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Abstract

Multi-agent reinforcement learning (MARL) methods, while effective in zero-sum
or positive-sum games, often yield suboptimal outcomes in general-sum games
where cooperation is essential for achieving globally optimal outcomes. Matrix
game social dilemmas, which abstract key aspects of general-sum interactions,
such as cooperation, risk, and trust, fail to model the temporal and spatial dynamics
characteristic of real-world scenarios. In response, our study extends matrix game
social dilemmas into more complex, higher-dimensional MARL environments.
We adapt a gridworld implementation of the Stag Hunt dilemma to more closely
match the decision-space of a one-shot matrix game while also introducing variable
environment complexity. Our findings indicate that as complexity increases, MARL
agents trained in these environments converge to suboptimal strategies, consistent
with the risk-dominant Nash equilibria strategies found in matrix games. Our work
highlights the impact of environment complexity on achieving optimal outcomes
in higher-dimensional game-theoretic MARL environments.

1 Introduction

Multi-agent reinforcement learning (MARL) is concerned with training agents to maximise individual
or shared rewards in environments with multiple concurrent learners. A critical aspect of MARL is the
agent motive, which can be categorised as competitive (zero-sum), purely cooperative (positive-sum),
or mixed (general-sum). MARL methods have shown considerable success both in competitive
environments [9, 32] and in purely cooperative environments [27, 4]. In these settings, agent goals
are either directly opposed or aligned, and learning paradigms like self-play, which train agents to
compute best responses to rational opponents, empirically converge to stable strategies, i.e., Nash
equilibria, that correspond to optimal outcomes. However, Nash equilibria in general-sum games
often coincide with suboptimal outcomes, rendering the direct application of such methods ineffective
for finding desirable solutions [8, 6, 14]. Instead, in many general-sum games, optimal outcomes
are often only achievable through cooperation—by explicitly favouring collective gains over stable
individual rewards.

Matrix game social dilemmas (MGSDs), a class of general-sum games, represent situations where
individual rationality may lead to collective irrationality. These dilemmas are widely used to explore
cooperation in various disciplines [23, 26], including MARL, where numerous methods have been
proposed to induce cooperation among learning agents [7]. While MGSDs are valuable for abstracting
key aspects of real-world multi-agent interactions—such as cooperation, risk, and trust—they lack
the complexity of real-world temporal and spatial dynamics. Unlike real-world actions, matrix game
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actions are binary, i.e., limited to cooperate or defect choices, and do not model extended timeframes
[12]. Consequently, recent works have looked at extending MGSDs to higher-dimensional MARL
environments in order to more accurately model real-world scenarios (see Section 2).

In this study, we focus on an extension of the Stag Hunt MGSD to a gridworld MARL environment,
and explore how unique environment dynamics—absent in the matrix game—affect the learnt
strategies of independent MARL agents. Specifically, we introduce eight novel variants of the
gridworld Stag Hunt, each incoporating a different degree of randomisation across various dynamics,
which we model as environment complexity. This research direction is motivated by the inherent
limitations of MGSDs, where modifications to a game are typically confined to changes in payoff
structure. Extending these games into higher-dimensional environments offers a novel opportunity to
examine how additional factors, such as environment dynamics, influence cooperative behaviours.

Furthermore, our inquiry is supported by studies on randomness in evolutionary social dilemmas [28],
along with empirical research highlighting its impact on cooperation [1, 34]. A key finding is that
multiple variants of the gridworld Stag Hunt can map to the same Stag Hunt MGSD; however, even
minor variations in their complexity can promote convergence to vastly different strategies. More-
over, our work advances the development of game-theoretic MARL environments, more accurately
reflecting real-world conditions, where environment dynamics may play a significant role in shaping
general-sum multi-agent interaction. In summary, we present the following key contributions:

• We adapt a multi-agent gridworld implementation of the Stag Hunt MGSD to match the
decision space of a one-shot matrix game and create eight unique environment variants, each
with a specified level of complexity.

• We train independent MARL agents in each of these environment variants and observe
distinct empirical convergence patterns to either the suboptimal Nash equilibrium strategy
or a mixed strategy.

• We demonstrate that environment complexity promotes systematic convergence to the
suboptimal Nash equilibrium strategy, despite the established viability of more optimal
strategies.

• We conduct an empirical game-theoretic analysis on our trained policies, showing that
certain gridworld Stag Hunt variants can be mapped to MGSDs with Stag Hunt payoffs, and
can be modelled as Sequential Social Dilemmas.

