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Abstract

Question answering in low-resource languages
poses challenges for Large Language Models
due to limited training data and knowledge re-
sources. We propose Knowledge-Enhanced
Reinforcement Learning for Question Answer-
ing (KERLQA), a novel approach integrating
external knowledge with reinforcement learn-
ing to optimize model behavior. KERLQA
employs a graph neural network for joint rea-
soning over question context and knowledge
sources, while introducing an abstention mech-
anism to address the heightened risk of halluci-
nation in low-resource settings. This mech-
anism allows the model to refrain from an-
swering when uncertain, which is particularly
important for low-resource languages where
knowledge gaps are more prevalent. We evalu-
ate KERLQA on CommonsenseQA and Open-
BookQA across English and four low-resource
South African languages: isiZulu, isiXhosa, Se-
pedi, and SeSotho. Results show KERLQA out-
performs baselines and state-of-the-art systems,
with notable improvements in low-resource set-
tings. Our error analysis reveals distinct pat-
terns of knowledge gaps, reasoning failures,
and abstention errors across languages, with
higher abstention rates in low-resource lan-
guages confirming the model’s ability to recog-
nize and mitigate knowledge gaps.

1 Introduction

Question answering in low-resource languages
presents unique challenges for language models, in-
cluding limited training data, scarce knowledge re-
sources, and complex cross-lingual transfer issues
(Samuel et al., 2023; Chen et al., 2023). These chal-
lenges are particularly prevalent for languages with
distinct linguistic structures and cultural contexts
that differ from high-resource languages like En-
glish (Ogundepo et al., 2022). A question answer-
ing model that abstains when it does not have the
necessary knowledge to answer a question would
be preferable, in particular in low-resource settings
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Figure 1: KERLQA architecture. The model pro-
cesses inputs through both language model encoding
and knowledge retrieval for graph construction, inte-
grated through a graph neural network architecture. Re-
inforcement learning is used to adapt the decision mak-
ing behaviour.

where the proportion of such questions will likely
be higher.

In this paper, we propose Knowledge-Enhanced
Reinforcement Learning for Question Answering
(KERLQA), a novel approach enabling language
models to effectively utilize both internal and ex-
ternal knowledge sources while learning when to
abstain from answering. KERLQA integrates ex-
ternal knowledge from sources such as ConceptNet
(Speer et al., 2016) and DBpedia (Mendes et al.,
2012) with reinforcement learning techniques to
optimize model behavior. Our approach employs
a graph neural network architecture for joint rea-
soning over question context and relevant knowl-
edge sources based on QA-GNN (Yasunaga et al.,
2021). We then employ Reinforcement Learning
(RL) techniques to optimize decision-making be-
haviour, implementing both Proximal Policy Op-
timization (PPO) and Direct Preference Optimiza-
tion (DPO) to learn a policy that not only selects
an answer from a candidate set but also decides
when to abstain. Joint knowledge enhancement
and reinforcement learning enable the model to
learn when to rely on its own knowledge, when to



seek external information, and when to abstain due
to uncertainty. Figure 1 provides an overview of
the KERLQA architecture.

We demonstrate KERLQA'’s effectiveness on
English and four low-resource South African lan-
guages: isiZulu, isiXhosa, Sepedi, and SeSotho,
fine-tuning the multilingual mT5 language model.
Our experimental results show that KERLQA im-
proves question answering performance compared
to baselines. Furthermore, our model exhibits the
ability to make informed decisions about knowl-
edge utilization and abstention, leading to more
reliable and accurate responses.

To gain deeper insights into KERLQA'’s perfor-
mance, we conduct a comprehensive error analysis
across languages and datasets. This analysis reveals
distinct patterns of knowledge gaps, reasoning fail-
ures, and abstention errors, highlighting the unique
challenges posed by different linguistic contexts
and question types. Our error analysis revealed
that knowledge gaps were 30-40% more prevalent
in low-resource languages compared to English,
while reasoning failures decreased by 15-25% as
we moved from high to low-resource languages.

Our main contributions are: (1) We intro-
duce KERLQA, a novel approach that combines
knowledge-enhanced QA with reinforcement learn-
ing to address the challenges of low-resource lan-
guages; (2) We demonstrate KERLQA'’s effective-
ness across five languages and two datasets, show-
ing significant improvements over existing meth-
ods; (3) We provide a detailed error analysis that
offers insights into the specific challenges of QA
in low-resource settings, paving the way for future
research directions.

2 Related Work

Our work intersects with several key areas in nat-
ural language processing and machine learning.
We review relevant literature in two main cate-
gories: (1) Knowledge-Enhanced Question An-
swering, which focuses on integrating external
knowledge sources to improve QA performance,
and (2) Reinforcement Learning for NLP Tasks,
which explores the application of RL techniques to
language tasks, particularly in QA contexts.

