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ABSTRACT

Schrödinger bridge (SB) has evolved into a universal class of probabilistic gen-
erative models. Recent studies regarding the Sinkhorn algorithm through mirror
descent (MD) have gained attention, revealing geometric insights into solution ac-
quisition of the SB problems. In this paper, we propose a variational online MD
framework for the SB problems, which provides further stability to SB solvers. We
formally prove convergence and a regret bound O(

√
T ) of online mirror descent

under mild assumptions. As a result of analysis, we propose a simulation-free SB
algorithm called Variational Mirrored Schrödinger Bridge (VMSB) by utilizing
the Wasserstein-Fisher-Rao geometry of the Gaussian mixture parameterization
for Schrödinger potentials. Based on the Wasserstein gradient flow theory, our
variational MD framework offers tractable gradient-based learning dynamics that
precisely approximate a subsequent update. We demonstrate the performance of
the proposed VMSB algorithm in an extensive suite of benchmarks.

1 INTRODUCTION

Schrödinger bridge (SB; Schrödinger, 1932) has emerged as a universal class of probabilistic gener-
ative models. However, learning methods of SB remain somewhat atypical, each requiring a sophis-
ticated approach to derive a solution. Recently, learning an SB model with Sinkhorn (Peyré et al.,
2019) has been generalized into a collection of convex optimization methods, called mirror descent
(MD; Nemirovsky & Yudin, 1983; Léger, 2021; Aubin-Frankowski et al., 2022). For a parameters
sequence {wt}Tt=1 and a convex function Ω, an update of MD for a cost function Ft is derived as

∇Ω
(
wt+1

)
= ∇Ω

(
wt

)
− ηt∇Ft

(
wt

)
. (1)

In the equation, the gradient operation denoted as ∇Ω( ·) creates a transformation that links a para-
metric space to a dual space. The collective perspective of considering SB problems (SBPs) as an
ordinary instance of optimization problems broadly opens new avenues for algorithmic advance-
ments of probabilistic generative models in a learning theoretical direction, particularly within the
context of the learning theory and stability improvements in probabilistic generative modeling.

In general, one can consider constrained distributional optimization problems with generalized gra-
dient dynamics on the space of distributions endowed with the Wasserstein metric. Leveraging the
Wasserstein gradient flow discovered by Jordan, Kinderlehrer, and Otto (JKO; Jordan et al., 1998),
the desired dynamics of a functional F : P2(X ) → R can be modeled, where P2(X ) denotes
the set of probability distributions with finite second-order moments. Despite the extensive theo-
retical findings of the Wasserstein gradient flow regarding OT problems (Ambrosio et al., 2005a;
Santambrogio, 2015; Villani, 2021), the computational challenges remain. The established methods
are commonly based on numerical methods for partial differential equations (PDEs) (Carlier et al.,
2017; Carrillo et al., 2023), whose exhaustive numerical computations make them unsuitable for
systems with high-dimensional probability densities.

A favored strategy to mitigate this issue is to narrow down the solution space into a subset of tractable
distributions, often referred to as taking a variational form (Paisley et al., 2012; Blei et al., 2017).
For example, mean-field formulations of SB (Liu et al., 2022; Claisse et al., 2023) are variational
approximations. Unfortunately, this does not faithfully yield an analytical submanifold and it is
obligated to physically simulate among particles. Recently, a Gaussian mixture parameterization of
the Schrödinger potentials has been proposed by Korotin et al. (2024). The simulation-free LightSB
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Figure 1: Learning for an SB model {πt}∞t=1.
We propose to learn in the distributional space
C. Left: Sinkhorn (Lemma 1). Right: Steepest
Wasserstein descent in C (Lemma 2).

Table 1: A technical overview. VMSB is a
simulation-free algorithm that iteratively produces
solutions. Our VMSB additionally provides a strong
theoretical guarantee of convergence.

Iterative Simulation-free Regret bound

DSB (De Bortoli et al.) ✓ ✗ ✗
DSBM (Shi et al.) ✓ ✗ ✗
LightSB (Korotin et al.) ✗ ✓ ✗
LightSB-M (Gushchin et al.) ✗ ✓ ✗

VMSB (ours) ✓ ✓ ✓

solver is simple yet general, with the guarantee of universal approximation for SB. The expressive-
ness of the solver coincides with geometric properties of Gaussian variational inference and mixture
models (Chen et al., 2018; Daudel et al., 2021; Diao et al., 2023). However, its shortcoming—as
well as other simulation-free solvers (Tong et al., 2023; Gushchin et al., 2024a)—is the uncertainty
of data-driven learning signals of non-convex objectives. This reveals room for improvement in the
rich geometric properties of SB using a variational framework.

In this paper, we explore a new way of stable Schrödinger bridge acquisition through the lens of
online mirror descent (OMD; Srebro et al., 2011). As illustrated in Fig. 1, we utilize a constrained
space C equipped with the Wasserstein metric, allowing a new formulation similar to the classical
mirror descent algorithm. As an online learning algorithm, we postulate the optimization errors of
an SB solver and propose an OMD framework to reduce these errors in terms of regrets. To this end,
we propose a new simulation-free SB algorithm called Variational Mirrored Schrödinger Bridge
(VMSB). Learning of VMSB is based on an approximation of the MD updates that solve iterative
subproblems by Wasserstein gradient dynamics. We introduce a gradient computation method of
parameterized SB models based on gradient flows with respect to Wasserstein-Fisher-Rao (WFR)
geometry (Liero et al., 2018). Our framework allows us to efficiently perform OMD, which is more
tolerant of unreliable objective estimation (Lei & Zhou, 2020). Our experiments show that the
proposed VMSB outperforms existing SB solvers in benchmark problems.

Our contributions. Our work complements earlier studies on SB, building on the theoretical and
technical insights derived from a geometric perspective that views MD solutions as gradient flows
across the Wasserstein space. To the best of our knowledge, VMSB is the first SB algorithm based
on online mirror descent that verifies its ability to solve high-dimensional real-world SB problems.
Table 1 shows that VMSB is a simulation-free SB solver that brings solid convergence results in
general situations. We summarize our main contributions below:

• Based on the learning theory, we derive gradient-based OMD update rules that provide robust
dynamics for reaching local objectives, which ensures a rigorous regret bound (§ 4).

• We propose a new SB solver based on the Wasserstein-Fisher-Rao geometry, which retains asymp-
totic stability results in Wasserstein gradient flows (§ 5).

• We demonstrate our algorithm on a variety of SBPs demonstrating the effectiveness of the learning
theoretic approach in the Schrödinger bridge problems (§ 6).

2 RELATED WORKS

MD and Sinkhorn. The Bregman divergence (Bregman, 1967) is a family of statistical divergence
that is particularly useful when analyzing constrained convex problems in various settings (Beck &
Teboulle, 2003; Boyd & Vandenberghe, 2004; Hiriart-Urruty & Lemaréchal, 2004). Notably, Léger
(2021) and Aubin-Frankowski et al. (2022) adopted the Bregman divergence into entropic optimal
transport (EOT; Peyré et al., 2019) and SBPs with probability measures, and the studies revealed that
Sinkhorn can be considered to be an MD with a constant step size η ≡ 1. In statistical geometries,
the Bregman divergence is a first-order approximation of a Hessian structure (Shima & Yagi, 1997;
Butnariu & Resmerita, 2006), which is natural discretization on a gradient flow. Deb et al. (2023)
introduced Wasserstein mirror flow, and the results include a geometric interpretation of Sinkhorn
for unconstrained OT, i.e., when ε→ 0 in our setup. Karimi et al. (2024) formulated a half-iteration
of the Sinkhorn algorithm for SB into a mirror flow, i.e., ηt → 0 with a continuous-time formulation.
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Wasserstein Gradient Flows have drawn significant attention whose geometry is formally de-
scribed by the Wasserstein-2 metric (Ambrosio et al., 2005a; Villani, 2009; Santambrogio, 2017).
Otto (2001) introduced a formal Riemannian structure to interpret various evolutionary equations
as gradient flows with the Wasserstein space, which is closely related to our variational approach.
The mirror Langevin dynamics is an early work describing the evolution of the Langevin diffusion
(Hsieh et al., 2018), and was later incorporated in the geometry of the Bregman Wasserstein diver-
gence (Rankin & Wong, 2023). We relate our methodology with recent approaches of variational
inference on the Bures-Wasserstein space (Lambert et al., 2022; Diao et al., 2023). Utilizing Bures-
Wasserstein geometry, the Wasserstein-Fisher-Rao geometry (Liero et al., 2016; Chizat et al., 2018;
Liero et al., 2018) additionally provides “liftings,” which yield an interaction among measures.

Learning Theory. Suppose we have time-varying costs {Ft}∞t=1. We generally referred to learning
through these signals as online learning (Fiat & Woeginger, 1998). Our interest lies in temporal costs
defined in a probability space, where following the ordinary gradient may not the best choice due
to the geometric constraints (Amari, 2016; Amari & Nagaoka, 2000). In this sense, we primarily
relate our work to the online form of MD (Srebro et al., 2011; Raskutti & Mukherjee, 2015; Lei &
Zhou, 2020). Another relevant design of the online algorithm is the follow-the-regularized-leader
(FTRL; McMahan, 2011; Chen & Orabona, 2023), where the distinction between two schemes is the
way of handling costs and regularization. OMD focuses on minimizing a current loss, dynamically
scheduling proximity of updates through {ηt}Tt=1. In contrast, FTRL aims to minimize historical
losses

∑
tFt(w) with a fixed regularization term.

3 PRELIMINARIES
Ω

x1

x2
xn

y1
y2

π⃗(·|x1)

π⃗(·|xn)

µ ν

Noise (W ε)

Figure 2: An SB problem.

Let P(S) (P2(S)) denote the set of (absolutely continuous) Borel
probability measures on S ⊆ Rd (with a finite second moment). For a
transport plan π, a notation π⃗x ( ⃗πy) denotes a conditional distribution
π⃗(·|x) ( ⃗π(·|y); see Fig. 2). We use KL(·∥·) to denote the KL func-
tional and assume +∞ if an argument is not absolutely continuous.
We employ P([0, 1],S) for a set of trajectories from time 0 to 1.

For marginals µ, ν ∈ P2(S) and a regularization coefficient ε ∈ R+, the EOT/SB problem with a
quadratic cost function is defined as finding the unique minimizer π∗ for the following problem:

OTε(µ, ν) := inf
π∈Π(µ,ν)

∫∫
S×S

1
2∥x− y∥

2 dπ(x, y) + εKL(π∥µ⊗ ν), (2)

where Π(µ, ν) denotes the set of couplings (Peyré et al., 2019) and µ ⊗ ν is the product of mea-
sures. For an induced dual problem the constrained optimization (2), consider the log-Schrödinger
potentials (Nutz, 2021) (φ∗, ψ∗) ∈ L1(µ)×L1(ν), which represent the EOT solution with dπ∗ =
eφ

∗⊕ψ∗−cεd(µ ⊗ ν), (µ ⊗ ν)-almost surely, for the quadratic cost cε(x, y) := 1
2ε∥x − y∥

2. The
Sinkhorn algorithm is given as the following updates (Cuturi, 2013):

ψ2t+1(y) = − log

∫
S
eφ2t(x)−cε(x,y)µ(dx), φ2t+2(x) = − log

∫
S
eψ2t+1(x)−cε(x,y)ν(dy), (3)

where each update for a potential is called iterative proportional fitting (IPF; Kullback, 1968). Let
W ε ∈ P be the Wiener process with volatility ε. The fundamental equivalence between EOT and SB
(Pavon & Wakolbinger, 1991; Léonard, 2012) allows us to consider the optimality π∗ when solving
the Schrödinger bridge problem, and we can transform π∗ to T ∗ such that:

T ∗ := argmin
T ∈Q(µ,ν)

KL(T ∥W ε), (4)

where Q(µ, ν) ⊂ P(S, [0, 1]) is the set of processes with marginals µ and ν. The SB process T ∗ is
uniquely describe by a stochastic differential equation (SDE; Léonard, 2013): dXt = g∗(t,Xt) +
dW ε

t in t ∈ [0, 1] with an optimal drift function g∗. Under the Girsanov theorem for the stochastic
processes (Vargas et al., 2021), the Sinkhorn scheme can be designed as a drift matching algorithm.

Léger (2021) and Aubin-Frankowski et al. (2022) have discovered a major link between Sinkhorn
and MD: solving SB with Sinkhorn corresponds to MD with a constant step size ηt ≡ 1. Since our
objective does not ensure Gâteaux differentiablility (see Definition 4), one needs an alternative for a
generalized notion of derivatives. Consequently, we provide the definitions of directional derivatives
(Aliprantis & Border, 2006) and first variations (Aubin-Frankowski et al., 2022).
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Definition 1 (Directional derivative). Given a locally convex topological vector spaceM, The di-
rectional derivative of F in the direction ξ is defined as d+F (x; ξ) = limh→0+

F (x+hξ)−F (x)
h .

Definition 2 (First variation). Given a topological vector spaceM and a convex constraint C ⊆ M,
for a function F and x ∈ C ∪ dom(F ), define the first variation of F over C to be an element
δCF (x) ∈ M∗, whereM∗ is the topological dual ofM, such that it holds for all y ∈ C ∪ dom(F )
and v = y − x ∈M: ⟨δCF (x), v⟩ = d+F (x; v). ⟨·, ·⟩ denotes the duality product ofM andM∗.

From the above definitions, we can consider a Bregman divergence defined with a weak notion of
the directional derivative, enabling a formal analysis akin to standard convex optimization problems.
Following Karimi et al. (2024), we explicitly set the Bregman potential Ω = KL(·∥e−cεµ ⊗ ν) in
the SB problems, which enforces the Gibbs parameterization for EOT couplings.
Definition 3 (Bregman divergence). Let Ω :M→ R ∪ {+∞} be a convex functional. Define the
Bregman divergence as DΩ(x∥y) := Ω(x)− Ω(y)− d+Ω(y;x− y), for all x, y ∈M.

Lastly, our analysis requires a certain form of measure concentration to address the desired properties
of OMD. Thus, we primarily works with asymptotically log-concave distributions initially discussed
by Otto & Villani (2000). Let us define asymptotically log-concave distributions on Rd:

Palc(Rd) := {ζ(dx) = exp(−U(x))dx : U ∈ C2(Rd), U is asymptotically strongly convex} (5)

Since Palc ensures the log Sobolev inequality (LSI; Gross, 1975), providing Fisher information as
an upper bound of the KL functional. We defer the additional theoretical details to Appendix A.

4 LEARNING SCHRÖDINGER BRIDGE VIA ONLINE MIRROR DESCENT

The goal in this section is to derive an OMD update rule for SB, and analyze its convergence. To
accomplish this, we postulate on the existence of temporal estimates and an online learning problem.
Our analysis suggests that applying an MD approach can reduce the uncertainty of these estimates.

