

i ; ci
}

i∈[1,N]
and

qb as input, respectively. After execution, S learns the candidate chunk set D′
3: S and C securely compute the cosine similarity between each chunk in D′ and the query

using MPC protocols based on secret sharing (Ma et al., 2023), obtaining secret shares
of the cosine similarities, respectively.

4: S and C invoke the secure sorting protocol (Li et al., 2024b) with the secret shares of
cosine similarities as input. After execution, C learns the indices IK = {It1, It2, . . . , ItK}
of top-K chunks with the highest cosine similarities.

5: S and C invoke the batch PIR-to-share protocol (Song et al., 2025) with Dv and IK

as input, respectively. After execution, S and C learn the secret shares ⟨DK⟩ of top-K
chunks corresponding to It , where DK = {ct1,ct2, . . . ,ctK}.

6: C encrypts ⟨DK⟩C to Enc
(
⟨DK⟩C

)
using FHE and sends it to S. S computes Enc(DK)←

Enc
(
⟨DK⟩C

)
+ ⟨DK⟩S.
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We describe the private semantic similarity protocol ∏PrivateSS (Protocol 1) as follows:

• Step 1 (Lines 1-2) Private Coarse Matching. To leverage the computational efficiency of Ham-
ming distance in cryptographic protocols, particularly for large-scale knowledge bases, we first
translate cosine similarity computations into Hamming distance. Concretely, S and C convert
their vector embeddings vi (i ∈ [1,N]) and q into L-bit binary vectors vb

i and qb, respectively,
using SimHash (Charikar, 2002). They then invoke the obvious filter ∏Oblivious Filter (Protocol 3)
that operates over Hamming space to identify a candidate set of chunks, which is much smaller
than the full chunk set, without revealing any sensitive information about the query or knowledge
base.

• Step 2 (Line 3) Private Cosine Similarity Computation. After identifying the candidate set
of chunks, S and C perform fine-grained matching by jointly computing the cosine similarity
between each candidate chunk and the query utilizing MPC protocols (Ma et al., 2023) based on
secret sharing.

• Step 3 (Lines 4-6) Encrypted Top-K Chunk Retrieval. Given the computed cosine similarities,
S and C privately retrieve the corresponding top-K encrypted chunks. Concretely, C first obtains
the indices of the top-K chunks with the highest cosine similarities utilizing a secure sorting pro-
tocol (Li et al., 2024b). S and C then retrieve these chunks in secret-shared form utilizing a batch
PIR-to-share protocol (Song et al., 2025). Finally, they convert the secret shares of top-K chunks
into homomorphic encryption ciphertexts. This conversion is optional and depends on the input
type of the subsequent secure LLM inference framework.

3.3 PRIVATE LEXICAL MATCHING

Lexical matching adopted in this paper considers an alternative scoring metric as described in B.3
for the top-K chunks. To achieve lexical matching efficiently and privately, we design an efficient
private BM25 protocol. We first explore labeled PSI to privately obtain term frequencies for BM25
scoring. Furthermore, to reduce the overhead of repeatedly invoking labeled PSI for each chunk, we
introduce a multi-instance labeled PSI protocol ∏MulLPSI (Protocol 4, and the details are shown in
Appendix B.5) based on OPRF and OKVS, that computes all per-chunk query term frequencies in a
single execution.

We describe the private BM25 protocol ∏PrivateBM25 (Protocol 2) as follows:

• Step 1 (Lines 1-4) Private BM25 Scores Computation. Firstly, C privately obtains the term
frequency of each query token in each chunk by invoking the multi-instance labeled PSI protocol
(Protocol 4). From these term frequencies, C could compute the document frequency (i.e., the
number of chunks in which q j appears) for each query token q j. Then S and C jointly compute
the BM25 score for each chunk utilizing MPC protocols based on secret sharing (Ma et al., 2023).

• Step 2 (Lines 5-7) Encrypted Top-K Chunk Retrieval. Given the computed BM25 scores, S
and C privately retrieve the corresponding top-K encrypted chunks. This step is similar to Step 3
in the private similarity matching protocol ∏PrivateSS (Protocol 1) and therefore we omit the details
here.

3.4 PRIVATE GENERATION

Pisces can be integrated with various secure LLM inference frameworks.

Integrate with HE-based Secure Inference Frameworks. As discussed in Section 3.1, S receives
the homomorphically encrypted retrieved chunks along with the encrypted query. It then executes
the HE-based secure LLM inference framework Rovida & Leporati (2024); Moon et al. (2024) to
compute an encrypted response, which is subsequently returned to C.