2.1 Knowledge-Enhanced Question
Answering

Recent advancements in question answering have
focused on augmenting language models with ex-

ternal knowledge sources. Yasunaga et al. (2021)
introduced QA-GNN, which uses graph neural net-
works to reason over knowledge graphs for QA
tasks. Building on this, Zhang et al. (2022)) pro-
posed GreaseLM, which enhances language mod-
els with graph-based reasoning. Our work differs
from these approaches by integrating reinforcement
learning with knowledge graph reasoning, allowing
for more adaptive use of external knowledge.

Wang et al. (2022) introduced GSC (Graph-
based Semi-parametric Contextualizer) for QA,
while Park et al. (2023) proposed QAT (Question
Answering Transformer) which uses meta-path to-
kens for knowledge integration. Ye et al. (2023)
proposed FiTs (Fine-grained Two-stage training),
a framework designed to address the challenges of
fusing representations from pre-trained language
models and knowledge graphs in knowledge-aware
question answering. Jiang et al. (2022) conducted
a deep empirical analysis of knowledge-enhanced
commonsense reasoning. Their work revealed that
relation features from commonsense knowledge
graphs are the primary contributors to improving
the reasoning capacity of pre-trained language mod-
els, rather than node features.

While these methods have shown promising re-
sults, they face challenges in fully utilizing external
knowledge graphs and addressing the modality gap
between text and KGs. Our work builds upon these
insights in several ways. While we draw inspiration
from these works, our approach uniquely combines
these ideas with reinforcement learning. KERLQA
employs a dynamic, reinforcement learning-based
method to determine how and when to utilize re-
lational knowledge. This is particularly important
in low-resource language settings, where the rele-
vance and reliability of knowledge graph relations
may vary.

2.2 Reinforcement Learning in NLP

Reinforcement Learning (RL) has been increas-
ingly applied to question answering tasks with large
language models. Recent work has focused on
Reinforcement Learning from Human Feedback
(RLHF) to align model outputs with human pref-
erences (Ouyang et al., 2022). RLHF combines
traditional RL techniques with human preferences
to guide model behavior, allowing for more nu-
anced and context-aware responses in language
tasks. Two key developments in this area are the
use of Proximal Policy Optimization (PPO) and
Direct Preference Optimization (DPO).



PPO (Schulman et al., 2017) is a policy gradi-
ent method that has gained popularity in RL for
NLP tasks due to its stability and effectiveness. It
optimizes a surrogate objective function that pre-
vents large policy updates, which can lead to perfor-
mance collapse (Schulman et al., 2017). In the con-
text of instruction following, which includes ques-
tion answering tasks, PPO has been used to train
language models to generate more accurate and
relevant responses. It allows for fine-tuning model
behavior based on specified reward functions, such
as answer correctness or relevance (Ouyang et al.,
2022). DPO (Rafailov et al., 2023) is a more recent
development in RL for language models, designed
to align model outputs with human preferences.
Unlike traditional RL methods that require explicit
reward modeling, DPO learns directly from pair-
wise preference comparisons. In QA tasks, DPO
can be used to fine-tune models to generate an-
swers that are not only correct but also preferred
by humans in terms of clarity, conciseness, or other
desirable attributes (Rafailov et al., 2023).

Our work extends these RL approaches to the
domain of knowledge-enhanced QA, particularly
for low-resource languages. We integrate PPO and
DPO with knowledge graph utilization strategies,
enabling models to learn when to rely on exter-
nal knowledge, when to abstain from answering,
and how to optimize its responses based on both
correctness and human-like preferences.

In the context of abstention, Yang et al. (2023)
constructed an honesty alignment dataset by replac-
ing incorrect or uncertain responses with “I don’t
know” and fine-tuning on this data. Cheng et al.
(2024) and Brahman et al. (2024) employed Direct
Preference Optimization to encourage models to
answer questions they know and refuse those they
don’t. Liang et al. (2024) used Proximal Policy Op-
timization with a reward model trained on halluci-
nation scores to determine knowledge boundaries.

Our work builds upon these approaches but
makes a distinct contribution by focusing specifi-
cally on learning when to abstain from answering.
Unlike previous methods that primarily aim to im-
prove overall QA performance or align with general
human preferences, our approach explicitly trains
the model to recognize its own knowledge limita-
tions and uncertainties across various languages
and contexts. This is particularly important in low-
resource settings where the risk of hallucination is
higher due to limited training data and knowledge
resources.

3 KERLQA

3.1 Problem Formulation

Given a question g and a set of candidate answers
A = {a1,...,ay}, our goal is to learn a policy
mg(als) that either selects an answer from A or
opts to abstain, which is encoded through adding an
additional answer option. The state s is defined as
a combination of the textual representation (from
the language encoder) and the knowledge graph
context. We model this task as a Markov Decision
Process (MDP) with:

* State Space S: The concatenation of the ques-
tion encoding, candidate answer encodings,
and the current knowledge graph state.

e Action Space A: The extended set A’ = AU
{“I don’t know”’}.