4.1 SINKHORN AND WASSERSTEIN DESCENT

We start with our characterization of Sinkhorn and a static MD variant illustrated in Fig. 1, which
will lead to a better understanding of the OMD framework. Using the first variation δC in Definition 2
instead of standard gradient∇, we write a proximal form of an MD update as (Karimi et al., 2024)

πt+1 = argmin
π∈C

{〈
δCFt(πt), π − πt

〉
+ 1

ηt
DΩ(π∥πt)

}
, (6)

where Ft denotes a temporal cost function for SB models in C. In Eq. (6), the updates are de-
termined by the first order approximation of Ft and proximity of previous iterate πt with respect
to the Bregman divergence (Beck & Teboulle, 2003). We assume that a parameterized SB model
πt = eφt⊕ψt−cε(µ⊗ ν) obeys the following constraints for marginals and potentials:

C :=
{
π : (µ, ν) ∈ P2(Rd) ∩ Palc(Rd), (φ,ψ) ∈ L1(µ)×L1(ν), andφ,ψ ∈ C2(Rd) ∩ Lip(K)

}
,

where Lip(K) denotes a set of functions with K-Lipschitz continuity. Using the model space C, IPF
projections Eq. (3) writes as following subproblems of alternating Bregman projections:

argmin
π∈Π⊥

µ

{
KL(π∥π2t) : π ∈ C, γ2π = ν

}
, argmin

π∈Π⊥
ν

{
KL(π∥π2t+1) : π ∈ C, γ1π = µ

}
, (7)

where γ1π(x) := ∫ π(x, y)dy and γ2π(y) := ∫ π(x, y)dx and the symbols (Π⊥
µ ,Π

⊥
ν ) denote the

Sinkhorn projection spaces that preserve the property of marginals. As an optimization problem in
C, one can consider a temporal cost F̃t(π) := atKL(γ1π∥µ) + (1 − at)KL(γ2π∥ν) with sequence
{at}∞t=1 = {0, 1, 0, 1, . . . }. By construction, MD for F̃t with a step size ηt≡1 matches the Sinkhorn.

Lemma 1 (Sinkhorn). For Ω=KL(π∥e−cεµ⊗ν), iterates from πt+1 = argminπ∈C
{
⟨δCF̃t(πt), π−

πt⟩+DΩ(π∥πt)
}

is equivalent to estimates from (φt, ψt) of (3), for every update step t ∈ N0.

In contrast, we can alternatively consider a “static” objective, namely F (·) := KL(·∥π∗), where
the KL functional is originated from the formal definition of SBP (Vargas et al., 2021; Chen et al.,
2022). The following lemma show that the MD updates directly correspond to Wasserstein gradient
descent on SB models, which can be considered as the Riemannian steepest descent in the space C.

4
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Figure 4: Loss landscapes and gradient dynamics in a 2D problem. Left: In an early stage, param-
eters of three modalities {mk}3k=1 (mean estimations) for both LightSB (top) and VMSB (bottom)
methods approach the optimality with different costs. Right: In a late stage, while LightSB is vibrant
(magnified 10 times), whereas our method emits strictly convex landscape and stable dynamics.

Lemma 2 (Wasserstein descent). Suppose that F (π) := KL(π∥π∗) and f(π⃗x) := KL(π⃗x∥(π⃗∗)x)
for π ∈ S . The MD formulation of F corresponds to a discretization of a geodesic flow such that
limηt→0+

πx
t+1−π

x
t

ηt
= −∇Wf(π⃗

x
t ), where ∇W denotes the Wasserstein-2 gradient operator.

Therefore, updates for F (·) approximately lies the geodesic of C in terms of Wasserstein-2 met-
ric. Note that optimizing the cost ensures unbiased minimization (green line in Fig. 1) in C. This
interpretation allows us to consider F (·) as the ground truth cost in our SB framework.

4.2 THEORETICAL ANALYSIS Primal Space
Π⊥
ν

Π⊥
µ

C πt

πt+1

π◦
t

π∗

Dual Space

empirical
estimates

φt⊕ψt

φ∗⊕ψ∗

D
δCΩ

δDΩ
∗

Figure 3: A schematic illustration. The
primal and dual spaces (C,D) retain bidi-
rectional maps (δCΩ, δDΩ∗). Π⊥

ν and Π⊥
µ

indicate projection spaces of γ1π = µ and
γ2π = ν, respectively. The current πt per-
forms an update following a “unreliable”
leader π◦

t in a region shaded in gray.

In contrary to the ideal case of Lemma 2, we postu-
late on an online learning problem that nonstationary
estimates {π◦

t }∞t=1 are offered instead of π∗ as learning
signals, making an optimization process with Ft(·) :=
KL(·∥π◦

t ). We require some geometric conditions on
{π◦

t }∞t=0 to start our analysis. As previously studied
(Bernhard & Rapaport, 1995; Karimi et al., 2024), the
directional derivative of the Fenchel conjugate Ω∗ of
Ω + iC , Ω with an indicator function iC (defined as
iC(x) = 0 if x ∈ C and +∞ otherwise), exists by the
Danskin’s theorem, such that
δDΩ

∗(φ⊕ ψ) = argmax
π∈C

{
⟨φ⊕ ψ, π⟩ − Ω(π)

}
,

where every direct sum of potentials φ ⊕ ψ = δCΩ(π) ∈ D := δCΩ(C) represent an element of
the generalized dual space. In the dual geometry illustrated in Fig. 3, we assume uncertainty of the
ground truth in D, characterized with the following assumption.
Assumption 1 (Dually stationary process). Suppose a process {π◦

t }∞t=1 ⊂ C with ergodicity (Corn-
feld et al., 2012) of {δCΩ(π◦

t )}∞t=1. Consider π◦
D ∈ C, which is a primal representation for an

asymptotic mean upon D = δCΩ(C): π◦
D := δD(limt→∞

1
t

∑
t δCΩ(π

◦
t )]).

The assumption manifests statistical properties (such as the mean) that {π◦
t }∞t=0 remain in a sta-

tionary region as T → ∞. This is closely related asymptotically mean stationary processes (Gray
& Kieffer, 1980) which have been used to analyze stochastic dynamics.1 Fig. 4 demonstrates our
objective that OMD stabilizes learning of πt, even when the reference π◦

t tends to have perturbation.

We state two step size conditions, which will be justified in Theorem 1 and Proposition 1.
Assumption 2 (Step sizes). Assume two conditions for {ηt}∞t=0. (a) Convergent sequence & diver-
gent series: limt→∞ ηt = 0 and

∑∞
t=1 ηt =∞. (b) Convergent series for squares:

∑∞
t=1 η

2
t <∞.

Using the conditions above, we firstly argue that online mirror descent with respect to Bregman
potential Ω = KL(·∥e−cεµ⊗ ν) requires Assumption (2a) for the sake of convergence.

1Since iterates are updated through dual parameters in MD, we refer to the process as being dually stationary.
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Figure 5: Variational MD with synthetic datasets. (a) A distribution is accessible by finite batch
data. (b) 3D surfaces of (π⃗◦

T , π⃗T ) trained by Monte Carlo method for KL (top) and variational
MD (bottom) show that the MD results in more stable outcomes. (c) The plots show the estimated
KL(π⃗t∥π⃗∗) with different step size scheduling (5 runs), with red dashed baselines KL(π⃗◦

t ∥π⃗∗).

Theorem 1 (Step size considerations). Suppose a Bregman potential Ω = KL(·∥ecεµ ⊗ ν) and
strongly convex cε. Assume the idealized case of π◦

D = π∗. Then, for {πt}Tt1 ⊂ C we get
limT→∞ E1:T [DΩ(π

◦
D∥πT )] = 0 if and only if Assumption (2a) is satisfied. Furthermore, if the

step size is in the form of ηt = 2
t+1 , then E1:T [DΩ(π

∗∥πt)] = O(1/T ).

Therefore, we can assure for the ideal convergence in the SB learning when the scheduling of ηt
follows the step size assumptions. Next, we show that almost sure convergence toward π◦

D is guar-
anteed under Assumption (2b). Given the convex nature of SB cost functionals, we argue that this
convergence toward π◦

D is beneficial as long as π◦
t is trained to approximate π∗ and remain bounded.

Therefore, we argue that the convergence of SB is beneficial and address the following statement.
Proposition 1 (Convergence). Suppose that π∗ ̸= π◦

D, hence infπ∈C E[Ft(π)] > 0. If the step sizes
{ηt}∞t=0 satisfies Assumption 2, then limt→∞ E1:t[DΩ(π

◦
D∥πt)] converges to 0 almost surely.

Lastly, assume that a type of log Sobolev inequality holds (see Assumption 3) with continuity of
potentials. We present a regret bound of O(

√
T ); this newly shows that enforcing certain measure

properties of SB generalize the classical OMD results (Srebro et al., 2011; Lei & Zhou, 2020).
Theorem 2 (Regret bound). Assume φ,ψ ∈ C2(Rd) ∩ Lip(K) and Assumption 3 in Appendix A
holds with a constant ω > 0. Define D2 = max1≤t≤T DΩ(u∥πt) for a total step T . (a) For a
constant step size η ≡ D

√
ω√

2KT
the regret is bounded to D

√
2ω−1KT . (b) For a heuristic scheduling

ηt = D
√
ω/

√
2
∑

t∥ĝt∥2 the regret is bounded to D
√

2ω−1
∑

t∥ĝt∥2 where ĝt = δCΩ(πt)−δCΩ(π◦
t ).

Fig. 5 shows our experiments for Gaussian mixture models (GMMs). Let a reference estimation be
fitted using a Monte Carlo method, and our model be trained through an OMD method. We observed
that the OMD method provides stability improvement when η < 1. The performance of OMD was
greatly improved by choosing a harmonic step size scheduling in the interval [1.0, 0.05].

4.3 ONLINE MIRROR DESCENT USING A WASSERSTEIN GRADIENT FLOW

For the computation, we adopt the Wasserstein gradient flow theory. Learning with Wasserstein
gradient flows Eq. (9) is asymptotically stable due to the LaSalle’s invariance principle (Carrillo
et al., 2023). Suppose we expand a time step interval [t, t + 1) for OMD into continuous dynamics
of ρ(τ) ∈ C for τ ∈ [0,∞). By Otto’s calculus on the Wasserstein space (Otto, 2001), known as the
Otto calculus, one can describe the gradient dynamics of minimizing a functional Et(·) by a PDE:

∂τρτ = −∇WEt(ρ), (8)

where∇W denotes the Wasserstein-2 gradient operator∇W := ∇·
(
ρ∇ δ

δρ

)
. Recall that that the objec-

tive Ft satisfies the 1-relative-smoothness and 1-strong-convexity relative to Ω (Aubin-Frankowski
et al., 2022) (see Definition 6). Then, we can convert the MD update problem (10) into another prob-
lem with identical smoothness and convexity. We present the following theorem for computation.
Theorem 3 (Dynamics equivalence in first variation). Consider the Wasserstein gradient dynamics
in PDE (8) governed by the convex problem of OMD updates (6). The gradient dynamics of updates
are equivalent to that of a linear combination of KL functionals such that

ηtδCEt(ρτ ) = δC
{
ηtKL(ρτ∥π⃗◦

t ) + (1− ηt)KL(ρτ∥πt)
}
∀ρτ ∈ C, (9)

and the PDE (8) converges a unique equilibrium of subsequent OMD iterate of Eq. (6) as τ →∞.
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Sketch of Proof. We identify δEt as a dynamics that reaches an equilibrium solution for

minimize
π∈C

〈
δCFt(πt), π − πt

〉
+ 1

ηt
DΩ(π∥πt)

⇐⇒ minimize
π∈C

ηt DΩ(π∥π◦
t )︸ ︷︷ ︸

empirical estimates

+(1− ηt)DΩ(π∥πt)︸ ︷︷ ︸
proximity

, (10)

and then the equivalence of first variation for recursively defined Bregman divergences is applied
(Lemma 4). At a glance, Eq. (10) appears analogous to the interpolation search between two points,
where the influence of π◦

t is controlled by ηt. We leave the entire proof in Appendix A.5.

Theorem 3 holds practical importance since following the argument allows us to perform MD with-
out directly computing Bregman divergence. Therefore, we propose to perform updates with a
linear combination of two KL functionals, where such gradient flows has been extensively studied
both theoretically and computationally (Jordan et al., 1998; Lambert et al., 2022).

5 ALGORITHM: VARIATIONAL MIRRORED SCHRÖDINGER BRIDGE

In this section, we propose a simulation-free method that offers iterative MD updates for parameter-
ized SB models with mixture models, using the Wasserstein-Fisher-Rao geometry.

5.1 GAUSSIAN MIXTURE PARAMETERIZATION FOR THE SCHRÖDINGER BRIDGE PROBLEM

Recently, Korotin et al. (2024) proposed the GMM parameterization, which provides theoreti-
cally and computationally desirable models for our variational OMD approach. The parameteri-
zation considers the adjusted Schrödinger potential u∗(x) := exp(φ∗(x) − ∥x∥2

/2ε) and v∗(y) :=

exp(ψ∗(y) − ∥y∥2
/2ε). With a finite set of parameters θ ≜ {αk,mk,Σk}Kk=1 for αk > 0,mk ∈ Rd

and Σk ∈ Sd++. The adjusted Schrödinger potential vθ and conditional probability density π⃗θ write

vθ(y) :=

K∑
k=1

αkN(y |mk, εΣk), π⃗xθ (y) :=
1

zxθ

K∑
k=1

αxkN (y |mx
k, εΣk), (11)

where each parameter for π⃗x conditioned by an input x: mx
k := mk + Σkx, αxk :=

αk exp
(
xTΣkx+⟨mk,x⟩

2ε

)
, zxθ :=

∑K
k=1 α

x
k (see Proposition 3.2 of Korotin et al.). For this param-

eterization, the closed-from expression of SB process Tθ is given as the following SDE:

Tθ : dXt = gθ(t,Xt) dt+
√
εdWt, t ∈ [0, 1)

gθ(t, x) := ε∇ logN(x|0, ε(1− t)Id)
K∑
k=1

αkN(mk|0, εΣk)N
(
mk(t, x)

∣∣0, Ak(t)), (12)

where mk(t, x) ≜ x
ε(1−t) +

1
εΣ

−1
k mk and Ak(t) ≜ t

ε(1−t)Id +
1
εΣ

−1
k . Korotin et al. (2024) also

presented theoretical properties for probabilistic inference and diffusion models, including universal
approximation of π⃗θ and Tθ. Furthermore, the GMM parameterization makes the computation of the
Wasserstein gradient flow with respect to the KL divergence tractable, which is elaborated in § 5.2.

5.2 COMPUTATION OF VARIATIONAL MD IN THE WASSERSTEIN-FISHER-RAO GEOMETRY

Wasserstein-Fisher-Rao. The space of Gaussian parameters Rd × Sd++ equipped with W2 is for-
mally known as the Bures-Wasserstein (BW) geometry (Bures, 1969; Bhatia et al., 2019; Lambert
et al., 2022) BW(Rd) ⊆ P2(Rd). On top of the BW space, the Wasserstein-Fisher-Rao geometry of
GMMs, namely P2(BW(Rd)) provides liftings of Gaussian particles (Liero et al., 2018; Chizat et al.,
2018; Lu et al., 2019; Lambert et al., 2022) satisfying the distributional property. We present the
following proposition, which describes the WFR dynamics θτ for the LightSB parameterization π⃗xθ .