2 Related Work

Addressing the viability of MGSDs in modelling key aspects of multi-agent interaction, numerous
studies have proposed higher-dimensional game-theoretic MARL environments to explore coopera-
tion under more realistic settings. The Coin Game, a widely used gridworld environment based on
repeated MGSDs, has been used to examine cooperative MARL methods by Foerster et al. [8], and the
Melting Pot suite combines various MGSDs in gridworld formats to benchmark MARL algorithms
[13]. Recently, Khan et al. [11] highlight the challenges in adapting matrix games to gridworld
environments by demonstrating the shortcomings of the Coin Game. Relevant to our focus on the
Stag Hunt, is the Level-Based Foraging environment [5], a gridworld foraging game which targets
multi-agent cooperation and coordination, and a study by Nica et al. [20], which successfully demon-
strates enhanced learning in a Minecraft-based stag hunt through gridworld abstraction. Although
existing works provide useful game-theoretic environments, primarily for proposing new MARL
methods for repeated and partially observable settings, we simplify the learning problem to one-shot
and fully observable games; to focus on modifying environment dynamics, whilst maintaining the
relation between our environment and its matrix game formulation. To this end, we leverage an
existing game-theoretic MARL environment [19, 22] , based on the Stag Hunt MGSD, chosen for its
overlap with existing environments and accessibility of manipulating game dynamics, which was
briefly explored by Peysakhovich and Lerer [22].
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3 Background

3.1 Matrix Game Social Dilemmas

A matrix game is a formal representation of strategic interactions between two players, where each
player’s decision affects the other’s outcome. The game is represented by a matrix in which each cell
details the outcomes (or payoffs) for the players based on their combined choices. Players choose a
strategy without knowledge of the other’s simultaneous decision, and the combination of their choices
leads to a specific payoff for each. In matrix game social dilemmas (MGSDs), the two actions, or
strategies, available to each player are ‘cooperate‘ and ‘defect‘, and the exact payoffs for each player
are given by the values {R,P, S, T} ∈ R, detailed in Table 1. Formally, a matrix game is a social
dilemma when its four payoffs satisfy the following inequalities:

R > P,R > S, 2R > T + S, and either: T > R, or, P > S. (1)

Table 1: Payoff table for a matrix game social dilemma, where (X,Y ) denotes the payoff for the
given row and column player, respectively.

Player 2

Cooperate Defect

Player 1 Cooperate (R,R) (S, T )
Defect (T, S) (P, P )

Central to our work, is the MGSD, Stag Hunt [31]; where the ‘cooperate‘ and ‘defect‘ actions
correspond to ‘hunt‘ and ‘forage‘, respectively. Conceptually, this represents a scenario where players
are tasked with either hunting a stag or foraging a plant. A bilateral decision to hunt offers the highest
payoff, h, to both players, but carries the risk of being mauled by the stag, yielding the lowest possible
reward, m, to a player hunting unilaterally. In mauling scenarios, the opposing player may receive a
unique foraging reward f∗ ≥ f . Formally, the Stag Hunt is characterised by Table 2 and corresponds
to an MGSD where R = h, P = f , S = m and T = f∗.

Table 2: Payoff table for the generalised 2-player stag hunt, where h > f∗ ≥ f > m.

Player 2

Hunt Forage

Player 1 Hunt (h, h) (m, f∗)
Forage (f∗,m) (f, f)

3.2 Nash Equilibria

Nash Equilibria, a fundamental concept in game theory introduced by Nash [18], refers to a situation
in which each player in a game makes an optimal choice considering the choices of the other players,
and no player has anything to gain by changing only their own strategy unilaterally. Formally, a Nash
Equilibrium in a game with n players is defined as a strategy profile (s∗1, s

∗
2, . . . , s

∗
n) such that for

each player i, the strategy s∗i is a best response to the strategies s∗−i chosen by the other players. This
can be expressed as:

s∗i ∈ argmax
si

ui(si, s
∗
−i), ∀i ∈ {1, 2, . . . , n} (2)

where si represents the strategy chosen by player i, s∗−i represents the strategies chosen by all other
players except i, and ui(si, s−i) is the payoff function for player i. In the Stag Hunt, players are faced
with the decision between hunting a stag or foraging for plants, i.e., si ∈ {Hunt, Forage}, and the
game is particularly valuable for containing two Nash Equilibria which reflect different resolutions of
its inherent social dilemma:
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Payoff-Dominant Equilibrium (Hunt,Hunt): If both players choose to hunt stag, neither has an
incentive to deviate unilaterally since doing so would result in a lower payoff. If one player switches
to foraging while the other continues to hunt, the deviating player’s payoff decreases from h (under
successful cooperation) to f or f∗, both of which are less than h under the game’s assumptions. Thus,
(Hunt,Hunt) is a Nash Equilibrium. This outcome is payoff dominant because it results in the
highest rewards for both players, i.e., both receive h, which is greater than any other payoff in the
game.