* Reward Function r(s,a): A composite re-
ward that considers answer correctness, the ap-
propriateness of abstaining, and the efficiency
of external knowledge utilization.

* Transition Function: Deterministic, as each
question is processed independently.

3.2 Model Architecture

The question g and answer candidates {a1, ..., a,}
are encoded into dense vectors with a multilingual
language model such as mT5:

hq = mTSenc(Q)> hai = mTSenC(ai)- (D

To enable knowledge enhancement we retrieve
knowledge triples with subjects or objects match-
ing question entities or answer candidates from
an external knowledge base. We construct a het-
erogeneous graph Gy = (Viy, Eyw ) similar to
QA-GNN (Yasunaga et al., 2021):

Viv = Viext U Vi(nowledge U {Z }a (2)

where text nodes Viex represent question and an-
swer candidate embeddings, knowledge nodes
Vknowledge are constructed from the extracted knowl-
edge triples (and also encoded with mT5), and the
context node z aggregates global interactions be-
tween questions and answers. Edges are added
based on the knowledge triples and between nodes
representing the same entity. Additional edges are
added between nodes representing the same entity
to reinforce entity consistency.

Information is propagated in the Graph Neural
Network (GNN) via standard message passing:

BHD — GNN(hS,l), Y u e J\/(v)>7 3)



where N (v) denotes the neighbors of node v.

The final policy is obtained by fusing represen-
tations from the language encoder, the graph neural
network, and the knowledge aggregation module:

mo(als) = softmax (MLP([hq; ha; z])). @)

During training, we first perform supervised
fine-tuning on mT5 only using QA pairs. Then
QA-GNN is trained, using the GNN to encode the
extracted knowledge base information.

3.3 Reinforcement Learning Framework

We apply two RL strategies to optimize the answer-
selection policy, each providing a different perspec-
tive on handling abstentions.

Proximal Policy Optimization (PPO) After ini-
tial supervised fine-tuning on QA pairs, we apply
PPO to further refine 7y (a|s). PPO maximizes the
following clipped objective:

Lppo(0) = E[min(r:(0) A¢, clip(r:(0),1 — e, 1 + e)At%]S,)
where 74(#) is the ratio of the new to old policy
probabilities, A; is the advantage estimate com-
puted using temporal-difference methods, and ¢ is
a clipping parameter (set via grid search on valida-
tion data).

Our reward function balances correct answer-
ing, appropriate abstention, and efficient use of
external knowledge:

r = « - ¥[correct]
+ f31 - ¥[abstain on unanswerable]
— B2 - ¥

+m K

— 2 - W

abstain on answerable] (6)

[used KG appropriately]

[used KG unnecessarily],

where J[condition] is an indicator function that
equals 1 when the condition is true and O other-
wise. The parameters «, 81, B2, 71, and 7o are
tunable hyperparameters that control the relative
importance of each reward component. The intu-
ition behind our reward structure is to encourage
the model to answer correctly when it can; abstain
when the question is truly unanswerable; use exter-
nal knowledge when necessary; and avoid unnec-
essary abstention or knowledge use. In scenarios
where the KG is not used (because the question is
answerable solely from internal knowledge), the
reward function naturally guides the model away
from unnecessary KG retrieval.

Direct Preference Optimization (DPO) For
DPO, the reward model ry(x, y) is learned implic-
itly through preference pairs, thereby avoiding the
need for explicit reward engineering. For each
question where the baseline mT5 answered cor-
rectly, the correct answer is marked as the “chosen”
action and the others as “rejected.” For questions
where the baseline failed, the abstention action (i.e.,
“I don’t know”) is marked as “chosen.” Although
the DPO formulation does not explicitly incorpo-
rate a term for KG usage, the preference pairs are
derived from baseline performance that includes
KG integration. Consequently, if incorporating KG
information improves performance, the resulting
preference pairs will indirectly favour actions that
use the KG appropriately. Conversely, if KG usage
is unnecessary, the model will learn to minimize its
use.
The DPO objective is then:

Lpro(8) = —E[log(a(re(z,y) — re(z,4')))], )

where y is the chosen answer and ¢/’ is a rejected
option.

4 Experiment Results and Analysis

4.1 Experimental Setup

We evaluate KERLQA on CommonsenseQA (Tal-
mor et al., 2019) and OpenBookQA (Mihaylov
et al., 2018) datasets. For isiZulu and Sepedi, we
use manually translated test sets obtained from
Ralethe and Buys (2025). For broader coverage, we
also used machine translation to obtain translations
in isiXhosa and SeSotho, utilizing Tencent’s Multi-
lingual Machine Translation System for WMT22
Large-Scale African Language Translation (Jiao
et al., 2022). To assess the impact of using auto-
matic translations we also evaluate our QA models
using machine translations into Sepedi and isiZulu,
using SeamlessM4T (Barrault et al., 2023) for the
latter. Results from these experiments are given in
Appendix C, showing a small drop in accuracy but
similar trends overall.