Proposition 2 (WFR gradient dynamics). Suppose a GMM ρθτ with θτ = {αk,τ ,mk,τ ,Σk,τ}Kk=1.
Let yk,τ ∼ N (mk,τ ,Σk,τ ) denote a sample from the k-th Gaussian particle of ρθτ . Then, the WFR

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

dynamics∇WFRKL(ρθτ ∥ρ∗) wrt θ̇τ = {α̇k,τ , ṁk,τ , Σ̇k,τ}Kk=1 are given as

α̇k,τ = −
(
E
[
log

ρθτ
ρ∗

(yk,τ )

]
− 1

zτ

K∑
ℓ=1

αℓE
[
log

ρθτ
ρ∗

(yℓ,τ )

])
αk,τ , (13)

ṁk,τ = −E
[
∇ log

ρθτ
ρ∗

(yk,τ )

]
, Σ̇k,τ = −E

[
∇2 log

ρθτ
ρ∗

(yk,τ )

]
Σk,τ − Σk,τE

[
∇2 log

ρθτ
ρ∗

(yk,τ )

]
,

for τ ∈ [0,∞), where zτ :=
∑K
k=1 αk;∇ and∇2 denote gradient and Hessian with respect to yk,τ .

Appendices A.6 and B contain the complete theory. Proposition 2 implies that the one parameter
family θτ predicts a gradient-based algorithm of∇WFRKL(ρθτ ∥ρ∗), thus Eq. (13) can be directly used
for training GMM models. Recall that GMMs have a closed-form expression of log-likelihoods,
which means each likelihood difference can be driven without errors. Given that the target has the
identical number of Gaussian particles, both Eq. (13) and its approximation using finite samples
will strictly have zero gradients after the flow reaches a certain equilibrium. Hence, abiding WFR
gradient dynamics will result in more stable outcomes than standard gradient-based learning.

Algorithmic considerations. We introduce SB parameters θ and ϕ, which represents π⃗t and π⃗◦
t

from the theoretical framework in § 4.2, and π⃗ϕ is independently fitted using an arbitrary data-driven
SB solver, such as LightSB and its variants. Also, we introduce the following gradient operation

WFRgrad(θ;ϕ, x, ny) ≈ ∇WFRKL(π⃗θ∥π⃗ϕ) = {α̇xk, ṁx
k, Σ̇k}Kk=1 in Proposition 2. (14)

For the operator WFRgrad, the WFR gradient (13) is estimated using finite ny samples from each
Gaussian particle of π⃗θ, expressed as {Y x

k }Kk=1 ∈ Rk×ny . At each iteration t, we propose to update
the SB model π⃗θ with ηtWFRgrad(θ;ϕ) + (1− ηt)WFRgrad(θ;ϕ), as stated in Theorem 3.

Algorithm 1 Variational Mirrored SB (VMSB).

Input: SB models (π⃗θ, π⃗ϕ) parameterized by
Gaussian mixtures, step sizes (η1, ηT ).

1: for t← 1 to T do
2: ηt ← 1/

(
η−1
1 + (η−1

T − η−1
1 )(t−1/T−1)

)
3: for n← 1 to N do
4: Update π⃗ϕ with a data-driven SB solver.
5: {xi}Bi=1 ← sample batch data from µ.
6: ∂L

∂θ ←
1
B

∑B
i=1ηtWFRgrad(θ;ϕ, xi)+

(1− ηt)WFRgrad(θ; θt−1, xi)
7: Update θ with the gradient ∂L∂θ .
8: end for
9: end for

Output: Trained SB model π⃗θ.

We propose to gradually minimize the step size
by a harmonic series for 1 ≥ η1 ≥ ηT > 0.
According to Proposition 1, one can schedule
of the step size ηt with a harmonic progression.
We set η1 = 1 and ηT ∈ {0.05, 0.1} which
varies depending the total length of training.
We can also put a few “warm up” steps for com-
plex problems and start from θ = ϕ after certain
updates enforcing ηt ≡ 1 for the early training
stage. For the distribution µ, we set xi = 0 and
B = 1 only when µ is a zero-centered Gaus-
sian distribution. This is equivalent to directly
training the potential vθ ∝ πθ(·|x = 0), and
this tricks makes the algorithm run efficiently
for certain generation problems. Algorithm 1
outlines the overall procedure.

6 EXPERIMENTAL RESULTS

Experiment goals. We delineate our objectives as follows: 1⃝ We aimed to affirm our online
learning hypothesis by demonstrating consistent improvements. 2⃝ We sought to corroborate our

filter
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Figure 6: Online SBPs for synthetic dataset streams. (a) An online learning problem with a rotating
filter. (b) The plots show that our VMSB and VMSB-M show consistent improvements from their
references regarding the ED metric with 95% confidence intervals for 5 runs with different seeds.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: A summary of EOT benchmark scores with cBW2
2-UVP ↓ (%) between the optimal plan π∗

and the learned plan πθ across five different seeds. We highlighted the VMSB results in bold when
they exceed their reference algorithm. See Appendix E for more comprehensive statistics.

Type Solver
ε = 0.1 ε = 1 ε = 10

d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128

Classical solvers (best; Korotin et al.)† 1.94 13.67 11.74 11.4 1.04 9.08 18.05 15.23 1.40 1.27 2.36 1.31

rev. KL LightSB (Korotin et al.) 0.007 0.040 0.100 0.140 0.014 0.026 0.060 0.140 0.019 0.027 0.052 0.092
Bridge-M LightSB-M (Gushchin et al.) 0.017 0.088 0.204 0.346 0.020 0.069 0.134 0.294 0.014 0.029 0.207 0.747

Var-MD VMSB (ours) 0.004 0.012 0.038 0.101 0.010 0.018 0.044 0.114 0.013 0.019 0.021 0.040
Var-MD VMSB-M (ours) 0.015 0.067 0.108 0.253 0.010 0.019 0.094 0.222 0.013 0.029 0.193 0.748

theoretical results, aiming for stable performance that consistently exceeds that of benchmarks. 3⃝
We aimed to verify that our algorithm effectively induces OMD by the Wasserstein gradient flow.

Baselines and VMSB variants. Korotin et al. (2024) introduced a streamlined, simulation-free
solver called LightSB that optimizes ϕ through Monte Carlo approximation of KL(π⃗∗∥π⃗ϕ). As an
alternative, LightSB-M (Gushchin et al., 2024a) reformulated the reciprocal projection from DSBM
(Shi et al., 2023) to a projection method termed optimal projection, establishing approximated bridge
matching for the trajectory distribution Tϕ. For the implementation of Algorithm 1, we derived two
distinct methods called VMSB and VMSB-M (π⃗θ), trained upon LightSB and LightSB-M (π⃗ϕ),
respectively. Since the theoretical arguments imply that the algorithm is agnostic to targets, the
performance benefits of VMSB variants from their references support the generality of our claims.

6.1 STABILITY OF SB IN SYNTHETIC DATA STREAMS

To validate our online learning hypothesis, we considered 2D SBPs for data streams depicted in
Fig. 6 (a). We applied an angle-based rotating filter, making the marginal as a data stream where
only 12.5% (or 45-degree angle) of the total data is accessible for each step t. We trained con-
ditional models π⃗θ for ordinary SB for the 2D coordinates. Fig. 6 (b) shows the plots of squared
energy distance (ED), which is a special instance of squared maximum mean discrepancy (MMD),
approximating the L2 distance between distributions: ED(P,Q) ≈

∫
(P (x) − Q(x))2dx (Rizzo &

Székely, 2016). In our ED evaluation, the MD algorithm achieved a strictly lower divergence than
the LightSB and LightSB-M solvers for various numbers of Gaussian particles K. Therefore, we
concluded that these results aligned with our hypothesis and theory of online mirror descent.

6.2 QUANTITATIVE EVALUATION ON THE EOT BENCHMARK

Next, we considered the EOT benchmark proposed by Gushchin et al. (2024b), which contains
12 entropic OT problems with different volatility and dimensionality settings. Table 2 shows that
among 24 different settings, our MD approach exceeded the reference model in 23 settings in terms
of the cBW2

2-UVP metric (Gushchin et al., 2024b). From our replication of LightSB/LightSB-M,
which achieved better performance than originally reported results. As a result, our method reached
the state-of-the-art performance in this benchmark with stability, which represents strong evidence
of Proposition 1. Among all cases, the only exception was LightSB-M, which had the highest
dimension and volatility. We suspected that the drift form Eq. (12), which is proportional to ε, might
have violated our assumptions Assumption 1 and the boundedness assumption during the training.
Thus, we conclude that our variational MD training is effective in various setups.

6.3 SB ON BIOLOGICAL DATA Table 3: Energy distance on the MSCI dataset (95%
confidence interval, ten trials with different instances).
Results marked with ‡ are from (Gushchin et al., 2024a).

Type Solver d = 50 d = 100 d = 1000

Sinkhorn Vargas et al. (2021)† 2.34 2.24 1.864
Bridge-M DSBM (Shi et al.)‡ 2.46± 0.1 2.35± 0.1 1.36± 0.04
Bridge-M SF2M-Sink (Tong et al.)‡ 2.66± 0.18 2.52± 0.17 1.38± 0.05

rev. KL LightSB 2.31± 0.08 2.15± 0.09 1.264± 0.06
Bridge-M LightSB-M 2.30± 0.08 2.15± 0.08 1.267± 0.06

Var-MD VMSB (ours) 2.28± 0.09 2.13± 0.09 1.260± 0.06
Var-MD VMSB-M (ours) 2.26± 0.10 2.12± 0.09 1.265± 0.05

We also evaluated VMSB on unpaired
single-cell data problems in the high-
dimensional single-cell experiment (Tong
et al., 2023). The MSCI dataset provided
single-cell data from four donors on days
2, 3, 4, and 7, describing the gene expres-
sion levels of distinct cells. Given sam-
ples collected on two different dates, the
task involves performing inference on temporal evolution, such as interpolation and extrapolation of
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VMSB-adv (MNIST) VMSB-adv (EMNIST) LightSB-adv (EMNIST)

Figure 7: Generated MINST/EMNIST translation samples.

Table 4: FID and MSD similarity
scores in EMNIST-to-MNIST.

Method FID MSD

U
-n

et SF2M-Sink 23.215 0.456
DSBM-IPF 15.211 0.352
DSBM-IMF 11.429 0.373

G
M

M LightSB-adv 20.017 0.362
VMSB-adv 15.471 0.356

Adult → Child VMSB VMSB-M Male → Female VMSB VMSB-M

Child → Adult VMSB VMSB-M Female → Male VMSB VMSB-M

Embedding energy distance

Figure 8: Image-to-Image translation on a latent space. Left: Generation results for the FFHQ
dataset (1024× 1024) using our two SB variants. Right: Quantitative results using MMD metrics.

PCA projections with {50, 100, 1000} dimensions. Table 3 shows that our VMSB method achieved
the best results, verifying that VMSB is well-suited for the real-world EOT problems.

6.4 INTERACTING WITH NETWORKS: UNPAIRED IMAGE-TO-IMAGE TRANSFER TASKS

Adversarial learning. We applied VMSB to unpaired image translation tasks. LightSB methods
struggled to generate raw pixels for the MNIST and EMNIST datasets. As our analysis did not spec-
ify a training algorithm for the target {π◦

t }∞t=1, we opted to find a viable alternative, and we discov-
ered that extending the capabilities of GMM parameterization by incorporating learning dynamics
with an adversarial learning technique (Goodfellow et al., 2014; see Appendix C.5) was effective in
providing rich learning signals. Therefore, we named the adversarial method and the VMSB adap-
tation LightSB-adv and VMSB-adv. Fig. 7 shows that VMSB-adv outperformed LightSB-adv (with
identical architecture) in the quality of samples, efficiently mitigating mode-collapsing (Salimans
et al., 2016). In Table 4, VMSB also achieved competitive FID and input/output MSD similarity
scores for K = 4096, comparable to deep SB models with a smaller number of parameters.

Latent diffusion bridge. Following the latent diffusion bridge practice of (Korotin et al., 2024),
we assessed our method by utilizing the ALAE model (Pidhorskyi et al., 2020) for generating
1024×1024 images of the FFHQ dataset (Karras et al., 2019). With the predefined 512-dimensional
embedding space, we trained our SB models on the latent space to solve four distinct tasks:
Adult→ Child, Child→ Adult, Female→ Male, and Male→ Female. Fig. 8 illustrates that our
method delivered high-quality translation results. We also conducted a quantitative analysis using
the ED on the ALAE embedding as a metric for evaluation. The result also verifies that our VMSB
algorithm consistently achieved lower ED scores, demonstrating its applicability for pretrained la-
tent spaces. Consequently, adversarial learning and latent diffusion applications showed that the
proposed algorithm is highly capable of interacting with neural networks of complex architectures.

7 CONCLUSION

In this paper, we have presented an OMD framework developed to solve SBPs with robustness.
Our geometric interpretation of the dual space allowed us to construct a robust OMD algorithm with
theoretical guarantees for convergence and regrets. We substantially reduced the computational chal-
lenge in the MD framework using the WFR geometry. The proposed method demonstrated stable
benchmark performance, exhibiting enhanced stability. We argue that the VMSB algorithm offers a
promising approach for solving probabilistic generative modeling in the context of learning theory.
The limitations and potential directions for future research are thoroughly discussed in Appendix D.

10
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action: The Hellinger–Kantorovich distance and geodesic curves. SIAM Journal on Mathematical
Analysis, 48(4):2869–2911, 2016.

Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Optimal entropy-transport problems and a
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Appendices for
Variational Mirror Descent for Robust Learning in Schrödinger Bridge

ABBREVIATION AND NOTATION

Abbreviation Expansion

SB Schrödinger Bridge
SBP Schrödinger Bridge Problem
EOT Entropy-regularized Optimal Transport
MD Mirror Descent
OMD Online Mirror Descent
KL Kullback-Leibler
IPF Iterative Proportional Fitting
BW Bures-Wasserstein
WFR Wasserstein-Fisher-Rao
SDE Stochastic Differential Equation
PDE Partial Differential Equation
FP Fokker–Planck
GMM Gaussian mixture model

Notation Usage

µ, ν marginal distributions
ε volatility of reference measure
cε cost cε(x, y) := 1

2ε∥x− y∥
2

π a coupling of µ and ν
π⃗, ⃗π conditional distributions
γn n-th marginal
φ,ψ log-Schrödinger potential
u, v adjusted Schrödinger potential
Ω, DΩ Bregman potential/divergence
d+ directional derivative
δC, δD First variations
∇W Wasserstein-2 gradient operator
T dynamic stochastic process in SB
g drift function
iC indicator function

A THEORETICAL DETAILS AND PROOFS

In this appendix, we first introduce an comprehensive theoretical background supporting our argu-
ments. Then, we provide the formal proofs in the main paper.

Background on first variation operators. We utilize the notations δC and δD to denote the first
variation operators in generalized primal and dual spaces, respectively. This is because SB is clas-
sified as an infinite-dimensional optimization problem (Aliprantis & Border, 2006). The theoretical
necessity of these operators follows the discussion provided by Aubin-Frankowski et al. (2022).

