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ABSTRACT

Schrodinger bridge (SB) has evolved into a universal class of probabilistic gen-
erative models. Recent studies regarding the Sinkhorn algorithm through mirror
descent (MD) have gained attention, revealing geometric insights into solution ac-
quisition of the SB problems. In this paper, we propose a variational online MD
framework for the SB problems, which provides further stability to SB solvers. We
formally prove convergence and a regret bound O(v/T') of online mirror descent
under mild assumptions. As a result of analysis, we propose a simulation-free SB
algorithm called Variational Mirrored Schrodinger Bridge (VMSB) by utilizing
the Wasserstein-Fisher-Rao geometry of the Gaussian mixture parameterization
for Schrédinger potentials. Based on the Wasserstein gradient flow theory, our
variational MD framework offers tractable gradient-based learning dynamics that
precisely approximate a subsequent update. We demonstrate the performance of
the proposed VMSB algorithm in an extensive suite of benchmarks.

1 INTRODUCTION

Schrddinger bridge (SB;|Schrodinger, [1932) has emerged as a universal class of probabilistic gener-
ative models. However, learning methods of SB remain somewhat atypical, each requiring a sophis-
ticated approach to derive a solution. Recently, learning an SB model with Sinkhorn (Peyré et al.,
2019) has been generalized into a collection of convex optimization methods, called mirror descent
(MD; [Nemirovsky & Yudin, [1983; [Léger, |2021; |Aubin-Frankowski et al., [2022). For a parameters
sequence {w; }/_; and a convex function €2, an update of MD for a cost function F; is derived as

VQ(wt+1) = VQ(wt) - ntVFt (wt) (l)

In the equation, the gradient operation denoted as V)( ) creates a transformation that links a para-
metric space to a dual space. The collective perspective of considering SB problems (SBPs) as an
ordinary instance of optimization problems broadly opens new avenues for algorithmic advance-
ments of probabilistic generative models in a learning theoretical direction, particularly within the
context of the learning theory and stability improvements in probabilistic generative modeling.

In general, one can consider constrained distributional optimization problems with generalized gra-
dient dynamics on the space of distributions endowed with the Wasserstein metric. Leveraging the
Wasserstein gradient flow discovered by Jordan, Kinderlehrer, and Otto (JKO; Jordan et al.| [1998)),
the desired dynamics of a functional F' : Py(X) — R can be modeled, where Py(X') denotes
the set of probability distributions with finite second-order moments. Despite the extensive theo-
retical findings of the Wasserstein gradient flow regarding OT problems (Ambrosio et al., |2005aj;
Santambrogio, |2015; |Villani, 2021), the computational challenges remain. The established methods
are commonly based on numerical methods for partial differential equations (PDEs) (Carlier et al.,
2017 Carrillo et al.l 2023)), whose exhaustive numerical computations make them unsuitable for
systems with high-dimensional probability densities.

A favored strategy to mitigate this issue is to narrow down the solution space into a subset of tractable
distributions, often referred to as taking a variational form (Paisley et al., 2012; Blei et al., [2017).
For example, mean-field formulations of SB (Liu et al.| [2022} (Claisse et al., 2023) are variational
approximations. Unfortunately, this does not faithfully yield an analytical submanifold and it is
obligated to physically simulate among particles. Recently, a Gaussian mixture parameterization of
the Schrddinger potentials has been proposed by |[Korotin et al.|(2024)). The simulation-free LightSB
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Table 1: A technical overview. VMSB is a
simulation-free algorithm that iteratively produces
solutions. Our VMSB additionally provides a strong
theoretical guarantee of convergence.

Iterative ~ Simulation-free ~ Regret bound

DSB (De Bortoli et al.} v
DSBM (Shi et al.) v

Figure 1: Learning for an SB model {m;}?2;.

We propose to learn in the distributional space  LightSB {Korotin etal] v
C. Left: Sinkhorn (Lemma([l). Right: Steepest _Ligh'SB-M (Gushehinet al} v
Wasserstein descent in C (Lemma 2). VMSB (ours) v v v

solver is simple yet general, with the guarantee of universal approximation for SB. The expressive-
ness of the solver coincides with geometric properties of Gaussian variational inference and mixture
models (Chen et al.|, 2018; [Daudel et al., 2021} |Diao et al., |2023). However, its shortcoming—as
well as other simulation-free solvers (Tong et al., [2023; |Gushchin et al.| 2024a)—is the uncertainty
of data-driven learning signals of non-convex objectives. This reveals room for improvement in the
rich geometric properties of SB using a variational framework.

In this paper, we explore a new way of stable Schrodinger bridge acquisition through the lens of
online mirror descent (OMD; [Srebro et al., [2011). As illustrated in Fig. E], we utilize a constrained
space C equipped with the Wasserstein metric, allowing a new formulation similar to the classical
mirror descent algorithm. As an online learning algorithm, we postulate the optimization errors of
an SB solver and propose an OMD framework to reduce these errors in terms of regrets. To this end,
we propose a new simulation-free SB algorithm called Variational Mirrored Schrodinger Bridge
(VMSB). Learning of VMSB is based on an approximation of the MD updates that solve iterative
subproblems by Wasserstein gradient dynamics. We introduce a gradient computation method of
parameterized SB models based on gradient flows with respect to Wasserstein-Fisher-Rao (WFR)
geometry (Liero et al.[2018)). Our framework allows us to efficiently perform OMD, which is more
tolerant of unreliable objective estimation (Lei & Zhou, 2020). Our experiments show that the
proposed VMSB outperforms existing SB solvers in benchmark problems.

Our contributions. Our work complements earlier studies on SB, building on the theoretical and
technical insights derived from a geometric perspective that views MD solutions as gradient flows
across the Wasserstein space. To the best of our knowledge, VMSB is the first SB algorithm based
on online mirror descent that verifies its ability to solve high-dimensional real-world SB problems.
Table |1| shows that VMSB is a simulation-free SB solver that brings solid convergence results in
general situations. We summarize our main contributions below:

* Based on the learning theory, we derive gradient-based OMD update rules that provide robust
dynamics for reaching local objectives, which ensures a rigorous regret bound (§ @).

* We propose a new SB solver based on the Wasserstein-Fisher-Rao geometry, which retains asymp-
totic stability results in Wasserstein gradient flows (§ [3).

* We demonstrate our algorithm on a variety of SBPs demonstrating the effectiveness of the learning
theoretic approach in the Schrodinger bridge problems (§[6)).

2 RELATED WORKS

MD and Sinkhorn. The Bregman divergence (Bregman, 1967) is a family of statistical divergence
that is particularly useful when analyzing constrained convex problems in various settings (Beck &
Teboulle, [2003; Boyd & Vandenberghe, 2004; |Hiriart-Urruty & Lemaréchall [2004). Notably, |Léger
(2021) and |Aubin-Frankowski et al.| (2022) adopted the Bregman divergence into entropic optimal
transport (EOT; |Peyré et al.,2019) and SBPs with probability measures, and the studies revealed that
Sinkhorn can be considered to be an MD with a constant step size 7 = 1. In statistical geometries,
the Bregman divergence is a first-order approximation of a Hessian structure (Shima & Yagil (1997
Butnariu & Resmerita, 2006), which is natural discretization on a gradient flow. |Deb et al.| (2023))
introduced Wasserstein mirror flow, and the results include a geometric interpretation of Sinkhorn
for unconstrained OT, i.e., when € — 0 in our setup. |[Karimi et al.|(2024)) formulated a half-iteration
of the Sinkhorn algorithm for SB into a mirror flow, i.e., n; — 0 with a continuous-time formulation.
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Wasserstein Gradient Flows have drawn significant attention whose geometry is formally de-
scribed by the Wasserstein-2 metric (Ambrosio et al., |2005a; |Villani, [2009; |Santambrogio, [2017)).
Otto| (2001) introduced a formal Riemannian structure to interpret various evolutionary equations
as gradient flows with the Wasserstein space, which is closely related to our variational approach.
The mirror Langevin dynamics is an early work describing the evolution of the Langevin diffusion
(Hsieh et al.| 2018)), and was later incorporated in the geometry of the Bregman Wasserstein diver-
gence (Rankin & Wong| 2023). We relate our methodology with recent approaches of variational
inference on the Bures-Wasserstein space (Lambert et al., [2022} |Diao et al.,|2023)). Utilizing Bures-
Wasserstein geometry, the Wasserstein-Fisher-Rao geometry (Liero et al.|[2016; (Chizat et al., 2018,
Liero et al.| 2018)) additionally provides “liftings,” which yield an interaction among measures.

Learning Theory. Suppose we have time-varying costs { F} }°,. We generally referred to learning
through these signals as online learning (Fiat & Woeginger,|1998)). Our interest lies in temporal costs
defined in a probability space, where following the ordinary gradient may not the best choice due
to the geometric constraints (Amaril [2016; |Amar1 & Nagaoka, |2000). In this sense, we primarily
relate our work to the online form of MD (Srebro et al.| 2011} [Raskutti & Mukherjee}, [2015; Lei &
Zhou, [2020). Another relevant design of the online algorithm is the follow-the-regularized-leader
(FTRL; McMahan, |2011};|Chen & Orabona, 2023), where the distinction between two schemes is the
way of handling costs and regularization. OMD focuses on minimizing a current loss, dynamically
scheduling proximity of updates through {n;}_;. In contrast, FTRL aims to minimize historical
losses ), F;(w) with a fixed regularization term.

3 PRELIMINARIES
@/Noise (we)

Let P(S) (P2(S)) denote the set of (absolutely continuous) Borel F(le2) [N

probability measures on S C R? (with a finite second moment). For a — U

transport plan 7, a notation 7% (7¥) denotes a conditional distribution
L

7(-|z) (7(-ly); see Fig.[2). We use KL(-||-) to denote the KL func-
We employ P([0, 1], S) for a set of trajectories from time O to 1. Figure 2: An SB problem.

tional and assume +oc if an argument is not absolutely continuous. (=)

For marginals p, v € P(S) and a regularization coefficient ¢ € R, the EOT/SB problem with a
quadratic cost function is defined as finding the unique minimizer 7* for the following problem:

OT.(ur) = _int  [[ dllo = ol dn(ay) + eKLixniw ), @
mell(p,v)) JSxS

where II(u, v) denotes the set of couplings (Peyré et al., [2019) and p ® v is the product of mea-
sures. For an induced dual problem the constrained optimization (2)), consider the log-Schridinger
potentials (Nutz, [2021) (¢* ¢*) € L' (u) x L*(v), which represent the EOT solution with dr* =
e“."*@w**cfd(u.@) 1/)., (,u ® v)-almost surely, for the quadratic cost ce(z,y) = 5|lz — yl|*. The
Sinkhorn algorithm is given as the following updates (Cuturi, [2013)):

Yorr1(y) = —log/ P @ ==V (dx),  poypa(a) = —log/ i@ =@Vl (dy),  (3)
S S

where each update for a potential is called iterative proportional fitting (IPF; [Kullback, |1968). Let
W# € PP be the Wiener process with volatility €. The fundamental equivalence between EOT and SB
(Pavon & Wakolbinger, 1991 Léonard, [2012) allows us to consider the optimality 7* when solving
the Schrodinger bridge problem, and we can transform 7* to 7* such that:

T* = argmin KL(7 |W¢), 4)

TeQ(pv)

where Q(u,v) C P(S,[0,1]) is the set of processes with marginals p and v. The SB process 7 * is
uniquely describe by a stochastic differential equation (SDE; [Léonard, 2013): dX; = ¢* (¢, X;) +
dW¢ in t € [0, 1] with an optimal drift function g*. Under the Girsanov theorem for the stochastic
processes (Vargas et al.l[2021)), the Sinkhorn scheme can be designed as a drift matching algorithm.

Léger| (2021) and |Aubin-Frankowski et al.| (2022) have discovered a major link between Sinkhorn
and MD: solving SB with Sinkhorn corresponds to MD with a constant step size 7, = 1. Since our
objective does not ensure Gateaux differentiablility (see Definition[d), one needs an alternative for a
generalized notion of derivatives. Consequently, we provide the definitions of directional derivatives
(Aliprantis & Border, [2006)) and first variations (Aubin-Frankowski et al.| 2022).
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Definition 1 (Directional derivative). Given a locally convex topological vector space M, The di-
rectional derivative of F' in the direction ¢ is defined as d*F'(x; £) = limj, _,o+ w

Definition 2 (First variation). Given a topological vector space M and a convex constraint C C M,
for a function F and z € C U dom(F), define the first variation of F' over C to be an element
I F(x) € M*, where M™ is the topological dual of M, such that it holds for all y € C U dom(F")
andv =y —x € M: (0. F(z),v) = d*F(z;v). {-,-) denotes the duality product of M and M*.

From the above definitions, we can consider a Bregman divergence defined with a weak notion of
the directional derivative, enabling a formal analysis akin to standard convex optimization problems.
Following Karimi et al.[(2024), we explicitly set the Bregman potential 2 = KL(-|[e” % ® v) in
the SB problems, which enforces the Gibbs parameterization for EOT couplings.

Definition 3 (Bregman divergence). Let 2 : M — R U {+00} be a convex functional. Define the
Bregman divergence as Dgq(z|ly) == Q(z) — Q(y) — d*Q(y; 2z — y), forall z,y € M.