We utilize ConceptNet (Speer et al., 2016) as
our primary knowledge source. For the four South
African languages (isiZulu, isiXhosa, Sepedi, and
SeSotho), we incorporate projected knowledge
bases derived using LeNS-Align (Ralethe and Buys,
2025). LeNS-Align projects English ConceptNet
triples into these target languages through a com-
bined process of lexical alignment, named-entity
recognition, and semantic alignment. This ap-



English isiZulu isiXhosa Sepedi SeSotho
Method Ace.T ARJ | Ace.T AR | Ace.T ARJ] | Ace.T ARJ | Ace.T AR
mT5 67.11 - 57.10 - 55.76 - 56.15 - 55.12 -
mT5+QA-GNN 70.32 - 61.87 - 58.52 - 60.02 - 57.94 -
RLQA (PPO) 69.21 2052 | 58.10 28.62 | 56.51 30.61 | 57.82 2933 | 56.19 31.77
RLQA (DPO) 69.36  19.14 | 59.34 2636 | 57.02 28.36 | 5830 2941 | 5725 3241
KERLQA (PPO) | 7733 1435 | 63.67 2581 | 59.33 27.14 | 62.13 27.31 | 59.12 29.17
KERLQA (DPO) | 76.61 14.11 | 63.21 26.88 | 59.11 30.23 | 62.11 28.58 | 58.19 29.87

Table 1: Test Accuracy (Acc.) and Abstention Rate (AR) results on CommonsenseQA for different methods across
languages. Accuracy is calculated over all questions, including abstentions.

proach yields approximately 670k triples per lan-
guage, with human evaluations indicating an accu-
racy exceeding 85% (Ralethe and Buys, 2025).

The base language model is mT5-large (Xue
et al., 2021). We use the adapted QA-GNN ar-
chitecture with 3 message-passing layers. PPO
and DPO are implemented using HuggingFace’s
PPOTrainer and DPOTrainer (Huang et al., 2023).
Hyperparameter tuning details are given in Ap-
pendix B.

Additionally, we also train models for En-
glish based on RoBERTa-Large (Liu et al., 2019)
to enable comparison to other recent knowledge-
enhanced QA approaches. We train QA baselines
based on mT5 only and QA-GNN without RL train-
ing, and also compare to performing RL training
but without knowledge enhancement (RLQA).

4.2 Evaluation Metrics

We evaluate our models using the following met-
rics:
* Accuracy: The fraction of total questions
answered correctly, where abstentions are
treated as incorrect:

Correct Answers
Accuracy =

Total Questions

¢ Precision: The fraction of correctly answered
questions among the attempted questions (i.e.,
excluding abstentions):

. Correct Answers
Precision =

Attempted Questions

* Abstention Rate (AR): The fraction of ques-
tions where the model opts to abstain:

AR — 1 — Attempted Questions'

Total Questions

4.3 Results

Results on CommonsenseQA (Table 1) show that
QA accuracy is highest on English, while isiZulu

has the highest accuracy among the low-resource
languages. KERLQA (with PPO and DPO) shows
substantial improvements over the mT5 baseline
for all languages. Notably, abstention rates are
generally higher for low-resource languages, indi-
cating increased model uncertainty in these con-
texts. OpenBookQA results (Table 2) exhibit simi-
lar trends: Abstention rates are generally slightly
lower than on CommonsenseQA, suggesting mod-
els find this dataset somewhat easier to navigate.
The performance improvement from mT5 to
mT5+QA-GNN confirms that the QA-GNN mod-
els are able to effectively leverage external knowl-
edge to mitigate gaps in the training data and the
pretrained model’s knowledge. On low-resource
languages this is the case even though the knowl-
edge graphs were automatically projected from En-
glish and therefore contain some noise. By con-
necting questions to language-agnostic concepts,
the model may also better leverage understanding
gained from high-resource language pretraining,
boosting its performance in low-resource settings.
The results also show that reinforcement learn-
ing leads to improved accuracy over approaches
without RL, both in settings with knowledge en-
hancement (KERLQA over mT5+QA-GNN) and
without knowledge enhancement (RLQA over
mT5), despite abstention being an additional op-
tion. KERLQA achieves the best overall perfor-
mance. The effectiveness of these RL techniques
can be attributed to their ability to adaptively ad-
just confidence thresholds, balance exploration and
exploitation, and optimize based on reward sig-
nals that align with desired outcomes. Comparing
PPO and DPO, we observe that PPO slightly out-
performs DPO in terms of accuracy across most
scenarios. However, DPO often achieves lower
abstention rates, particularly for low-resource lan-
guages. This pattern suggests that PPO’s approach
to policy optimization may be more adept at han-
dling the complexities inherent in multilingual QA