Integrate with MPC-based Secure Inference Frameworks. S and C avoid converting the secret
shares of the retrieved chunks into homomorphic ciphertexts, skipping Step 6 of the private semantic
similarity protocol (Protocol 1) and Step 7 of the private BM25 protocol (Protocol 2). Instead, C
secret shares its query with S. They then use these shares directly to execute the MPC-based secure
LLM inference framework (Xu et al., 2025; Lu et al., 2023; Pang et al., 2024), thereby jointly
computing secret shares of the response.

5
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Protocol 2: ∏PrivateBM25

Input: S inputs the tokenized chunk set Dt =
{

Ii;{wi,l : t fi,l}l∈[1,mi];ci
}

i∈[1,N]
, where mi is

the total number of unique tokens of ci, wi,l is the l-th token of chunk ci and t f D
i,l is its

term frequency. C inputs tokenized query Qt = {q1,q2, . . . ,qn}, where n is the number
of tokens in Q.

Output: S learns the encrypted top-K chunks {Enc(ct1),Enc(ct2), . . . ,Enc(ctK)} with the
highest BM25 scores.

1: S and C invoke the multi-instance labeled PSI protocol ∏MulLPSI (Protocol 4) with
{wi,l : t fi,l}i∈[1,N],l∈[1,mi] and Qt as input, respectively. After execution, C learns the
term frequency t f ′i, j of each token q j ( j ∈ [1,n]) in each chunk ci (i ∈ [1,N]), where if
q j = wi,l , t f ′i, j← t fi,l , and otherwise t f ′i, j = 0.

2: C computes the document frequency d f j← ∑
N
i=1(t f ′i, j > 0?1 : 0) for each token q j ( j ∈

[1,n]).
3: C and S locally computes log

(
1+ N−d f j+0.5

d f j+0.5

)
· t f ′i, j and k1 ·

(
1−b+b · Lci

Lave

)
, respec-

tively, for i ∈ [1,N] and j ∈ [1,n].
4: S and C secure computes the BM25 scores according Equation (1) utilizing MPC pro-

tocols based on secret sharing (Ma et al., 2023). Then S and C learns the secret shares
of BM25 scores, respectively.

5: S and C invoke the secure sorting protocol (Li et al., 2024b) with the secret shares of
BM25 scores as input. After execution, C learns the indices IK = {It1, It2, . . . , ItK} of
tok-K chunks with the highest BM25 scores.

6: S and C invoke the batch PIR-to-share protocol (Song et al., 2025) with Dv and IK

as input, respectively. After execution, S and C learn the secret shares ⟨DK⟩ of top-K
chunks corresponding t It , where DK = {ct1,ct2, . . . ,ctK}.

7: C encrypts ⟨DK⟩C to Enc
(
⟨DK⟩C

)
using FHE and sends it to S. S computes Enc(DK)←

Enc
(
⟨DK⟩C

)
+ ⟨DK⟩S.

Integrate with DP-based Secure Inference Frameworks. Upon receiving both the homomorphi-
cally encrypted retrieved chunks and the encrypted query, S injects differential privacy noise into
the received encrypted result. This perturbed result is then sent to C, who decrypts it and proceeds
with the DP-based secure LLM inference framework (Koga et al., 2024) to produce the response.

4 EXPERIMENTS

In this section, we first introduce the experimental settings. Then we evaluate the practicality of
Pisces in two parts: (1) the accuracy of Pisces compared to the plaintext baseline, and (2) the
efficiency of Pisces compared to state-of-the-art cryptographic techniques.

4.1 EXPERIMENTAL SETTINGS

Embedding Model and Tokenizer. We employ an open-source embedding model, granite-
embedding-small-english-r21 (Awasthy et al., 2025) to encode chunks and the query into 384-
dimensional vector representations. Additionally, we utilize an open-source tokenizer BERT2 (De-
vlin et al., 2019) for chunk and query tokenization.

Datasets. We use three datasets: ClapNQ, SQuAD, and HotpotQA as RAG datasets. The details of
these datasets are shown in Table 7. For the Dev answerable dataset (300 queries in total), we run
300 queries and take the average to obtain stable results, while for the other datasets, we run 1,000
queries.

1https://huggingface.co/ibm-granite/granite-embedding-small-english-r2
2https://github.com/google-research/bert
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Baselines. To demonstrate the accuracy of Pisces, we compare Pisces against the plaintext
baseline under the same RAG architecture. To demonstrate efficiency, we compare the semantic
retrieval of Pisces against a semantic retrieval baseline without coarse matching and the lexical
retrieval of Pisces against a lexical retrieval baseline with the labeled PSI protocol LSE (Yang
et al., 2024).