Lastly, our analysis requires a certain form of measure concentration to address the desired properties
of OMD. Thus, we primarily works with asymptotically log-concave distributions initially discussed
by Otto & Villani|(2000). Let us define asymptotically log-concave distributions on R%:

Puc(R?) = {¢(dz) = exp(~U(x))dz : U € Cz(R?), U is asymptotically strongly convex} (5)

Since Py ensures the log Sobolev inequality (LSI; |Gross| [1975)), providing Fisher information as
an upper bound of the KL functional. We defer the additional theoretical details to Appendix [A]

4 LEARNING SCHRODINGER BRIDGE VIA ONLINE MIRROR DESCENT

The goal in this section is to derive an OMD update rule for SB, and analyze its convergence. To
accomplish this, we postulate on the existence of temporal estimates and an online learning problem.
Our analysis suggests that applying an MD approach can reduce the uncertainty of these estimates.

4.1 SINKHORN AND WASSERSTEIN DESCENT

We start with our characterization of Sinkhorn and a static MD variant illustrated in Fig. |1} which
will lead to a better understanding of the OMD framework. Using the first variation &, in Definition|2]
instead of standard gradient V, we write a proximal form of an MD update as (Karimi et al.,[2024)

iyl = ATg nclin{<5th(7rt), m—m)+ ipﬂ(wum)}, ©)
T

where F; denotes a temporal cost function for SB models in C. In Eq. (), the updates are de-
termined by the first order approximation of F} and proximity of previous iterate m; with respect
to the Bregman divergence (Beck & Teboulle, 2003). We assume that a parameterized SB model
7 = e¥t®¥Ve=C (1, @ v) obeys the following constraints for marginals and potentials:

C:={m:(n,v) € Po(R") N Puc(R?), (0, 0) € L'(n) x L'(v), and , € C*(R?) N Lip(K)},
where Lip(K) denotes a set of functions with K-Lipschitz continuity. Using the model space C, IPF
projections Eq. (3)) writes as following subproblems of alternating Bregman projections:

argmin{KL(ﬂ'Hﬂ'gt) cm € C,ym = V}, argmin{KL(metH) cmel,ymm= u}, @)
TrEHi Telll

v

where y17(z) = [m(z,y)dy and vom(y) := [7(x,y)d and the symbols (IL;,II,;) denote the
Sinkhorn projection spaces that preserve the property of marginals. As an optimization problem in
C, one can consider a temporal cost F;(7) := a;KL(y17||p) + (1 — at)KL(ye7||v) with sequence
{a;}5°, = {0,1,0,1,...}. By construction, MD for F; with a step size 17; = 1 matches the Sinkhorn.

Lemma 1 (Sinkhorn). For Q = KL(r|le~% pu®v), iterates from my1 = arg min .o {(6.Fi(m), 7—
™) + Do(w||m) } is equivalent to estimates from (y, ¢) of, for every update step t € Ny.

In contrast, we can alternatively consider a “static” objective, namely F'(-) := KL(-||7*), where
the KL functional is originated from the formal definition of SBP (Vargas et al., 2021} |Chen et al.,
2022). The following lemma show that the MD updates directly correspond to Wasserstein gradient
descent on SB models, which can be considered as the Riemannian steepest descent in the space C.
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Figure 4: Loss landscapes and gradient dynamics in a 2D problem. Left: In an early stage, param-
eters of three modalities {mk}%zl (mean estimations) for both LightSB (top) and VMSB (bottom)
methods approach the optimality with different costs. Right: In a late stage, while LightSB is vibrant
(magnified 10 times), whereas our method emits strictly convex landscape and stable dynamics.

Lemma 2 (Wasserstein descent). Suppose that F(m) := KL(x||n*) and f(7*) = KL(7*||(7)%)
for m € S. The MD formulation of F corresponds to a discretization of a geodesic flow such that
g1

P —Vau f(TF), where Ny, denotes the Wasserstein-2 gradient operator.

limm_>0+
Therefore, updates for F'(-) approximately lies the geodesic of C in terms of Wasserstein-2 met-

ric. Note that optimizing the cost ensures unbiased minimization (green line in Fig.[I)) in C. This
interpretation allows us to consider F'(+) as the ground truth cost in our SB framework.

4.2 THEORETICAL ANALYSIS Primal Space Dual Space

N

empirical
estimates o, @),

In contrary to the ideal case of Lemma [2] we postu-
late on an online learning problem that nonstationary
estimates {7y }22, are offered instead of 7* as learning
signals, making an optimization process with Fj(-) =
KL(:||wp). We require some geometric conditions on
{m9}22, to start our analysis. As previously studied o .
(Bernhard & Rapaport, (1995}, [Karimi et al., [2024), the Flgure 3: A schematic IHUStratIOI_L Th_e
directional derivative of the Fenchel conjugate 2* of Primal and dual spaces (C,D) rejam bldi'
Q + ic, Q with an indicator function ic (defined as rectional maps (3¢, 6,€2%). I and II;;
ic(z) = 0if z € C and +oo otherwise), exists by the indicate projection spaces of v, = p and
Danskin’s theorem, such that yom = v, respectively. The current 7; per-

. forms an update following a “unreliable”
S (p @) = ar%eﬁclax{w @1, m) — Q) }, leader 79 in a region shaded in gray.

where every direct sum of potentials ¢ ® ¥ = 0.Q(7w) € D = 0.2(C) represent an element of
the generalized dual space. In the dual geometry illustrated in Fig. [3] we assume uncertainty of the
ground truth in D, characterized with the following assumption.

Assumption 1 (Dually stationary process). Suppose a process {7y }$°; C C with ergodicity (Corn-
feld et al.l [2012) of {5.Q(77)}52,. Consider 73 € C, which is a primal representation for an
asymptotic mean upon D = §,Q(C): 73 = 0p (limy—o0 + >, 6 U77)]).

The assumption manifests statistical properties (such as the mean) that {7 }$2, remain in a sta-
tionary region as 7' — oo. This is closely related asymptotically mean stationary processes (Gray
& Kieffer, |1980) which have been used to analyze stochastic dynamicsE] Fig. 4| demonstrates our
objective that OMD stabilizes learning of 7;, even when the reference 7y tends to have perturbation.

We state two step size conditions, which will be justified in Theorem [I]and Proposition [I]

Assumption 2 (Step sizes). Assume two conditions for {7;}£°,. (a) Convergent sequence & diver-
. . o0 . o0 2
gent series: limy_, o ny = 0and ) ;" 1, = co. (b) Convergent series for squares: ) _,_ | 17 < 0o.

Using the conditions above, we firstly argue that online mirror descent with respect to Bregman
potential 2 = KL(-|[e”% u ® v) requires Assumption ) for the sake of convergence.

!Since iterates are updated through dual parameters in MD, we refer to the process as being dually stationary.
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Figure 5: Variational MD with synthetic datasets. (a) A distribution is accessible by finite batch
data. (b) 3D surfaces of (7%, 7) trained by Monte Carlo method for KL (top) and variational
MD (bottom) show that the MD results in more stable outcomes. (c) The plots show the estimated
KL(7;||7*) with different step size scheduling (5 runs), with red dashed baselines KL(77 ||7*).

Theorem 1 (Step size considerations). Suppose a Bregman potential Q) = KL(-jZLeCE uw R v) and
strongly convex c.. Assume the idealized case of 75 = 7*. Then, for {m}; C C we get
limr_, oo E1.7[Da(7d||7)] = 0 if and only if Assumption ) is satisfied. Furthermore, if the
step size is in the form of ny = t% then Bq.7[Dq(n*||m:)] = O(1/T).

Therefore, we can assure for the ideal convergence in the SB learning when the scheduling of 7,
follows the step size assumptions. Next, we show that almost sure convergence toward 73 is guar-
anteed under Assumption (Zb). Given the convex nature of SB cost functionals, we argue that this
convergence toward 73 is beneficial as long as 77 is trained to approximate 7* and remain bounded.
Therefore, we argue that the convergence of SB is beneficial and address the following statement.

Proposition 1 (Convergence). Suppose that 7 # w3, hence inf cc E[Fi(m)] > 0. If the step sizes
{ne Y2, satisfies Assumption[2] then limy_, o E1.4[Do (75 ||m,)] converges to 0 almost surely.

Lastly, assume that a type of log Sobolev inequality holds (see Assumption [3) with continuity of
potentials. We present a regret bound of O(+/T); this newly shows that enforcing certain measure
properties of SB generalize the classical OMD results (Srebro et al., 201 1;|Lei & Zhou, 2020)).

Theorem 2 (Regret bound). Assume o, € C?(R?) N Lip(K) and Assumption E| in Appendix@
holds with a constant w > 0. Define D?* = maxi<¢<7 Do (ul|m) for a total step T. (a) For a

constant step size n = \%KLWT the regret is bounded to Dv2w—1KT. (b) For a heuristic scheduling

e = Dyw/+/2Y,11G:]]? the regret is bounded to D\/2w=1%" [[g:]|*> where §; = 6.Q(my) — 6 Q(m).

Fig. [5] shows our experiments for Gaussian mixture models (GMMs). Let a reference estimation be
fitted using a Monte Carlo method, and our model be trained through an OMD method. We observed
that the OMD method provides stability improvement when 7 < 1. The performance of OMD was
greatly improved by choosing a harmonic step size scheduling in the interval [1.0, 0.05].

4.3 ONLINE MIRROR DESCENT USING A WASSERSTEIN GRADIENT FLOW

For the computation, we adopt the Wasserstein gradient flow theory. Learning with Wasserstein
gradient flows Eq. (9) is asymptotically stable due to the LaSalle’s invariance principle (Carrillo
et al., [2023)). Suppose we expand a time step interval [¢, ¢ + 1) for OMD into continuous dynamics
of p(7) € C for T € [0, 00). By Otto’s calculus on the Wasserstein space (Otto, 2001), known as the
Otto calculus, one can describe the gradient dynamics of minimizing a functional & (+) by a PDE:

an'r = _ngt (p)a (8)
where V,, denotes the Wasserstein-2 gradient operator Vi, = V-(p V(S‘S—p). Recall that that the objec-
tive F} satisfies the 1-relative-smoothness and 1-strong-convexity relative to €2 (Aubin-Frankowski
et al.|2022) (see Definition[6). Then, we can convert the MD update problem (I0) into another prob-
lem with identical smoothness and convexity. We present the following theorem for computation.
Theorem 3 (Dynamics equivalence in first variation). Consider the Wasserstein gradient dynamics
in PDE (8) governed by the convex problem of OMD updates ((6). The gradient dynamics of updates
are equivalent to that of a linear combination of KL functionals such that

ne0cEx(pr) = O {neKL(p-||77) + (1 =) KL(p-|me) } Vpr €C, ©)
and the PDE (8) converges a unique equilibrium of subsequent OMD iterate of Eq. (€) as T — cc.
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Sketch of Proof. We identify 6&; as a dynamics that reaches an equilibrium solution for

e . 1
minimize (0 Fy(my),m—m) + o Da(m|[m)

< minimize n, Da(rl|x?) +(1—n) Da(r|m), (10)
wel | — N’
empirical estimates proximity

and then the equivalence of first variation for recursively defined Bregman divergences is applied
(Lemmald). At a glance, Eq. (I0) appears analogous to the interpolation search between two points,
where the influence of 77 is controlled by 7,. We leave the entire proof in Appendix O

Theorem |3|holds practical importance since following the argument allows us to perform MD with-
out directly computing Bregman divergence. Therefore, we propose to perform updates with a
linear combination of two KL functionals, where such gradient flows has been extensively studied
both theoretically and computationally (Jordan et al., | 1998; Lambert et al., [2022)).

5 ALGORITHM: VARIATIONAL MIRRORED SCHRODINGER BRIDGE

In this section, we propose a simulation-free method that offers iterative MD updates for parameter-
ized SB models with mixture models, using the Wasserstein-Fisher-Rao geometry.

5.1 GAUSSIAN MIXTURE PARAMETERIZATION FOR THE SCHRODINGER BRIDGE PROBLEM

Recently, [Korotin et al.| (2024) proposed the GMM parameterization, which provides theoreti-
cally and computationally desirable models for our variational OMD approach. The parameteri-
zation considers the adjusted Schrodinger potential u*(x) = exp(p*(x) — I=17/2¢) and v*(y) =
exp(¥*(y) — Ivl?/2¢). With a finite set of parameters 0 £ {ay, my, Sp HE | for oy, > 0,my, € R?
and ;, € S, . The adjusted Schrodinger potential vy and conditional probability density 7y write

K K
o 1
vg(y) = ZakN(y|mk75Ek)a Ty (y) = fozai/\/(y\miﬁzk), (1D
k=1 0 k=1
where each parameter for 7 conditioned by an input z: mjy = my + Xpz, of =
xTEkaH»(mk,x)

2e
eterization, the closed-from expression of SB process 7y is given as the following SDE:

To : dX; = go(t, Xy) dt + e dW, te€0,1)

Qg exp( ) 2§ = Zkl,(:l oy, (see Proposition 3.2 of [Korotin et al.). For this param-

K

(12)

g@(t7 .’L‘) = EVIOg/\/(l’|O, 8(1 - t)Id) Z Ak N(mk|oa Ezk)N(mk(t7 LE)‘O, Ak(t>)a
k=1

where my,(t,2) £ 555 + 1% 'my, and Ag(t) £ apla+ 1331, Korotin et al{(2024) also
presented theoretical properties for probabilistic inference and diffusion models, including universal
approximation of 7y and 7y. Furthermore, the GMM parameterization makes the computation of the
Wasserstein gradient flow with respect to the KL divergence tractable, which is elaborated in § [5.2]

5.2 COMPUTATION OF VARIATIONAL MD IN THE WASSERSTEIN-FISHER-RAO GEOMETRY

Wasserstein-Fisher-Rao. The space of Gaussian parameters R? x S¢, equipped with Wy is for-
mally known as the Bures-Wasserstein (BW) geometry (Bures, |1969; Bhatia et al.| 2019} Lambert;
et al., [2022) BW(Rd) - PQ(Rd). On top of the BW space, the Wasserstein-Fisher-Rao geometry of
GMMs, namely P»(BW(R?)) provides liftings of Gaussian particles (Liero et al., 2018} |Chizat et al.,
2018 [Lu et al., 2019; |Lambert et al., [2022) satisfying the distributional property. We present the
following proposition, which describes the WFR dynamics 6, for the LightSB parameterization 7.