English isiZulu isiXhosa Sepedi SeSotho
Method Ace.T ARJ | Ace.T AR | Ace.T ARJ] | Ace.T ARJ | Ace.T AR
mT5 78.23 - 57.83 - 56.87 - 57.32 - 56.32 -
mT5+QA-GNN 83.48 - 63.42 - 61.13 - 61.33 - 58.76 -
RLQA (PPO) 79.33 1632 | 5825 2995 | 57.12 3286 | 5722 3191 | 56.12 32.78
RLQA (DPO) 79.85 1833 | 59.74 29.04 | 5645 29.86 | 5693 2935 | 56.35 2993
KERLQA (PPO) | 86.42 10.12 | 6432 2454 | 61.11 27.10 | 63.52 26.69 | 60.05 28.72
KERLQA (DPO) | 84.79 1136 | 64.81 26.14 | 60.24 29.54 | 62.85 28.33 | 59.95 29.94

Table 2: Test Accuracy (Acc.) and Abstention Rate (AR) results on OpenBookQA for different methods across
languages. Accuracy is calculated over all questions, including abstentions.

CSQA OBQA
Method ‘ Prec. Acc. | Prec. Acc.
QAT (Park et al., 2023) 75.4 75.4 86.9 86.9
FIT (Ye et al., 2023) 75.6 75.6 86.0 86.0
GRT (Zhao et al., 2024) | 76.1 76.1 87.3 87.3
KERLQA (PPO) ours | 782 766 | 88.6 87.0

Table 3: Performance Comparison between KERLQA
(PPO) with KG-augmented QA systems on Common-
senseQA (CSQA) and OpenbookQA (OBQA), using
RoBERTa-Large (Liu et al., 2019). Precision excludes
abstained questions while accuracy includes them.

tasks, while DPO shows promise in managing un-
certainty in low-resource contexts.

The performance gap between KERLQA and
other methods is particularly notable in English,
especially for OpenBookQA. This could be due
to KERLQA’s enhanced ability to leverage the
richer knowledge resources available in English.
The smaller performance gains in low-resource lan-
guages suggest that while KERLQA improves per-
formance, it remains constrained by limited knowl-
edge resources in these languages.

Table 3 compares our approach to other re-
cent QA models using knowledge enhancement,
evaluated on the English datasets only and using
RoBERTa-Large (Liu et al., 2019) as the backbone
model instead of mT5. The results demonstrate
that KERLQA achieves higher precision than pre-
vious approaches while maintaining competitive
accuracy. This indicates that while KERLQA may
abstain from answering some questions, it exhibits
higher confidence and accuracy on the questions it
chooses to answer.

4.4 Abstention Behaviour Analysis

Analysis of abstention patterns reveals that KER-
LQA primarily abstains on questions in three key
scenarios: when the required knowledge is not
present in the external knowledge bases, when
multiple answer options appear plausible given the

available information, and when the question in-
tent is ambiguous or requires complex reasoning.
These scenarios reflect situations where the model
recognizes its limitations or uncertainty in provid-
ing accurate responses.

While the introduction of abstention creates an
apparent asymmetry in evaluation, our dual-metric
approach provides a comprehensive and fair assess-
ment. The precision metric allows us to evaluate
KERLQA'’s decision-making capability in compa-
rable terms to previous approaches, while accuracy
provides a conservative estimate of overall perfor-
mance.

The higher precision demonstrates that KER-
LQA’s abstention mechanism successfully identi-
fies cases where the model lacks sufficient con-
fidence or knowledge to provide a reliable an-
swer. This capability is particularly valuable in
real-world applications where incorrect answers
may be more costly than abstentions.

KERLQA demonstrates lower abstention rates
compared to RLQA across all languages, suggest-
ing that knowledge enhancement can effectively
enhance model confidence while increasing accu-
racy at the same time, leading to more robust and
reliable QA systems. The higher abstention rates
in low-resource languages compared to English
demonstrate the impact of data scarcity on model
behavior. DPO tends to results in higher abstention
rates that PPO, particularly in low-resource lan-
guages, suggesting that the choice of RL algorithm
can influence a model’s abstention strategy. The
results demonstrates KERLQA'’s improved ability
to align confidence (lower abstention) with actual
performance (higher accuracy). Furthermore, KER-
LQA exhibits an enhanced capability in distinguish-
ing between questions it can answer correctly and
those it should avoid, contributing to its overall
performance across languages and datasets.