Risk-Dominant Equilibrium (Forage, Forage): Similarly, if both players choose to forage,
deviating to hunting is disadvantageous. A unilateral switch would result in a payoff of m, as the
lone hunter would face the risk of mauling, which is the worst outcome. Hence, (Forage, Forage)
also constitutes a Nash Equilibrium. Although this equilibrium yields a lower payoff, f , than mutual
stag hunting, it is considered risk dominant because it minimises the risk associated with the potential
non-cooperation of the other player.

3.3 Markov Games

We model the MARL adaptation of Stag Hunt as a two-player Markov Game, also known as a
Stochastic Game [25]; a natural extension of Markov Decision Processes to multi-agent settings [17].
A Markov game for two players is a tuple ⟨S,A,R, P, γ⟩, where S is the set of states describing the
environment, A is the combined action space across all players, given by A := A1 ×A2, where the
Ai is is the set of actions available to player i, R is the reward function, given by R := R1 × R2,
where Ri : S ×A× S → R is the reward function for player i, which maps a state and action tuple
(including the resulting state) to a real number and defines the reward that player i receives after all
players choose their actions. P : S ×A× S → ∆(S) is the state transition probability function, and
γ is the discount factor, which is typically constrained to 0 ≤ γ ≤ 1.

In a two-player Markov Game, each player chooses a policy that determines their action based on the
current state of the game. The joint policy vector π⃗ combines the individual policies of each player,
where π⃗ = (π1, π2). For player i , the value function under this joint policy, V π⃗

i , is defined as the
expected sum of discounted rewards when both players adhere to their respective parts of π⃗ . The
formal definition is:

V π⃗
i (s) = Ea⃗t∼π⃗,st+1∼P (st ,⃗at)

[ ∞∑
t=0

γtRi(st, a⃗t, st+1)

∣∣∣∣s0 = s

]
(3)

where st is the state at time t, a⃗t is the joint actions taken by Player 1 and Player 2 at time t,
determined by their policies π1 and π2, respectively, st+1 is the state resulting from the actions a⃗t,
Ri(st, a⃗t, st+1) is the reward received by player i after the actions are taken and the state transitions,
and γ is the discount factor.

3.4 Sequential Social Dilemmas

We also use the Sequential Social Dilemma (SSD) model, introduced by Leibo et al. [12], which
characterises when a Markov Game contains embedded MGSDs, thus extending the MGSD model
to temporally and spatially extended settings. Formally, an SSD is a tuple ⟨M,ΠC ,ΠD⟩, where
M is a Markov Game with state space S, and, ΠC and ΠD, are disjoint sets of policies that
implement cooperative and defective strategies, respectively. These policy sets are defined by
selecting a metric, α : Π → R, and threshold values αc and αd such that α(π) < αc ⇐⇒ π ∈
ΠC and α(π) > αd ⇐⇒ π ∈ ΠD. For a given Markov Game, M, and state, s ∈ M, we
can construct an empirical payoff matrix, (R(s), P (s), S(s), T (s)), induced by the outcomes of
policies, (πC ∈ ΠC , πD ∈ ΠD), via the following equations: R(s) := V πC ,πC

1 (s) = V πC ,πC

2 (s),
P (s) := V πD,πD

1 (s) = V πD,πD

2 (s), S(s) := V πC ,πD

1 (s) = V πD,πC

2 (s), and T (s) := V πD,πC

1 (s) =

V πC ,πD

2 (s). Then, M is an SSD when there exist states s ∈ S and policies (πC ∈ ΠC , πD ∈ ΠD)
such that the induced empirical payoff matrix satisfies the five MGSD inequalities in Equation 1.
Hence, a Markov Game is an SSD when it can be mapped by empirical game-theoretic analysis [33]
to an MGSD.
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3.5 Proximal Policy Optimisation

Proximal Policy Optimisation (PPO) is a widely used policy gradient method for single-agent
reinforcement learning, introduced by Schulman et al. [24]. The core idea behind PPO is the use of
a clipped surrogate objective function to prevent the policy from deviating too far from the current
policy during updates. Through its extension to the multi-agent paradigm, PPO has proven effective
in numerous MARL environments, including those that target cooperation [35].

