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Abstract
Question answering in low-resource languages001
poses challenges for Large Language Models002
due to limited training data and knowledge re-003
sources. We propose Knowledge-Enhanced004
Reinforcement Learning for Question Answer-005
ing (KERLQA), a novel approach integrating006
external knowledge with reinforcement learn-007
ing to optimize model behavior. KERLQA008
employs a graph neural network for joint rea-009
soning over question context and knowledge010
sources, while introducing an abstention mech-011
anism to address the heightened risk of halluci-012
nation in low-resource settings. This mech-013
anism allows the model to refrain from an-014
swering when uncertain, which is particularly015
important for low-resource languages where016
knowledge gaps are more prevalent. We evalu-017
ate KERLQA on CommonsenseQA and Open-018
BookQA across English and four low-resource019
South African languages: isiZulu, isiXhosa, Se-020
pedi, and SeSotho. Results show KERLQA out-021
performs baselines and state-of-the-art systems,022
with notable improvements in low-resource set-023
tings. Our error analysis reveals distinct pat-024
terns of knowledge gaps, reasoning failures,025
and abstention errors across languages, with026
higher abstention rates in low-resource lan-027
guages confirming the model’s ability to recog-028
nize and mitigate knowledge gaps.029

1 Introduction030

Question answering in low-resource languages031

presents unique challenges for language models, in-032

cluding limited training data, scarce knowledge re-033

sources, and complex cross-lingual transfer issues034

(Samuel et al., 2023; Chen et al., 2023). These chal-035

lenges are particularly prevalent for languages with036

distinct linguistic structures and cultural contexts037

that differ from high-resource languages like En-038

glish (Ogundepo et al., 2022). A question answer-039

ing model that abstains when it does not have the040

necessary knowledge to answer a question would041

be preferable, in particular in low-resource settings042

Figure 1: KERLQA architecture. The model pro-
cesses inputs through both language model encoding
and knowledge retrieval for graph construction, inte-
grated through a graph neural network architecture. Re-
inforcement learning is used to adapt the decision mak-
ing behaviour.

where the proportion of such questions will likely 043

be higher. 044

In this paper, we propose Knowledge-Enhanced 045

Reinforcement Learning for Question Answering 046

(KERLQA), a novel approach enabling language 047

models to effectively utilize both internal and ex- 048

ternal knowledge sources while learning when to 049

abstain from answering. KERLQA integrates ex- 050

ternal knowledge from sources such as ConceptNet 051

(Speer et al., 2016) and DBpedia (Mendes et al., 052

2012) with reinforcement learning techniques to 053

optimize model behavior. Our approach employs 054

a graph neural network architecture for joint rea- 055

soning over question context and relevant knowl- 056

edge sources based on QA-GNN (Yasunaga et al., 057

2021). We then employ Reinforcement Learning 058

(RL) techniques to optimize decision-making be- 059

haviour, implementing both Proximal Policy Op- 060

timization (PPO) and Direct Preference Optimiza- 061

tion (DPO) to learn a policy that not only selects 062

an answer from a candidate set but also decides 063

when to abstain. Joint knowledge enhancement 064

and reinforcement learning enable the model to 065

learn when to rely on its own knowledge, when to 066
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seek external information, and when to abstain due067