Proposition 2 (WFR gradient dynamics). Suppose a GMM pg, with 0, = {a +, M7, Sp 7 .
Let yp, ~ ./\/(m;w, Y,+) denote a sample from the k-th Gaussian particle of pe.. Then, the WFR
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dynamics Vagrr KL (pg., || p*) wrt 0, = {&r, M0k 7, ZkﬁT}szl are given as

K
g T 1 T
e = — (IE [bg ’;f (yk,r)] - aeE{log ’;f (ye,T)Dak,T, (13)
T =1

mk’,T =-E |:v lOg £ P, (ykﬂ'):| Ek,'r - Ek,TE |:v2 log P (yk,T):|?

SforT € [0,00), where z, = Zszl ay; V and V? denote gradient and Hessian with respect to y, ..

(yk,a], Sk = E[VQ log

Appendices [A.6] and [B] contain the complete theory. Proposition 2] implies that the one parameter
family 6, predicts a gradient-based algorithm of Vyzzzr KL (pg_ ||p*), thus Eq. can be directly used
for training GMM models. Recall that GMMs have a closed-form expression of log-likelihoods,
which means each likelihood difference can be driven without errors. Given that the target has the
identical number of Gaussian particles, both Eq. (I3) and its approximation using finite samples
will strictly have zero gradients after the flow reaches a certain equilibrium. Hence, abiding WFR
gradient dynamics will result in more stable outcomes than standard gradient-based learning.

Algorithmic considerations. We introduce SB parameters 6 and ¢, which represents 7, and 7}
from the theoretical framework in § and 7 is independently fitted using an arbitrary data-driven
SB solver, such as LightSB and its variants. Also, we introduce the following gradient operation
WFRgrad(6; ¢, v, n,) = Vies KL(79||74) = {af, m}, Xp o, in Proposition[J (14)
For the operator WFRgrad, the WFR gradient @) is estimated using finite n,, samples from each

Gaussian particle of 7, expressed as {Y,;*}X_| € RF*"s . At each iteration ¢, we propose to update
the SB model 7y with n;WFRgrad(6; ¢) + (1 — ;) WFRgrad(0; ¢), as stated in Theorem [3]

Algorithm 1 Variational Mirrored SB (VMSB).  We propose to gradually minimize the step size
by a harmonic series for 1 > n; > ny > 0.

Input: SB models (7p,7) parameterized by According to Proposition [T] one can schedule

Gaussian mixtures, step sizes (1), 7)r)- of the step size 7; with a harmonic progression.
1: for ¢ < 1to T do We set 7 = 1 and nr € {0.05,0.1} which
2 N 1/(771_1 + (!~ U;l)(t_l/Tfl)) varies depending the total length of training.
3:  forn < 1to N do We can also put a few “warm up” steps for com-
4: Update 74 with a data-driven SB solver.  plex problems and start from § = ¢ after certain
5: {x;}2| + sample batch data from ;. updates enforcing 7, = 1 for the early training
6 % i %Ziﬁ?t WFRgrad(f; ¢, z;)+  stage. For the distribution u, we set z; = 0 and

(1 — n;)WFRgrad(0; 0;_1, ;) B = 1 only when p is a zero-centered Gaus-

7 Update 6 with the gradient 25 sian distribution. This is equivalent to directly

. 66 . . . . _
8- end for training the potential vg o my(-]z = 0), and
9: end for this tricks makes the algorithm run efficiently
Output: Trained SB model 7. for certain generation problems. Algorithm [I]

outlines the overall procedure.

6 EXPERIMENTAL RESULTS

Experiment goals. We delineate our objectives as follows: (O We aimed to affirm our online
learning hypothesis by demonstrating consistent improvements. @ We sought to corroborate our

a b 8 gaussian — Swiss Roll Swiss Roll — 8 gaussian Moons — S-curve S-curve — Moon
T 0.03 3
2 0.03 0.03 .
3 I I o s
o - .
5 | 0.02 'S
k2l
° : 0.02} 0.02
>
=)
2 0.01
0 0o Q_—‘\,
0.01 0.01

8 20 50 8 20 50 8 20 50 8 20 50
Gaussian particles Gaussian particles Gaussian particles Gaussian particles

Figure 6: Online SBPs for synthetic dataset streams. (a) An online learning problem with a rotating
filter. (b) The plots show that our VMSB and VMSB-M show consistent improvements from their
references regarding the ED metric with 95% confidence intervals for 5 runs with different seeds.
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Table 2: A summary of EOT benchmark scores with cBW2-UVP | (%) between the optimal plan 7*
and the learned plan 7y across five different seeds. We highlighted the VMSB results in bold when
they exceed their reference algorithm. See Appendix @ for more comprehensive statistics.

T e=0.1 e=1 e=10
ype Solver d=2 d=16 d=64 d=128 d=2 d=16 d=064 d=128 d=2 d=16 d=64 d=128
Classical solvers (best;|Korotinetal] 194 1367 1174 114 104 908 1805 1523 140 127 236 131
rev. KL LightSB (Korotinetal] _ 0.007 0.040 0100  0.140 0014 0026 0060  0.140 0019 0027 0.052  0.092
Bridge-M  LightSB-M (Gushchinetal] 0.017  0.088  0.204 0346  0.020 0.069 034 0294 0014 0020 0207  0.747
Var-MD VMSB (ours) 0004 0012 0038 0101 0010 0018 0044 0114 0013 0019 0021 0.040
Var-MD VMSB-M (ours) 0015 0067 0.108 0253 0010 0019 0094 0222 0013 0029 0193 0.748

theoretical results, aiming for stable performance that consistently exceeds that of benchmarks. @
We aimed to verify that our algorithm effectively induces OMD by the Wasserstein gradient flow.

Baselines and VMSB variants. [Korotin et al.| (2024)) introduced a streamlined, simulation-free
solver called LightSB that optimizes ¢ through Monte Carlo approximation of KL(7*||7). As an
alternative, LightSB-M (Gushchin et al., 2024a) reformulated the reciprocal projection from DSBM
(Shi et al.}[2023) to a projection method termed optimal projection, establishing approximated bridge
matching for the trajectory distribution 7. For the implementation of Algorithm ([T} we derived two
distinct methods called VMSB and VMSB-M (7), trained upon LightSB and LightSB-M (7),
respectively. Since the theoretical arguments imply that the algorithm is agnostic to targets, the
performance benefits of VMSB variants from their references support the generality of our claims.

6.1 STABILITY OF SB IN SYNTHETIC DATA STREAMS

To validate our online learning hypothesis, we considered 2D SBPs for data streams depicted in
Fig. [6] (a). We applied an angle-based rotating filter, making the marginal as a data stream where
only 12.5% (or 45-degree angle) of the total data is accessible for each step t. We trained con-
ditional models 7y for ordinary SB for the 2D coordinates. Fig. [6] (b) shows the plots of squared
energy distance (ED), which is a special instance of squared maximum mean discrepancy (MMD),
approximating the L? distance between distributions: ED(P, Q) ~ [(P(z) — Q())?dz (Rizzo &
Székely, 2016). In our ED evaluation, the MD algorithm achieved a strictly lower divergence than
the LightSB and LightSB-M solvers for various numbers of Gaussian particles K. Therefore, we
concluded that these results aligned with our hypothesis and theory of online mirror descent.

6.2 QUANTITATIVE EVALUATION ON THE EOT BENCHMARK

Next, we considered the EOT benchmark proposed by |Gushchin et al.| (2024b), which contains
12 entropic OT problems with different volatility and dimensionality settings. Table [2] shows that
among 24 different settings, our MD approach exceeded the reference model in 23 settings in terms
of the cBW3-UVP metric (Gushchin et al., 2024b). From our replication of LightSB/LightSB-M,
which achieved better performance than originally reported results. As a result, our method reached
the state-of-the-art performance in this benchmark with stability, which represents strong evidence
of Proposition Among all cases, the only exception was LightSB-M, which had the highest
dimension and volatility. We suspected that the drift form Eq. (I2)), which is proportional to ¢, might
have violated our assumptions Assumption [T] and the boundedness assumption during the training.
Thus, we conclude that our variational MD training is effective in various setups.

6.3 SB ON BIOLOGICAL DATA Table 3: Energy distance on the MSCI dataset (95%

confidence interval, ten trials with different instances).
We also evaluated VMSB on unpaired Results marked with I are from (Gushchin et al., 2024a)).
single-cell data problems in the high-

di . 1sinel 1 . t (T Type | Solver d =50 d =100 d = 1000
imensional single-cell experiment ( 'ong Sinkhorn | |[Vargas et al.|(2021] 234 2.24 1.864
et al.| 2023)). The MSCI dataset provided Bridge-M | DSBM (Shi et al.}} 246+£01 235401  1.36+0.04
: idee- 2M-Si 1t :
Slngle-Cell data from four donors on days Bridge-M | SF*M-Sink (Tong et al.} 2.66+0.18  2.52+0.17 1.38 £0.05
o rev. KL LightSB 2314008 215+£009 1.264 % 0.06
2,3, 4, and 7, describing the gene expres- Bridge-M ‘ LightSB-M 2304008 2.15+0.08  1.267+0.06
sion levels of distinct cells. Given sam- Var-MD VMSB (ours) 228+0.09 213+009 1.260+0.06
Var-MD VMSB-M (ours) 226+010 212+009 1.265+0.05

ples collected on two different dates, the
task involves performing inference on temporal evolution, such as interpolation and extrapolation of
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Table 4: FID and MSD similarity
scores in EMNIST-to-MNIST.

Method FID MSD

SF’M-Sink  23.215 0.456
DSBM-IPF  15.211 0.352
DSBM-IMF  11.429 0.373

LightSB-adv  20.017  0.362
VMSB-adv 15.471  0.356

U-net

GMM

Embedding energy distance

Child — Adult

}(ﬁ i

e=01 =05 e=1

Figure 8: Image-to-Image translation on a latent space. Left: Generation results for the FFHQ
dataset (1024 x 1024) using our two SB variants. Right: Quantitative results using MMD metrics.

PCA projections with {50,100, 1000} dimensions. Table shows that our VMSB method achieved
the best results, verifying that VMSB is well-suited for the real-world EOT problems.

6.4 INTERACTING WITH NETWORKS: UNPAIRED IMAGE-TO-IMAGE TRANSFER TASKS

Adversarial learning. We applied VMSB to unpaired image translation tasks. LightSB methods
struggled to generate raw pixels for the MNIST and EMNIST datasets. As our analysis did not spec-
ify a training algorithm for the target {77 }$°,, we opted to find a viable alternative, and we discov-
ered that extending the capabilities of GMM parameterization by incorporating learning dynamics
with an adversarial learning technique (Goodfellow et al., [2014; see Appendix@]) was effective in
providing rich learning signals. Therefore, we named the adversarial method and the VMSB adap-
tation LightSB-adv and VMSB-adv. Fig.[7]shows that VMSB-adv outperformed LightSB-adv (with
identical architecture) in the quality of samples, efficiently mitigating mode-collapsing (Salimans
et al} 2016). In Table @ VMSB also achieved competitive FID and input/output MSD similarity
scores for K = 4096, comparable to deep SB models with a smaller number of parameters.

Latent diffusion bridge. Following the latent diffusion bridge practice of (Korotin et al., [2024),
we assessed our method by utilizing the ALAE model (Pidhorskyi et al., [2020) for generating
1024 x 1024 images of the FFHQ dataset (Karras et al.,[2019). With the predefined 512-dimensional
embedding space, we trained our SB models on the latent space to solve four distinct tasks:
Adult — Child, Child— Adult, Female — Male, and Male — Female. Fig. |§| illustrates that our
method delivered high-quality translation results. We also conducted a quantitative analysis using
the ED on the ALAE embedding as a metric for evaluation. The result also verifies that our VMSB
algorithm consistently achieved lower ED scores, demonstrating its applicability for pretrained la-
tent spaces. Consequently, adversarial learning and latent diffusion applications showed that the
proposed algorithm is highly capable of interacting with neural networks of complex architectures.