4 Methods

4.1 Gridworld Stag Hunt

We adapt a gridworld implementation of the Stag Hunt matrix game, initially developed by Nesterov-
Rappoport [19] and Peysakhovich and Lerer [22]. The selected environment, built on the PettingZoo
[30] and Gym [3] frameworks, simulates a 5x5 grid game featuring two agents—red and blue,
visualised in Appendix A. Each episode begins with placing both agents, along with non-agent
entities: one stag and two plants, on distinct cells of the grid. The agents and the stag can move in any
of the four cardinal directions or remain stationary at every timestep. The state of the environment is
fully observable for each agent, with integer arrays representing the coordinates of all agents and
entities on the grid. Similarly, the action space is represented by five unique integers, corresponding
to the four cardinal directions and the option to remain stationary. Plants remain stationary within an
episode and are randomly re-spawned at every episode start. Individual agent rewards are dependent
on the actions of both agents and are determined at the end of every timestep as follows:

• Agents receive an individual hunting reward, h, by jointly occupying the stag’s grid cell.
• An agent receives a foraging reward, f , by independently, or jointly, occupying a plant’s

grid cell.
• An agent receives a mauling reward, m, by independently occupying the stag’s grid cell.

The rewards values assigned satisfy the generalised two-player stag hunt inequality in Table 2, with
values set at h = 25, f = f∗ = 2 and m = −1. This configuration significantly favours hunting
strategies over foraging strategies, whilst inducing an element of risk to hunting with a negative
mauling reward. Furthermore, to align the gridworld stag hunt with a one-shot matrix game, we
implemented an infinite-horizon setup. In this format, episodes conclude only when both agents have
received a reward: through hunting, foraging, or being mauled. In asynchronous episode terminations,
an agent that has received a reward is frozen on the grid, while the other agent continues to act.

4.1.1 Variable Complexity

In Table 3 we introduce randomised and deterministic configurations for three environment parameters
in the gridworld Stag Hunt: the spawn locations of agents, the spawn locations of the stag, and
movement of the stag, where agent and stag spawn parameters apply to the start of every episode,
and the stag movement applies to every timestep. Enumerating all combinations of values for these
parameters provides eight unique environment variants, each with a specified degree of randomisation.
These environment variants are outlined in Table 4 and we use the corresponding environment label to
denote the degree of randomisation in a given environment, i.e., the label FFR denotes an environment
with: deterministic agent spawn (F), deterministic stag spawn (F) and randomised stag movement (R).
We characterise the spectrum of randomisation across these eight variants as environment complexity
in our study, where environments with randomisation on multiple parameters, such as environment
RRR, are considered more complex than those with deterministic dynamics, such as environment
FFF.

4.2 Experimental Setup

Our experiments use RLLib’s [16] Proximal Policy Optimisation (PPO) [24] implementation to train
pairs of agents in the gridworld Stag Hunt environment. We consider the simplest multi-agent variant
of PPO, Independent PPO (IPPO), in which each agent uses an independent instance of PPO to
optimise its own policy, through maximising individual rewards [29]. In particular, no parameters are
shared between the multiple policies and each agent treats other agents as part of their environment
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Table 3: Additional configurations for three environment parameters introduced to control complexity
in the gridworld Stag Hunt.

Environment Parameter Value Description

Agent Spawn Fixed Blue and red agents spawn in the upper left and right
corners of the grid, respectively.

Random Blue and red agents spawn at random, distinct cells on the
grid.

Stag Spawn Fixed Stag spawns at the center cell of the grid.
Random Stag spawns at a random cell location, distinct from either

agent.

Stag Movement Follows Stag moves to a neighbouring cell closest to the nearest
agent, measured by Euclidean distance.

Random Stag moves to a random neighbouring cell.

Table 4: The eight environment variants we create with our modifications to the gridworld Stag Hunt.
Each row represents an environment with a specified degree of complexity.

Environment Label Agent spawn Stag spawn Stag movement
FFF Fixed Fixed Follows
RFF Random Fixed Follows
FRF Fixed Random Follows
FFR Fixed Fixed Random
RRF Random Random Follows
FRR Fixed Random Random
RFR Random Fixed Random
RRR Random Random Random

observation. Note that, given the global observation space provided to agents in the gridworld Stag
Hunt, our IPPO approach aligns closely with the widely used multi-agent shared-critic variant of
PPO, MAPPO [35]. We also consider a single-agent approach to the multi-agent problem, using
fully-centralised PPO to serve as baseline to compare the performance of IPPO. In this approach,
the observations of both agents are combined into a single observation, to train a fully centralised
joint-action policy that controls both agents and maximises combined rewards.