to uncertainty. Figure 1 provides an overview of068

the KERLQA architecture.069

We demonstrate KERLQA’s effectiveness on070

English and four low-resource South African lan-071

guages: isiZulu, isiXhosa, Sepedi, and SeSotho,072

fine-tuning the multilingual mT5 language model.073

Our experimental results show that KERLQA im-074

proves question answering performance compared075

to baselines. Furthermore, our model exhibits the076

ability to make informed decisions about knowl-077

edge utilization and abstention, leading to more078

reliable and accurate responses.079

To gain deeper insights into KERLQA’s perfor-080

mance, we conduct a comprehensive error analysis081

across languages and datasets. This analysis reveals082

distinct patterns of knowledge gaps, reasoning fail-083

ures, and abstention errors, highlighting the unique084

challenges posed by different linguistic contexts085

and question types. Our error analysis revealed086

that knowledge gaps were 30-40% more prevalent087

in low-resource languages compared to English,088

while reasoning failures decreased by 15-25% as089

we moved from high to low-resource languages.090

Our main contributions are: (1) We intro-091

duce KERLQA, a novel approach that combines092

knowledge-enhanced QA with reinforcement learn-093

ing to address the challenges of low-resource lan-094

guages; (2) We demonstrate KERLQA’s effective-095

ness across five languages and two datasets, show-096

ing significant improvements over existing meth-097

ods; (3) We provide a detailed error analysis that098

offers insights into the specific challenges of QA099

in low-resource settings, paving the way for future100

research directions.101

2 Related Work102

Our work intersects with several key areas in nat-103

ural language processing and machine learning.104

We review relevant literature in two main cate-105

gories: (1) Knowledge-Enhanced Question An-106

swering, which focuses on integrating external107

knowledge sources to improve QA performance,108

and (2) Reinforcement Learning for NLP Tasks,109

which explores the application of RL techniques to110

language tasks, particularly in QA contexts.111

2.1 Knowledge-Enhanced Question112

Answering113

Recent advancements in question answering have114

focused on augmenting language models with ex-115

ternal knowledge sources. Yasunaga et al. (2021) 116

introduced QA-GNN, which uses graph neural net- 117

works to reason over knowledge graphs for QA 118

tasks. Building on this, Zhang et al. (2022)) pro- 119

posed GreaseLM, which enhances language mod- 120

els with graph-based reasoning. Our work differs 121

from these approaches by integrating reinforcement 122

learning with knowledge graph reasoning, allowing 123

for more adaptive use of external knowledge. 124

Wang et al. (2022) introduced GSC (Graph- 125

based Semi-parametric Contextualizer) for QA, 126

while Park et al. (2023) proposed QAT (Question 127

Answering Transformer) which uses meta-path to- 128

kens for knowledge integration. Ye et al. (2023) 129

proposed FiTs (Fine-grained Two-stage training), 130

a framework designed to address the challenges of 131

fusing representations from pre-trained language 132

models and knowledge graphs in knowledge-aware 133

question answering. Jiang et al. (2022) conducted 134

a deep empirical analysis of knowledge-enhanced 135

commonsense reasoning. Their work revealed that 136

relation features from commonsense knowledge 137

graphs are the primary contributors to improving 138

the reasoning capacity of pre-trained language mod- 139

els, rather than node features. 140

While these methods have shown promising re- 141

sults, they face challenges in fully utilizing external 142

knowledge graphs and addressing the modality gap 143

between text and KGs. Our work builds upon these 144

insights in several ways. While we draw inspiration 145

from these works, our approach uniquely combines 146

these ideas with reinforcement learning. KERLQA 147

employs a dynamic, reinforcement learning-based 148

method to determine how and when to utilize re- 149

lational knowledge. This is particularly important 150

in low-resource language settings, where the rele- 151

vance and reliability of knowledge graph relations 152

may vary. 153

2.2 Reinforcement Learning in NLP 154

Reinforcement Learning (RL) has been increas- 155

ingly applied to question answering tasks with large 156

language models. Recent work has focused on 157

Reinforcement Learning from Human Feedback 158

(RLHF) to align model outputs with human pref- 159

erences (Ouyang et al., 2022). RLHF combines 160

traditional RL techniques with human preferences 161

to guide model behavior, allowing for more nu- 162

anced and context-aware responses in language 163

tasks. Two key developments in this area are the 164

use of Proximal Policy Optimization (PPO) and 165

Direct Preference Optimization (DPO). 166
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PPO (Schulman et al., 2017) is a policy gradi-167