7 CONCLUSION

In this paper, we have presented an OMD framework developed to solve SBPs with robustness.
Our geometric interpretation of the dual space allowed us to construct a robust OMD algorithm with
theoretical guarantees for convergence and regrets. We substantially reduced the computational chal-
lenge in the MD framework using the WFR geometry. The proposed method demonstrated stable
benchmark performance, exhibiting enhanced stability. We argue that the VMSB algorithm offers a
promising approach for solving probabilistic generative modeling in the context of learning theory.
The limitations and potential directions for future research are thoroughly discussed in Appendix D}

10
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Appendices for
Variational Mirror Descent for Robust Learning in Schrodinger Bridge

ABBREVIATION AND NOTATION

Abbreviation Expansion Notation  Usage
SB Schrodinger Bridge v marginal distributions
SBP Schrodinger Bridge Problem € volatility of reference measure
EOT Entropy-regularized Optimal Transport Ce cost c.(z,y) = % lz —yl?
MD Mirror Descent s a coupling of y and v
OMD Online Mirror Descent T, conditional distributions
KL Kullback-Leibler Yn n-th marginal
IPF Iterative Proportional Fitting ©, log-Schrodinger potential
BW Bures-Wasserstein U, v adjusted Schrodinger potential
WEFR Wasserstein-Fisher-Rao Q, Dq Bregman potential/divergence
SDE Stochastic Differential Equation d directional derivative
PDE Partial Differential Equation Ocy Op First variations
FP Fokker—Planck Vi Wasserstein-2 gradient operator
GMM Gaussian mixture model T dynamic stochastic process in SB
g drift function
ic indicator function

A THEORETICAL DETAILS AND PROOFS

In this appendix, we first introduce an comprehensive theoretical background supporting our argu-
ments. Then, we provide the formal proofs in the main paper.

Background on first variation operators. We utilize the notations J. and d, to denote the first
variation operators in generalized primal and dual spaces, respectively. This is because SB is clas-
sified as an infinite-dimensional optimization problem (Aliprantis & Border, 2006). The theoretical
necessity of these operators follows the discussion provided by |Aubin-Frankowski et al.| (2022).

Definition 4 (Gateaux and Fréchet differentiablility). Let M be a topological vector space of mea-
sures on the space X. Define the Gateaux differentiablity of a functional F’, if there exists a gradient
operator Vg such that for any direction v € M, defined as the limit

VeaF (z)[v] = 1113% Flz+ h;}L) — F(x)’

reM

If the limit exists in the unit ball in M, the function F is called Fréchet differentiable with Vg F' ().

The problem of the Gateaux and Fréchet differentiability in the context of SB is that the limit must
be given in all directions, implying that every neighboring point must be within the domain M. For
the case of functionals such as the KL divergence functional F'(-) = KL(:|7*), the domain of F' and
has an empty interior (Aubin-Frankowski et al., 2022). To resolve this issue, we can use the notion
of directional derivative and first variation, defined in Definitions E] and@

First variations of KL. Suppose that for distribution p, o’ € Po(X), X C R<, and define a func-
tion ¢/ (x) := log p’(x), and suppose  in a tangent space T, P(X). We can achieve the followings:

L(pllp") :/ log p(x / V' (z) dp(x (15)
/f’ )+ hi(z)] de = /é' x)dr + h/f’(m)fi(m) dz (16)
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Given that log(z + ¢)(z + ¢) = log(z)z + [log(z) + 1]e + o(¢), and [, x(z) dz = 0, we achieve

log(p(z) + hx(z)) (p(x) + he(x)) dx

=

- jilogpmm>p<x>+-Uogp«x>-+1qhn<x>+-o<h>dx (7)

= /Xlog p(x)p(x)dz + h/s log p(x)k(z)dx + h/m(m)dx +o(h)

Recall that a first variation of a functional §F' : P(X) — T*P(X) satisfies:

Flp+ hr) = F(p) + h<1og<5,>, m> +o(h).

We leave the following remark for the first variation operator works in KL functionals.
Remark 1. Combining Egs. , the first variation of the functional SKL(p||p") = log .

For some distributions, log-likelihoods are often given in a closed-form expression, incentivizing
our development of computational continuous EOT/SB algorithms. Generally, identical arguments
generally apply to all KL functionals with respect to distributions (7, 7, and marginals) in our setup.

Asymptotically log-concave distributions. For convergence analysis, we assume each marginal
distribution is in log-concave distribution, particularly satisfying the log Sobolev inequality (Otto &
Villani}, 2000; (Conforti, |2024). This assumption works a wider range of costs and marginals beyond
popular choices bounded costs and compact marginals (Nutz & Wiesel, 2023}, |Conforti et al.| [2023).
Suppose that marginals admit densities of the form

p(dz) = exp(—Upu(z))dz and v(dy) = exp(—Uu(y))dy. (18)
We exploit the following definition from (Conforti et al., |2023)) in order to describe asymptotically
log-concaveness.

Definition 5 (Asymptotically strongly log-concavity). We assume that marginals p and v ad-
mit a positive density against the Lebesgue measure, which can be written in the form
(18). U, U, are of class C2(R?). Define a set G = {g € C2?((0,+00),R})|r +

71/2g(r1/?)is non-increasing and concave, lim,_,org(r) = 0}.
G == {g € G bounded and s.t. lim g(r)=0, ¢ >0 and 2¢"+g¢ <0} CG.
r—0

Define convexity profile ky : R1. — R of a differentiable function U as the following

_ [(VU(z) -VU(y),z—y) ool =1
) = { AT o=l =r).

We say a potential is asymptotically strongly convex if there exists oy € Ry and gy € G such that
ku(r) > ay —rtgu(r)
holds for all » > 0. We consider the set of asymptotically strongly log-concave probability measures

Puc(R?) == {¢(dz) = exp(~U(x))dz : U € C2(R?), U is asymptotically strongly convex}.

From the work of (Otto & Villani, [2000; (Conforti et al.,[2023)), asymptotically log-concave functions
satisfy a certain form of log Sobolev inequality (Gross} [1975). The simplest case of LSI for the
Gaussian measure is represented as follows.

Remark 2 (log-Sobolev inequality for the standard Gaussian). Suppose that f is a nonnegative
function, integrable with respect to a measure 7, and that the entropy is defined as Ent,(f) =
Jga flog fdy—(Jga fd7) log( [za fdv). the logarithmic Sobolev inequality when v is the standard

2
Gaussian measure reads Ent., (f) < § [5a %d’y.
The important extension of asymptotically strong log-concave distributions for Schrodinger bridge
dr = e?®¥ ¢ d(u®v), (L®v)-a.s. is that induced SB model also satisfies asymptotically strongly

log-concaveness and the log Sobolev inequality (Conforti, [2024). Therefore, the Gaussian mixture
parameterization in Eq. is a representative model that our theoretical analysis is dealing with.
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Remark 3 (Conforti, [2024). Let i1, € Pyc(R?) with finite entropy on a Lebesgue measure and
7w € C be a coupling in a static Schrodinger bridge problem. Then, for a quadratic cost function, the
coupling distribution is also asymptotically log-concave and satisfies a form of logarithmic Sobolev
inequality.

Using the disintegration theorem for probability measures (Léonard, [2014), we assume the bound-
edness of Bregman divergence between two transport plans using derivatives of first variations with
some positive constraint w > 0 by the following assumption.

Assumption 3 (LSI for EOT couplings). Let us suppose 2 = KL(r||R) for a reference measure R.
We assume arbitrary 7, 7 € C satisfy a type of logarithmic Sobolev inequality for relative entropy
(KL divergence) is upper bounded by (relative) Fisher information (Gross| [1975)), namely LSI(w)
for some w € R as follows.

(z,y)

1
Da(r||R) = KL(r|R) < 5= //Rdxw R(z,y)

where Q = KL(-||R). By the first variation of KL (Remark 1), equivalence in the first variation of
Bregman divergences (explained later in Lemma [4) and an application of the Holder’s inequality,
assume that we can find a constant w > 0 such that that

2
V log 7 (dz, dy)

_ 1 12
Do(r||7) < 5=[|V(82(m) = 0 m) | 2, (19)
for the Bregman potential Q = KL(-||e™ % u ® v).

In general, the log-Sobolev inequality has often been used to analyze the convergence of partial
differential equations (Malrieul 2001). In the same vein, to make an analysis on improvement
(Lemmal[I2) and a solid regret bound of OMD (Lemmal[T4), we found that Assumption[3is necessary
to ensure a certain asymptotical concentration of measure.

General assumptions and justifications. We need the following assumptions for our OMD frame-
work. (D (Existence) The sequence of MD from Eq. @) exists {7 }ten C C, and are unique, @
(Relative smoothness/convexity) For some [, L > 0, the functional F; is L-smooth and [-strongly-
convex relative to ). ® (Existence of first variations) For each ¢ > 0, the first variation §.$2(7;)
exists. @ (Boundedness of estimations) The asymptotic dual mean 73 is almost surely bounded
Pr(Dq(mt||ms) < R) = 1 for some R > 0. ® (Ergodicity) The estimation process of {7y }22; is
governed by a measure-preserving transformation on a measure space (), X, ) with ¢()) = 1; for
every event £ € ¥, ¢(T~1(E)AFE) = 0 (that is, E is invariant), either ¢(E) = 0 or ¢(E) = 1 For
@, the temporal cost Fy(-) = KL(:|n7) is well defined since KL is a strong Bregman divergence
with lower semicontinuity, where the existence of a primal solution in guaranteed as discussed in
Aubin-Frankowski et al.[(2022). For @-®), we can identify [ = L = 1 and close-form expression
of the first variation that is shown in Definition [6] and Proposition [2] For the assumptions @-(®,
we postulate the existence of estimates produced from a Monte-Carlo method, using a fixed amount
of updates on topological vector space. Hence, it is natural to consider that these estimates will
be bounded in a probabilistic sense and yield Markovian transitions, which are aperiodic and irre-
ducible.

A.1 PROOFS OF LEMMAS 1 AND 2

The EOT in Eq. (2) can be reformulated as a divergence minimization problem with respective to a
reference parameterization. If a Gibbs parameterization is enforced for the quadratic cost functional
ce(x,y) = 5|l — y||? for > 0, the problem has the equivalence (Nutz, 2021)

OT.(p,v) = min KL(7|e “pn®v), (20)

m€ell(p,v)
which corresponds KL (7 ||W¢) in Eq. (4) by the disintegration theorem of Schrédinger bridge (Ap-
pendix A of [Vargas et al.| (2021)). While the Bregman projection formulation of Sinkhorn Eq. (7)
are described by the spaces (II:, IT), it is (equally) natural to think that considering the prob-

o

lem as convex problem with the distributional constraint C (see the primal space in illustrated in

’Here, A denotes the symmetric difference, equivalent to the exclusive-or with respect to set membership.
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Fig. . As a problem in C, one can consider a temporal cost functional F(7) = a;KL(vy;7||u) +
(1 — at)KL(yam||v) with sequences {a;}32; = {0,1,0,1,...} for yy7(x) = [m(x,y)dy and
Yot (y) = [ m(x,y)dz. By construction, we have the following MD update:

miI;iGrgize<f}, T — 7rt> + Dq(7||7e). 21

The optimization problem is equivalent to having the property for subsequent 7y :

d+ﬁt(ﬂ't;7‘r —7t) + Do(r||me) > d*ﬁt(m;wt_i_lf ) + Do(mep1|me)

~ (22)
<~ <§th(7Tt) - (SCQ(']Tt), T — 7Tt+1> + (Q(ﬂ') - Q(’ﬂ't+1)) 2 07 V€ C

Setting the free parameter 7 = w411 + h(m — m;11) and taking the limit & — 0% yields described
the time evolution of the log-Schrédinger potentials for 7, = e?t®¥+~¢d(y @ v):

¢ = —log doam) __, <<pt — " +log / e”"_wV(dy)) (23a)
dV* R4
o d(yem) . o
Yy = —log a1 =Bl —¢"+log | e p(dz) |, (23b)
* R4

forao =a;and 8 =1— atE] Setting a discrete approximation of dynamics Eq. : Pit+1 = P+t
and ¥¢4+1 = 9 + 1y yields the following alternating updates:

VYorr1(y) = —1og/

es&zt(l‘)—CE(w,y)u(dx)7 orpo(a) = —log/ ew2t+1(m)—65(w,y)y(dy).
Rd

Rd
Therefore, the proof of Lemma(I]is complete.