English isiZulu isiXhosa Sepedi SeSotho
Error Type OB CS OB CS OB CS OB CS OB CS
Knowledge Gap 18% 22% 27% 30% 29% 32% 28% 31% 30% 34%
Reasoning Failures 25% 21% 23% 20% 21% 19% 22% 19% 20% 18%
Abstention Errors 10% 8% 15% 18% 17% 20% 16% 20% 18% 21%

Table 4: Error Distribution Across Languages and Datasets. OB: OpenBookQA, CS: CommonsenseQA. Percentages
represent the proportion of errors within each category and do not sum to 100% as they are calculated relative to the

total number of questions, not just erroneous responses.

4.5 Performance on Filtered Datasets

As an additional experiment to assess KERLQA'’s
ability to leverage external knowledge bases, we
created filtered versions of both QA datasets, in-
cluding only questions where the entities men-
tioned in the questions and answers occur in our
knowledge bases. This approach simulates scenar-
ios where the model’s knowledge aligns closely
with the task requirements. On these filtered sets,
KERLQA demonstrated higher accuracy and lower
abstention rates compared to the full datasets. On
the filtered English CommonsenseQA, KERLQA
(PPO) achieved an accuracy of 79.84% (an increase
of 2% from the full dataset) with an abstention
rate of 11.74% (a decrease of 1.42% from the full
dataset). Similar improvements were observed for
OpenBookQA.

5 Error Analysis

To gain deeper insights into KERLQA’s perfor-
mance and limitations, we conducted an error anal-
ysis on a randomly selected subset of 100 questions
per language-dataset pair, for a total of 1000 an-
alyzed questions. We used KERLQA (PPO) for
this analysis, as it showed the best overall perfor-
mance. Our analysis focused on three main error
types: (1) Knowledge Gap: instances where the
model lacked the necessary background knowledge
to answer correctly; (2) Reasoning Failures: Cases
where the model failed to make correct logical in-
ferences; (3) Abstention Errors: Instances where
the model incorrectly chose to abstain or failed to
abstain when it should have.

5.1 Error Analysis Process

Figure 2 illustrates our error analysis process, show-
ing how KERLQA processes a sample question
and where different types of errors can occur. This
example demonstrates how Knowledge Gap, Rea-
soning Failure, and Abstention Error can occur in
a single question-answering scenario. It highlights

the challenges KERLQA faces in balancing the use
of retrieved knowledge, inference capabilities, and
decision-making about when to answer or abstain.

5.2 Opverall Error Distribution

Table 4 presents an overview of the error distribu-
tions across languages and datasets for KERLQA.
We observe that the knowledge gap is higher in
low-resource languages across both datasets, and
higher for CommonsenseQA (CS) compared to
OpenBookQA (OB) for all languages. Reason-
ing failures are generally higher in OpenBookQA
compared to CommonsenseQA, and decrease as we
move from high-resource (English) to low-resource
languages. Abstention errors increase in frequency
from high-resource to low-resource languages, and
are generally higher in CommonsenseQA com-
pared to OpenBookQA for low-resource languages.

5.3 Language-Specific Error Patterns

Our error analysis, presented in Table 4, reveals
distinct error patterns across languages. As the
highest-resource language in our study, English
has the lowest knowledge gap error rate. Rea-
soning failures are most prevalent, suggesting that
when knowledge is available, the challenge shifts
to correct reasoning. isiZulu and isiXhosa have
intermediate resource availability; here the Knowl-
edge Gap is significantly higher than English across
both datasets. Reasoning Failures for these lan-
guages are lower, but still substantial. As the
lowest-resource languages in our study, Sepedi and
SeSotho exhibits the highest rate of knowledge gap
errors across both datasets. However, these lan-
guages had the lowest rate of reasoning failures,
possibly due to increased abstention in uncertain
cases rather than improved reasoning capabilities.

Several trends emerge across the language spec-
trum. There is an inverse relationship between
Knowledge Gap and Reasoning Failures: as we
move from high-resource to low-resource lan-
guages, Knowledge Gap errors increase while Rea-



Input Question: "Which African country was formerly known as Upper Volta?”

Knowledge Retrieval: (Upper Volta, related_to, French West Africa), (Burkina Faso, is_a, Country)

Error Types

Model Processing

1. Knowledge Gap |

1. Identify key terms: "African country”, "formerly”, *Upper Volta"

2. Reasoning Failure

2. Match retrieved knowledge: "Upper Volta related to French West Africa”

3. Abstention Error

Knowledge Gap

Reasoning Fallure 4, Attempt to infer relationship between Upper Volta and Burkina Faso (Reasoning Failure)

I\

3. Search for connection between Upper Volta and current countries (Knowledge Gap) |

r Potential Abstention Ema§, Consider abstention (Confidence check: Low confidence due to missing link)

Model CQutput: "I don't know" (Abstained)

Error Analysis: Knowledge Gap (Missing link between Upper Volta and Burkina Faso)
Reasoning Failure (Unable to infer relationship), Potential Abstention Error (Could have guessed)

Figure 2: Error analysis illustrating the process of how KERLQA handles the question “Which African country was

formerly known as Upper Volta?”

soning Failures decrease. Abstention Errors in-
crease as language resources decrease, reflecting
KERLQA’s growing uncertainty in low-resource
settings. CommonsenseQA show higher rates of
Knowledge Gap errors compared to OpenBookQA
across all languages.