ent method that has gained popularity in RL for168

NLP tasks due to its stability and effectiveness. It169

optimizes a surrogate objective function that pre-170

vents large policy updates, which can lead to perfor-171

mance collapse (Schulman et al., 2017). In the con-172

text of instruction following, which includes ques-173

tion answering tasks, PPO has been used to train174

language models to generate more accurate and175

relevant responses. It allows for fine-tuning model176

behavior based on specified reward functions, such177

as answer correctness or relevance (Ouyang et al.,178

2022). DPO (Rafailov et al., 2023) is a more recent179

development in RL for language models, designed180

to align model outputs with human preferences.181

Unlike traditional RL methods that require explicit182

reward modeling, DPO learns directly from pair-183

wise preference comparisons. In QA tasks, DPO184

can be used to fine-tune models to generate an-185

swers that are not only correct but also preferred186

by humans in terms of clarity, conciseness, or other187

desirable attributes (Rafailov et al., 2023).188

Our work extends these RL approaches to the189

domain of knowledge-enhanced QA, particularly190

for low-resource languages. We integrate PPO and191

DPO with knowledge graph utilization strategies,192

enabling models to learn when to rely on exter-193

nal knowledge, when to abstain from answering,194

and how to optimize its responses based on both195

correctness and human-like preferences.196

In the context of abstention, Yang et al. (2023)197

constructed an honesty alignment dataset by replac-198

ing incorrect or uncertain responses with “I don’t199

know” and fine-tuning on this data. Cheng et al.200

(2024) and Brahman et al. (2024) employed Direct201

Preference Optimization to encourage models to202

answer questions they know and refuse those they203

don’t. Liang et al. (2024) used Proximal Policy Op-204

timization with a reward model trained on halluci-205

nation scores to determine knowledge boundaries.206

Our work builds upon these approaches but207

makes a distinct contribution by focusing specifi-208

cally on learning when to abstain from answering.209

Unlike previous methods that primarily aim to im-210

prove overall QA performance or align with general211

human preferences, our approach explicitly trains212

the model to recognize its own knowledge limita-213

tions and uncertainties across various languages214

and contexts. This is particularly important in low-215

resource settings where the risk of hallucination is216

higher due to limited training data and knowledge217

resources.218

3 KERLQA 219

3.1 Problem Formulation 220

Given a question q and a set of candidate answers 221

A = {a1, . . . , an}, our goal is to learn a policy 222

πθ(a|s) that either selects an answer from A or 223

opts to abstain, which is encoded through adding an 224

additional answer option. The state s is defined as 225

a combination of the textual representation (from 226

the language encoder) and the knowledge graph 227

context. We model this task as a Markov Decision 228

Process (MDP) with: 229

• State Space S: The concatenation of the ques- 230

tion encoding, candidate answer encodings, 231

and the current knowledge graph state. 232

• Action Space A: The extended set A′ = A ∪ 233

{“I don’t know”}. 234

• Reward Function r(s, a): A composite re- 235

ward that considers answer correctness, the ap- 236

propriateness of abstaining, and the efficiency 237

of external knowledge utilization. 238

• Transition Function: Deterministic, as each 239

question is processed independently. 240

3.2 Model Architecture 241

The question q and answer candidates {a1, . . . , an} 242

are encoded into dense vectors with a multilingual 243

language model such as mT5: 244

hq = mT5enc(q), hai = mT5enc(ai). (1) 245

To enable knowledge enhancement we retrieve 246

knowledge triples with subjects or objects match- 247

ing question entities or answer candidates from 248

an external knowledge base. We construct a het- 249

erogeneous graph GW = (VW , EW ) similar to 250

QA-GNN (Yasunaga et al., 2021): 251

VW = Vtext ∪ Vknowledge ∪ {z}, (2) 252

where text nodes Vtext represent question and an- 253

swer candidate embeddings, knowledge nodes 254

Vknowledge are constructed from the extracted knowl- 255

edge triples (and also encoded with mT5), and the 256

context node z aggregates global interactions be- 257

tween questions and answers. Edges are added 258

based on the knowledge triples and between nodes 259

representing the same entity. Additional edges are 260

added between nodes representing the same entity 261

to reinforce entity consistency. 262

Information is propagated in the Graph Neural 263

Network (GNN) via standard message passing: 264

h(l+1)
v = GNN

(
h(l)v , h(l)u : u ∈ N (v)

)
, (3) 265
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where N (v) denotes the neighbors of node v.266

The final policy is obtained by fusing represen-267

tations from the language encoder, the graph neural268

network, and the knowledge aggregation module:269

πθ(a|s) = softmax
(

MLP
(
[hq;ha; z]