From the dual iteration of KL stated in Eq. (34)), for the static cost KL(-||7*), we get the closed-form
expression:
6CQ(7Tt) — (SCQ(Wt+1) =T (5CQ(7T,5) — (SCQ(F*)),

where the equation implies that setting 17; = 1 for MD yields one-step optimality 7* in this idealized
condition. Utilizing the equivalence of first variation stated in Lemma {4 and the disintegration
theorem for the Radon-Nikodym derivatives, we get the first variation of F' with respect to 7 for all
T as

dr*

drm’

and by the disintegration theorem (Léonard, [2014), we achieve the first variation of f with respect
to 7 for all x as

Of(7*) =log T

Using Otto’s formalization of Riemannian calculus (Ottol 2001) discussed in Appendix B the prob-
ability space equipped with the Wasserstein-2 metric (P2(R?), W), is represented as Riemannian
gradient flow:

0F (m) = log

(24)

T = =V, f(7F), Yz € RY (25)
where V,, denotes the Wasserstein-2 gradient operator V,, := V- (p V%).
D7 = —V - (FV log(#*)) + ARY,

where the results on Wasserstein gradients are initially founded by Jordan et al.|(1998)). Since the
above equation represent the Fokker—Planck equation, following the Wasserstein gradients always
operate within C. O

A.2 PROOF OF THEOREM 1

We start with the following idempotence property that taking a Bregman divergence associated with
a Bregman divergence Dgq(-|y) remains as the identical divergence. We use M(X') to denote a
topological vector space (Aliprantis & Border, 2006) for X C R

*More precisely, one needs to apply Lemmafor KL, and the disintegration theorem to get Eq. .
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Lemma 3 (Idempotence). Suppose a convex functional 2 : M(X) — R U {400}, where M(X).
Assume that for all z € dom(S2), 0.§2(z) exists, then, for all x,y € C N dom(f2), Dpg, .|y (z|y) =

Da(xly)-

Proof of Lemma[3] By definition, we have Dp,,(..)(z|y) = Da(z|z) — Da(yllz) — (0c:Q(y) —
0:82(2), x — y) for arbitrary z, and setting z = y completes the proof. Note that instead of the
(global or universal) idempotence initially stated by |Aubin-Frankowski et al.| (2022)), we only work
with localized version of idempotence at the minima y. Another (informal) point of view is consid-
ering the Bregman divergence as a first-order approximation of a Hessian structure, and Dp,,.2)
converges to Dgq(+|z) by taking a limit, knowing that Dq (y|y) = 0.

We then proceed to an equivalence property of the family of recursive Bregman divergences.

Lemma 4 (Equivalence of first variation). Suppose Q2 : M(X) — R U {400} Assume that for all
z € dom(R), the first variation 6.8)(z) exists, then, for all x,y,y1,y2 € dom(RQ), the first variation
taken for the first argument x of the following Bregman divergences are equivalent: 6. Dq(x|y) =

Proof of Lemmad] First, it can be analytically driven 0. Dq(z|y) = 6.Q(z) — 6.2(y). Next, by
definition, taking the first variation of Dp,,(.|z)(z|y) with respect to z for arbitrary z € dom((2)
yields 0. Dq(x]|z) — 0. (2(y) — ©(2), x — y). Knowing that the second term d. (Q2(y) — Q(z), z —y)
is linear, we achieve 6 D p, (.|.) (z]y) = 6:Q(x) — 0:2(2) — (6 Q2(y) — 6:2(2)) = 6. Q(x) — 0 Q(y),
which completes the proof. O

By an inductive reasoning, we arrive at the basic characterization of family of Bregman divergence
in Definition 3] that all divergence recursively defined by €2, has the (local) idempotence and the
(global) equivalence of first variation.

We introduce the notions of relative smoothness and convexity wrt a Bregman potential €.

Definition 6 (Relative smoothness and convexity). Let G : M(X) — RU{+o00} be a proper convex
functional. Given scalar [, L > 0, we define that G is L-smooth and [-strongly-convex relative to {2
over C if for every z,y € dom(G) N dom(2) N C, we have

De(x|ly) < LDo(z[ly), Dg(zlly) = tDa(zy),

respectively, where D¢ and D¢ are Bregman divergences associated with G defined in Definition 3]

Due to the idempotence lemma, we immediately recognize that the Bregman divergence Dq, is
relatively 1-smooth and 1-strongly-convex for 2.

To start our analysis we reintroduce the well-known three-point identity for a Bregman divergence.

Lemma 5 (Three-point identity). For all 7., 7, 7. € C N dom(S2), we have the following identity
(6cUma) — 6:Q(my), me — ) = Da(me|m) — Do(me||ma) + D (mp||ma)

when Dq, is the Bregman divergence defined in Definition 3]

Proof of Lemmal[5] By the definition of Bregman divergence, we have
Da(mcllm) — Da(mel|ma) + Da(mylma) = Qme) — Q) — (8Q(m), me — )
— Q) + Qma) + <(5CQ(7TQ),7TC - 7ra>
+ Q) — Q(ma) — (8 Qma), T — 7q)
= (6Umq) — 6 QU(mp), Te — T ).
Therefore, the proof is complete. O

Utilizing Lemma [5] we present the following useful lemmas for dealing inequalities regarding im-
provements (Han et al.,|2022), which we call “Bregman differences.”
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Lemma 6 (Left Bregman difference). For all 7., m,, m. € CNdom(§2), the following identity holds.
DQ(TrbHWa) - DQ(WCHWG) = _<6CQ(7TC) - 5CQ(7Ta)7 Te — 7Tb> + DQ(TrbHWc)~ (26)

Proof of Lemmal6] Using Lemmal5] we have
Dq(mp||ma) — Da(me||me) = —Da(me||m) + <5CQ(7ra) —0cQ(mp), e — 7Tb>.
Utilizing an identity of two Bregman divergences for arbitrary (p, p):

Da(plp) + Da(pllp) = (0:2(p) — 8 Q(p). p — p)- 27)

We separate 0.2(7,) — 0.Q(mp) into 5. Q(7,) — 0.2(7.) and 6.Q(7.) — 0.82(7p,) and write the rest
of the derivation as follows.

Da(my||ma) — Da(mel|ma)
= —Dq(m¢||m) + <(5CQ(7TC) — 6 Qmp), e — 7Tb> +<(5CQ(7TG) — 6 Qme), e — 7rb>
Eq. @)
= Dq(mpl|7me) + <5CQ(7ra) — 6 QUme), T — 7rb>

Therefore, we achieve the desired identity. O

Lemma 7 (Right Bregman difference). For all 7y, my,, 7., the following identity holds.
DQ(Wc”ﬂ-b) - DQ(T‘-CHTQL) - DQ(TF(LHT”J) + <6CQ(7Ta) - 6CQ(7Tb)77rc - 7Ta> (28)

Proof of Lemmal7} By Lemmal[5] we have
Do(me||my) — Da(mellma) = —Da(msl|ma) + (3 2(ma) — 8 Q(m,), e — 7).
We separate 7. — m, into w.— m, and 7, — 7, and write the rest of the derivation as follows.
Da(e|lms) — Da(me|[ma)
= —Daq(m||ma) + (9 :(ma) — 6 Q(my), Ta— ) +(8cQ(7a) — 8, Te — 7a)

Eq. 27
= Da(mallm) + <5CQ(7ra) — 6cQ(mp), T — 71'a>

Therefore, we achieve the desired identity. O

Additionally, we introduce the three-point inequality (Chen & Teboulle, |1993)), which has been a
key statement for proving MD convergence for a static cost functional (Aubin-Frankowski et al.|
2022), and OMD improvement for temporal costs. Note that this three-point inequality lemma and
corresponding proof mostly follows|Aubin-Frankowski et al.|(2022) with a slight change of notation.

Lemma 8 (Three-point inequality). Given m € M(X) and some proper convex functional U :
M(X) = RU {+o0}, if 6.9 exists, as well as p = argmin,,..{V(p) + Dq(pl|7)}, then for all
p € CNdom() Ndom(¥): ¥(p) + Da(plw) = ¥(p) +DalpllT) + Dalplp)-

Proof of Lemmal(8] The existence of §.€2 implies C Ndom(Dq(-|y)) = C Ndom(2) Ndom (V). Set
G(-) = ¥(-)+ Dq(+||y). By linearity and idempotence, we have for any p € CNdom(2) Ndom(¥)
De(pllp) = Du(pllp) + Dalpllp) = Dalpllp)- (29)
By p being the optimality for G, for all x € C,
G(1—h)p+ hp) —G(p
d*G(p; p— p) = lim (( )P+ hp) (p) >0,
h—0+ h

which suggests G(p) > G(p) + Da(p||p). Applying to this inequality complete the proof. [

The following argument is from the convergence rate of mirror descent for relatively smooth and
convex pairs of functionals, and extend to infinite dimensional convergence results of [Lu et al.|(2018))
and |Aubin-Frankowski et al.| (2022). We aim to reformulate the statements in online learning.
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Lemma 9 (OMD improvement). Suppose a cost F; : M(X) — R which is L-smooth and -
strongly-convex relative to 2 and n; < % Then, MD improves for current cost Fy(miy1) < Fi(mt).
Proof of Lemmal9] Since F is L relatively smooth, we initially have

Fy(mp1) < Fy(my) + dTF (7w — m) + LDo(my41|m) (30)

Applying the three-point inequality of Lemma [§[ to Eq. , setting a linear functional ¥ (p) =
nedt Fy(me; m — ), p = 7 and p = 7y yields

dYFy(me; w1 — me) + n—ltDQ(wt+1|7rt) < dtFy(me; p— ) + %Dg(phrt) — %DQ(pHﬂtH).
Since F; is [-strongly convex relative to {2, we also have
dTF(my; p— m) < Fi(p) — Fi(m) — IDa(plm), @31
Then, using (31), Eq. (30) becomes
Fy(mi1) < Fi(p) + (57 = DDa(plm) — o-Da(plmisr) + (L — o) Da(meallm).  (32)

By substituting p = 7y, since D (p|miy1) > Oand L — % < 0, this shows Fy(m11) < Fy(m), Le.,
F}, is decreasing at each iteration. This completes the proof. O

A fundamental property with the dual space D induced by the first variation . holds in our online
mirror descent setting. The existence of such sequence—particularly in Sinkhorn—is well discussed
by Nutz|(2021) and |Aubin-Frankowski et al.| (2022)). Focusing on mirror descent, we explicitly call
this relationship with arbitrary step size 7; as “dual iteration.”

Lemma 10 (Dual iteration). Suppose that first variations 6. Fy(m;) and 6.(my) exists for t > 0.
Then, online mirror descent updates Eq. () is equivalent to 6;Q(my1) — 6. Qi) = —ni0e Fy (),
forallm, € C,t e N.

Proof of Lemma The optimization (6) is equivalent to having the property for subsequent 7y 1:

d+Ft(’/Tt; mw— ’R't) + W%DQ(W”Wt) 2 d+Ft(7Tt;7Tt+1— ’7Tt) + iDQ(ﬂ—t+1‘7Tt)
— <55Ft(ﬂ't) - %(()‘CQ(TI}), ™ — 7Tt+1> + L (Q(ﬂ') - Q(?Tt+1)) Z O, V€ C

e

(33)

Setting the free parameter ™ = ;41 +h(m— 1) and taking the limit b — 0 yields the result. [

Remark 4. With applications of Lemma[I0]and Lemma] we can achieve a concise form of itera-
tion in the dual using our temporal cost as:

8 Qms) — 0 Umiy1) = ne (6 (—H) (mr) — 6c(—H) (7))
=M <5cQ(7Tt) - 5cQ(7T§))a

where H denotes the entropy, i.e., the minus KL divergence with the Lebesgue measure.

(34)

Finally, we are ready to describe a suitable step size scheduling by the following arguments.
Lemma 11 (Step size I). Suppose that Fy = KL(r||70) and Q = KL(r|le %p @ v). If ©
limy 0oy = 07 and @ Z;’il m=4+00@®n< %, the OMD algorithm converges to a certain 73

Proof of Lemmal([1} From Lemmal9] we have
e (Fy(mep1) — Fi(m)) < —Dao(me||mes1) + (e L — 1) Do (g1 || 7). (35

Taking lim;_, . 7: = 0 ensures imporvements; this means for any € > 0 there exists some 0 < § < 1
such that Do (7¢||me41) + Da(mep1|l7m:) < € whenever 1, < 4. Since convexity and the lower
semicontinuity of the Bregman divergence Dq, induced by KL, we conclude that OMD to a certain
point upon the assumed step size scheduling. O

Lemma 12 (Step size II). Assume that min,cc Ei[Dq(my, 70)] > 0 for all t € [1,00). Suppose
that n; — 0 and limp_, oo E[+ Zthl Dq(m||7)] = 0 if and only if > oo, m = +00.
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Proof of Lemma We note that due to dual iteration equation Eq. (34), improvements on
KL in Lemma 9| are also improvements in the Bregman divergence, i.e. Dgq(mii1|7f) <
Dq(m¢||wg), and if n; — 0, then the process {m;}$2; is convergent. By the dominated conver-
gence theorem, assuming ergodicity of nonstationary {mf}$2,, there is a constant ¢ that satisfies
Ervir1[Da(mipi||791)] = Evgq1[Da(mipr||nf)] + € for t > n for some n as 7, — 0, where an
expectation subscripted by “1 : t” indicates the time average from 1 to ¢. Consequently, we achieve
the following inequality
Bt [Da(misllrii)]

> Evr1[Da(msll7d)] + e

> Ey4[Da(mellng) —(0eQ(mev1) — 0cQ(me), 78 — m)]+ Erp1 [Da(mega|me)] +¢ Lem.[d

= Ev.¢[Da(mel|nf) — neDa(mel|nf) + e Da(nf |7e)]+ Evop1 [Da(mial|7e)] +¢ - Eq. (G4)

= (1 = ne)Eve[Da(mel|77)] + Evigr [Da(mesrllme) + neDa(n||m)] + &

> (1= ne)Bru[Da(m|w7)] + € (36)
for some t and 0 < € < €', where Lemma|§| and Eq. are used.