Definition 4 (Gâteaux and Fréchet differentiablility). LetM be a topological vector space of mea-
sures on the space X . Define the Gâteaux differentiablity of a functional F , if there exists a gradient
operator ∇Gât such that for any direction v ∈M, defined as the limit

∇GâtF (x)[v] = lim
h→0

F (x+ hv)− F (x)
h

, x ∈M

If the limit exists in the unit ball inM, the function F is called Fréchet differentiable with∇FréF (x).

The problem of the Gâteaux and Fréchet differentiability in the context of SB is that the limit must
be given in all directions, implying that every neighboring point must be within the domainM. For
the case of functionals such as the KL divergence functional F (·) = KL(·|π∗), the domain of F and
has an empty interior (Aubin-Frankowski et al., 2022). To resolve this issue, we can use the notion
of directional derivative and first variation, defined in Definitions 1 and 2.

First variations of KL. Suppose that for distribution ρ, ρ′ ∈ P2(X ),X ⊆ Rd, and define a func-
tion ℓ′(x) := logρ′(x), and suppose κ in a tangent space TρP(X ). We can achieve the followings:

KL(ρ∥ρ′) =
∫
X
log ρ(x) dρ(x)−

∫
X
ℓ′(x) dρ(x) (15)∫

ℓ′(x)[ρ(x) + hκ(x)] dx =

∫
ℓ′(x)ρ(x) dx+ h

∫
ℓ′(x)κ(x) dx (16)
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Given that log(z + ε)(z + ε) = log(z)z + [log(z) + 1]ε+ o(ε), and
∫
X κ(x) dx = 0, we achieve∫

X
log

(
ρ(x) + hκ(x)

)(
ρ(x) + hκ(x)

)
dx

=

∫
X
log ρ(x)ρ(x) + [log ρ(x) + 1]hκ(x) + o(h) dx

=

∫
X
log ρ(x)ρ(x)dx+ h

∫
S
log ρ(x)κ(x)dx+ h

∫
κ(x)dx+ o(h)

(17)

Recall that a first variation of a functional δF : P(X )→ T ∗P(X ) satisfies:

F (ρ+ hκ) = F (ρ) + h

〈
log

(
ρ

ρ′

)
, κ

〉
+ o(h).

We leave the following remark for the first variation operator works in KL functionals.
Remark 1. Combining Eqs. (15 -17), the first variation of the functional δKL(ρ∥ρ′) = log ρ

ρ′ .

For some distributions, log-likelihoods are often given in a closed-form expression, incentivizing
our development of computational continuous EOT/SB algorithms. Generally, identical arguments
generally apply to all KL functionals with respect to distributions (π, π⃗, and marginals) in our setup.

Asymptotically log-concave distributions. For convergence analysis, we assume each marginal
distribution is in log-concave distribution, particularly satisfying the log Sobolev inequality (Otto &
Villani, 2000; Conforti, 2024). This assumption works a wider range of costs and marginals beyond
popular choices bounded costs and compact marginals (Nutz & Wiesel, 2023; Conforti et al., 2023).
Suppose that marginals admit densities of the form

µ(dx) = exp(−Uµ(x))dx and ν(dy) = exp(−Uν(y))dy. (18)

We exploit the following definition from (Conforti et al., 2023) in order to describe asymptotically
log-concaveness.
Definition 5 (Asymptotically strongly log-concavity). We assume that marginals µ and ν ad-
mit a positive density against the Lebesgue measure, which can be written in the form
(18). Uµ, Uν are of class C2(Rd). Define a set G := {g ∈ C2((0,+∞),R+)|r 7→
r1/2g(r1/2)is non-increasing and concave, limr→0 rg(r) = 0}.

G̃ := {g ∈ G bounded and s.t. lim
r→0+

g(r) = 0, g′ ≥ 0 and 2g′′ + gg′ ≤ 0} ⊂ G.

Define convexity profile κU : R+ → R of a differentiable function U as the following

κU (r) :=

{
⟨∇U(x)−∇U(y), x− y⟩

|x− y|2
: |x− y| = r

}
.

We say a potential is asymptotically strongly convex if there exists αU ∈ R+ and g̃U ∈ G̃ such that

κU (r) ≥ αU − r−1g̃U (r)

holds for all r > 0. We consider the set of asymptotically strongly log-concave probability measures

Palc(Rd) := {ζ(dx) = exp(−U(x))dx : U ∈ C2(Rd), U is asymptotically strongly convex}.

From the work of (Otto & Villani, 2000; Conforti et al., 2023), asymptotically log-concave functions
satisfy a certain form of log Sobolev inequality (Gross, 1975). The simplest case of LSI for the
Gaussian measure is represented as follows.
Remark 2 (log-Sobolev inequality for the standard Gaussian). Suppose that f is a nonnegative
function, integrable with respect to a measure γ, and that the entropy is defined as Entγ(f) =∫
Rd f log fdγ−

(∫
Rd fdγ

)
log

(∫
Rd fdγ

)
. the logarithmic Sobolev inequality when γ is the standard

Gaussian measure reads Entγ(f) ≤ 1
2

∫
Rd

|f |2
f dγ.

The important extension of asymptotically strong log-concave distributions for Schrödinger bridge
dπ = eφ⊕ψ−cεd(µ⊗ν), (µ⊗ν)-a.s. is that induced SB model also satisfies asymptotically strongly
log-concaveness and the log Sobolev inequality (Conforti, 2024). Therefore, the Gaussian mixture
parameterization in Eq. (11) is a representative model that our theoretical analysis is dealing with.
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Remark 3 (Conforti, 2024). Let µ, ν ∈ Palc(Rd) with finite entropy on a Lebesgue measure and
π ∈ C be a coupling in a static Schrödinger bridge problem. Then, for a quadratic cost function, the
coupling distribution is also asymptotically log-concave and satisfies a form of logarithmic Sobolev
inequality.

Using the disintegration theorem for probability measures (Léonard, 2014), we assume the bound-
edness of Bregman divergence between two transport plans using derivatives of first variations with
some positive constraint ω > 0 by the following assumption.
Assumption 3 (LSI for EOT couplings). Let us suppose Ω = KL(π∥R) for a reference measureR.
We assume arbitrary π, π̄ ∈ C satisfy a type of logarithmic Sobolev inequality for relative entropy
(KL divergence) is upper bounded by (relative) Fisher information (Gross, 1975), namely LSI(ω)
for some ω̄ ∈ R+ as follows.

DΩ(π∥R) = KL(π∥R) ≤ 1

2ω̄

∫∫
Rd×Rd

∣∣∣∣∇ log
π(x, y)

R(x, y)

∣∣∣∣2π(dx,dy)
where Ω = KL(·∥R). By the first variation of KL (Remark 1), equivalence in the first variation of
Bregman divergences (explained later in Lemma 4) and an application of the Hölder’s inequality,
assume that we can find a constant ω > 0 such that that

DΩ(π∥π̄) ≤
1

2ω

∥∥∇(δCΩ(π)− δCΩ(π̄))∥∥2L2(π)
(19)

for the Bregman potential Ω = KL(·∥e−cεµ⊗ ν).

In general, the log-Sobolev inequality has often been used to analyze the convergence of partial
differential equations (Malrieu, 2001). In the same vein, to make an analysis on improvement
(Lemma 12) and a solid regret bound of OMD (Lemma 14), we found that Assumption 3 is necessary
to ensure a certain asymptotical concentration of measure.

General assumptions and justifications. We need the following assumptions for our OMD frame-
work. 1⃝ (Existence) The sequence of MD from Eq. (6) exists {πt}t∈N ⊂ C, and are unique, 2⃝
(Relative smoothness/convexity) For some l, L ≥ 0, the functional Ft is L-smooth and l-strongly-
convex relative to Ω. 3⃝ (Existence of first variations) For each t ≥ 0, the first variation δCΩ(πt)
exists. 4⃝ (Boundedness of estimations) The asymptotic dual mean π◦

D is almost surely bounded
Pr(DΩ(πt∥π◦

D) ≤ R) = 1 for some R > 0. 5⃝ (Ergodicity) The estimation process of {π◦
t }∞t=1 is

governed by a measure-preserving transformation on a measure space (Y,Σ, ς) with ς(Y) = 1; for
every event E ∈ Σ, ς(T−1(E)∆E) = 0 (that is, E is invariant), either ς(E) = 0 or ς(E) = 1.2 For
1⃝, the temporal cost Ft(·) = KL(·|π◦

t ) is well defined since KL is a strong Bregman divergence
with lower semicontinuity, where the existence of a primal solution in guaranteed as discussed in
Aubin-Frankowski et al. (2022). For 2⃝- 3⃝, we can identify l = L = 1 and close-form expression
of the first variation that is shown in Definition 6 and Proposition 2. For the assumptions 4⃝- 5⃝,
we postulate the existence of estimates produced from a Monte-Carlo method, using a fixed amount
of updates on topological vector space. Hence, it is natural to consider that these estimates will
be bounded in a probabilistic sense and yield Markovian transitions, which are aperiodic and irre-
ducible.

A.1 PROOFS OF LEMMAS 1 AND 2

The EOT in Eq. (2) can be reformulated as a divergence minimization problem with respective to a
reference parameterization. If a Gibbs parameterization is enforced for the quadratic cost functional
cε(x, y) =

1
2ε∥x− y∥

2 for ε > 0, the problem has the equivalence (Nutz, 2021)

OTε(µ, ν) := min
π∈Π(µ,ν)

KL
(
π∥e−cεµ⊗ ν

)
, (20)

which corresponds KL(T ∥W ε) in Eq. (4) by the disintegration theorem of Schrödinger bridge (Ap-
pendix A of Vargas et al. (2021)). While the Bregman projection formulation of Sinkhorn Eq. (7)
are described by the spaces (Π⊥

µ ,Π
⊥
ν ), it is (equally) natural to think that considering the prob-

lem as convex problem with the distributional constraint C (see the primal space in illustrated in

2Here, ∆ denotes the symmetric difference, equivalent to the exclusive-or with respect to set membership.
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Fig. 3). As a problem in C, one can consider a temporal cost functional F̃t(π) := atKL(γ1π∥µ) +
(1 − at)KL(γ2π∥ν) with sequences {at}∞t=1 = {0, 1, 0, 1, . . . } for γ1π(x) := ∫ π(x, y)dy and
γ2π(y) := ∫ π(x, y)dx. By construction, we have the following MD update:

minimize
π∈C

〈
F̃t, π − πt

〉
+DΩ(π∥πt). (21)

The optimization problem (21) is equivalent to having the property for subsequent πt+1:

d+F̃t(πt;π − πt) +DΩ(π∥πt) ≥ d+F̃t(πt;πt+1− πt) +DΩ(πt+1|πt)
⇐⇒

〈
δCF̃t(πt)− δCΩ(πt), π − πt+1

〉
+
(
Ω(π)− Ω(πt+1)

)
≥ 0, ∀π ∈ C.

(22)

Setting the free parameter π = πt+1 + h(π − πt+1) and taking the limit h → 0+ yields described
the time evolution of the log-Schrödinger potentials for πt = eφt⊕ψt−cεd(µ⊗ ν):

φ̇t = − log
d(γ1πt)

dν∗
= −α

(
φt − φ∗ + log

∫
Rd

eψt−ψ∗
ν(dy)

)
, (23a)

ψ̇t = − log
d(γ2πt)

dµ∗
= −β

(
ψt − ψ∗ + log

∫
Rd

eφt−φ∗
µ(dx)

)
, (23b)

for α = at and β = 1−at.3 Setting a discrete approximation of dynamics Eq. (23): φt+1 = φt+ φ̇t
and ψt+1 = ψt + ψ̇t yields the following alternating updates:

ψ2t+1(y) = − log

∫
Rd

eφ2t(x)−cε(x,y)µ(dx), φ2t+2(x) = − log

∫
Rd

eψ2t+1(x)−cε(x,y)ν(dy).

Therefore, the proof of Lemma 1 is complete.

From the dual iteration of KL stated in Eq. (34), for the static cost KL(·∥π∗), we get the closed-form
expression:

δCΩ(πt)− δCΩ(πt+1) = ηt
(
δCΩ(πt)− δCΩ(π∗)

)
,

where the equation implies that setting ηt ≡ 1 for MD yields one-step optimality π∗ in this idealized
condition. Utilizing the equivalence of first variation stated in Lemma 4 and the disintegration
theorem for the Radon-Nikodym derivatives, we get the first variation of F with respect to π for all
x as

δF (π) = log
dπ∗

dπ
,

and by the disintegration theorem (Léonard, 2014), we achieve the first variation of f with respect
to π⃗ for all x as

δf(π⃗x) = log
d(π⃗∗)x

dπ⃗x
. (24)

Using Otto’s formalization of Riemannian calculus (Otto, 2001) discussed in Appendix B, the prob-
ability space equipped with the Wasserstein-2 metric (P2(Rd),W2), is represented as Riemannian
gradient flow:

∂tπ⃗
x
t = −∇Wf(π⃗

x
t ),∀x ∈ Rd (25)

where∇W denotes the Wasserstein-2 gradient operator∇W := ∇·
(
ρ∇ δ

δρ

)
.

∂tπ⃗
x
t = −∇ · (π⃗x∇ log(π⃗∗)x) + ∆π⃗xt ,

where the results on Wasserstein gradients are initially founded by Jordan et al. (1998). Since the
above equation represent the Fokker–Planck equation, following the Wasserstein gradients always
operate within C.

A.2 PROOF OF THEOREM 1

We start with the following idempotence property that taking a Bregman divergence associated with
a Bregman divergence DΩ(·|y) remains as the identical divergence. We use M(X ) to denote a
topological vector space (Aliprantis & Border, 2006) for X ⊆ Rd.

3More precisely, one needs to apply Lemma 4 for KL, and the disintegration theorem to get Eq. (23).
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Lemma 3 (Idempotence). Suppose a convex functional Ω :M(X ) → R ∪ {+∞}, whereM(X ).
Assume that for all z ∈ dom(Ω), δCΩ(z) exists, then, for all x, y ∈ C ∩ dom(Ω), DDΩ(·|y)(x|y) =
DΩ(x|y).

Proof of Lemma 3. By definition, we have DDΩ(·|z)(x|y) = DΩ(x∥z) − DΩ(y∥z) − ⟨δCΩ(y) −
δCΩ(z), x − y⟩ for arbitrary z, and setting z = y completes the proof. Note that instead of the
(global or universal) idempotence initially stated by Aubin-Frankowski et al. (2022), we only work
with localized version of idempotence at the minima y. Another (informal) point of view is consid-
ering the Bregman divergence as a first-order approximation of a Hessian structure, and DDΩ(·|z)
converges to DΩ(·|z) by taking a limit, knowing that DΩ(y|y) = 0.

We then proceed to an equivalence property of the family of recursive Bregman divergences.

Lemma 4 (Equivalence of first variation). Suppose Ω :M(X ) → R ∪ {+∞} Assume that for all
z ∈ dom(Ω), the first variation δCΩ(z) exists, then, for all x, y, y1, y2 ∈ dom(Ω), the first variation
taken for the first argument x of the following Bregman divergences are equivalent: δCDΩ(x|y) =
δCDDΩ(·|y1)(x|y) = δCDDΩ(·|y2)(x|y).