))
. (4)270

During training, we first perform supervised271

fine-tuning on mT5 only using QA pairs. Then272

QA-GNN is trained, using the GNN to encode the273

extracted knowledge base information.274

3.3 Reinforcement Learning Framework275

We apply two RL strategies to optimize the answer-276

selection policy, each providing a different perspec-277

tive on handling abstentions.278

Proximal Policy Optimization (PPO) After ini-279

tial supervised fine-tuning on QA pairs, we apply280

PPO to further refine πθ(a|s). PPO maximizes the281

following clipped objective:282

LPPO(θ) = E[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)],
(5)283

where rt(θ) is the ratio of the new to old policy284

probabilities, At is the advantage estimate com-285

puted using temporal-difference methods, and ϵ is286

a clipping parameter (set via grid search on valida-287

tion data).288

Our reward function balances correct answer-289

ing, appropriate abstention, and efficient use of290

external knowledge:291

r = α · ⊮[correct]292

+ β1 · ⊮[abstain on unanswerable]293

− β2 · ⊮[abstain on answerable] (6)294

+ γ1 · ⊮[used KG appropriately]295

− γ2 · ⊮[used KG unnecessarily],296

where ⊮[condition] is an indicator function that297

equals 1 when the condition is true and 0 other-298

wise. The parameters α, β1, β2, γ1, and γ2 are299

tunable hyperparameters that control the relative300

importance of each reward component. The intu-301

ition behind our reward structure is to encourage302

the model to answer correctly when it can; abstain303

when the question is truly unanswerable; use exter-304

nal knowledge when necessary; and avoid unnec-305

essary abstention or knowledge use. In scenarios306

where the KG is not used (because the question is307

answerable solely from internal knowledge), the308

reward function naturally guides the model away309

from unnecessary KG retrieval.310

Direct Preference Optimization (DPO) For 311

DPO, the reward model rθ(x, y) is learned implic- 312

itly through preference pairs, thereby avoiding the 313

need for explicit reward engineering. For each 314

question where the baseline mT5 answered cor- 315

rectly, the correct answer is marked as the “chosen” 316

action and the others as “rejected.” For questions 317

where the baseline failed, the abstention action (i.e., 318

“I don’t know”) is marked as “chosen.” Although 319

the DPO formulation does not explicitly incorpo- 320

rate a term for KG usage, the preference pairs are 321

derived from baseline performance that includes 322

KG integration. Consequently, if incorporating KG 323

information improves performance, the resulting 324

preference pairs will indirectly favour actions that 325

use the KG appropriately. Conversely, if KG usage 326

is unnecessary, the model will learn to minimize its 327

use. 328

The DPO objective is then: 329

LDPO(θ) = −E[log(σ(rθ(x, y)− rθ(x, y
′)))], (7) 330

where y is the chosen answer and y′ is a rejected 331

option. 332

4 Experiment Results and Analysis 333

4.1 Experimental Setup 334

We evaluate KERLQA on CommonsenseQA (Tal- 335

mor et al., 2019) and OpenBookQA (Mihaylov 336

et al., 2018) datasets. For isiZulu and Sepedi, we 337

use manually translated test sets obtained from 338

Ralethe and Buys (2025). For broader coverage, we 339

also used machine translation to obtain translations 340

in isiXhosa and SeSotho, utilizing Tencent’s Multi- 341

lingual Machine Translation System for WMT22 342

Large-Scale African Language Translation (Jiao 343

et al., 2022). To assess the impact of using auto- 344

matic translations we also evaluate our QA models 345

using machine translations into Sepedi and isiZulu, 346

using SeamlessM4T (Barrault et al., 2023) for the 347

latter. Results from these experiments are given in 348

Appendix C, showing a small drop in accuracy but 349

similar trends overall. 350

We utilize ConceptNet (Speer et al., 2016) as 351

our primary knowledge source. For the four South 352

African languages (isiZulu, isiXhosa, Sepedi, and 353

SeSotho), we incorporate projected knowledge 354

bases derived using LeNS-Align (Ralethe and Buys, 355

2025). LeNS-Align projects English ConceptNet 356

triples into these target languages through a com- 357

bined process of lexical alignment, named-entity 358

recognition, and semantic alignment. This ap- 359
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English isiZulu isiXhosa Sepedi SeSotho
Method Acc. ↑ AR ↓ Acc. ↑ AR ↓ Acc. ↑ AR ↓ Acc. ↑ AR ↓ Acc. ↑ AR ↓

mT5 67.11 - 57.10 - 55.76 - 56.15 - 55.12 -
mT5+QA-GNN 70.32 - 61.87 - 58.52 - 60.02 - 57.94 -
RLQA (PPO) 69.21 20.52 58.10 28.62 56.51 30.61 57.82 29.33 56.19 31.77
RLQA (DPO) 69.36 19.14 59.34 26.36 57.02 28.36 58.30 29.41 57.25 32.41
KERLQA (PPO) 77.33 14.35 63.67 25.81 59.33 27.14 62.13 27.31 59.12 29.17
KERLQA (DPO) 76.61 14.11 63.21 26.88 59.11 30.23 62.11 28.58 58.19 29.87

Table 1: Test Accuracy (Acc.) and Abstention Rate (AR) results on CommonsenseQA for different methods across
languages. Accuracy is calculated over all questions, including abstentions.

proach yields approximately 670k triples per lan-360

guage, with human evaluations indicating an accu-361

racy exceeding 85% (Ralethe and Buys, 2025).362

The base language model is mT5-large (Xue363

et al., 2021). We use the adapted QA-GNN ar-364

chitecture with 3 message-passing layers. PPO365

and DPO are implemented using HuggingFace’s366

PPOTrainer and DPOTrainer (Huang et al., 2023).367

Hyperparameter tuning details are given in Ap-368

pendix B.369

Additionally, we also train models for En-370

glish based on RoBERTa-Large (Liu et al., 2019)371

to enable comparison to other recent knowledge-372

enhanced QA approaches. We train QA baselines373

based on mT5 only and QA-GNN without RL train-374

ing, and also compare to performing RL training375

but without knowledge enhancement (RLQA).376

4.2 Evaluation Metrics377

We evaluate our models using the following met-378

rics:379

• Accuracy: The fraction of total questions380

answered correctly, where abstentions are381

treated as incorrect:382

Accuracy =
Correct Answers
Total Questions

.383

• Precision: The fraction of correctly answered384

questions among the attempted questions (i.e.,385

excluding abstentions):386

Precision =
Correct Answers

Attempted Questions
.387

• Abstention Rate (AR): The fraction of ques-388

tions where the model opts to abstain:389

AR = 1− Attempted Questions
Total Questions

.390

4.3 Results391

Results on CommonsenseQA (Table 1) show that392

QA accuracy is highest on English, while isiZulu393

has the highest accuracy among the low-resource 394

languages. KERLQA (with PPO and DPO) shows 395

substantial improvements over the mT5 baseline 396

for all languages. Notably, abstention rates are 397

generally higher for low-resource languages, indi- 398

cating increased model uncertainty in these con- 399

texts. OpenBookQA results (Table 2) exhibit simi- 400

lar trends: Abstention rates are generally slightly 401

lower than on CommonsenseQA, suggesting mod- 402

els find this dataset somewhat easier to navigate. 403

The performance improvement from mT5 to 404

mT5+QA-GNN confirms that the QA-GNN mod- 405

els are able to effectively leverage external knowl- 406

edge to mitigate gaps in the training data and the 407

pretrained model’s knowledge. On low-resource 408

languages this is the case even though the knowl- 409

edge graphs were automatically projected from En- 410

glish and therefore contain some noise. By con- 411

necting questions to language-agnostic concepts, 412

the model may also better leverage understanding 413

gained from high-resource language pretraining, 414

boosting its performance in low-resource settings. 415

The results also show that reinforcement learn- 416

ing leads to improved accuracy over approaches 417

without RL, both in settings with knowledge en- 418

hancement (KERLQA over mT5+QA-GNN) and 419

without knowledge enhancement (RLQA over 420

mT5), despite abstention being an additional op- 421

tion. KERLQA achieves the best overall perfor- 422

mance. The effectiveness of these RL techniques 423

can be attributed to their ability to adaptively ad- 424

just confidence thresholds, balance exploration and 425

exploitation, and optimize based on reward sig- 426

nals that align with desired outcomes. Comparing 427

PPO and DPO, we observe that PPO slightly out- 428

performs DPO in terms of accuracy across most 429

scenarios. However, DPO often achieves lower 430

abstention rates, particularly for low-resource lan- 431

guages. This pattern suggests that PPO’s approach 432

to policy optimization may be more adept at han- 433

dling the complexities inherent in multilingual QA 434
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English isiZulu isiXhosa Sepedi SeSotho
Method Acc. ↑ AR ↓ Acc. ↑ AR ↓ Acc. ↑ AR ↓ Acc. ↑ AR ↓ Acc. ↑ AR ↓