Necessity. First, we rewrite the inequality in Eq. (36) as
Ei.¢1[Da(miral|miia)] = (1= ne)Ere[Da(mel|7s)], ¥t > 0. (37)

Since we have assumed that 7; converges to 0, consider a step size sequence 0 < 7y < for

2
24k
k > 0and ¢ > n, where Vn € N. denote a constant a = # log % and apply the elementary
inequality

2
1—2z >exp(—az), suchthat 0<z < T E

From Eq. (37), it can be seen
Err1[Da(miallmiyr)] > exp(—an)Eri[Dao(mel|7)]-
Applying the inequality iterative fort =n,...,T — 1 gives

T—-1
Evr[Da(mr||72)] > Ern[Da(m||75)] [] exp(—an:)

t=n

T-1 (38)
—exp{ =0 X e fEr Damrh)
t=n

From the assumption 7% # m,, we get Do(m,||7;,) > 0. Therefore, by Eq. (38), the convergence
lim; s o0 E1.¢[Dq(me]|7f)] = 0 implies the series Etﬁl 1z diverges to 4oc.

Sufficiency. Consider a static Schrodinger bridge problem with a constraint set
C = {7l(n.v) € P2(R?) N Puc(R), (¢, ) € L' (1) x L*(v), andp,y € C*(R?) N Lip(K) }.
For p, p € P(R?) we can see

Da(pllp) = Qp) — Qp) — (0cQ(p), p— p) >0 = —(6p), p — p) = Qp) — Ap).
By adding (5.2(p), p — p), we achieve a property:

(8:2(p) = 0:0p),p — 7) = Dalplla). (39)

Then, Suppose that we have the asymptotic dual mean 73. Using Lemmam the one-step progress
from the perspective of dual mean writes as

Do(m5 || me41) — Da(mollme) = (6eQ(me) — 0cSUmey1), 75 — me) + Da(me[[meq1).
= 1 {0:Q(my) — 0 Q(mg), mp — ) + Do (me||mes1)
= e {0:(7) — 0 QU(mR), o — i) + M (0 Q7)) — 0 Q(7), wf — 7y + Do (me||mes1)
< —mD(mp|me) + ne(0eQU(mp) — 0 Q(wy), 78 — ) + Do (e me41) o)
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for some A\ > 0, where we used bound &, where the inequality is from Eq. (39). By using the
definition followed by Holder’s inequality and Young’s inequality, we can bound the expectation as

Ev.e41[Da(mol|me+1)] < E14[(1 = ne) Da(mp||me)] + Da(mel|me41)]
< Eu4[(1 —ne) Da(mollme)] + %EM[IIV(&QW) = 0cUm?)) | L2 ()]

< Eia[(1 = m)Da(p|me)] + 207w K (4D
where K is the Lipschitz constant for each log-Schrodinger potential. For the second inequality,
we use the assumptions on Bregman stationary process Assumption [1| on the logarithmic Sobolev
inequality LSI(w) from Assumption[3} Let {4;}§2,, denote a sequence of A; = Eq.4[Dg (3 ||m)].
Then, we have
Appr < (L—m) Ay + 2m7, ¥Vt >n, (42)
where z := 2w~ !K. For a constant h > 0, we argue that A;, < h for some t; > n’. Suppose that
this statement is not true; we find some ¢ > ¢; such that A; > h, Vt > t5. Since lim;_,, 1: = 0,
there are some t > t3 > to that i, < %. However, Eq. tells us that for ¢ > t3, for t > t3,

T
h
A1 < (1 —n) Ay +2n? < Ay, — 1 Z e — —oo  (ast — o0).
k:tg
This results to a contradiction, which verifies A; < h for ¢ > n’. Since lim; .o, 1, = 0, we can
find some n; which makes A; monotonically decreasing. Therefore, we conclude the nonnegative
sequence {A;}?°, finds convergence by iteratively applying the upper bound in Eq. @]}

We now prove the theorem under consideration of the particular case of 17, = —=. Then, Eq.

+1
becomes
4z

Apq < (1 - til)At + ESE vt > n.
It follows that recursive relation writes as
tt+1)Appr < (t—1)tAr + 4z, Vi>n.
Iterative applying the relation, we achieve the following inequality:
(T-1)TAr < (n—1)nA, +42(T —n), YT >n.
Therefore, we finally achieve inequality as follows:
E..r[Da(n3m)] < 1>”2E;=i[119)s_gp<%llm>] N 4? VT > n. 43)
Since we assumed 7 = 72, E1.p[Dgo(7*||7)] = O(1/T), the proof of Theorem|I]is complete.

O

A.3 PROOF OF PROPOSITION 1

The proof is based on the Doob’s forward convergence theorem.

Theorem 4 (Doob’s forward convergence theorem). Let {X;}ien be a sequence of nonnegative
random variables and let {F;}+ be a random variable and let {F;}ien be a filtration with Fy C
Fiy1 for every t € N. Assume that E[X;11|F:] < X; almost surely for every t € N. Then, the
sequence { X} converges to a nonnegative random variable X ., almost surely.

We follow the derivation of Eq. (@#I)): there exists n € N which satisfies
Ei[Da(ro||mis1)] < Da(ra||m) + 2nfw™ K, Vt>n

and since the step size is scheduled as lim;_, o, 77 = 0, the condition Zfi 1 ntg < oo enables us to
define a stochastic process { X} }ren:

X = Do(mp||m) + 207 'K n?. (44)

i=t
It is straightforward that the defined random variable satisfies E;[X;11] < X; for t > n. Since
X; > 0, the process is a sub martingale. By Theorem 4} the sequence {X;}:cn converges to
a nonnegative random variable X, almost surely. Therefore Dq (73 ||7:) converges to 0 almost
surely. [
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A.4 PROOF OF THEOREM 2

To achieve a meaningful regret bound for our problem setup, we first demonstrate the following.
Lemma 13. For all w = argmin, {(g,y) + %DQ(sz)} with 1 > 0, the following equation.

Vu.(ng, w = u) < Da(u[2) = Do(ul|w) = Da(w]2) (45)

Proof of LemmalI3] By the first order optimality of {(g,y) + Dq(y||2)} as a function of w, we have
(§ + 30cDa(wl|z),u —w) >0
= (9w —u) < 5 {—deDa(w]z),w —u) = ;(Da(ul|z) — Da(ullw) — Da(w]2)).

where used Lemma|6]in the derivation. This completes the proof. O

Next, we derive the one-step relationship for OMD. The result entails that the regret at each step
is related to a quadratic expression of 7, which is a key aspect of sublinear total regret. From a
technical standpoint, we can see that the assumption for log Sobolev inequality generally works as
a premise for Lipschitz continuity of gradient, i.e., V{2 in classical MD analyses.

Lemma 14 (Single step regret). Suppose a static Schrodinger bridge problem with the aforemen-
tioned constraint C. Let Dg, be the Bregman divergence wrt Q : P(X) — R + {+o0}. Then,

2
ne(Fi(m) — Fi(u)) < Do(ul|me) — Do(ul|meq1) + %HQtHQB(m)’ VueC (46)

holds, where §; .= 0. F(ms) = i(écﬁ(m) — 0cQ(741)) in an MD iteration for the dual space for
a step size n, and w > 0 is drawn from a type of log Sobolev inequality in Assumption[3]

Proof of Lemma Consider single step regrets by the adversary plays of a linearization for g;:
Fy(me) — Fi(u) < (ge, me — ).
Therefore, we derive a inequality for (g, 7, — u) as follows.
(mge, ™ — w) = (MeGes M1 — w) + (MGe, T — Teq1)

< Da(ul[me) — Da(ullmes1) — Da(megallme) + (mege, me — meq1)
= Do(ullm) — Do(ul|mis1) = Da(mipllme) + (0e(mip1) — 0(m), mp — meq1)
= Dq(u||m) — Do(ullmir1) + Da(me||mes1)-

Since we assumed that §; = n—lt (0:02(7t) — 0:(me41)) by the dual iteration and that Assumption

holds, we can achieve the upperbound D (¢ [|m41) < 2= || gt 72(r,) Dy direct calculation. O

We now show our upper bound of total regret by utilizing Lemma
Lemma 15. Assume 1311 < 1¢. Then, u € C, the following regret bounds for fixed u € C hold

Daq (u||m
ZFt m) - Fi(w) < o D20 Zmngtnm(ﬂ,) @7)

1<t<T

where §; = %(&Q(m) — 0 741))-

Proof of Lemmal[I3] Define D? = maxi<;<7 Dq(ul|m;). We get
T

Regret(u) = 3" (Fi(m) - Z( Do(ul) - +-Dalulm) +Z AR
t=1
-1, 4
:—D ul||m ——D u||mry1) + (—)D ul|m + (r
m a(ulm) a(ullmri1) Z o m (ullm1) Z 16017z,
1 e " "
< —D?+ D? (—) - . + G622 -
m Z Mol T Z \gth( D T ; 2ngt”L2( +)
Therefore, the proof is complete. O
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Following Lemma@] and Assumption@ we can have the inequality

ZFt () < — + Z Tt HgtHL?(m) < — +2?7tw_1/CT
where D? = max;<;<1 Dq(ul|m;). Setting a constant step size 7, = \1/3% yields an upper bound
of DV2w=1KT which is Q(+/T). Also, setting a heuristic scheduling 7, = % yields
t=1119¢t

Dy/2w=L 527 [|3¢]|? which has a possibility to be lower than O(v/T) depending on {m§}7_ ;.

Therefore, we have formally expanded the convergence results of OMD (Lei & Zhou, 2020; Srebro
et al.l|2011)) to SBPs. O

A.5 PROOF OF THEOREM 3

We first write the following equivalent convex problems.
<5 Fi(my), m— 7Tt> + DQ(TFHTFt) <(5 Dq(me||ng), ™ 7rt> + n—ltDQ(ﬂHm)
= (6:0(my) — 6QUmf), 7 — ) + %DQ(W”TQ)
= Dao(x||7}) — Da(r||m) + ;-Da(xl|m)

_ (;)DQ(WHWf) + (1 ;t"t)DQ(me)

Since Dqo(-||-) == Dxw(r)(:||-) for a reference measure R € C, we can apply Lemma and
achieve Eq. @I) We refer to Appendix [B] for the stability of Wasserstein gradient flows according to
the LaSalle’s invariance principle. O

A.6 PROOF OF PROPOSITION 2

The proof is closely related to the work of [Lambert et al.| (2022)) where the difference lies in we
correct the Wasserstein gradient term ¢, ~ for suitable for generally unbalanced weight. Suppose

take parameterization § € (Po(BW(R?)),WFR), the space of Gaussian mixtures equipped with the
Wasserstein-Fisher-Rao metric, over the measure space of Gaussian particles. Following the argu-
ments from Appendix[B.2]and the studies for this particular GMM problem (Lu et al.| 2019} [Lambert
et al.| [2022) of the Wasserstein-Fisher-Rao of the KL functional is derived as

1
VarKL{pall") = (VaudKL(ol"). 5 (KLoll) ~ [ 5KLGaN07 ). a9

where we can consider the WFR gradient is taken with respect to 6 of its first argument. By Eq. (48),
we separately consider Wasserstein gradient in the Bures-Wasserstein space and the space of lighting
that controls the amount of each Gaussian particle.

Given a functional F' : Po(X) — R U {+o0}, the Wasserstein gradient V,, F' N T,P5(X) such that
all {p:};er+ satisfy the continuity eqatuion starting from po (Jordan et al.; |1998; |Villani, 2021). If
the functional is the KL divergence KL(p||7w) we can compute the Bures-Wasserstein gradient for
the Gaussian distribution with respect to (m, 3) using Eq.

Ve F(m, %) = (V,u F(m, %), 2Vs F(m, 3))

3 >
= (/ Vo Pm,s log pj’r 72/Vzpm,zlog '0”;)

with some abuse of notation for p. Using the following closed-form identities for the Gaussian

distributions
1
V. Vmpm,z(l‘) = _prm72(x) and Vme,Z(x) = §V3Pm72(x)-

and the equivalence between the Hessian and Fisher information, we achieve the following form:

VeuF(m,3) = (Ep {vﬂ E, |V*log ﬂ ) .