5.4 Abstention Analysis

Our examination of KERLQA’s abstention be-
haviour reveals important insights into the model’s
decision-making under uncertainty. False positives,
where the model abstained but the correct answer
had the highest probability among non-abstention
options, occurred in 6% of questions for English
and 9-12% for low-resource languages. False neg-
atives, where the model attempted an incorrect an-
swer when abstention had a higher probability, hap-
pened in 4% of questions for English and 7-9% for
low-resource languages.

Abstention rates increase as language resources
decrease. In low-resource languages, abstention
errors were more often false positives, suggesting
a tendency towards over-caution. This behavior
aligns with our goal of reducing misinformation
in scenarios where knowledge is scarce. We ob-
serve inconsistencies in 5% of similar question
pairs across languages, where KERLQA abstained
in one language but attempted to answer in another.
This suggests that KERLQA'’s abstention mecha-
nism is sensitive to subtle linguistic differences,
which could be beneficial for capturing language-
specific nuances and may indicate areas for im-
provement in cross-lingual consistency.

6 Conclusion

We introduced Knowledge-Enhanced Reinforce-
ment Learning for Question Answering (KER-
LQA), a novel approach designed to improve
question answering performance in low-resource
languages. By integrating external knowledge
sources with reinforcement learning techniques,
KERLQA demonstrates advancements in address-
ing the challenges posed by limited language re-
sources. Results on English and four low-resource
South African languages show that KERLQA out-
performs existing baseline models and state-of-
the-art KG-augmented QA systems across all lan-
guages, with particularly notable improvements
in low-resource settings. The incorporation of
reinforcement learning enables making more in-
formed decisions about knowledge utilization and
abstention. KERLQA contributes to ongoing ef-
forts to bridge the gap between high-resource and
low-resource language capabilities in question an-
swering tasks.

Limitations

While KERLQA demonstrates promising results
for question answering in low-resource languages,
there are some limitations. The model’s reliance
on projected knowledge bases from English to low-
resource languages introduces potential errors in
the knowledge representation. Limited coverage
in the knowledge bases will also directly influence
the model’s performance. In order to evaluate on
some of the languages we relied on the machine



translation systems for the translations of Common-
senseQA and OpenbookQA. As such, the accuracy
of the translations potentially had an impact on our
reported results.
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A KERLQA: End-to-End Process

Here we give an end-to-end description of KER-
LQA, illustrating the flow of information using an
example question.
Let’s consider an example question in isiZulu:
q: “Iyiphi indlela yokuhamba ebaluleke
kakhulu eNingizimu Afrika?”
(English: “What is the most impor-
tant mode of transportation in South
Africa?”)
A = {aq: “Izimoto”, ag : “Izitimela”, ag: “Izin-
diza”, a4: “Amabhasi”, a5: “Angazi”}
(English: Cars, Trains, Airplanes, Buses, I don’t
know)

1. Input Processing: The question q and answer
set A are tokenized and encoded using mT5’s
tokenizer.

Knowledge Retrieval: KERLQA queries
external knowledge bases (e.g., Concept-
Net, DBpedia) to retrieve relevant knowledge
triplets. For example:
* k1: (South Africa, has_transportation,
cars)
* ko: (South Africa, has_transportation,
trains)
* ks: (cars, used_for, commuting)
. Joint Graph Construction: KERLQA con-
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Language Dataset Manual Translation Machine Translation
Accuracy Abstention Accuracy Abstention
isizulu CommonsenseQA 63.67 25.81 60.17 27.03
OpenBookQA 64.32 24.54 61.56 26.87
Sepedi CommonsenseQA 62.13 27.31 59.23 28.08
OpenBookQA 63.52 26.69 60.19 27.11

Table 5: Comparison of KERLQA (PPO) performance on manually translated and machine-translated test sets

structs a working graph Gy = (Viy, Ew) as
follows:
¢ Nodes (Viy):

— vg: Derived from encoding the ques-

tion.

— g, Derived from encoding each an-

swer option.

- Ut Constructed from the retrieved

knowledge triples (e.g., k1, ko, k3).

— z: A dedicated context node that ag-

gregates global information.
o Edges (Ew):

— Edges are added between nodes that
are directly related by a knowledge
triple (e.g., an edge between vy, and
Vg, )-

Additional edges are inserted be-

tween nodes representing the same

entity (e.g., between v, and a rele-

vant vg,).

The context node z is connected to

all other nodes to facilitate global in-

formation propagation.

4. Node Relevance Scoring: For each node v in
a subset Vg (e.g., relevant to the question),
KERLQA computes a relevance score:

Pv = fhead (fenc([teXt(z); teXt(U)]))>

where 2z is the QA context node.