mT5 78.23 - 57.83 - 56.87 - 57.32 - 56.32 -
mT5+QA-GNN 83.48 - 63.42 - 61.13 - 61.33 - 58.76 -
RLQA (PPO) 79.33 16.32 58.25 29.95 57.12 32.86 57.22 31.91 56.12 32.78
RLQA (DPO) 79.85 18.33 59.74 29.04 56.45 29.86 56.93 29.35 56.35 29.93
KERLQA (PPO) 86.42 10.12 64.32 24.54 61.11 27.10 63.52 26.69 60.05 28.72
KERLQA (DPO) 84.79 11.36 64.81 26.14 60.24 29.54 62.85 28.33 59.95 29.94

Table 2: Test Accuracy (Acc.) and Abstention Rate (AR) results on OpenBookQA for different methods across
languages. Accuracy is calculated over all questions, including abstentions.

CSQA OBQA
Method Prec. Acc. Prec. Acc.

QAT (Park et al., 2023) 75.4 75.4 86.9 86.9
FIT (Ye et al., 2023) 75.6 75.6 86.0 86.0
GRT (Zhao et al., 2024) 76.1 76.1 87.3 87.3
KERLQA (PPO) ours 78.2 76.6 88.6 87.9

Table 3: Performance Comparison between KERLQA
(PPO) with KG-augmented QA systems on Common-
senseQA (CSQA) and OpenbookQA (OBQA), using
RoBERTa-Large (Liu et al., 2019). Precision excludes
abstained questions while accuracy includes them.

tasks, while DPO shows promise in managing un-435

certainty in low-resource contexts.436

The performance gap between KERLQA and437

other methods is particularly notable in English,438

especially for OpenBookQA. This could be due439

to KERLQA’s enhanced ability to leverage the440

richer knowledge resources available in English.441

The smaller performance gains in low-resource lan-442

guages suggest that while KERLQA improves per-443

formance, it remains constrained by limited knowl-444

edge resources in these languages.445

Table 3 compares our approach to other re-446

cent QA models using knowledge enhancement,447

evaluated on the English datasets only and using448

RoBERTa-Large (Liu et al., 2019) as the backbone449

model instead of mT5. The results demonstrate450

that KERLQA achieves higher precision than pre-451

vious approaches while maintaining competitive452

accuracy. This indicates that while KERLQA may453

abstain from answering some questions, it exhibits454

higher confidence and accuracy on the questions it455

chooses to answer.456

4.4 Abstention Behaviour Analysis457

Analysis of abstention patterns reveals that KER-458

LQA primarily abstains on questions in three key459

scenarios: when the required knowledge is not460

present in the external knowledge bases, when461

multiple answer options appear plausible given the462

available information, and when the question in- 463

tent is ambiguous or requires complex reasoning. 464

These scenarios reflect situations where the model 465

recognizes its limitations or uncertainty in provid- 466

ing accurate responses. 467

While the introduction of abstention creates an 468

apparent asymmetry in evaluation, our dual-metric 469

approach provides a comprehensive and fair assess- 470

ment. The precision metric allows us to evaluate 471

KERLQA’s decision-making capability in compa- 472

rable terms to previous approaches, while accuracy 473

provides a conservative estimate of overall perfor- 474

mance. 475

The higher precision demonstrates that KER- 476

LQA’s abstention mechanism successfully identi- 477

fies cases where the model lacks sufficient con- 478

fidence or knowledge to provide a reliable an- 479

swer. This capability is particularly valuable in 480

real-world applications where incorrect answers 481

may be more costly than abstentions. 482

KERLQA demonstrates lower abstention rates 483

compared to RLQA across all languages, suggest- 484

ing that knowledge enhancement can effectively 485

enhance model confidence while increasing accu- 486

racy at the same time, leading to more robust and 487

reliable QA systems. The higher abstention rates 488

in low-resource languages compared to English 489

demonstrate the impact of data scarcity on model 490

behavior. DPO tends to results in higher abstention 491

rates that PPO, particularly in low-resource lan- 492

guages, suggesting that the choice of RL algorithm 493

can influence a model’s abstention strategy. The 494

results demonstrates KERLQA’s improved ability 495

to align confidence (lower abstention) with actual 496

performance (higher accuracy). Furthermore, KER- 497

LQA exhibits an enhanced capability in distinguish- 498

ing between questions it can answer correctly and 499

those it should avoid, contributing to its overall 500

performance across languages and datasets. 501

6



English isiZulu isiXhosa Sepedi SeSotho

Error Type OB CS OB CS OB CS OB CS OB CS

Knowledge Gap 18% 22% 27% 30% 29% 32% 28% 31% 30% 34%
Reasoning Failures 25% 21% 23% 20% 21% 19% 22% 19% 20% 18%
Abstention Errors 10% 8% 15% 18% 17% 20% 16% 20% 18% 21%

Table 4: Error Distribution Across Languages and Datasets. OB: OpenBookQA, CS: CommonsenseQA. Percentages
represent the proportion of errors within each category and do not sum to 100% as they are calculated relative to the
total number of questions, not just erroneous responses.