26



Under review as a conference paper at ICLR 2025

Define r , = /ay .. Since r; follows the Fisher—-Rao metric in Definition [7} by the Proposition
A.1 from Lu et al.[(2019) and specialization of |[Lambert et al.| (2022)), we can think of dynamics of
K Gaussian particles {a, -, mg. -, Ek,T}le such that

K
. 1 Po 1 Po
Tlpr= —— E[log (Y, r } - — azE[log = (Ye,r ])T;m,
=5 (B )| - £ e )

T =1

Tk, = —E[V log p:’ (yk,r):|7 Skr = —E[V2 log 'Ope,f(yk,f)} Yg,r — Ek,TE[VQ log p;* (yk,T)],

* *

Since ay,» = |/Tk, by previous definition, it is straightforward that

K

. . 1 :

Qg,r = — (IE {log [;f* (yk,r)] - ZadE[log [;f* (yg,T)})oz;w.
T =1

For o, > 0. This completes the proof. O

B A RIEMANNIAN PERSPECTIVE FOR VARIOUS WASSERSTEIN GEOMETRIES

B.1 AN INTRODUCTION TO OTTO CALCULUS AND THE LASALLE INVARIANCE PRINCIPLE

We introduce a basic notion of Wasserstein gradient flows in the space of continuous probability
measures by describing a historical example of the KL cost, initially introduced by |Otto| (2001). We
refer the reader to (Ambrosio et al., 2005b; (Carrillo et al., [2023)) for more details and mathematical
rigor. For X C RY, and functions U : R — R; V,W : X — R. We first consider an energy
function £: P(X) — R:

£0) = [ Ulpta)) do+ | V@) dpa)+5 [ Wep)a) doto). pePa(). (9)

internal potential I/ external potential £y interaction energy WW

For this function, we refer to the solution of the following PDE:
O =V-[pVU +V+Wkp)], t>0 (50)

as the Wasserstein gradient flow of £. Following Otto’s formalization of Riemannian calculus on
the continuous probability space equipped with the Wasserstein metric (Po(X'), W), the PDE
can be interpreted close to an ODE of Riemannian gradient flow:

Oipr = —Viu&(p), (51

where V,; denotes the Wasserstein-2 gradient operator V, = V- (p V(S‘S—p). Considering the Otto’s
Wasserstein-2 Riemannian metric g (Ottol 2001} [Lott, 2008), under the absolute continuity, we see

that
0 dp Op , 2
— — \/ l] ‘/ M/ ) <

which is closely related to the strict Lyapunov condition. As a result, dynamical systems following
the PDE are guaranteed to reach an equilibrium solution, under the LaSalle invariance principle for
probability measures (Carrillo et al., 2023)).

For a representative example, we identify Eq. for the relative entropy (the KL functional) for a
target density p* € Pa(X) writes

() = KLipls") = | U(p()de+ [ Vi) dpta) —C.

X
u Ev

where U(s) = slogs, V(x) = —log p*(x),and C' = U(p*)+Ev (p*). Recall that 6&(p) = log p/()f),
then we have

Vil (p) = &, 16E(p) = =V - [pVSE(p)] = V - [pV log ;] (53)
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where ® denotes the metric tensor in matrix form. We can derive the the Fokker—Planck equation
Opr = =V - (pVlogp*) + Apy,

describing the time evolution of the probability density. Combining the convexity of KL and the
LaSalle invariance principle Wasserstein gradient flows, the PDE reaches a unique stationary solu-

¢ ~V(2)
tion o m

B.2 BACKGROUND ON WASSERSTEIN-FISHER-RAO AND OTHER RELATED GEOMETRIES

The Wasserstein-Fisher-Rao geometry is also known as Hellinger—Kantorovich in some of papers
(Liero et al., 20165 2018)). In this section, we provide an overview of the geometry tailored to meet
our technical needs. Along the way, we also briefly describe relevant metrics and geometries.

The Wasserstein space. Let 1, v € Po(R?) be a probability densities with respect to the Lebesgue
measure. we define the squared Wasserstein distance as

W2(p,v) == min /R

— ||z — dm(x 54
Lonin || yl?dm(x, y) (54)

2% R2 2

Then, the Brenier theorem (Villani, [2021) states that there exists the optimal Brenier map that pushes
forward 1 to v, i.e. v = V(xpu, where ¢ : R? — R? U {400} is a convex and lower semicontin-
uous function. In the fluid dynamical version, the Brenier map yields a constant-speed of geodesic
{1t }1e[0,1] formally described by

pe = (V¢)gh, V(= (1—1t)id+tV(. (55)

Assuming the existence of such geodesic, we can understand finding optimality of Eq. (55) the
Benamou-Brenier formulation (Benamou & Brenier, [2000), which finds a velocity v; by minimizing
the functional

W, ) mm{// @) dor@)at | po = 1, pr = v, Doy = <wm@- (56)

The equation dictates how the mass should be transported (which shall be a constant speed) while
satisfying the continuity equation of path measure. In the Otto calculus (Otto| [2001), we can under-
stand the Benamou-Brenier formula @) as a Riemannian formulation for Ws. In this interpretation,
the tangent space at p € Po(X) are measures of the form dp = —V - (vp) with a velocity field
v € L*(p, R?) and the metric is given by

ol = _nt g f1olPds o = - )} 57)

This exhibits dynamics in the Wasserstein space of probability densities metric generally governed
by the continuity equation, implying the mass of probability is preserved.

Fisher-Rao metric. The Fisher—Rao metric is a metric on the space of positive measures P with
possibly different total masses. We use the following definition throughout the paper.

Definition 7 (Fisher—Rao metric). The Fisher—Rao distance between measures pg, p1 € M is

given by
[dpo | dp1
dr dX

where A is an admissible set for a scalar field on positive measures; A is any reference measure such
that p and p’ are both absolutely continuous with respect to A, with Radon-Nikodym derivatives (:1 3L

d% (po,p1) = min // fwt x)dpe(z dt—2
Rd 2 Rd

P vEA[po,p1]

The equivalence between the square Fisher—Rao distance and squared Hellinger distance quantifies
the similarity between two probability distributions ranging from O to 1. The total variation bounds
the squared form and is well-studied in the information geometry (Amari, 2016). PDEs of the form
Orpr = aupy are called reaction equations of «, which describes dynamics regarding concentration.

Wasserstein-Fisher-Rao. The WFR geometry, or spherical Hellinger-Kantorovich distance, con-
siders liftings of positive, complete, and separable measures while preserving the total mass. This
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can be expresses as combining the Fisher—Rao and Wasserstein geometries characterized by PDE
such as (Liero et al.,|2016):

Wt

— Pt 58
D) Pt (38)
One problem, is that the PDE (58] In order to stay the dynamics on the space of probability measures,
which is our interest, we adopt the definition from (Lu et al., 2019; [Lambert et al., | 2022)) the equation

becomes

Oips + V- (vepy) =

1
Opr + V-« (prvr) = 3 (ﬂt _/Btdpt) Pt (59)

which satisfies mass conservation. For the geometry, the norm on tangent space is given by

16013 = [{ (o [oao)" + ol (60)

and we define the WFR distance as

1
d"z\,FR(p07p1) = inf {/ ||(6t711t)H,27tdt ) {pt,ﬁt,vt}te[o,u satisfies @b} (61)
0

p:Bt,v

Since WFR gradient dynamics over the Bures-Wasserstein space can be analytically derived, we
were able to design a computational method for OMD iterates in the WFR geometry. Using Propo-
sition 2] this geometry allowed the VMSB algorithm to perform tractable gradient computation
within Wasserstein space.

B.3 THE BURES-WASSERSTEIN SPACE AND A MIXTURE OF GAUSSIANS

The space of Gaussian distribution in the Wasserstein space is known as Bures-Wasserstein space,
denoted as BW(RY). Given 6, §; € BW(R?), we can identify the space with the manifold R? x S¢,,

where SZ, denotes the space of symmetric positive definite matrices. For 6y = (mg, %) and
01 = (mq, ¥4) an affine map from pg, to pg, is given as a closed-form expression:

V() = ma + 55 2 (282858 S 2 (1 — ).

Note that the constant-speed geodesic also lies in BW(R?), as pushforward of a Gaussian with an
affine map is also a Gaussian. Therefore, it can be said that BW(IR?) is a geodesically convex subset
of Py(R?). For the Brenier map, a constant-speed geodesic in BW(IRY), for the tangent vector to the
geodesic (r, S)

Po, = expy, (t- (r,8)) = N(mo +tr, (tS + La)So(tS + 1a)), (62)

and the dynamics at its current position at time ¢ = 0 is represented as
o =, (63)
Yo = ST + oS. (64)

Generalizing this geodesic dynamics, the Bures-Wasserstein gradient Vg, f of a function f : R% x
S¢, — R for a tangent vector (r, S) at time 0 Altschuler et al.[(2021)

<VBwf(m07 o), (r, S)>Bw = O f(me, 4)

t=0

Identifying each component, we achieve the following result of Wasserstein gradient flow in Bures-
Wasserstein space as

vaf = (me,QVEf)a (65)

where V,,, and Vy denote Euclidean gradient. Please see the work of |Altschuler et al.| (2021)) (Ap-
pendix A) and Lambert et al.|(2022)) (Appendix B) for further geometric properties and discussion
for this parameter space.
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C DETAILS ON THE EXPERIMENTS

C.1 RATIONALES OF THE GMM PARAMETERIZATION FOR VMSB

Our parameterization choice follows LightSB (Korotin et al.,|2024) because of the following two key
reasons. First, GMMs ensure that the model space satisfies certain measure concentration, which is
suitable for analyzing theoretical properties of SB models (Conforti et al., [2023). For instance, we
analyzed the regret under the log Sobolev inequality in Theorem 2] Enforcing the LightSB param-
eterization will automatically satisfy Assumption [3} Secondly, VMSB requires tractable gradient
computation of Wasserstein gradient flow in § As shown in Proposition [2] we can perform
VMSB using the variational inference in the WFR geometry of the GMM parameterization.

C.2 STEP SIZE SCHEDULING AND WARM-UPS

For step size scheduling, we followed the theoretical result in Theorem
and Proposition [I} and chose 71 = 1 and ny € {0.05,0.1} with har-
monic sequences, as illustrated in Fig. [9] For high dimensional tasks
in MSCI (1000d), MNIST-EMNIST (784d), and latent FFHQ Image-to- | .=

Image transfer tasks (512d), the initial warmup steps helped starting a t
training sequence from a reasonable starting point as this set 7, = 1 as  Figure 9: A sequence
verified in Fig. |§| (c). example of n; and 1 —n;

C.3 2D SYNTHETIC DATASETS

~py Y~V

Fig. [T0] demonstrates that our method
achieved the SB model for the various
volatility €. For various configurations,
most of baseline SB algorithms are capa-
ble of learning in the 2D space (T0). In or-
der to align our theoretical arguments, we
selectively offered only 12.5% of the sam-
ples to the SB solvers based on the angles
measured from the origin. For instance, we provided data for angle of [0, 7 /4] for first ¢ € [0, 25)
steps, and so on. Since this requires 200 batches for the full rotation of the filter, the problem be-
came substantially more challenging, and LightSB and LightSB-M algorithms oftentimes failed on
this online learning setting.

Figure 10: SB processes Ty with different volatility .

C.4 ENTROPIC OPTIMAL TRANSPORT BENCHMARK

Our hyperparameter for the EOT benchmarks choices mostly follow the official repositories of the
LightSBE| and LightSB-Nﬂ Since it is known that initial distribution y is the standard Gaussian dis-
tribution (Gushchin et al.,|2024b)), we only trained vy using the variational MD algorithm. Due to the
huge number of configurations, some hyperparameter settings were not clearly reported. Thus, we
conducted our own examination on these cases; we replicated better performance than the reported
numbers by carefully dealing each benchmark configuration.

C.5 MNIST-To-EMNIST IMAGE TRANSFER Table 5: A simple discriminator.

Suppose a discriminator network, denoted as D, is Layer Type Shape
equipped with useful architectural properties for discrim- Input Layer (-1, 28,28, 1)
inating images. In adversarial learning, we only used a Conv Layer 1 | (-1, 26, 26, 32)
simple architecture shown in Table E] for simplicity, and Average Pool | (-1, 13, 13, 32)
this can be replaced with more complex architecture for Conv Layer 2 | (-1, 11, 11, 64)
more sophisticated images. The discriminator outputs a Average Pool | (-1,5,5, 64)
binary classification regarding authenticity through sig- Flatten (-1, 1600)
moidal outputs, i.e., D(z) € [0,1] Vo € R28*28X1 For Dense (-1, 512)
*https://github.com/ngushchin/LightSB gense C1 ’1 2? 6)
Shtps://github.com/SKholkin/LightSB-Matching ense ¢LD
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image samples x = {z!,..., 2™} ~ u, we trained the discriminator D with the logistic regression:
1 1 —
maximize 7; log D(y") + i mzﬂ log(1 — D(93")), (66)

where g;" in the right-hand side denotes a sample from an SB model parameterized by ¢, generated
using an input ™. Let us formally define the distribution p4, which represents the probability of
the aforementioned adversarial samples at the law of SB process at time ¢ = 1. For a completely

separable metric space, the discriminator converges at D(x) = #ﬁl(z) (Goodfellow et al.,[2014).

In the adversarial learning technique, retaining a fully differentiable computation path from the input
pixels to the discriminator outputs is essential. Therefore, we implemented a differentiable inference
function using the categorical reparameterization trick with Gumbel-softmax (Jang et al.,|2016), as
well as the Gaussian reparameterization trick. These tricks enabled learning with samples generated
through LightSB-Adv-K, directly by maximizing

M
J(9) = % > log D(yy') —log(1 — D(yy")),

where the term essentially represents the logir function logit(D(y)) = log 15(33’(2) . When D appo-

raches the equilibrium, the logit can be approximated as logit(D(y)) ~ log p';(é}))

JT(¢) ~ [log p';(é)) pe(y)dy = KL(py||v). Note that the training directly corresponds to the diver-
gence minimization of the SB/EOT problem as expressed in Eqs. (@) and (20), under the disintegra-
tion theorem of Schrodinger bridge (Léonard, 2014). Hence, we considered adversarial learning as
the baseline for training the SB model in this experiment. Among our attempts, only the LightSB-
Adv method successfully generated learning signals to train GMM-based models, while the losses
proposed by LightSB and LightSB-M failed to generate relevant images with high fidelity. We fixed
the covariance after warm-ups, and we used ¢ = 103 based on our hyperparameter search.