Proof of Lemma 4. First, it can be analytically driven δCDΩ(x|y) = δCΩ(x) − δCΩ(y). Next, by
definition, taking the first variation of DDΩ(·|z)(x|y) with respect to x for arbitrary z ∈ dom(Ω)
yields δCDΩ(x∥z)− δC⟨Ω(y)−Ω(z), x−y⟩. Knowing that the second term δC⟨Ω(y)−Ω(z), x−y⟩
is linear, we achieve δDDΩ(·|z)(x|y) = δCΩ(x)− δCΩ(z)− (δCΩ(y)− δCΩ(z)) = δCΩ(x)− δCΩ(y),
which completes the proof.

By an inductive reasoning, we arrive at the basic characterization of family of Bregman divergence
in Definition 3, that all divergence recursively defined by Ω, has the (local) idempotence and the
(global) equivalence of first variation.

We introduce the notions of relative smoothness and convexity wrt a Bregman potential Ω.

Definition 6 (Relative smoothness and convexity). LetG :M(X )→ R∪{+∞} be a proper convex
functional. Given scalar l, L ≥ 0, we define that G is L-smooth and l-strongly-convex relative to Ω
over C if for every x, y ∈ dom(G) ∩ dom(Ω) ∩ C, we have

DG(x∥y) ≤ LDΩ(x∥y), DG(x∥y) ≥ lDΩ(x∥y),

respectively, where DG and DG are Bregman divergences associated with G defined in Definition 3.

Due to the idempotence lemma, we immediately recognize that the Bregman divergence DΩ is
relatively 1-smooth and 1-strongly-convex for Ω.

To start our analysis we reintroduce the well-known three-point identity for a Bregman divergence.

Lemma 5 (Three-point identity). For all πa, πb, πc ∈ C ∩ dom(Ω), we have the following identity〈
δCΩ(πa)− δCΩ(πb), πc − πb

〉
= DΩ(πc∥πb)−DΩ(πc∥πa) +DΩ(πb∥πa)

when DΩ is the Bregman divergence defined in Definition 3.

Proof of Lemma 5. By the definition of Bregman divergence, we have

DΩ(πc∥πb)−DΩ(πc∥πa) +DΩ(πb∥πa) = Ω(πc)− Ω(πb)−
〈
δΩ(πb), πc − πb

〉
− Ω(πc) + Ω(πa) +

〈
δCΩ(πa), πc − πa

〉
+Ω(πb)− Ω(πa)−

〈
δCΩ(πa), πb − πa

〉
=

〈
δCΩ(πa)− δCΩ(πb), πc − πb

〉
.

Therefore, the proof is complete.

Utilizing Lemma 5, we present the following useful lemmas for dealing inequalities regarding im-
provements (Han et al., 2022), which we call “Bregman differences.”
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Lemma 6 (Left Bregman difference). For all πa, πb, πc ∈ C∩dom(Ω), the following identity holds.

DΩ(πb∥πa
)
−DΩ(πc∥πa) = −

〈
δCΩ(πc)− δCΩ(πa), πc − πb

〉
+DΩ(πb∥πc). (26)

Proof of Lemma 6. Using Lemma 5, we have

DΩ(πb∥πa)−DΩ(πc∥πa) = −DΩ(πc∥πb) +
〈
δCΩ(πa)− δCΩ(πb), πc − πb

〉
.

Utilizing an identity of two Bregman divergences for arbitrary (ρ, ρ̄):

DΩ(ρ∥ρ̄) +DΩ(ρ̄∥ρ) =
〈
δCΩ(ρ)− δCΩ(ρ̄), ρ− ρ̄

〉
. (27)

We separate δCΩ(πa)− δCΩ(πb) into δCΩ(πa)− δCΩ(πc) and δCΩ(πc)− δCΩ(πb) and write the rest
of the derivation as follows.

DΩ(πb∥πa)−DΩ(πc∥πa)
= −DΩ(πc∥πb) +

〈
δCΩ(πc)− δCΩ(πb), πc − πb

〉︸ ︷︷ ︸
Eq. (27)

+
〈
δCΩ(πa)− δCΩ(πc), πc − πb

〉
= DΩ(πb∥πc) +

〈
δCΩ(πa)− δCΩ(πc), πc − πb

〉
Therefore, we achieve the desired identity.

Lemma 7 (Right Bregman difference). For all πa, πb, πc, the following identity holds.

DΩ(πc∥πb)−DΩ(πc∥πa) = DΩ(πa∥πb) +
〈
δCΩ(πa)− δCΩ(πb), πc − πa

〉
(28)

Proof of Lemma 7. By Lemma 5, we have

DΩ(πc∥πb)−DΩ(πc∥πa) = −DΩ(πb∥πa) +
〈
δCΩ(πa)− δCΩ(πb), πc − πb

〉
.

We separate πc− πb into πc− πa and πa− πb and write the rest of the derivation as follows.

DΩ(πc∥πb)−DΩ(πc∥πa)
= −DΩ(πb∥πa) +

〈
δCΩ(πa)− δCΩ(πb), πa− πb

〉︸ ︷︷ ︸
Eq. (27)

+
〈
δCΩ(πa)− δCΩ(πb), πc − πa

〉
= DΩ(πa∥πb) +

〈
δCΩ(πa)− δCΩ(πb), πc − πa

〉
Therefore, we achieve the desired identity.

Additionally, we introduce the three-point inequality (Chen & Teboulle, 1993), which has been a
key statement for proving MD convergence for a static cost functional (Aubin-Frankowski et al.,
2022), and OMD improvement for temporal costs. Note that this three-point inequality lemma and
corresponding proof mostly follows Aubin-Frankowski et al. (2022) with a slight change of notation.
Lemma 8 (Three-point inequality). Given π ∈ M(X ) and some proper convex functional Ψ :
M(X ) → R ∪ {+∞}, if δCΩ exists, as well as ρ̄ = argminρ∈C{Ψ(ρ) + DΩ(ρ∥π)}, then for all
ρ ∈ C ∩ dom(Ω) ∩ dom(Ψ): Ψ(ρ) +DΩ(ρ∥π) ≥ Ψ(ρ̄) +DΩ(ρ̄∥π) +DΩ(ρ∥ρ̄).

Proof of Lemma 8. The existence of δCΩ implies C ∩dom(DΩ(·|y)) = C ∩dom(Ω)∩dom(Ψ). Set
G(·) = Ψ(·)+DΩ(·∥y). By linearity and idempotence, we have for any ρ ∈ C∩dom(Ω)∩dom(Ψ)

DG(ρ∥ρ̄) = DΨ(ρ∥ρ̄) +DΩ(ρ∥ρ̄) ≥ DΩ(ρ∥ρ̄). (29)

By ρ̄ being the optimality for G, for all x ∈ C,

d+G(ρ̄; ρ− ρ̄) = lim
h→0+

G((1− h)ρ̄+ hρ)−G(ρ̄)
h

≥ 0,

which suggests G(ρ) ≥ G(ρ̄) +DG(ρ∥ρ̄). Applying (29) to this inequality complete the proof.

The following argument is from the convergence rate of mirror descent for relatively smooth and
convex pairs of functionals, and extend to infinite dimensional convergence results of Lu et al. (2018)
and Aubin-Frankowski et al. (2022). We aim to reformulate the statements in online learning.
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Lemma 9 (OMD improvement). Suppose a cost Ft : M(X ) → R which is L-smooth and l-
strongly-convex relative to Ω and ηt ≤ 1

L . Then, MD improves for current cost Ft(πt+1) ≤ Ft(πt).

Proof of Lemma 9. Since F is L relatively smooth, we initially have

Ft(πt+1) ≤ Ft(πt) + d+F (πt;πt+1 − πt) + LDΩ(πt+1|πt) (30)

Applying the three-point inequality of Lemma 8 to Eq. (30), setting a linear functional Ψ(ρ) =
ηtd

+Ft(πt;π − πt), ρ = πt and ρ̄ = πt+1 yields

d+Ft(πt;πt+1 − πt) + 1
ηt
DΩ(πt+1|πt) ≤ d+Ft(πt; ρ− πt) + 1

ηt
DΩ(ρ|πt)− 1

ηt
DΩ(ρ∥πt+1).

Since Ft is l-strongly convex relative to Ω, we also have

d+F (πt; ρ− πt) ≤ Ft(ρ)− Ft(πt)− lDΩ(ρ|πt), (31)

Then, using (31), Eq. (30) becomes

Ft(πt+1) ≤ Ft(ρ) + ( 1
ηt
− l)DΩ(ρ|πt)− 1

ηt
DΩ(ρ|πt+1) + (L− 1

ηt
)DΩ(πt+1∥πt). (32)

By substituting ρ = πt, since DΩ(ρ|πt+1) ≥ 0 and L− 1
ηt
≤ 0, this shows Ft(πt+1) ≤ Ft(πt), i.e.,

Ft is decreasing at each iteration. This completes the proof.

A fundamental property with the dual space D induced by the first variation δC holds in our online
mirror descent setting. The existence of such sequence–particularly in Sinkhorn–is well discussed
by Nutz (2021) and Aubin-Frankowski et al. (2022). Focusing on mirror descent, we explicitly call
this relationship with arbitrary step size ηt as “dual iteration.”
Lemma 10 (Dual iteration). Suppose that first variations δCFt(πt) and δCΩ(πt) exists for t ≥ 0.
Then, online mirror descent updates Eq. (6) is equivalent to δCΩ(πt+1)− δCΩ(πt) = −ηtδCFt(πt),
for all πt ∈ C, t ∈ N.

Proof of Lemma 10. The optimization (6) is equivalent to having the property for subsequent πt+1:

d+Ft(πt;π − πt) + 1
ηt
DΩ(π∥πt) ≥ d+Ft(πt;πt+1− πt) + 1

ηt
DΩ(πt+1|πt)

⇐⇒
〈
δCFt(πt)− 1

ηt
δCΩ(πt), π − πt+1

〉
+ 1

ηt

(
Ω(π)− Ω(πt+1)

)
≥ 0, ∀π ∈ C.

(33)

Setting the free parameter π = πt+1+h(π−πt+1) and taking the limit h→ 0+ yields the result.

Remark 4. With applications of Lemma 10 and Lemma 4, we can achieve a concise form of itera-
tion in the dual using our temporal cost as:

δCΩ(πt)− δCΩ(πt+1) = ηt
(
δC(−H)(πt)− δC(−H)(π◦

t )
)

= ηt
(
δCΩ(πt)− δCΩ(π◦

t )
)
,

(34)

where H denotes the entropy, i.e., the minus KL divergence with the Lebesgue measure.

Finally, we are ready to describe a suitable step size scheduling by the following arguments.
Lemma 11 (Step size I). Suppose that Ft = KL(π∥π◦

t ) and Ω = KL(π∥e−cεµ ⊗ ν). If 1⃝
limt→∞ ηt = 0+ and 2⃝

∑∞
t=1 ηt = +∞ 3⃝ η ≤ 1

L , the OMD algorithm converges to a certain π◦
D

Proof of Lemma 11. From Lemma 9, we have

ηt(Ft(πt+1)− Ft(πt)) ≤ −DΩ(πt∥πt+1) + (ηtL− 1)DΩ(πt+1∥πt). (35)

Taking limt→∞ ηt = 0 ensures imporvements; this means for any ε > 0 there exists some 0 < δ ≤ 1
such that DΩ(πt∥πt+1) + DΩ(πt+1∥πt) < ε whenever ηt < δ. Since convexity and the lower
semicontinuity of the Bregman divergence DΩ induced by KL, we conclude that OMD to a certain
point upon the assumed step size scheduling.

Lemma 12 (Step size II). Assume that minπ∈C Et[DΩ(πt, π
◦
t )] > 0 for all t ∈ [1,∞). Suppose

that ηt → 0 and limT→∞ E[ 1T
∑T
t=1DΩ(πt∥π◦

t )] = 0 if and only if
∑∞
t=1 ηt = +∞.
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Proof of Lemma 12. We note that due to dual iteration equation Eq. (34), improvements on
KL in Lemma 9 are also improvements in the Bregman divergence, i.e. DΩ(πt+1∥π◦

t ) ≤
DΩ(πt∥π◦

t ), and if ηt → 0, then the process {πt}∞t=1 is convergent. By the dominated conver-
gence theorem, assuming ergodicity of nonstationary {π◦

t }∞t=1, there is a constant ε that satisfies
E1:t+1[DΩ(πt+1∥π◦

t+1)] ≥ E1:t+1[DΩ(πt+1∥π◦
t )] + ε for t > n for some n as ηt → 0, where an

expectation subscripted by “1 : t” indicates the time average from 1 to t. Consequently, we achieve
the following inequality

E1:t+1[DΩ(πt+1∥π◦
t+1)]

≥ E1:t+1[DΩ(πt+1∥π◦
t )] + ε

≥ E1:t[DΩ(πt∥π◦
t )−⟨δCΩ(πt+1)− δCΩ(πt), π◦

t − πt⟩]+ E1:t+1[DΩ(πt+1∥πt)] + ε Lem. 6
= E1:t[DΩ(πt∥π◦

t )− ηtDΩ(πt∥π◦
t ) + ηtDΩ(π

◦
t ∥πt)]+ E1:t+1[DΩ(πt+1∥πt)] + ε Eq. (34)

= (1− ηt)E1:t[DΩ(πt∥π◦
t )] + E1:t+1[DΩ(πt+1∥πt) + ηtDΩ(π

◦
t ∥πt)] + ε

≥ (1− ηt)E1:t[DΩ(πt∥π◦
t )] + ε′ (36)

for some t and 0 < ε < ε′, where Lemma 6 and Eq. (34) are used.

Necessity. First, we rewrite the inequality in Eq. (36) as

E1:t+1[DΩ(πt+1∥π◦
t+1)] ≥ (1− ηt)E1:t[DΩ(πt∥π◦

t )], ∀t ≥ 0. (37)

Since we have assumed that ηt converges to 0, consider a step size sequence 0 < ηt ≤ 2
2+k for

k > 0 and t ≥ n, where ∀n ∈ N. denote a constant a = 2+k
2 log 2+k

k and apply the elementary
inequality

1− x ≥ exp(−ax), such that 0 < x ≤ 2

2 + k
.

From Eq. (37), it can be seen

E1:t+1[DΩ(πt+1∥π◦
t+1)] ≥ exp(−aηt)E1:t[DΩ(πt∥π◦

t )].

Applying the inequality iterative for t = n, . . . , T − 1 gives

E1:T [DΩ(πT∥π◦
T )] ≥ E1:n[DΩ(πn∥π◦

n)]

T−1∏
t=n

exp(−aηt)

= exp

{
−a

T−1∑
t=n

ηt

}
E1:n[DΩ(πn∥π◦

n)].

(38)

From the assumption π∗ ̸= πn, we get DΩ(πn∥π◦
n) > 0. Therefore, by Eq. (38), the convergence

limt→∞ E1:t[DΩ(πt∥π◦
t )] = 0 implies the series

∑∞
t=1 ηt diverges to +∞.