5 Results

5.1 Environment Complexity and Strategy Convergence

We conduct five training runs of IPPO and PPO in each of the eight environments listed in Table 4,
training for 1,000 iterations, each consisting of 4,000 environment timesteps. In each trial we use a
distinct random seed for determining environment randomisation dynamics where applicable. We
defer the results of our baseline, PPO, and the hyperparameters used, to Appendices B and C.1.

In Figure 1, which shows the training performance of IPPO agents, measured by mean combined
episode reward per iteration, averaged across 5 trials; we group environments based on observed
reward patterns. Environments yielding high rewards (i.e., FFF, RFF, FRF, RRF, FRR) are denoted
as Group A, while those with lower rewards (FFR, RFR, RRR) constitute Group B. These groupings
reveal two insights into the learnt strategies of IPPO agents:

Observation 1: Agents trained in Group B converge to globally suboptimal strategies, consisting
of bilateral foraging. By analysing the mean episode rewards at the end of 1,000 training iterations,
we infer agent strategies based on the previously established payoff structure. Specifically, exclusive
bilateral hunting yields a combined reward of 50, significantly higher than the 4 from bilateral foraging.
Consequently, stable convergence to a mean episode reward over 4 indicates that agents have adopted
strategies that include bilateral hunting. Thus, in Group B, where the mean combined rewards rarely
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Figure 1: Training performance of IPPO in eight environments with varying degrees of complexity,
detailed in Table 4. Environments are grouped by reward patterns: Group A (left) includes FFF, RFF,
FRF, RRF, FRR, and Group B (right) includes FFR, RFR, RRR. Bold lines represent the average
performance over five trials, and the shading represents ±1 standard deviation from each point.

exceed 4 (second column of Figure 1), we can conclude that agents have almost-exclusively converged
to bilateral foraging strategies.

Observation 2: Agents trained in Group A converge to mixed-strategies, consisting of both
bilateral foraging and hunting. In Group A, where mean combined rewards consistently exceed
the foraging threshold (1st column of Figure 1), there is evident near-convergence to bilateral hunting
strategies. However, we observe that agents in these environments do not achieve a consistent reward
of 50, which is required to indicate convergence to exclusive bilateral hunting strategies. Specifically,
in the 1,000th training iteration

5.2 Escaping Suboptimal Strategies

We consider only Group B environments from the previous subsection, in which we observed IPPO
agents converging to suboptimal strategies (Observation 1). To assess the feasibility of higher-reward
strategies in these environments, we bias agents toward bilateral hunting strategies through a simple
curriculum. We introduce a new environment variant, cXXX, designed to enforce a purely cooperative
Nash equilibrium by eliminating the reward for foraging, thus exclusively incentivising bilateral
hunting. This corresponds to a Stag Hunt game, as formalised in Table 2, where h = 25, f = f∗ = 0
and m = −1.

For each environment in Group B, a corresponding cXXX variant is created: cFFR, cRFR and cRRR.
These variants maintain their respective randomisation dynamics described in Table 4. Initially,
agents are trained in their respective cXXX environments for 500 iterations to learn hunting strategies
(Stage 1). To discourage passive strategies and further promote hunting, a timestep penalty of -0.5 is
introduced in these environments. Following this step, the pre-trained policies are then trained in
their original environments (FFR, RFR, RRR) for another 500 iterations, during which the timestep
penalty is removed (Stage 2). We use only IPPO for these experiments.

Observation 3: Curriculum learning allows agents to escape suboptimal strategies in Group
B. Our results in Figure 2 demonstrate that our curriculum enables agents to find strategies in
Group B environments that yield significantly higher rewards than those observed previously. In
particular, during the second training stage, performance begins to converge toward average rewards
that substantially exceed those attainable through exclusive foraging. Consistent learning of higher-
reward strategies demonstrates that agents have not only discovered, but also converged to strategies
that include bilateral hunting—effectively escaping the suboptimal strategies that were previously
observed.