5. Graph Neural Network Processing: The
graph is processed through L layers of mes-
sage passing using a GNN architecture in-
spired by QA-GNN. In our implementation,
we use a 3-layer GNN where each node’s rep-
resentation is updated as:

(D = GRU(hf,, AGG(
{ReLU(W!hE + b)) u e /\/’(v)})),
with AGG being an aggregation function (e.g.,

mean pooling), and W7, bf learnable parame-
ters.
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6. Answer Scoring:

10.

KERLQA computes a
score for each answer option:

score(a;) = MLP([hq; ha;; hKG})a

where h, and h,, are the final representations
of the question and answer a;, and hx ¢ is the
aggregated representation of the knowledge
graph nodes.

Policy Decision: The RL policy my(als) de-
termines the probability of selecting each an-
swer:

F@(G’S) = softmax(W[hq; ha; hKG] +b)

. Action Selection: An answer is selected

based on the policy probabilities. Let’s say
the model chooses as: “Izitimela” (Trains).
Reward Calculation: Assuming as is the
correct answer, the reward is calculated:

r = o - ¥|correct] + 1 - ¥[used KG and needed]

Learning Update:
* For PPO, the objective function is opti-
mized:

Lppo(0) = E[min(rt(H)At, clip(r(6),
1—¢,1 —|—€)At)]

e For DPO, the loss function is:

Lppo (9) =-E |:10g (U (7"9 (377 achosen)

— (7, arejected)))] ;

where the chosen action is either the cor-
rect answer or “I don’t know” (if the
baseline failed), and ayejected TEPrEsents
other answer options. Although the DPO
formulation does not explicitly include
a term for KG usage, the preference
pairs are derived from a baseline that
integrates KG information, thereby in-
directly incorporating KG effects.



11. Model Update: The model parameters 6 are
updated based on the gradient of the loss func-
tion:

enew = 901d —-n: V@L(G),

where 7 is the learning rate.

To demonstrate that KERLQA works, we can
analyze its expected behavior over many training
iterations:

* The expected reward E[r] will increase as the
model learns to balance answering, abstaining,
and utilizing external knowledge

* As training progresses, we expect:

— P(correct) to increase

— P(idk|unanswerable) to increase

- P(idk|answerable) to decrease

— P(KG used|needed) to increase

— P(KG used|not needed) to decrease

* This will lead to an overall increase in E|r],
demonstrating that KERLQA is effectively
learning to answer questions, abstain when
appropriate, and utilize external knowledge
efficiently.

Figure 1 illustrate the key components and flow

of the KERLQA system. The diagram provides a
visual overview of how KERLQA integrates ques-
tion answering, knowledge enhancement, and re-
inforcement learning to improve performance on
low-resource language tasks:

1. Input: The question and answer options (in-
cluding “I don’t know”) are provided as input
mT5 Encoder: The input is encoded using the
mTS5 language model.

. Knowledge Retrieval: Relevant knowledge is
retrieved from external sources.

Joint Graph Construction: A graph is con-
structed using the input, mT5 encoding, and
retrieved knowledge

. Node Relevance Scoring: The relevance of
each node is scored using mTS5.

GNN Processing: The graph is processed us-
ing Graph Neural Networks.

RL Module: Either Proximal Policy Optimiza-
tion (PPO) or Direct Preference Optimization
(DPO) is applied

Output: The final answer or “I don’t know” is
produced.
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B Hyperparameter Tuning

B.1 Reward Function Parameters

The PPO reward function in KERLQA (6) com-
bines multiple indicator functions, each with their
own hyperparameter. We conducted extensive
grid search over these parameters using the En-
glish CommonsenseQA validation set. The search
ranges were:
e a € {0.5,1.0,1.5,2.0}: Weight for correct
answers
e 51 € {0.3,0.5,0.7,1.0}: Weight for appro-
priate abstention
* B2 € {0.3,0.5,0.7,1.0}: Penalty for unnec-
essary abstention
ey € {0.2,0.4,0.6,0.8}: Weight for appro-
priate KB use
* 72 € {0.2,0.4,0.6,0.8}: Penalty for unnec-
essary KB use

C Impact of Translation Quality on
Performance

While the main results reported in Table 1 and Ta-
ble 2 for isiZulu and Sepedi are based on manually
translated test sets, we also conducted experiments
using machine-translated versions to assess the im-
pact of translation quality on KERLQA'’s perfor-
mance. The results in Table 5 demonstrate a con-
sistent pattern of higher performance for manually
translated test sets compared to machine-translated
ones across both languages and datasets. These
findings underscore that manually curated datasets
are important for accurately assessing model capa-
bilities in low-resource languages. However, when
evaluating all models on the automatically trans-
lated datasets for isiZulu and Sepedi, the same rel-
ative trends in model performance still holds.
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