Environment. All of our experiments are conducted on an Apple M4 Pro machine with 24 GB of
RAM, running macOS 15.6.1 (24G90).

4.2 ACCURACY EVALUATION

We evaluate the accuracy of Pisces against the plaintext baseline through two complementary
approaches.

First, for each of the two retrieval paths, we compare the chunks retrieved by Pisces with those
by the corresponding plaintext retrieval paths. Tables 2 and 3 present semantic and lexical retrieval
accuracy under the Top-5 and Top-10 settings, respectively, compared to the plaintext baseline.
The results demonstrate that Pisces achieves semantic retrieval accuracy ranges from 75.23% to
87.47% for Top-5, and from 73.30% to 86.80% for Top-10. At the same time, lexical retrieval ac-
curacy ranges from 90.06% to 98.22 % for Top-5 and from 89.48% to 98.02% for Top-10. The
accuracy drop in the semantic retrieval path mainly stems from the information loss when approx-
imating cosine similarity with Hamming distance via SimHash. The slight degradation in lexical
retrieval accuracy is primarily due to precision loss during secure BM25 score computation.

Table 2: Semantic retrieval accuracy against the plaintext baseline.

Dataset Top-5 Top-10
Accuracy Time (s) Accuracy Time (s)

ClapNQ
Dev answerable 87.47% 3.47 86.80% 3.56
Train answerable 77.90% 4.12 76.32% 4.17
Train single answerable 84.90% 7.33 78.25% 7.88

SQuAD Dev v2.0 78.10% 3.37 75.94% 3.41
Training v2.0 75.23% 4.38 73.30% 4.46

HotpotQA Dev distractor 77.98% 18.91 77.76% 20.10
Dev fullwiki 77.84% 19.27 76.78% 20.76

Table 3: Lexical retrieval accuracy against the plaintext baseline.

Dataset Top-5 Top-10
Accuracy Time (s) Accuracy Time (s)

ClapNQ
Dev answerable 97.47% 1.40 96.53% 1.44
Train answerable 95.62% 2.07 95.13% 2.24
Train single answerable 95.64% 5.94 94.99% 6.86

SQuAD Dev v2.0 97.56% 1.39 97.32% 1.42
Training v2.0 98.22% 2.59 98.02% 2.82

HotpotQA Dev distractor 90.06% 21.46 89.48% 25.02
Dev fullwiki 90.58% 21.39 89.85% 25.61

Second, we evaluate the chunks retrieved by both Pisces and the plaintext baseline against the
dataset ground-truth. Figure 2 compares the top-5 retrieval accuracy between Pisces and the
plaintext baseline, indicating that (1) Pisces achieves retrieval accuracy comparable to the plain-
text baseline, and (2) combining semantic and lexical paths improves overall retrieval performance.
Additionally, the top-10 retrieval accuracy comparison is provided in Figure 5, with detailed accu-
racy values available in Table 8.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ClapNQ_Dev

ClapNQ_Tra
in

ClapNQ_Tra
in_sin

gle

SQuAD_Dev

SQuAD_Tra
in

Hotpot_Dev_distra
ctor

Hotpot_Dev_fullwiki
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Retrieval Path
Semantic
Lexical
Dual

Framework
Plaintext baseline (filled)
Pisces (hatched)

Figure 2: Top-5 Retrieval accuracy comparisons between Pisces and plaintext baseline over
ground-truth.

4.3 EFFICIENCY EVALUATION

We evaluate the efficiency of the two retrieval paths of Pisces, respectively.

Table 4: Efficiency comparisons with Fine-only Strategy

Dataset Fine-Only Strategy
Time (s) Upload (MB) Download (MB) Accuracy

ClapNQ
Dev answerable 1.855 26.64 36.41 99.5%
Train answerable 2.82 69.47 230.82 94.9%

Train single answerable 10.29 278.77 1195.62 91.0%

SQuAD Dev v2.0 1.714 24.06 24.147 99.5%
Train v2.0 3.66 87.97 315.18 97.4%

HotpotQA Dev distractor 34.19 1008.39 4610.26 93.9%
Dev fullwiki 33.91 1031.45 4719.76 94.1%

Dataset Coarse-to-Fine Strategy
Time (s) Upload (MB) Download (MB) Accuracy

ClapNQ
Dev answerable 3.56 23.95 23.32 86.80%
Train answerable 4.17 36.35 85.64 76.32%