Sufficiency. Consider a static Schrödinger bridge problem with a constraint set

C =
{
π|(µ, ν) ∈ P2(Rd) ∩ Palc(Rd), (φ,ψ) ∈ L1(µ)× L1(ν), andφ,ψ ∈ C2(Rd) ∩ Lip(K)

}
.

For ρ, ρ̄ ∈ P(R2) we can see

DΩ(ρ̄∥ρ) = Ω(ρ̄)− Ω(ρ)− ⟨δCΩ(ρ), ρ̄− ρ⟩ ≥ 0 ⇐⇒ −⟨δCΩ(ρ), ρ̄− ρ⟩ ≥ Ω(ρ)− Ω(ρ̄).

By adding ⟨δCΩ(ρ̄), ρ̄− ρ⟩, we achieve a property:

⟨δCΩ(ρ)− δCΩ(ρ̄), ρ− ρ̄⟩ ≥ DΩ(ρ∥ρ̄). (39)

Then, Suppose that we have the asymptotic dual mean π◦
D. Using Lemma 7, the one-step progress

from the perspective of dual mean writes as

DΩ(π
◦
D∥πt+1)−DΩ(π

◦
D∥πt) = ⟨δCΩ(πt)− δCΩ(πt+1), π

◦
D − πt⟩+DΩ(πt∥πt+1).

= ηt⟨δCΩ(πt)− δCΩ(π◦
t ), π

◦
D − πt⟩+DΩ(πt∥πt+1)

= ηt⟨δCΩ(πt)− δCΩ(π◦
D), π

◦
D − πt⟩+ ηt⟨δCΩ(π◦

D)− δCΩ(π◦
t ), π

◦
t − πt⟩+DΩ(πt∥πt+1)

≤ −ηtD(π◦
D∥πt) + ηt⟨δCΩ(π◦

D)− δCΩ(π◦
t ), π

◦
t − πt⟩+DΩ(πt∥πt+1)

(40)
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for some λ > 0, where we used bound δC where the inequality is from Eq. (39). By using the
definition followed by Hölder’s inequality and Young’s inequality, we can bound the expectation as
E1:t+1[DΩ(π

◦
D∥πt+1)] ≤ E1:t[(1− ηt)DΩ(π

◦
D∥πt)] +DΩ(πt∥πt+1)]

≤ E1:t[(1− ηt)DΩ(π
◦
D∥πt)] +

ωη2t
2

E1:t[∥∇(δCΩ(πt)− δCΩ(π◦
t ))∥L2(πt)]

≤ E1:t[(1− ηt)DΩ(π
◦
D∥πt)] + 2η2tω

−1K (41)
where K is the Lipschitz constant for each log-Schrödinger potential. For the second inequality,
we use the assumptions on Bregman stationary process Assumption 1 on the logarithmic Sobolev
inequality LSI(ω) from Assumption 3. Let {At}∞t=1, denote a sequence of At = E1:t[DΩ(π

◦
D∥πt)].

Then, we have
At+1 ≤ (1− ηt)At + zη2t , ∀t > n, (42)

where z := 2ω−1K. For a constant h > 0, we argue that At1 < h for some t1 > n′. Suppose that
this statement is not true; we find some t ≥ t1 such that At > h, ∀t ≥ t2. Since limt→∞ ηt = 0,
there are some t > t3 > t2 that ηt ≤ h

4 . However, Eq. (42) tells us that for t ≥ t3, for t ≥ t3,

At+1 ≤ (1− ηt)At + zη2t ≤ At3 −
h

4

T∑
k=t3

ηk → −∞ (as t→∞).

This results to a contradiction, which verifies At < h for t > n′. Since limt→∞ ηt = 0, we can
find some ηt which makes At monotonically decreasing. Therefore, we conclude the nonnegative
sequence {At}∞t=1 finds convergence by iteratively applying the upper bound in Eq. (42).

We now prove the theorem under consideration of the particular case of ηt = 2
t+1 . Then, Eq. (42)

becomes

At+1 ≤
(
1− 2

t+ 1

)
At +

4z

(t+ 1)2
, ∀t ≥ n.

It follows that recursive relation writes as
t(t+ 1)At+1 ≤ (t− 1)tAt + 4z, ∀t ≥ n.

Iterative applying the relation, we achieve the following inequality:
(T − 1)TAT ≤ (n− 1)nAn + 4z(T − n), ∀T ≥ n.

Therefore, we finally achieve inequality as follows:

E1:T [DΩ(π
◦
D∥πT )] ≤

(n− 1)nE1:n[DΩ(π
◦
D∥πn)]

(T − 1)T
+

4z

T
, ∀T ≥ n. (43)

Since we assumed π∗ = π◦
D, E1:T [DΩ(π

∗∥πT )] = O(1/T ), the proof of Theorem 1 is complete.

A.3 PROOF OF PROPOSITION 1

The proof is based on the Doob’s forward convergence theorem.
Theorem 4 (Doob’s forward convergence theorem). Let {Xt}t∈N be a sequence of nonnegative
random variables and let {Ft}t be a random variable and let {Ft}t∈N be a filtration with Ft ⊂
Ft+1 for every t ∈ N. Assume that E[Xt+1|Ft] ≤ Xt almost surely for every t ∈ N. Then, the
sequence {Xt} converges to a nonnegative random variable X∞ almost surely.

We follow the derivation of Eq. (41): there exists n ∈ N which satisfies
Et[DΩ(π

◦
D∥πt+1)] ≤ DΩ(π

◦
D∥πt) + 2η2tω

−1K, ∀t ≥ n
and since the step size is scheduled as limt→∞ ηt = 0, the condition

∑∞
t=1 η

2
t < ∞ enables us to

define a stochastic process {Xt}t∈N:

Xt = DΩ(π
◦
D∥πt) + 2ω−1K

∞∑
i=t

η2i . (44)

It is straightforward that the defined random variable satisfies Et[Xt+1] ≤ Xt for t ≥ n. Since
Xt ≥ 0, the process is a sub martingale. By Theorem 4, the sequence {Xt}t∈N converges to
a nonnegative random variable X∞ almost surely. Therefore DΩ(π

◦
D∥πt) converges to 0 almost

surely.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.4 PROOF OF THEOREM 2

To achieve a meaningful regret bound for our problem setup, we first demonstrate the following.
Lemma 13. For all w = argminy{⟨ĝ, y⟩+ 1

ηDΩ(y∥z)} with η > 0, the following equation.

∀u.⟨ηĝ, w − u⟩ ≤ DΩ(u∥z)−DΩ(u∥w)−DΩ(w∥z) (45)

Proof of Lemma 13. By the first order optimality of {⟨g, y⟩+DΩ(y∥z)} as a function of w, we have

⟨ĝ + 1
η δCDΩ(w∥z), u− w⟩ ≥ 0

=⇒ ⟨ĝ, w − u⟩ ≤ 1
η ⟨−δCDΩ(w∥z), w − u⟩ = 1

η (DΩ(u∥z)−DΩ(u∥w)−DΩ(w∥z)).
where used Lemma 6 in the derivation. This completes the proof.

Next, we derive the one-step relationship for OMD. The result entails that the regret at each step
is related to a quadratic expression of ηt, which is a key aspect of sublinear total regret. From a
technical standpoint, we can see that the assumption for log Sobolev inequality generally works as
a premise for Lipschitz continuity of gradient, i.e., ∇Ω in classical MD analyses.
Lemma 14 (Single step regret). Suppose a static Schrödinger bridge problem with the aforemen-
tioned constraint C. Let DΩ be the Bregman divergence wrt Ω : P(X )→ R+ {+∞}. Then,

ηt(Ft(πt)− Ft(u)) ≤ DΩ(u∥πt)−DΩ(u∥πt+1) +
η2t
2ω
∥ĝt∥2L2(πt)

, ∀u ∈ C (46)

holds, where ĝt := δCFt(πt) =
1
ηt
(δCΩ(πt)− δCΩ(πt+1)) in an MD iteration for the dual space for

a step size ηt, and ω > 0 is drawn from a type of log Sobolev inequality in Assumption 3.

Proof of Lemma 14. Consider single step regrets by the adversary plays of a linearization for ĝt:
Ft(πt)− Ft(u) ≤ ⟨ĝt, πt − u⟩.

Therefore, we derive a inequality for ⟨ĝt, πt − u⟩ as follows.
⟨ηtĝt, πt − u⟩ = ⟨ηtĝt, πt+1 − u⟩+ ⟨ηtĝt, πt − πt+1⟩

≤ DΩ(u∥πt)−DΩ(u∥πt+1)−DΩ(πt+1∥πt) + ⟨ηtĝt, πt − πt+1⟩
= DΩ(u∥πt)−DΩ(u∥πt+1)−DΩ(πt+1∥πt) + ⟨δCΩ(πt+1)− δCΩ(π), πt − πt+1⟩
= DΩ(u∥πt)−DΩ(u∥πt+1) +DΩ(πt∥πt+1).

Since we assumed that ĝt = 1
ηt
(δCΩ(πt)− δCΩ(πt+1)) by the dual iteration and that Assumption 3

holds, we can achieve the upperbound DΩ(πt∥πt+1) ≤ η2t
2ω∥ĝt∥

2
L2(πt)

by direct calculation.

We now show our upper bound of total regret by utilizing Lemma 14.
Lemma 15. Assume ηt+1 ≤ ηt. Then, u ∈ C, the following regret bounds for fixed u ∈ C hold

T∑
t=1

Ft(πt)− Ft(u) ≤ max
1≤t≤T

DΩ(u∥πt)
ηT

+
1

2ω

T∑
t=1

ηt∥g̃t∥2L2(πt)
(47)

where ĝt = 1
ηt
(δCΩ(πt)− δCΩ(πt+1)).

Proof of Lemma 15. Define D2 = max1≤t≤T DΩ(u∥πt). We get

Regret(u) =

T∑
t=1

(Ft(πt)− Ft(u)) ≤
T∑
t=1

(
1

ηt
DΩ(u∥πt)−

1

ηt
DΩ(u∥πt+1)

)
+

T∑
t=1

ηt
2ω
∥ĝt∥2L2(πt)

=
1

η1
DΩ(u∥π1)−

1

ηT
DΩ(u∥πT+1) +

T−1∑
t=1

(
1

ηt+1
− 1

ηt

)
DΩ(u∥πt+1) +

T∑
t=1

ηt
2ω
∥ĝt∥2L2(πt)

≤ 1

η1
D2 +D2

T−1∑
t=1

(
1

ηt+1
− 1

ηt

)
+

T∑
t=1

ηt
2ω
∥ĝt∥2L2(πt)

=
D2

ηT
+

T∑
t=1

ηt
2ω
∥ĝt∥2L2(πt)

.

Therefore, the proof is complete.
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Following Lemma 15 and Assumption 3, we can have the inequality
T∑
t=1

Ft(πt)− Ft(u) ≤
D2

ηT
+

T∑
t=1

ηt
2ω
∥ĝt∥2L2(πt)

≤ D2

ηT
+ 2ηtω

−1KT.

where D2 = max1≤t≤T DΩ(u∥πt). Setting a constant step size ηt ≡ D
√
ω√

2KT yields an upper bound

of D
√
2ω−1KT which is Ω(

√
T ). Also, setting a heuristic scheduling ηt =

D
√
ω√

2
∑T

t=1∥ĝt∥2
yields

D
√
2ω−1

∑T
t=1∥ĝt∥2 which has a possibility to be lower than O(

√
T ) depending on {π◦

t }Tt=1.
Therefore, we have formally expanded the convergence results of OMD (Lei & Zhou, 2020; Srebro
et al., 2011) to SBPs.

A.5 PROOF OF THEOREM 3

We first write the following equivalent convex problems.〈
δCFt(πt), π − πt

〉
+ 1

ηt
DΩ(π∥πt) =

〈
δCDΩ(πt∥π◦

t ), π − πt
〉
+ 1

ηt
DΩ(π∥πt)

=
〈
δCΩ(πt)− δCΩ(π◦

t ), π − πt
〉
+ 1

ηt
DΩ(π∥πt)

= DΩ(π∥π◦
t )−DΩ(π∥πt) + 1

ηt
DΩ(π∥πt)

=

(
1

ηt

)
DΩ(π∥π◦

t ) +

(
1− ηt
ηt

)
DΩ(π∥πt)

Since DΩ(·∥·) := DKL(·∥R)(·∥·) for a reference measure R ∈ C, we can apply Lemma 4 and
achieve Eq. (9). We refer to Appendix B for the stability of Wasserstein gradient flows according to
the LaSalle’s invariance principle.

A.6 PROOF OF PROPOSITION 2

The proof is closely related to the work of Lambert et al. (2022) where the difference lies in we
correct the Wasserstein gradient term α̇k,τ for suitable for generally unbalanced weight. Suppose
take parameterization θ ∈ (P2(BW(Rd)), WFR), the space of Gaussian mixtures equipped with the
Wasserstein-Fisher-Rao metric, over the measure space of Gaussian particles. Following the argu-
ments from Appendix B.2 and the studies for this particular GMM problem (Lu et al., 2019; Lambert
et al., 2022) of the Wasserstein-Fisher-Rao of the KL functional is derived as

∇WFRKL(ρθ∥ρ∗) =
(
∇BWδKL(ρ∥ρ∗), 1

2

(
δKL(ρθ∥ρ∗)−

∫
δKL(ρ∥ρ∗)dρ

))
, (48)

where we can consider the WFR gradient is taken with respect to θ of its first argument. By Eq. (48),
we separately consider Wasserstein gradient in the Bures-Wasserstein space and the space of lighting
that controls the amount of each Gaussian particle.

Given a functional F : P2(X )→ R ∪ {+∞}, the Wasserstein gradient ∇WF ∩ TρP2(X ) such that
all {ρt}t∈R+ satisfy the continuity eqatuion starting from ρ0 (Jordan et al., 1998; Villani, 2021). If
the functional is the KL divergence KL(ρ∥π) we can compute the Bures-Wasserstein gradient for
the Gaussian distribution with respect to (m,Σ) using Eq. (65)

∇BWF (m,Σ) = (∇mF (m,Σ), 2∇ΣF (m,Σ))

=

(∫
∇mρm,Σ log

ρm,Σ
π

, 2

∫
∇Σρm,Σ log

ρm,Σ
π

)
,

with some abuse of notation for ρ. Using the following closed-form identities for the Gaussian
distributions

∀x. ∇mρm,Σ(x) = −∇xρm,Σ(x) and ∇Σρm,Σ(x) =
1

2
∇2
xρm,Σ(x).

and the equivalence between the Hessian and Fisher information, we achieve the following form:

∇BWF (m,Σ) =

(
Eρ

[
∇ ρ
π

]
,Eρ

[
∇2 log

ρ

π

])
.
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Define rk,τ =
√
αk,τ . Since rt follows the Fisher–Rao metric in Definition 7, by the Proposition

A.1 from Lu et al. (2019) and specialization of Lambert et al. (2022), we can think of dynamics of
K Gaussian particles {αk,τ ,mk,τ ,Σk,τ}Kk=1 such that

ṙk,τ = −
1

2

(
E
[
log

ρθτ
ρ∗

(yk,τ )

]
− 1

zτ

K∑
ℓ=1

αℓE
[
log

ρθτ
ρ∗

(yℓ,τ )

])
rk,τ ,

ṁk,τ = −E
[
∇ log

ρθτ
ρ∗

(yk,τ )

]
, Σ̇k,τ = −E

[
∇2 log

ρθτ
ρ∗

(yk,τ )

]
Σk,τ − Σk,τE

[
∇2 log

ρθτ
ρ∗

(yk,τ )

]
,

Since αk,τ =
√
rk,τ by previous definition, it is straightforward that

α̇k,τ = −
(
E
[
log

ρθτ
ρ∗

(yk,τ )

]
− 1

zτ

K∑
ℓ=1

αℓE
[
log

ρθτ
ρ∗

(yℓ,τ )

])
αk,τ .