4.5 Performance on Filtered Datasets502

As an additional experiment to assess KERLQA’s503

ability to leverage external knowledge bases, we504

created filtered versions of both QA datasets, in-505

cluding only questions where the entities men-506

tioned in the questions and answers occur in our507

knowledge bases. This approach simulates scenar-508

ios where the model’s knowledge aligns closely509

with the task requirements. On these filtered sets,510

KERLQA demonstrated higher accuracy and lower511

abstention rates compared to the full datasets. On512

the filtered English CommonsenseQA, KERLQA513

(PPO) achieved an accuracy of 79.84% (an increase514

of 2% from the full dataset) with an abstention515

rate of 11.74% (a decrease of 1.42% from the full516

dataset). Similar improvements were observed for517

OpenBookQA.518

5 Error Analysis519

To gain deeper insights into KERLQA’s perfor-520

mance and limitations, we conducted an error anal-521

ysis on a randomly selected subset of 100 questions522

per language-dataset pair, for a total of 1000 an-523

alyzed questions. We used KERLQA (PPO) for524

this analysis, as it showed the best overall perfor-525

mance. Our analysis focused on three main error526

types: (1) Knowledge Gap: instances where the527

model lacked the necessary background knowledge528

to answer correctly; (2) Reasoning Failures: Cases529

where the model failed to make correct logical in-530

ferences; (3) Abstention Errors: Instances where531

the model incorrectly chose to abstain or failed to532

abstain when it should have.533

5.1 Error Analysis Process534

Figure 2 illustrates our error analysis process, show-535

ing how KERLQA processes a sample question536

and where different types of errors can occur. This537

example demonstrates how Knowledge Gap, Rea-538

soning Failure, and Abstention Error can occur in539

a single question-answering scenario. It highlights540

the challenges KERLQA faces in balancing the use 541

of retrieved knowledge, inference capabilities, and 542

decision-making about when to answer or abstain. 543

5.2 Overall Error Distribution 544

Table 4 presents an overview of the error distribu- 545

tions across languages and datasets for KERLQA. 546

We observe that the knowledge gap is higher in 547

low-resource languages across both datasets, and 548

higher for CommonsenseQA (CS) compared to 549

OpenBookQA (OB) for all languages. Reason- 550

ing failures are generally higher in OpenBookQA 551

compared to CommonsenseQA, and decrease as we 552

move from high-resource (English) to low-resource 553

languages. Abstention errors increase in frequency 554

from high-resource to low-resource languages, and 555

are generally higher in CommonsenseQA com- 556

pared to OpenBookQA for low-resource languages. 557

5.3 Language-Specific Error Patterns 558

Our error analysis, presented in Table 4, reveals 559

distinct error patterns across languages. As the 560

highest-resource language in our study, English 561

has the lowest knowledge gap error rate. Rea- 562

soning failures are most prevalent, suggesting that 563

when knowledge is available, the challenge shifts 564

to correct reasoning. isiZulu and isiXhosa have 565

intermediate resource availability; here the Knowl- 566

edge Gap is significantly higher than English across 567

both datasets. Reasoning Failures for these lan- 568

guages are lower, but still substantial. As the 569

lowest-resource languages in our study, Sepedi and 570

SeSotho exhibits the highest rate of knowledge gap 571

errors across both datasets. However, these lan- 572

guages had the lowest rate of reasoning failures, 573

possibly due to increased abstention in uncertain 574

cases rather than improved reasoning capabilities. 575

Several trends emerge across the language spec- 576

trum. There is an inverse relationship between 577

Knowledge Gap and Reasoning Failures: as we 578

move from high-resource to low-resource lan- 579

guages, Knowledge Gap errors increase while Rea- 580

7



Figure 2: Error analysis illustrating the process of how KERLQA handles the question “Which African country was
formerly known as Upper Volta?”