, which leads to

D LIMITATIONS AND DIRECTIONS FOR FUTURE RESEARCH

Computation. We have presented performance regarding efficiency and scalability up to 1,000
dimensions in the experiments. The computational of VMSB requires quadratic time for computing
the Wasserstein gradient flow (asymptotically O(K?n,)) and memory footprints of {Y,*}£_, for
estimating with internal Gaussian particles (asymptotically O(Kn,,)). For fast computation, we uti-
lized the JAX automatic differentiation library (Bradbury et al., 2018) for computing gradients and
Hessians in Proposition 2] For a small number of dimensions less than or equal to 20, this overhead
is negligible; VMSB can run on a 4-core CPU, and the training can be reasonably trained within
10 minutes. For a large number of dimensions, such as 512, the wall clock time for finishing the
FFHQ dataset in the image-to-image transfer experiment was less than 30 minutes using parallel
computing of a single NVIDIA TITAN RTX GPU. While the Wasserstein gradient flow theory in
the subspace of P(R%) enables us to estimate the mirror descent update more accurately, its com-
putational efficiency is not yet comparable to well-established automatic differentiation libraries. If
numerical computation for high order derivatives are readily available with low computational cost
in future, we will be able to train more stable and reliable probabilistic models.

Limitations. GMM-based SB models, due to the lack of deep structural processing, tend to focus
on instance-level associations in images in coupling rather than the subinstance- or feature-level
associations that are intrinsic to deep generative models. As a result, while VMSB produces statisti-
cally valid representations of optimal transportation within the given architectural constraints, these
outcomes may be perceived as somewhat “synthetic.” Nevertheless, GMM-based models still hold
an irreplaceable role in numerous problems such as latent diffusion and variational methods, due to
their simplicity and distinctive properties (Korotin et al.,[2024). As we successfully demonstrated in
two distinct ways of interacting with neural networks for solving unpaired image transfer, we hope
our theoretical and empirical findings help novel neural architecture studies.

Directions for future research. One of the primary objectives was to provide a rigorous math-
ematical analysis of robust SB acquisition through the lens of OMD. We hope that the proposed
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Table 6: EOT Benchmark scores of BW2-UVP | (%). Results of classical EOT solvers marked
with } are taken from (Korotin et al.,|2024). Additionally, LightSB-EMA indicates the exponential
moving average (EMA; Morales-Brotons et al.,[2024)) of parameters in LightSB (decay = 0.99).

=01 e=1 c=10
Trpe Solver q=2 =16 i=61 d= 138 i=2 =16 i=61 d= 138 =2 =16 d=61 a-138
Classical solvers (best) [Korotin et al|! 0016 005 025 022 0.005 0.09 0.56 0.12 001 0.02 0.15 023
Bridge-M DSBM (Shi et al.|" 003 0.18 0.7 226 0.04 0.09 19 73 026 102 3563 15000
Bridge-M  SF?M-Sink { ong et al.|* 0.04 0.18 0.39 1.1 0.07 03 45 17.7 0.17 47 316 812
rev. KL B [Korotin etal] — 0.004+0.004 0.009+0.004 0.023+0.003 0.036+0003 0004+0005 0.009+0.003 0016+0002 0035+0003 0.009=0004 0013+0007 0.034+0004 0066+ 0.008
Bridge-M  LightSB-M {Gushchm etal] 0.005+0.003 0.012£0.004 0.034+0.003 0.063%0002 0.005+0.001 0.027+0.007 0.057%0.010 0.108+0.004 0.004+0.002 0.017+0.007 0.133+0.010 0.409 +0.042
EMA ightSB-EMA" 0.004 £0.002  0.014 £0.003  0.021 £0.003  0.044 £0.001  0.004 £0.003 0.009 £ 0.004 0.013£0.001 0.032£0.004 0.004£0.001 0.008£0.003 0.02340.013 0.010 £ 0.002
Var-MD VMSB (ours) 0.003%0.001 0.007£0.003 0.018+0.002 0.039%0001 0.002+0.002 0.004+0.001 0.009%0001 0.023+0.003 0.005+0.007 0.006+0.004 0.011+0.010 0.0 0.004
Var-MD VMSB-M (ours) 0.002%0.001  0.010£0.067 0.031+0.004 005640005 0.003+0.004 0.005+0.002 0.032%0006 0.077+0.018 0.003+0.008 0.011+0.004 0.117+0.012 0429 +0.748

Table 7: EOT scores of cBW2-UVP, which corresponds to the fully extended version of Table

-0l =1 =10
Ty Solv
pe Solver =2 =16 =61 d— 128 =2 =16 =61 d— 128 =16 =64 a—128
Classical solvers |Korotin etal ] 1.94 13.67 174 114 1.04 9.08 1805 15.23 127 236 131
Bridge-M DSBN {Shital." 52 108 373 3s 03 L1 97 31 105 3557 15000
BridseM  SF2M-Sink { fong et al | 05 37 95 109 02 [ 9 2 49 319 819
rev. KL LightSB {Korotin et al. 0.007 £0.005  0.040 £0.023  0.100 £ 0.013  0.140 £ 0.003  0.014 £0.003  0.026 £ 0.002  0.060 £ 0.004  0.140 £ 0.003 0.027 £0.005  0.052£0.002  0.092 £ 0.001
Bridge-M  LightSB-M {Gushchin et al. 0.017£0.004  0.088 £0.014  0.204 £0.036  0.346 £ 0.036  0.020 £0.007 0.069 £0.016 0.134 £0.014 0.294 £0.017 0.014 0.029 £0.004  0.207 £0.005 0.747 £ 0.028
EMA LightSB-EMA 0.005£0.002 0.040=0.014 0.078£0.007 014940006 0.012+0002 0.022£0.003 0051 £0001 0.127=0.002 0.0170.003 0.021%0.003 0.025+0.002 0.042 £ 0.002
Var-MD 'VMSB (ours) 0.004 £0.001  0.012+0.002 0.038 £0.002 0.101 £0.002 0.010£0.001  0.018 £0.001  0.044 £0.001  0.114 £0.001  0.013 £0.001  0.019 £0.001  0.021 £ 0.008 0.040 £ 0.001
Var-MD VMSB-M (ours) 001540016 0.067+0.036 0.108£0.020 025340107 00100001 00190001 0.094%0.010 0.222%£0.033 0.013£0.001 0.029+0.003 0193 £0015 0.745 £ 0.036

OMD theory will find multiple applications across various domains. One line of future studies is
a general understanding of learning in diffusion models with various regularizations. This includes
diffusion models in various problem-specific constraints, and geometric constraints from manifolds.
Another direction is the extension of the theoretical results into network architecture design. From
Section 4.2 a pair of Schrodinger potentials represent a dual representation of SB in a statistical
manifold. In (Gigli & Tamanini, [2020), such potentials satisfy the Hamilton-Jacobi-Bellman (HIB)
equations and, this can be trained with forward-backward SDE (SB-FBSDE) as presented in (Liu
et al.,[2022)). However, this requires many simulation samples from SDEs, and the requirements for
applying VMSB contain a tractable way of estimating gradient flows, and a guarantee of measure
concentration. Therefore, we expect there will be a new studies of energy-based neural architecture
for efficiently representing SB, which will advance various subfields of machine learning.

Reproducibility statement. Comprehensive justification and theoretical background are presented
in Appendices[A]and|B] Since the primary contributions of this paper pertain to the learning method-
ology, we ensured that all architectures and hyperparameters remained consistent across the LightSB
variants. All datasets utilized in this study are available for download alongside the training scripts.
Please refer to Appendix [C|for more information on the experimental setups.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ADDITIONAL RESULTS ON THE EOT BENCHMARK

We present the full results of EOT benchmark experiments. Tables [6] and [7] show comprehensive
statistics on the EOT benchmark with more SB solvers. As mentioned in § the VMSB and
VMSB-M solvers consistently brought better performance with low standard deviations of scores
for cBW2-UVP and BW2-UVP measures. We note that the experiment was conducted in a highly
controlled setting with identical model configurations; with all other aspects controlled and out-
comes differing only by learning methods, the consistent performance gains of our work were a
well-anticipated result from our theoretical analysis.

@ VMSB-adv
==« DSBM-IPF

E.2 ADDITIONAL IMAGE GENERATION RESULTS

In the unpaired EMNIST-to-MNIST translation task, we measured E
FID scores for various K for the SB parameterization. We consid-
ered K € {64,256,1024,4096} with ¢ = 10~ for our VMSB al-
gorithm. Our observations, both qualitative and quantitative, indicate
that higher modalities yield higher-quality samples. In every case of oL | | ‘
K, VMSB-adv outperformed its counterpart. For instance, Fig. [T1] woa 226 o4 4096
demonstrates that VMSB generates more diverse samples with high

fidelity. Notably, we achieved an FID score of 15.4 using a naive Figure 11: FID vs modality

15.211
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Figure 12: Generation results for unpaired image-to-image translation. We considered image data
from MNIST and EMNIST (containing the first ten letters), sized as 28 x 28 pixels. For comparison,
we trained GMM-based models with adversarial learning using a simple logistic discriminator (Table
B2). This was used as both a benchmark and a tractable target SB model (LightSB-adv-K). Our
method in the raw pixel domain, denoted as Ours-K, demonstrated qualitative improvements in
terms of diversity and clarity of image samples by effectively handling the mode collapsing issue.

Table 8: MNIST transfer statistics. Table 9: FID scores and differences for generated MNIST.

FID  Time Parameters FID (Train) FID (Test) Diff. (test — train).
LightSB-256  61.257 30m 0.4M - e — —
LightSB-1024 26487 S3m  16M Ii?gﬂgg "g" %gg f ggggg géggg 8'23?
LightSB-4096 ~ 20.017  135m 6.4M 1ghts B-adv- - : O

— LightSB-adv-4096 19.960 20.196 0.237
VMSB-256  52.634 76m 0.4M
VMSB-1024  24.022 203m 1.6M VMSB-adv-256 51.684 52.283 0.599
VMSB-4096 15471  44h 6.4M VMSB-adv-1024 23.853 24.053 0.200
DSBM-IMF 11.429 42h 6.6M VMSB-adv-4096 15.508 15.496 —0.012

convolutional neural network discriminator with low MSD similarity scores, which represent com-
petitive results for this task (Shi et al., 2023).

Fig. [12] demonstrates that VMSB generated more diverse samples with high fidelity. Note that the
proposed method suffers less from mode collapse than LightSB method (especially on the transfer
MNIST-to-EMNIST), with the same Gaussian mixture setting. This result is especially a good
point where the difference only lies in the learning methodology, which aligns with our theory.
Tables [§ and O] effectively shows the statistics and FID scores on the both train and the test datasets.
The quantitative results highlight that the VMSB solver is more preformant with less overfitting than
its counterpart. Consequently, our claim regarding the stability of SB solution acquisition is verified
by additional experiments involving pixel spaces.

We present Embedding-ED scores (Jayasumana et al.,2023)) and some qualitative generation results
in Table which is visualized in Fig.|8| SF?M-Sink For quantitative results, we calculated statistics
from ED scores on embeddings of the ALAE model (Pidhorskyi et al., |2020), for the four different
tasks: Adult — Child, Child — Adult, Female — Male, and Male — Female. The results show that
VMSB is capable of translating an arbitrary representation, which is closer to target domain than
baselines. To qualitatively verify these results, we generated images using LightSB and VMSB
in Figures and Since these improvements are purely based on information geometry and
learning theory, we anticipate that many following works on the variational principle application
across various fields such as image processing, natural language processing, and control systems
(Caron et al., 2020; [L1u et al., [2023; |Alvarez-Melis & Jaakkolal 2018}; /Chen et al., [2022).
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Table 10: ALAE Embedding-ED scores. To evaluate the performance, we computed averages and
standard deviations of the ED scores across four different transfer tasks.

e=0.1 e=0.5 e=1.0 e =10.0

SF?M-Sink  0.02916 £ 0.00145 0.04112 £ 0.00191 0.05670 £ 0.00249 0.06641 £ 0.00441
DSBM-IMF  0.02275 £ 0.00101 0.03358 & 0.00142 0.04866 £ 0.00168 0.06474 £ 0.00381

LightSB 0.01086 £ 0.00045 0.02382 £ 0.00093 0.03462 £ 0.00148 0.05376 £ 0.00273
LightSB-M  0.01066 4 0.00055 0.02366 £ 0.00107 0.03519 £ 0.00153 0.05975 £ 0.00298

VMSB 0.01002 + 0.00055 0.02288 0.00101 0.03396 + 0.00174 0.05315 £ 0.00307
VMSB-M  0.00997 £ 0.00054 0.02298 £ 0.00106 0.03391 +0.00140 0.05351 £ 0.00241

i

LightSB, ¢ = 1.0

N, L
4 "
e NS

LightSB, ¢ =1.0 VMSB, ¢ =1.0

VMSB, ¢ =1.0

Figure 13: Qualitative comparison between LightSB and VMSB for relatively high volatility, ¢ =
1.0. Top (Male — Female): We find that VSBM has preserved more facial details, such as wearing
glasses, than LightSB. Bottom (Adult — Child): VSBM was stable at retaining facial position even
with high e.
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Figure 14: Generation results of VMSB (Adult — Child) with different volatility settings
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