Train single answerable 7.88 113.07 442.97 78.25%

SQuAD Dev v2.0 3.41 21.96 13.93 75.94%
Train v2.0 4.46 43.51 118.29 73.30%

HotpotQA Dev distractor 20.10 324.90 1439.70 77.76%
Dev fullwiki 20.76 334.88 1487.09 78.02%

For the semantic retrieval path, we evaluate the efficiency of our proposed coarse-to-fine strategy
with the fine-only strategy, i.e., without coarse matching. The results shown in Table 4 demon-
strate that for a large-scale dataset, the coarse-to-fine strategy significantly saves retrieval time
by 38.78% ∼ 41.21%, reduces the upload and download overhead by 67.53% ∼ 67.78% and
68.49% ∼ 68.77%, respectively. In contrast, when we deal with the small-scale dataset, directly
computing the cosine similarities over the full chunk set outperforms the coarse-to-fine strategy.
This is because in such scenarios, the coarse matching step, rather than the cosine similarity compu-
tation, becomes the bottleneck.
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Table 5: Efficiency comparisons with labeled PSI

Dataset Labeled PSI
Time (s) Upload (MB) Download (MB)

ClapNQ
Dev answerable 3.89 1.62 0.60
Train answerable 27.57 4.21 11.35

Train single answerable 138.89 21.22 57.77

SQuAD Dev v2.0 3.15 0.48 2.03
Train v2.0 45.89 6.99 30.05

HotpotQA Dev distractor 1051.98 161.61 382.26
Dev fullwiki 1179.58 176.89 414.16

Dataset Multi-instance Labeled PSI
Time (s) Upload (MB) Download (MB)

ClapNQ
Dev answerable 0.009 0.0003 0.58
Train answerable 0.056 0.0003 4.00

Train single answerable 0.28 0.0003 21.04

SQuAD Dev v2.0 0.008 0.0004 1.49
Train v2.0 0.099 0.0004 22.64

HotpotQA Dev distractor 2.35 0.0006 79.82
Dev fullwiki 2.59 0.0006 81.44

For the lexical retrieval path, we evaluate the efficiency of our proposed multi-instance labeled
PSI protocol ∏MulLPSI (Protocol 4) with the state-of-the-art labeled PSI protocol LSE (Yang et al.,
2024). The results shown in Table 4 demonstrate that our proposed multi-instance labeled PSI
outperforms LSE by up to 496.03×, 70733×, and 2.84× in running time, upload overhead, and
download overhead, respectively.

5 RELATED WORK

RAG with Dual-Path Retrieval. Multiple works (Kuzi et al., 2020; Gao et al., 2021; Li et al., 2022)
demonstrate that leveraging semantic and lexical retrieval together significantly improves retrieval
performance. Inspired by this, we aim to design Pisces that privately supports dual-path retrieval
to guarantee the retrieval accuracy.

RAG with Retrieval Process Protection. Recent work applies differential privacy by injecting
noise into embeddings to protect privacy during the retrieval process. Several works (Grislain,
2025; He et al., 2025) focus on protecting documents during the semantic retrieval, while Cheng
et al. (Cheng et al., 2025) propose RemoteRAG to protect the query. Yao and Li (Yao & Li, 2025)
further attempt to protect both the query and documents. However, all of these works only consider
a single retrieval path, i.e., semantic retrieval. In contrast, Pisces supports dual-path retrieval,
semantic and lexical, while protecting both the query and documents.

6 CONCLUSION

In this paper, we propose Pisces, the first practical cryptography-based RAG framework that sup-
ports dual-path retrieval while protecting both the query and documents. We design novel crypto-
graphic protocols tailored for efficient semantic and lexical retrieval: a coarse-to-fine semantic strat-
egy that employs a novel oblivious filter over Hamming distance, and an efficient multi-instance
labeled PSI protocol that obtains BM25 term frequencies in a single execution. We comprehen-
sively evaluate Pisces and find only a 1.14% deviation in retrieval accuracy relative to plaintext
baselines. On large-scale datasets, our coarse-to-fine strategy reduces runtime by 41.21% and up-
load/download overhead by 68.77% compared to a fine-only strategy. Our proposed multi-instance
labeled PSI further outperforms LSE by up to 496.03× in runtime, 70733× in upload overhead.
These results demonstrate that Pisces is both accurate and efficient.
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A APPENDIX