soning Failures decrease. Abstention Errors in-581

crease as language resources decrease, reflecting582

KERLQA’s growing uncertainty in low-resource583

settings. CommonsenseQA show higher rates of584

Knowledge Gap errors compared to OpenBookQA585

across all languages.586

5.4 Abstention Analysis587

Our examination of KERLQA’s abstention be-588

haviour reveals important insights into the model’s589

decision-making under uncertainty. False positives,590

where the model abstained but the correct answer591

had the highest probability among non-abstention592

options, occurred in 6% of questions for English593

and 9–12% for low-resource languages. False neg-594

atives, where the model attempted an incorrect an-595

swer when abstention had a higher probability, hap-596

pened in 4% of questions for English and 7–9% for597

low-resource languages.598

Abstention rates increase as language resources599

decrease. In low-resource languages, abstention600

errors were more often false positives, suggesting601

a tendency towards over-caution. This behavior602

aligns with our goal of reducing misinformation603

in scenarios where knowledge is scarce. We ob-604

serve inconsistencies in 5% of similar question605

pairs across languages, where KERLQA abstained606

in one language but attempted to answer in another.607

This suggests that KERLQA’s abstention mecha-608

nism is sensitive to subtle linguistic differences,609

which could be beneficial for capturing language-610

specific nuances and may indicate areas for im-611

provement in cross-lingual consistency.612

6 Conclusion 613

We introduced Knowledge-Enhanced Reinforce- 614

ment Learning for Question Answering (KER- 615

LQA), a novel approach designed to improve 616

question answering performance in low-resource 617

languages. By integrating external knowledge 618

sources with reinforcement learning techniques, 619

KERLQA demonstrates advancements in address- 620

ing the challenges posed by limited language re- 621

sources. Results on English and four low-resource 622

South African languages show that KERLQA out- 623

performs existing baseline models and state-of- 624

the-art KG-augmented QA systems across all lan- 625

guages, with particularly notable improvements 626

in low-resource settings. The incorporation of 627

reinforcement learning enables making more in- 628

formed decisions about knowledge utilization and 629

abstention. KERLQA contributes to ongoing ef- 630

forts to bridge the gap between high-resource and 631

low-resource language capabilities in question an- 632

swering tasks. 633

Limitations 634

While KERLQA demonstrates promising results 635

for question answering in low-resource languages, 636

there are some limitations. The model’s reliance 637

on projected knowledge bases from English to low- 638

resource languages introduces potential errors in 639

the knowledge representation. Limited coverage 640

in the knowledge bases will also directly influence 641

the model’s performance. In order to evaluate on 642

some of the languages we relied on the machine 643

8



translation systems for the translations of Common-644

senseQA and OpenbookQA. As such, the accuracy645

of the translations potentially had an impact on our646

reported results.647
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A KERLQA: End-to-End Process 861

Here we give an end-to-end description of KER- 862

LQA, illustrating the flow of information using an 863

example question. 864

Let’s consider an example question in isiZulu: 865

q: “Iyiphi indlela yokuhamba ebaluleke 866

kakhulu eNingizimu Afrika?” 867

(English: “What is the most impor- 868

tant mode of transportation in South 869

Africa?”) 870

A = {a1: “Izimoto”, a2 : “Izitimela”, a3: “Izin- 871

diza”, a4: “Amabhasi”, a5: “Angazi”} 872

(English: Cars, Trains, Airplanes, Buses, I don’t 873

know) 874

1. Input Processing: The question q and answer 875

set A are tokenized and encoded using mT5’s 876

tokenizer. 877

2. Knowledge Retrieval: KERLQA queries 878

external knowledge bases (e.g., Concept- 879

Net, DBpedia) to retrieve relevant knowledge 880

triplets. For example: 881

• k1: (South Africa, has_transportation, 882

cars) 883

• k2: (South Africa, has_transportation, 884

trains) 885

• k3: (cars, used_for, commuting) 886

3. Joint Graph Construction: KERLQA con- 887
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Language Dataset Manual Translation Machine Translation
Accuracy Abstention Accuracy Abstention

isiZulu CommonsenseQA 63.67 25.81 60.17 27.03
OpenBookQA 64.32 24.54 61.56 26.87

Sepedi CommonsenseQA 62.13 27.31 59.23 28.08
OpenBookQA 63.52 26.69 60.19 27.11

Table 5: Comparison of KERLQA (PPO) performance on manually translated and machine-translated test sets

structs a working graph GW = (VW , EW ) as888

follows:889

• Nodes (VW ):890

– vq: Derived from encoding the ques-891

tion.892

– vai : Derived from encoding each an-893

swer option.894

– vkj : Constructed from the retrieved895

knowledge triples (e.g., k1, k2, k3).896

– z: A dedicated context node that ag-897

gregates global information.898

• Edges (EW ):899

– Edges are added between nodes that900

are directly related by a knowledge901

triple (e.g., an edge between vk1 and902

va1).903

– Additional edges are inserted be-904

tween nodes representing the same905

entity (e.g., between vq and a rele-906

vant vai).907

– The context node z is connected to908

all other nodes to facilitate global in-909

formation propagation.910

4. Node Relevance Scoring: For each node v in911

a subset Vsub (e.g., relevant to the question),912

KERLQA computes a relevance score:913

ρv = fhead

(
fenc

(
[ text(z); text(v)]

))
,914

where z is the QA context node.915

5. Graph Neural Network Processing: The916

graph is processed through L layers of mes-917

sage passing using a GNN architecture in-918

spired by QA-GNN. In our implementation,919

we use a 3-layer GNN where each node’s rep-920

resentation is updated as:921

h(ℓ+1)
v = GRU

(
hℓv, AGG

(
922 {

ReLU
(
W ℓ

r h
ℓ
u + bℓr

)
: u ∈ N (v)