For αk > 0. This completes the proof.

B A RIEMANNIAN PERSPECTIVE FOR VARIOUS WASSERSTEIN GEOMETRIES

B.1 AN INTRODUCTION TO OTTO CALCULUS AND THE LASALLE INVARIANCE PRINCIPLE

We introduce a basic notion of Wasserstein gradient flows in the space of continuous probability
measures by describing a historical example of the KL cost, initially introduced by Otto (2001). We
refer the reader to (Ambrosio et al., 2005b; Carrillo et al., 2023) for more details and mathematical
rigor. For X ⊂ Rd, and functions U : R≥0 → R; V,W : X → R. We first consider an energy
function E : P2(X )→ R:

E(ρ) =
∫
X
U
(
ρ(x)

)
dx︸ ︷︷ ︸

internal potential U

+

∫
X
V (x) dρ(x)︸ ︷︷ ︸

external potential EV

+
1

2

∫
X
(W ∗ ρ)(x) dρ(x)︸ ︷︷ ︸

interaction energy W

, ρ ∈ P2(X ). (49)

For this function, we refer to the solution of the following PDE:

∂tρt = ∇ ·
[
ρ∇(U ′ + V +W ∗ ρ)

]
, t ≥ 0 (50)

as the Wasserstein gradient flow of E . Following Otto’s formalization of Riemannian calculus on
the continuous probability space equipped with the Wasserstein metric (P2(X ),W2), the PDE (50)
can be interpreted close to an ODE of Riemannian gradient flow:

∂tρt = −∇WE(ρ), (51)

where ∇W denotes the Wasserstein-2 gradient operator ∇W := ∇·
(
ρ∇ δ

δρ

)
. Considering the Otto’s

Wasserstein-2 Riemannian metric g (Otto, 2001; Lott, 2008), under the absolute continuity, we see
that

∂

∂t
E(ρt) = −gρ

(
∂ρ

∂t
,
∂ρ

∂t

)
= −

∫
X

∣∣∇(U ′ + V +W ∗ ρ)
∣∣2dρ(x) ≤ 0, (52)

which is closely related to the strict Lyapunov condition. As a result, dynamical systems following
the PDE are guaranteed to reach an equilibrium solution, under the LaSalle invariance principle for
probability measures (Carrillo et al., 2023).

For a representative example, we identify Eq. (49) for the relative entropy (the KL functional) for a
target density ρ∗ ∈ P2(X ) writes

E(ρ) = KL(ρ∥ρ∗) =
∫
X
U
(
ρ(x)

)
dx︸ ︷︷ ︸

U

+

∫
X
V (x) dρ(x)︸ ︷︷ ︸

EV

−C,

whereU(s) = s log s, V (x) = − logρ∗(x), andC = U(ρ∗)+EV (ρ∗). Recall that δE(ρ) = log ρ(x)
ρ∗ ,

then we have

∇WE(ρ) = G−1
ρ δE(ρ) = −∇ · [ρ∇δE(ρ)] = ∇ ·

[
ρ∇ log

ρ

ρ∗

]
(53)
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where G denotes the metric tensor in matrix form. We can derive the the Fokker–Planck equation

∂tρt = −∇ · (ρ∇ log ρ∗) + ∆ρt,

describing the time evolution of the probability density. Combining the convexity of KL and the
LaSalle invariance principle Wasserstein gradient flows, the PDE reaches a unique stationary solu-
tion of e−V (x)∫

X e−V (y)dy
.

B.2 BACKGROUND ON WASSERSTEIN-FISHER-RAO AND OTHER RELATED GEOMETRIES

The Wasserstein-Fisher-Rao geometry is also known as Hellinger–Kantorovich in some of papers
(Liero et al., 2016; 2018). In this section, we provide an overview of the geometry tailored to meet
our technical needs. Along the way, we also briefly describe relevant metrics and geometries.

The Wasserstein space. Let µ, ν ∈ P2(Rd) be a probability densities with respect to the Lebesgue
measure. we define the squared Wasserstein distance as

W 2
2 (µ, ν) := min

π∈Π(µ,ν)

∫
R2×R2

1

2
∥x− y∥2dπ(x, y) (54)

Then, the Brenier theorem (Villani, 2021) states that there exists the optimal Brenier map that pushes
forward µ to ν, i.e. ν = ∇ζ#µ, where ζ : Rd → Rd ∪ {+∞} is a convex and lower semicontin-
uous function. In the fluid dynamical version, the Brenier map yields a constant-speed of geodesic
{µt}t∈[0,1] formally described by

ρt = (∇ζt)#µ, ∇ζt := (1− t)id + t∇ζ. (55)

Assuming the existence of such geodesic, we can understand finding optimality of Eq. (55) the
Benamou-Brenier formulation (Benamou & Brenier, 2000), which finds a velocity vt by minimizing
the functional

W 2
2 (µ, ν) = min

ρ,v

{∫ 1

0

∫
Rd

1

2
∥vt(x)∥2dρt(x)dt

∣∣∣ ρ0 = µ, ρ1 = ν, ∂tρt = −∇ · (vtρt)
}
. (56)

The equation dictates how the mass should be transported (which shall be a constant speed) while
satisfying the continuity equation of path measure. In the Otto calculus (Otto, 2001), we can under-
stand the Benamou-Brenier formula (56) as a Riemannian formulation forW2. In this interpretation,
the tangent space at ρ ∈ P2(X ) are measures of the form δρ = −∇ · (vρ) with a velocity field
v ∈ L2(ρ,Rd) and the metric is given by

∥ρ∥2ρ = inf
v∈L2(ρ,Rd)

{∫
∥v∥2dρ

∣∣∣ δρ = −∇ · (vρ)
}
. (57)

This exhibits dynamics in the Wasserstein space of probability densities metric generally governed
by the continuity equation, implying the mass of probability is preserved.

Fisher-Rao metric. The Fisher–Rao metric is a metric on the space of positive measures P+ with
possibly different total masses. We use the following definition throughout the paper.
Definition 7 (Fisher–Rao metric). The Fisher–Rao distance between measures ρ0, ρ1 ∈ M+ is
given by

d2FR(ρ0, ρ1) := min
ρ,v∈A[ρ0,ρ1]

∫ 1

0

∫
Rd

1

2
ω2
t (x)dρt(x)dt = 2

∫
Rd

∣∣∣∣
√

dρ0
dλ
−
√

dρ1
dλ

∣∣∣∣2dλ
whereA is an admissible set for a scalar field on positive measures; λ is any reference measure such
that ρ and ρ′ are both absolutely continuous with respect to λ, with Radon-Nikodym derivatives dρi

dλ .

The equivalence between the square Fisher–Rao distance and squared Hellinger distance quantifies
the similarity between two probability distributions ranging from 0 to 1. The total variation bounds
the squared form and is well-studied in the information geometry (Amari, 2016). PDEs of the form
∂tρt = αtρt are called reaction equations of αt, which describes dynamics regarding concentration.

Wasserstein-Fisher-Rao. The WFR geometry, or spherical Hellinger-Kantorovich distance, con-
siders liftings of positive, complete, and separable measures while preserving the total mass. This
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can be expresses as combining the Fisher–Rao and Wasserstein geometries characterized by PDE
such as (Liero et al., 2016):

∂tρt +∇ · (vtρt) =
ωt
2
ρt. (58)

One problem, is that the PDE (58) In order to stay the dynamics on the space of probability measures,
which is our interest, we adopt the definition from (Lu et al., 2019; Lambert et al., 2022) the equation
becomes

∂tρt +∇ · (ρtvt) =
1

2

(
βt −

∫
βtdρt

)
ρt, (59)

which satisfies mass conservation. For the geometry, the norm on tangent space is given by

∥(βt, ρ)∥2ρ :=
∫ {(

ω −
∫
βt dρ

)2
+ ∥v∥2

}
dρ. (60)

and we define the WFR distance as

d2WFR(ρ0, ρ1) := inf
ρ,βt,v

{∫ 1

0

∥(βt, vt)∥2ρtdt
∣∣∣ {ρt, βt, vt}t∈[0,1] satisfies (59)

}
. (61)

Since WFR gradient dynamics over the Bures-Wasserstein space can be analytically derived, we
were able to design a computational method for OMD iterates in the WFR geometry. Using Propo-
sition 2, this geometry allowed the VMSB algorithm to perform tractable gradient computation
within Wasserstein space.

B.3 THE BURES-WASSERSTEIN SPACE AND A MIXTURE OF GAUSSIANS

The space of Gaussian distribution in the Wasserstein space is known as Bures-Wasserstein space,
denoted as BW(Rd). Given θ0, θ1 ∈ BW(Rd), we can identify the space with the manifold Rd × Sd++,
where Sd++ denotes the space of symmetric positive definite matrices. For θ0 = (m0,Σ0) and
θ1 = (m1,Σ1) an affine map from pθ0 to pθ1 is given as a closed-form expression:

∇ζ(x) = m1 +Σ
−1/2
0

(
Σ

1/2
0 Σ1Σ

1/2
0

)1/2
Σ−1/2(x−m0).

Note that the constant-speed geodesic also lies in BW(Rd), as pushforward of a Gaussian with an
affine map is also a Gaussian. Therefore, it can be said that BW(Rd) is a geodesically convex subset
of P2(Rd). For the Brenier map, a constant-speed geodesic in BW(Rd), for the tangent vector to the
geodesic (r, S)

pθt = exppθ0

(
t · (r, S)

)
= N

(
m0 + tr, (tS + Id)Σ0(tS + Id)

)
, (62)

and the dynamics at its current position at time t = 0 is represented as

ṁ0 = r, (63)

Σ̇0 = SΣ0 +Σ0S. (64)

Generalizing this geodesic dynamics, the Bures-Wasserstein gradient ∇BW f of a function f : Rd ×
Sd++ → R for a tangent vector (r, S) at time 0 Altschuler et al. (2021)

〈
∇BWf(m0,Σ0), (r, S)

〉
BW

= ∂tf(mt,Σt)

∣∣∣∣
t=0

Identifying each component, we achieve the following result of Wasserstein gradient flow in Bures-
Wasserstein space as

∇BWf = (∇mf, 2∇Σf), (65)

where ∇m and ∇Σ denote Euclidean gradient. Please see the work of Altschuler et al. (2021) (Ap-
pendix A) and Lambert et al. (2022) (Appendix B) for further geometric properties and discussion
for this parameter space.
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C DETAILS ON THE EXPERIMENTS

C.1 RATIONALES OF THE GMM PARAMETERIZATION FOR VMSB

Our parameterization choice follows LightSB (Korotin et al., 2024) because of the following two key
reasons. First, GMMs ensure that the model space satisfies certain measure concentration, which is
suitable for analyzing theoretical properties of SB models (Conforti et al., 2023). For instance, we
analyzed the regret under the log Sobolev inequality in Theorem 2. Enforcing the LightSB param-
eterization will automatically satisfy Assumption 3. Secondly, VMSB requires tractable gradient
computation of Wasserstein gradient flow in § 4.3. As shown in Proposition 2, we can perform
VMSB using the variational inference in the WFR geometry of the GMM parameterization.

C.2 STEP SIZE SCHEDULING AND WARM-UPS

ηt
1−ηt

t

η1

Figure 9: A sequence
example of ηt and 1−ηt

For step size scheduling, we followed the theoretical result in Theorem 1
and Proposition 1, and chose η1 = 1 and ηT ∈ {0.05, 0.1} with har-
monic sequences, as illustrated in Fig. 9. For high dimensional tasks
in MSCI (1000d), MNIST-EMNIST (784d), and latent FFHQ Image-to-
Image transfer tasks (512d), the initial warmup steps helped starting a
training sequence from a reasonable starting point as this set ηt = 1 as
verified in Fig. 5 (c).

C.3 2D SYNTHETIC DATASETS
x ∼ µ, y ∼ ν ε = 0.05 ε = 1.0

Figure 10: SB processes Tθ with different volatility ε.

Fig. 10 demonstrates that our method
achieved the SB model for the various
volatility ε. For various configurations,
most of baseline SB algorithms are capa-
ble of learning in the 2D space (10). In or-
der to align our theoretical arguments, we
selectively offered only 12.5% of the sam-
ples to the SB solvers based on the angles
measured from the origin. For instance, we provided data for angle of [0, π/4] for first t ∈ [0, 25)
steps, and so on. Since this requires 200 batches for the full rotation of the filter, the problem be-
came substantially more challenging, and LightSB and LightSB-M algorithms oftentimes failed on
this online learning setting.

C.4 ENTROPIC OPTIMAL TRANSPORT BENCHMARK

Our hyperparameter for the EOT benchmarks choices mostly follow the official repositories of the
LightSB4 and LightSB-M5. Since it is known that initial distribution µ is the standard Gaussian dis-
tribution (Gushchin et al., 2024b), we only trained vθ using the variational MD algorithm. Due to the
huge number of configurations, some hyperparameter settings were not clearly reported. Thus, we
conducted our own examination on these cases; we replicated better performance than the reported
numbers by carefully dealing each benchmark configuration.

C.5 MNIST-TO-EMNIST IMAGE TRANSFER Table 5: A simple discriminator.

Layer Type Shape
Input Layer (-1, 28, 28, 1)

Conv Layer 1 (-1, 26, 26, 32)
Average Pool (-1, 13, 13, 32)
Conv Layer 2 (-1, 11, 11, 64)
Average Pool (-1, 5, 5, 64)

Flatten (-1, 1600)
Dense (-1, 512)
Dense (-1, 256)
Dense (-1, 1)

Suppose a discriminator network, denoted as D, is
equipped with useful architectural properties for discrim-
inating images. In adversarial learning, we only used a
simple architecture shown in Table 5 for simplicity, and
this can be replaced with more complex architecture for
more sophisticated images. The discriminator outputs a
binary classification regarding authenticity through sig-
moidal outputs, i.e., D(x) ∈ [0, 1] ∀x ∈ R28×28×1. For

4https://github.com/ngushchin/LightSB
5https://github.com/SKholkin/LightSB-Matching
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image samples x = {x1, . . . , xM} ∼ µ, we trained the discriminator D with the logistic regression:

maximize
D

1

N

N∑
n=1

logD(yn) +
1

M

M∑
m=1

log(1−D(ŷmϕ )), (66)

where ŷmϕ in the right-hand side denotes a sample from an SB model parameterized by ϕ, generated
using an input xm. Let us formally define the distribution ρϕ, which represents the probability of
the aforementioned adversarial samples at the law of SB process at time t = 1. For a completely
separable metric space, the discriminator converges atD(x) = ν(x)

ν(x)+ρϕ(x)
(Goodfellow et al., 2014).