A.1 NOTATION

We summarize the frequently used notation in Table 6.
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Table 6: Notation Table

Symbol Description

S The server, who holds a sensitive knowledge base.
C The user, who holds a private query.
D Document set in the knowledge base.
Q Query.
N Chunk number of D.
n Unique token number of Q.
ci i-th chunk.
Ii Index of chunk ci.
vi Vector representation of chunk ci.
m Unique token number of chunk ci.
wi,l l-th token of chunk ci.
t fi,l Term frequency of wi,l in chunk ci.
Dv = {Ii; vi; ci}i∈[1,N] Embedded chunk set.
Dt =

{
Ii;{wi,l : t fi,l}l∈[1,mi];ci

}
i∈[1,N]

Tokenized chunk set.
q j j-th token of query Q.
q Vector representation of query Q.
Qt = {q1,q2, . . . ,qn} Tokenized query.

B PRELIMINARIES

B.1 CRYPTOGRAPHIC PRIMITIVES

B.1.1 SECERT SHARING

Secret sharing (Shamir, 1979; Keller, 2020)is one of the critical primitives of MPC. In this paper,
we adopt 2-out-of-2 arithmetic secret sharing technology. The main idea of it is to break a secret
value into 2 shares, each of which is held by a party. For example, S, who holds the secret value
x ∈ Fp, wants to secret share this secret value with another party C. To do this, PS first generates a
random value r ∈ Fp as its share ⟨x⟩S = r, and then sends ⟨x⟩C = x− r mod Fp to another party C.
Therefore x = ⟨x⟩S + ⟨x⟩C mod Fp, which, for simplicity, we denote as x = ⟨x⟩S + ⟨x⟩C.

B.1.2 LABELED PRIVATE SET INTERSECTION

The PSI (Jarecki & Liu, 2010) allows two parties, a server S and a client C, to learn the intersection
of their respective element sets without revealing any additional information outside the intersection.
Labeled PSI (Chen et al., 2018; Bienstock et al., 2024; Cong et al., 2021) extends the traditional PSI
by allowing the server S to associate a label with each element, and the client C learns the labels for
elements in the intersection. Formally, S inputs a set of key-value pairs {(xi, l(xi))}, where xi is an
element and l(xi) is its corresponding label, while C inputs a set of key Y . After execution, C learns
a set of pairs {(y, l(y))} for y ∈ X ∩Y .

B.1.3 OBLIVIOUS PSEUDORANDOM FUNCTION

The oblivious pseudorandom function (OPRF) (Freedman et al., 2005) is a cryptographic primitive
that enables two parties, a server S and a client C, to jointly compute a pseudorandom function
(PRF) F·(·). As shown in figure 3, S takes a PRF key k as input and learns nothing, while C takes
x as input and learns the PRF value Fk(x). Moreover, C learns nothing about the PRF key k and S
learns nothing about the input or the output of C.
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Functionality FOPRF

Parameters: Two parties S and C. A PRF F·(·).
Functionality:

• Wait for input k from S, where k is a PRF key.

• Wait for input x from C.

• Output Fk(x) to C.

Figure 3: Ideal functionality of OPRF

B.1.4 OBVIOUSLY KEY-VALUE STORE

The oblivious key-value store (OKVS) (Garimella et al., 2021) is a data structure that encodes a
set of key-value pairs into a compact representation while preserving the privacy of both keys and
values. The definition is as follows:

Definition 1 (Oblivious Key-Value Store). An OKVS parameterized by a key space K and a value
V space, and consists of two algorithms:

• Γ or ⊥← Encode((k1,v1),(k2,v2), . . . ,(kn,vn)): The encode algorithm takes n key–value
pairs {(k1,v1),(k2,v2), . . . ,(kn,vn)} ⊂ {K×V}n as input, and outputs a structure Γ (or an
error terminator ⊥ with negligible probability).

• v← Decode(Γ,k): The decode algorithm takes an OKVS structure Γ and a key k ∈ K as
input, and outputs the corresponding value v ∈ V .

Correctness: An OKVS is correct if, for all X ⊂ K×V with distinct keys such that Encode(X) =
Γ ̸=⊥ and (k,v) ∈ X , it holds that Decode(Γ,k) = v;

Computationally Obliviousness: An OKVS is computationally oblivious if, for any two
key sets with n distinct keys K = {k1,k2, . . . ,kn} ⊂ K and K′ = {k′1,k′2, . . . ,k′n} ⊂ K and
a uniformly random value set V = {v1,v2, . . . ,vn} ⊂ V , a probabilistic polynomial-time ad-
versary is not able to distinguish between Encode((k1,v1),(k2,v2), . . . ,(kn,vn)) = Γ ̸= ⊥ and
Encode((k′1,v1),(k′2,v2), . . . ,(k′n,vn)) = Γ′ ̸=⊥.