}))
,923

with AGG being an aggregation function (e.g.,924

mean pooling), and W ℓ
r , bℓr learnable parame-925

ters.926

6. Answer Scoring: KERLQA computes a 927

score for each answer option: 928

score(ai) = MLP
(
[hq; hai ; hKG ]

)
, 929

where hq and hai are the final representations 930

of the question and answer ai, and hKG is the 931

aggregated representation of the knowledge 932

graph nodes. 933

7. Policy Decision: The RL policy πθ(a|s) de- 934

termines the probability of selecting each an- 935

swer: 936

πθ(a|s) = softmax(W [hq;ha;hKG] + b) 937

8. Action Selection: An answer is selected 938

based on the policy probabilities. Let’s say 939

the model chooses a2: “Izitimela” (Trains). 940

9. Reward Calculation: Assuming a2 is the 941

correct answer, the reward is calculated: 942

r = α · ⊮[correct] + γ1 · ⊮[used KG and needed] 943

10. Learning Update: 944

• For PPO, the objective function is opti- 945

mized: 946

LPPO(θ) = E
[
min

(
rt(θ)At, clip

(
rt(θ), 947

1− ϵ, 1 + ϵ
)
At

)]
. 948

• For DPO, the loss function is: 949

LDPO(θ) = −E
[
log

(
σ
(
rθ(x, achosen) 950

− rθ(x, arejected)
))]

, 951

where the chosen action is either the cor- 952

rect answer or “I don’t know” (if the 953

baseline failed), and arejected represents 954

other answer options. Although the DPO 955

formulation does not explicitly include 956

a term for KG usage, the preference 957

pairs are derived from a baseline that 958

integrates KG information, thereby in- 959

directly incorporating KG effects. 960
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11. Model Update: The model parameters θ are961

updated based on the gradient of the loss func-962

tion:963

θnew = θold − η · ∇θL(θ),964

where η is the learning rate.965

To demonstrate that KERLQA works, we can966

analyze its expected behavior over many training967

iterations:968

• The expected reward E[r] will increase as the969

model learns to balance answering, abstaining,970

and utilizing external knowledge971

• As training progresses, we expect:972

– P (correct) to increase973

– P (idk|unanswerable) to increase974

– P (idk|answerable) to decrease975

– P (KG used|needed) to increase976

– P (KG used|not needed) to decrease977

• This will lead to an overall increase in E[r],978

demonstrating that KERLQA is effectively979

learning to answer questions, abstain when980

appropriate, and utilize external knowledge981

efficiently.982

Figure 1 illustrate the key components and flow983

of the KERLQA system. The diagram provides a984

visual overview of how KERLQA integrates ques-985

tion answering, knowledge enhancement, and re-986

inforcement learning to improve performance on987

low-resource language tasks:988

1. Input: The question and answer options (in-989

cluding “I don’t know”) are provided as input990

2. mT5 Encoder: The input is encoded using the991

mT5 language model.992

3. Knowledge Retrieval: Relevant knowledge is993

retrieved from external sources.994

4. Joint Graph Construction: A graph is con-995

structed using the input, mT5 encoding, and996

retrieved knowledge997

5. Node Relevance Scoring: The relevance of998

each node is scored using mT5.999

6. GNN Processing: The graph is processed us-1000

ing Graph Neural Networks.1001

7. RL Module: Either Proximal Policy Optimiza-1002

tion (PPO) or Direct Preference Optimization1003

(DPO) is applied1004

8. Output: The final answer or “I don’t know” is1005

produced.1006

B Hyperparameter Tuning 1007

B.1 Reward Function Parameters 1008

The PPO reward function in KERLQA (6) com- 1009

bines multiple indicator functions, each with their 1010

own hyperparameter. We conducted extensive 1011

grid search over these parameters using the En- 1012

glish CommonsenseQA validation set. The search 1013

ranges were: 1014

• α ∈ {0.5, 1.0, 1.5, 2.0}: Weight for correct 1015

answers 1016

• β1 ∈ {0.3, 0.5, 0.7, 1.0}: Weight for appro- 1017

priate abstention 1018

• β2 ∈ {0.3, 0.5, 0.7, 1.0}: Penalty for unnec- 1019

essary abstention 1020

• γ1 ∈ {0.2, 0.4, 0.6, 0.8}: Weight for appro- 1021

priate KB use 1022

• γ2 ∈ {0.2, 0.4, 0.6, 0.8}: Penalty for unnec- 1023

essary KB use 1024

C Impact of Translation Quality on 1025

Performance 1026

While the main results reported in Table 1 and Ta- 1027

ble 2 for isiZulu and Sepedi are based on manually 1028

translated test sets, we also conducted experiments 1029

using machine-translated versions to assess the im- 1030

pact of translation quality on KERLQA’s perfor- 1031

mance. The results in Table 5 demonstrate a con- 1032

sistent pattern of higher performance for manually 1033

translated test sets compared to machine-translated 1034

ones across both languages and datasets. These 1035

findings underscore that manually curated datasets 1036

are important for accurately assessing model capa- 1037

bilities in low-resource languages. However, when 1038

evaluating all models on the automatically trans- 1039

lated datasets for isiZulu and Sepedi, the same rel- 1040

ative trends in model performance still holds. 1041
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