In the adversarial learning technique, retaining a fully differentiable computation path from the input
pixels to the discriminator outputs is essential. Therefore, we implemented a differentiable inference
function using the categorical reparameterization trick with Gumbel-softmax (Jang et al., 2016), as
well as the Gaussian reparameterization trick. These tricks enabled learning with samples generated
through LightSB-Adv-K, directly by maximizing

J̃ (ϕ) = 1

M

M∑
m=1

logD(ymϕ )− log(1−D(ymϕ )),

where the term essentially represents the logit function logit(D(y)) = log D(y)
1−D(y) . When D appo-

raches the equilibrium, the logit can be approximated as logit(D(y)) ≈ log ν(y)
ρϕ(y)

, which leads to

J̃ (ϕ) ≈
∫
log ν(y)

ρϕ(y)
ρϕ(y)dy = KL(ρϕ∥ν). Note that the training directly corresponds to the diver-

gence minimization of the SB/EOT problem as expressed in Eqs. (4) and (20), under the disintegra-
tion theorem of Schrödinger bridge (Léonard, 2014). Hence, we considered adversarial learning as
the baseline for training the SB model in this experiment. Among our attempts, only the LightSB-
Adv method successfully generated learning signals to train GMM-based models, while the losses
proposed by LightSB and LightSB-M failed to generate relevant images with high fidelity. We fixed
the covariance after warm-ups, and we used ε = 10−3 based on our hyperparameter search.

D LIMITATIONS AND DIRECTIONS FOR FUTURE RESEARCH

Computation. We have presented performance regarding efficiency and scalability up to 1,000
dimensions in the experiments. The computational of VMSB requires quadratic time for computing
the Wasserstein gradient flow (asymptotically O(K2ny)) and memory footprints of {Y x

k }Kk=1 for
estimating with internal Gaussian particles (asymptoticallyO(Kny)). For fast computation, we uti-
lized the JAX automatic differentiation library (Bradbury et al., 2018) for computing gradients and
Hessians in Proposition 2. For a small number of dimensions less than or equal to 20, this overhead
is negligible; VMSB can run on a 4-core CPU, and the training can be reasonably trained within
10 minutes. For a large number of dimensions, such as 512, the wall clock time for finishing the
FFHQ dataset in the image-to-image transfer experiment was less than 30 minutes using parallel
computing of a single NVIDIA TITAN RTX GPU. While the Wasserstein gradient flow theory in
the subspace of P2(Rd) enables us to estimate the mirror descent update more accurately, its com-
putational efficiency is not yet comparable to well-established automatic differentiation libraries. If
numerical computation for high order derivatives are readily available with low computational cost
in future, we will be able to train more stable and reliable probabilistic models.

Limitations. GMM-based SB models, due to the lack of deep structural processing, tend to focus
on instance-level associations in images in coupling rather than the subinstance- or feature-level
associations that are intrinsic to deep generative models. As a result, while VMSB produces statisti-
cally valid representations of optimal transportation within the given architectural constraints, these
outcomes may be perceived as somewhat “synthetic.” Nevertheless, GMM-based models still hold
an irreplaceable role in numerous problems such as latent diffusion and variational methods, due to
their simplicity and distinctive properties (Korotin et al., 2024). As we successfully demonstrated in
two distinct ways of interacting with neural networks for solving unpaired image transfer, we hope
our theoretical and empirical findings help novel neural architecture studies.

Directions for future research. One of the primary objectives was to provide a rigorous math-
ematical analysis of robust SB acquisition through the lens of OMD. We hope that the proposed
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Table 6: EOT Benchmark scores of BW2
2-UVP ↓ (%). Results of classical EOT solvers marked

with † are taken from (Korotin et al., 2024). Additionally, LightSB-EMA indicates the exponential
moving average (EMA; Morales-Brotons et al., 2024) of parameters in LightSB (decay = 0.99).

Type Solver
ε = 0.1 ε = 1 ε = 10

d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128

Classical solvers (best) (Korotin et al.)† 0.016 0.05 0.25 0.22 0.005 0.09 0.56 0.12 0.01 0.02 0.15 0.23
Bridge-M DSBM (Shi et al.)‡ 0.03 0.18 0.7 2.26 0.04 0.09 1.9 7.3 0.26 102 3563 15000
Bridge-M SF2M-Sink (Tong et al.)‡ 0.04 0.18 0.39 1.1 0.07 0.3 4.5 17.7 0.17 4.7 316 812

rev. KL LightSB (Korotin et al.) 0.004± 0.004 0.009± 0.004 0.023± 0.003 0.036± 0.003 0.004± 0.005 0.009± 0.003 0.016± 0.002 0.035± 0.003 0.009± 0.004 0.013± 0.007 0.034± 0.004 0.066± 0.008
Bridge-M LightSB-M (Gushchin et al.) 0.005± 0.003 0.012± 0.004 0.034± 0.003 0.063± 0.002 0.005± 0.001 0.027± 0.007 0.057± 0.010 0.108± 0.004 0.004± 0.002 0.017± 0.007 0.133± 0.010 0.409± 0.042

EMA LightSB-EMA 0.004± 0.002 0.014± 0.003 0.021± 0.003 0.044± 0.001 0.004± 0.003 0.009± 0.004 0.013± 0.001 0.032± 0.004 0.004± 0.001 0.008± 0.003 0.023± 0.013 0.010± 0.002

Var-MD VMSB (ours) 0.003± 0.001 0.007± 0.003 0.018± 0.002 0.039± 0.001 0.002± 0.002 0.004± 0.001 0.009± 0.001 0.023± 0.003 0.005± 0.007 0.006± 0.004 0.011± 0.010 0.011± 0.004
Var-MD VMSB-M (ours) 0.002± 0.001 0.010± 0.067 0.031± 0.004 0.056± 0.005 0.003± 0.004 0.005± 0.002 0.032± 0.006 0.077± 0.018 0.003± 0.003 0.011± 0.004 0.117± 0.012 0.429± 0.748

Table 7: EOT scores of cBW2
2-UVP, which corresponds to the fully extended version of Table 2.

Type Solver
ε = 0.1 ε = 1 ε = 10

d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128

Classical solvers (Korotin et al.)† 1.94 13.67 11.74 11.4 1.04 9.08 18.05 15.23 1.40 1.27 2.36 1.31
Bridge-M DSBM (Shi et al.)‡ 5.2 10.8 37.3 35 0.3 1.1 9.7 31 3.7 105 3557 15000
Bridge-M SF2M-Sink (Tong et al.)‡ 0.54 3.7 9.5 10.9 0.2 1.1 9 23 0.31 4.9 319 819

rev. KL LightSB (Korotin et al.) 0.007± 0.005 0.040± 0.023 0.100± 0.013 0.140± 0.003 0.014± 0.003 0.026± 0.002 0.060± 0.004 0.140± 0.003 0.019± 0.005 0.027± 0.005 0.052± 0.002 0.092± 0.001
Bridge-M LightSB-M (Gushchin et al.) 0.017± 0.004 0.088± 0.014 0.204± 0.036 0.346± 0.036 0.020± 0.007 0.069± 0.016 0.134± 0.014 0.294± 0.017 0.014± 0.001 0.029± 0.004 0.207± 0.005 0.747± 0.028

EMA LightSB-EMA 0.005± 0.002 0.040± 0.014 0.078± 0.007 0.149± 0.006 0.012± 0.002 0.022± 0.003 0.051± 0.001 0.127± 0.002 0.017± 0.003 0.021± 0.003 0.025± 0.002 0.042± 0.002

Var-MD VMSB (ours) 0.004± 0.001 0.012± 0.002 0.038± 0.002 0.101± 0.002 0.010± 0.001 0.018± 0.001 0.044± 0.001 0.114± 0.001 0.013± 0.001 0.019± 0.001 0.021± 0.008 0.040± 0.001
Var-MD VMSB-M (ours) 0.015± 0.016 0.067± 0.036 0.108± 0.020 0.253± 0.107 0.010± 0.001 0.019± 0.001 0.094± 0.010 0.222± 0.033 0.013± 0.001 0.029± 0.003 0.193± 0.015 0.748± 0.036

OMD theory will find multiple applications across various domains. One line of future studies is
a general understanding of learning in diffusion models with various regularizations. This includes
diffusion models in various problem-specific constraints, and geometric constraints from manifolds.
Another direction is the extension of the theoretical results into network architecture design. From
Section 4.2, a pair of Schrödinger potentials represent a dual representation of SB in a statistical
manifold. In (Gigli & Tamanini, 2020), such potentials satisfy the Hamilton-Jacobi-Bellman (HJB)
equations and, this can be trained with forward-backward SDE (SB-FBSDE) as presented in (Liu
et al., 2022). However, this requires many simulation samples from SDEs, and the requirements for
applying VMSB contain a tractable way of estimating gradient flows, and a guarantee of measure
concentration. Therefore, we expect there will be a new studies of energy-based neural architecture
for efficiently representing SB, which will advance various subfields of machine learning.

Reproducibility statement. Comprehensive justification and theoretical background are presented
in Appendices A and B. Since the primary contributions of this paper pertain to the learning method-
ology, we ensured that all architectures and hyperparameters remained consistent across the LightSB
variants. All datasets utilized in this study are available for download alongside the training scripts.
Please refer to Appendix C for more information on the experimental setups.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ADDITIONAL RESULTS ON THE EOT BENCHMARK

We present the full results of EOT benchmark experiments. Tables 6 and 7 show comprehensive
statistics on the EOT benchmark with more SB solvers. As mentioned in § 6.2, the VMSB and
VMSB-M solvers consistently brought better performance with low standard deviations of scores
for cBW2

2-UVP and BW2
2-UVP measures. We note that the experiment was conducted in a highly

controlled setting with identical model configurations; with all other aspects controlled and out-
comes differing only by learning methods, the consistent performance gains of our work were a
well-anticipated result from our theoretical analysis.

E.2 ADDITIONAL IMAGE GENERATION RESULTS

64 256 1024 4096
0

15.211

100

VMSB-adv
DSBM-IPF

Number of Gaussian modalities K

FI
D

Figure 11: FID vs modality

In the unpaired EMNIST-to-MNIST translation task, we measured
FID scores for various K for the SB parameterization. We consid-
ered K ∈ {64, 256, 1024, 4096} with ε = 10−3 for our VMSB al-
gorithm. Our observations, both qualitative and quantitative, indicate
that higher modalities yield higher-quality samples. In every case of
K, VMSB-adv outperformed its counterpart. For instance, Fig. 11
demonstrates that VMSB generates more diverse samples with high
fidelity. Notably, we achieved an FID score of 15.4 using a naı̈ve
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Figure 12: Generation results for unpaired image-to-image translation. We considered image data
from MNIST and EMNIST (containing the first ten letters), sized as 28×28 pixels. For comparison,
we trained GMM-based models with adversarial learning using a simple logistic discriminator (Table
B2). This was used as both a benchmark and a tractable target SB model (LightSB-adv-K). Our
method in the raw pixel domain, denoted as Ours-K, demonstrated qualitative improvements in
terms of diversity and clarity of image samples by effectively handling the mode collapsing issue.

Table 8: MNIST transfer statistics.

FID Time Parameters
LightSB-256 61.257 30m 0.4M
LightSB-1024 26.487 53m 1.6M
LightSB-4096 20.017 135m 6.4M

VMSB-256 52.634 76m 0.4M
VMSB-1024 24.022 203m 1.6M
VMSB-4096 15.471 44h 6.4M

DSBM-IMF 11.429 42h 6.6M

Table 9: FID scores and differences for generated MNIST.

FID (Train) FID (Test) Diff. (test − train).
LightSB-adv-256 60.746 61.604 0.858
LightSB-adv-1024 25.934 26.569 0.635
LightSB-adv-4096 19.960 20.196 0.237

VMSB-adv-256 51.684 52.283 0.599
VMSB-adv-1024 23.853 24.053 0.200
VMSB-adv-4096 15.508 15.496 −0.012

convolutional neural network discriminator with low MSD similarity scores, which represent com-
petitive results for this task (Shi et al., 2023).

Fig. 12 demonstrates that VMSB generated more diverse samples with high fidelity. Note that the
proposed method suffers less from mode collapse than LightSB method (especially on the transfer
MNIST-to-EMNIST), with the same Gaussian mixture setting. This result is especially a good
point where the difference only lies in the learning methodology, which aligns with our theory.
Tables 8 and 9 effectively shows the statistics and FID scores on the both train and the test datasets.
The quantitative results highlight that the VMSB solver is more preformant with less overfitting than
its counterpart. Consequently, our claim regarding the stability of SB solution acquisition is verified
by additional experiments involving pixel spaces.

We present Embedding-ED scores (Jayasumana et al., 2023) and some qualitative generation results
in Table 10, which is visualized in Fig. 8. SF2M-Sink For quantitative results, we calculated statistics
from ED scores on embeddings of the ALAE model (Pidhorskyi et al., 2020), for the four different
tasks: Adult→ Child, Child→ Adult, Female→ Male, and Male→ Female. The results show that
VMSB is capable of translating an arbitrary representation, which is closer to target domain than
baselines. To qualitatively verify these results, we generated images using LightSB and VMSB
in Figures 13 and 14. Since these improvements are purely based on information geometry and
learning theory, we anticipate that many following works on the variational principle application
across various fields such as image processing, natural language processing, and control systems
(Caron et al., 2020; Liu et al., 2023; Alvarez-Melis & Jaakkola, 2018; Chen et al., 2022).
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Table 10: ALAE Embedding-ED scores. To evaluate the performance, we computed averages and
standard deviations of the ED scores across four different transfer tasks.

ε = 0.1 ε = 0.5 ε = 1.0 ε = 10.0

SF2M-Sink 0.02916± 0.00145 0.04112± 0.00191 0.05670± 0.00249 0.06641± 0.00441
DSBM-IMF 0.02275± 0.00101 0.03358± 0.00142 0.04866± 0.00168 0.06474± 0.00381

LightSB 0.01086± 0.00045 0.02382± 0.00093 0.03462± 0.00148 0.05376± 0.00273
LightSB-M 0.01066± 0.00055 0.02366± 0.00107 0.03519± 0.00153 0.05975± 0.00298

VMSB 0.01002± 0.00055 0.02288± 0.00101 0.03396± 0.00174 0.05315± 0.00307
VMSB-M 0.00997± 0.00054 0.02298± 0.00106 0.03391± 0.00140 0.05351± 0.00241
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Figure 13: Qualitative comparison between LightSB and VMSB for relatively high volatility, ε =
1.0. Top (Male→Female): We find that VSBM has preserved more facial details, such as wearing
glasses, than LightSB. Bottom (Adult→Child): VSBM was stable at retaining facial position even
with high ε.
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Figure 14: Generation results of VMSB (Adult→Child) with different volatility settings
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