This computationally obliviousness property ensures that the OKVS reveals no information about
the encoded keys or values beyond the decoded results for given keys.

B.1.5 BATCH PRIVATE INFORMATION RETRIEVAL-TO-SHARE

The batch private information retrieval-to-share (PIR-to-share) (Song et al., 2025) is a cryptographic
primitive that enables a client C to privately retrieve the values corresponding to its queries from the
server S. After that, S and C obtain the secret shares of queried values, respectively. As shown in
figure 4, S takes its data D of size N as input, while C takes its queries I = {I1, I2, . . . , Ib} (index
set) as input. S learns data shares ⟨D[I1]⟩S,⟨D[I2]⟩S, . . . ,⟨D[Ib]⟩S corresponding to C’s queries and C
learns data shares ⟨D[I1]⟩C,⟨D[I2]⟩C, . . . ,⟨D[Ib]⟩C. During this process, S learns nothing about C’s
queries, and C only learns the secret shares of the retrieved values rather than the raw data of S .

B.2 SEMANTIC SIMILARITY

Semantic similarity (Awasthy et al., 2025; Zhang et al., 2025) is a measure of the degree to which
the meanings of two linguistic units, such as words, phrases, sentences, or documents, are alike,
based on their semantic content rather than lexical matching. It plays a fundamental role in many
natural language processing tasks, including information retrieval and text summarization. Contem-
porary methods operationalize meaning via vector representations. Similarity is then measured with
distance functions in embedding space, such as cosine similarity, Hamming distance, and Euclidean
distance. In this paper, we choose cosine similarity as our similarity metric.
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Functionality FPIR2Share

Parameters: Two parties S and C.
Functionality:

• Wait for input D from S.
• Wait for input I = {I1, I2, . . . , Ib} from C.
• Sample ⟨D[I1]⟩S,⟨D[I2]⟩S, . . . ,⟨D[Ib]⟩S and ⟨D[I1]⟩C,⟨D[I2]⟩C, . . . ,⟨D[Ib]⟩C uniformly, such that
⟨D[I1]⟩S + ⟨D[I1]⟩C = ⟨D[I1]⟩, . . . ,⟨D[Ib]⟩S + ⟨D[Ib]⟩C = ⟨D[Ib]⟩.

• Output the shares ⟨D[I1]⟩S,⟨D[I2]⟩S, . . . ,⟨D[Ib]⟩S to PS and ⟨D[I1]⟩C,⟨D[I2]⟩C, . . . ,⟨D[Ib]⟩C to
PC.

Figure 4: Ideal functionality of FPIR2Share

B.3 BEST MATCHING 25

A popular algorithm to achieve lexical retrieval is BM25 (Robertson et al., 2009; Lù, 2024), which
is a probabilistic information retrieval algorithm widely used to rank documents according to their
relevance to a given query. It is an enhancement to the traditional term frequency-inverse document
frequency (TF-IDF) algorithm, which measures the importance of a term within a set of documents.
BM25 takes document length into account and introduces a saturation function to term frequencies,
which helps prevent common terms from dominating the results to improve the ranking accuracy.

Given a document set D = {d1,d2, . . . ,dN} and a query Q = {q1,q2, . . . ,qn}, where di denotes the
i-th document in D, N is the total number of documents in D, q j is the j-th term in Q, n is the total
number of terms in Q, the BM25 relevance score for document di relative to this query is defined as:

Score(Q,di) =
n

∑
j=1

IDF(q j) ·R(q j,di)

=
n

∑
j=1

log
(

1+
N−d f j +0.5

d f j +0.5

)
·

t fi, j

t fi, j + k1 ·
(

1−b+b · Ldi
Lave

) (1)

where IDF(q j) is the inverse document frequency of q j and R(q j,d) is the relevance score for the
document di relative to the term q j. Besides, d f j is the document frequency for term q j, i.e. the
number of documents in the document set D in which q j appears, t fi, j is the term frequency of q j in
the document di, Ldi is the length of the document di, Lave is the average length of the document set
D, k1 > 0 and 0 < b < 1 are constant values, k1 controls the saturation of the term frequency and b
adjusts the impact of normalization of document length.

B.4 OBLIVIOUS FILTER

The core idea of the oblivious filter is to convert an approximate (fuzzy) matching problem into an
exact matching task. In our protocol, both the knowledge base and the user should select the same
projections to mask their binary vector(s). A chunk is considered a candidate match if its projected
binary vectors match the query’s projected binary vectors on at least two projections. This approach
allows the knowledge base to identify a candidate set of chunks that are likely to match the query.

To achieve the threshold matching requirement cryptographically, we employ a 2-out-of-T Shamir
secret sharing scheme. The client can only reconstruct a secret value if it obtains at least two shares
for a chunk. Furthermore, the prevent the client to learn which specific chunks were matched, the
knowledge base encrypts all shares with additive homomorphic encryption. As a result, the client
would reconstruct the secret over the cipher space, which ensures the client could not learn any
information throughout the oblivious filter.
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Protocol 3: ∏Oblivious Filter

Input: S inputs the set Dv =
{
(Ii,vb

i ,ci)
}

i∈[1,N]
, where for each i ∈ [1,N]: Ii is an index,

vb
i ∈ {0,1}L is a binary vector, and ci is a chunk. C inputs binary vector qb ∈ {0,1}L.

Output: S learns a set D′ =
{
(I′i ,vb

i
′
,c′i)

}
i∈[1,N]

, where for all i ∈ [1,N′]: HD(vb
i
′
,qb) ≤ t

(i.e., Hamming distance at most t).
Setup Phase:

1: S generates a random keypair (pk,sk) for an additive homomorphic encryption scheme.
2: S sets ℓ ← ⌈

√
t ·L⌉ (projection weight) and T ← 160 (number of projections). S

randomly selects T projection masks {mi ∈ {0,1}L}i∈[1,T ] such that ∥mi∥ = ℓ for all
i ∈ [1,T ].

3: S selects 2N random numbers: {xi}i∈[1,N] and {si}i∈[1,N], and initializes an empty col-
lection C.

4: S selects a random linear polynomial Pi(x) = ax+ si (with random coefficient a) for
i ∈ [1,N].

5: S computes ciphertext vi, j ← Enc(pk,Pi(x j)) and key ki, j ← Hash(vb
i ∧m j) for i ∈

[1,N], j ∈ [1,T ].
6: S inserts the pair (ki, j,vi, j) into C.
7: S invokes OKVS.Encode(C) to obtain the OKVS structure Γ.

Interactive Phase:
1: C requests and receives from S: the public key pk, projection masks {mi}i∈[1,T ], OKVS

structure Γ, and random numbers {xi}i∈[1,T ].
2: C computes for each j = 1 to T : t j← Hash(qb∧m j)
3: C invokes OKVS.Decode(Γ,{t j}i∈[1,T ]) to obtain values {di}i∈[1,T ]

4: C computes a candidate secret ciphertext: si, j ← d j − x j ·
di−d j
xi−x j

for each combination

(i, j) from the
(T

2

)
possible pairs of indices from [1,T ].

5: C shuffles all computed ciphertexts {si, j} to form the set S and sends S to S.
6: S receives S, decrypts each element: P←{Dec(sk,s) | s ∈ S}.
7: For each si (from the original setup) that appears in P, S adds the corresponding item

(Ii,vb
i ,ci) to the result set D′.

8: S returns D′ as the final result.

B.5 MULTI-INSTANCE LABELED PRIVATE SET INTERSECTION

We design a customized Multi-Instance Labeled PSI protocol to support repeated invocations of
labeled PSI with the same small client query set. Our protocol features two key innovations. First,
the setup phase only involves the knowledge base and produces a reusable OKVS structure Γ. It can
be efficiently reused across multiple queries without recomputation. Second, the interactive phase
minimizes computational overhead. It only requires a single, small-scale OPRF execution per query,
independent of the server’s data size. These optimizations significantly reduce both communication
and computation costs compared to conventional labeled PSI protocols.

B.6 DETAILED DATASET

B.7 SUPPLEMENTARY ACCURACY EXPERIMENTAL RESULTS

The top-10 retrieval accuracy comparison is shown in Figure 5, and the detailed accuracy values are
available in Table 8.
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Table 7: Details of datasets we evaluated in this paper. “Documents” denotes the number of docu-
ments in the dataset, and “Chunks” denotes the number of chunks generated from breaking down all
the documents in the dataset.

Dataset Documents Chunks

ClapNQ
Dev answerable 290 1990
Train answerable 1751 14010
Train single answerable 8996 71363

SQuAD Dev v2.0 35 1204
Training v2.0 442 19029

HotpotQA
Dev distractor 66581 269602
Dev fullwiki 66573 276013

Table 8: Retrieval accuracy comparisons between Pisces and plaintext baseline over ground-truth.

Dataset Framework Top-5
Semantic Lexical Dual-Path

ClapNQ

Dev answerable Plaintext 34.82% 47.42% 58.82%
Pisces 30.14% 47.15% 58.05%

Train answerable Plaintext 19.39% 36.78% 44.97%
Pisces 19.22% 36.72% 44.41%

Train single answerable Plaintext 18.62% 39.82% 48.55%
Pisces 23.44% 40.12% 49.39%

SQuAD
Dev v2.0 Plaintext 33.30% 91.90% 93.30%

Pisces 25.20% 91.60% 93.30%

Training v2.0 Plaintext 25.80% 81.10% 84.70%
Pisces 17.40% 80.90% 84.10%

HotpotQA
Dev distractor Plaintext 5.48% 43.62% 45.86%

Pisces 6.57% 43.60% 46.08%

Dev fullwiki Plaintext 3.36% 34.86% 36.22%
Pisces 4.36% 34.80% 36.00%

Dataset Framework Top-10
Semantic Lexical Dual-Path

ClapNQ

Dev answerable Plaintext 40.63% 54.84% 67.13%
Pisces 36.56% 54.35% 65.43%

Train answerable Plaintext 22.89% 42.95% 51.22%
Pisces 21.95% 43.16% 50.75%

Train single answerable Plaintext 21.24% 46.83% 54.78%
Pisces 27.63% 46.92% 54.78%

SQuAD
Dev v2.0 Plaintext 40.10% 94.60% 95.70%

Pisces 31.80% 94.40% 95.50%

Training v2.0 Plaintext 34.00% 85.10% 89.00%
Pisces 22.10% 85.00% 88.40%

HotpotQA
Dev distractor Plaintext 6.23% 51.91% 53.96%

Pisces 7.77% 52.48% 54.69%

Dev fullwiki Plaintext 3.92% 40.18% 41.35%
Pisces 5.16% 40.17% 41.40%
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Protocol 4: ∏MulLPSI

Input: S inputs set Dt = {wi,l : t fi,l}i∈[1,N],l∈[1,mi]. C inputs set Qt = {q1,q2, . . . ,qn}.
Output: C learns {t f ′i, j}i∈[1,N]], j∈[1,n], where if q j = wi,l then t f ′i, j = t fi,l , and otherwise

t f ′i, j = 0.
Setup Phase:

1: S selects a random PRF key k and two key derivation functions KDF0 and KDF1.
2: S initializes an empty set S.
3: S computes ri,l ← PRF(k,wi,l), ki,l ← KDF0(i,ri,l), mi,l ← KDF1(i,ri,l) and ci,l ←

AES.Enc(mi,l ,0ℓ ∥ t fi,l) for i ∈ [1,N], l ∈ [1,mi].
4: S inserts the key-value pair (ki,l ,ci,l) into S for i ∈ [1,N], l ∈ [1,mi].
5: S invokes OKVS.Encode(S) to obtain the OKVS structure Γ.

Interactive Phase:
1: C requests and receives from S: the OKVS structure Γ and key derivation functions

KDF0, KDF1.
2: C and S invoke an OPRF protocol with Qt = {q1,q2, . . . ,qn} and PRF key k as inputs,

respectively. After execution, C obtains the PRF results D= {d1,d2, . . . ,dn}.
3: C initializes Ki = /0 and Mi = /0 for i ∈ [1,N].
4: C computes ki, j← KDF0(i,d j) and mi, j← KDF1(i,d j) for i ∈ [1,N], j ∈ [1,n].
5: C adds ki, j to Ki and mi, j to Mi for i ∈ [1,N], j ∈ [1,n].
6: C invokes OKVS.Decode(Γ,Ki) to obtain ciphers {ci, j}i∈[1,N], j∈[1,n].
7: C computes pi, j← AES.Dec(mi, j,ci, j) for i ∈ [1,N], j ∈ [1,n].
8: If pi, j starts with 0ℓ (where ℓ is a security parameter), C parses pi, j as 0ℓ ∥ vi, j and set

t f ′i, j← vi, j. Otherwise, set t f ′i, j← 0.
9: C returns {t f ′i, j}i∈[1,N], j∈[1,n] as the result.
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Figure 5: Top-10 Retrieval accuracy comparisons between Pisces and plaintext baseline over
ground-truth.
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