7



0 200 400
0

20

40

Training Iterations

M
ea

n
C

om
bi

ne
d

E
pi

so
de

R
ew

ar
d Stage 1

cFFR cRFR cRRR

0 200 400

Training Iterations

Stage 2

FFR RFR RRR

Figure 2: Training performance of IPPO in a 2-stage curriculum in Group B environments from
Section 5.1. Agents are initially trained in a cooperation-inducing environment (cXXX), before being
trained in their target environments.

5.3 Empirical Game-Theoretic Analysis

Here we further characterise the Group B environments with an empirical game-theoretic analysis
following the methodology of Leibo et al. [12]. Recall from Section 5.1 that agents trained in these
environments converged to suboptimal foraging strategies (Observation 1). In the context of the
Stag Hunt, foraging corresponds to the defect action within a matrix game social dilemma (MGSD).
Consequently, we categorise the strategies that these policies implement as defective. Conversely,
in Section 5.2, we present a learning curriculum that shifts agents from these suboptimal strategies
towards cooperative hunting-focused strategies. Thus we can train two distinct types of policy for
each environment in Group B: cooperative policies, ΠC , and defective policies, ΠD. This allows us
to construct a meta-game with cooperate and defect actions that involve sampling a policy from either
category and determining payoffs based on the resulting pairwise average rewards. This meta-game
represents an MGSD, induced by the policy sets, ΠC and ΠD, embedded within the underlying
Markov Game, if such a mapping exists. We compute the empirical payoffs of this meta-game as
follows:

For each environment, two pairs of policies, (πC
1 , π

D
1 ) and (πC

2 , π
D
2 ), are sampled, where πC

i ∈ ΠC

and πD
j ∈ ΠD. These policy pairs represent the actions of a row player and a column player in a

two-player matrix game with cooperate or defect actions (i.e., an MGSD), respectively. Specifically,
πC
i corresponds to the cooperate action for player i, and πD

j corresponds to the defect action for
player j. The outcomes (payoffs) for each combination of actions are determined by playing the
respective policies against one another for an episode, in the respective Stag Hunt environment. The
rewards obtained in each episode are then averaged in the corresponding cell in the payoff matrix.
This procedure is repeated for each environment until convergence of all cell values, yielding the set
of induced empirical payoff matrices shown in Table 5.

Table 5: Empirical payoff matrices for the meta-game in Group B environments. Each cell in the
table contains a reward tuple: (x, y), where x is the reward for player/policy 1, and y is the reward
for player/policy 2, averaged over 5,000 episodes (2 d.p.)

RFR RRR FFR

πC
2 πD

2 πC
2 πD

2 πC
2 πD

2

πC
1 (10.76, 10.81) (0.45, 1.89) (8.38, 8.37) (0.42, 1.87) (15.29, 15.26) (0.49, 1.88)

πD
1 (1.95, 0.59) (1.93, 1.89) (1.96, 0.33) (1.95, 1.87) (2.02, 0.24) (1.98, 1.99)
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Observation 4: Group B environments map to MGSDs with Stag Hunt payoffs, and conse-
quently, can be modelled as SSDs. Section 5.3 maps a Markov Game to an MGSD, induced
by a set of policies. To verify if this mapping is valid, here we examine the empirical payoffs of
the constructed MGSD. It is important to note that it is not necessary for this process to generate
empirical payoffs that constitute a valid MGSD, as the space of Markov Games is much larger than
that of MGSDs. This is particularly relevant in the gridworld Stag Hunt we consider in this work,
alongside our modifications, which has not been formally characterised in relation to the MGSD Stag
Hunt. Nonetheless, the empirical payoff matrices in Table 5.3 satisfy the five the MGSD inequalities
in Equation 1, as well as the Stag Hunt inequality in Table 2. The Markov Games that model Group
B environments can be mapped to MGSD Stag Hunt games using the method described above.
Consequently, they can indeed be modelled as Sequential Social Dilemmas (SSDs) (Section 3.3).

Observation 5: Agents trained in Group B empirically converge to the suboptimal, risk-
dominant Nash equilibrium strategy from the MGSD Stag Hunt. Although formally verifying
Nash equilibria in general-sum Markov Game policies can often be intractable [21, 10], our analysis
provides empirical evidence that agents in Section 5.1 have converged not only to suboptimal
strategies (Insight 1), but also to Nash equilibria strategies. Consider the outcomes of two defecting
policies, (πD

1 , πD
2 ), in Table 5. If agents had not converged to the suboptimal Nash equilibrium, we

would see empirical payoffs for these outcomes exceeding a reward of 2 for each defecting policy.
Instead, we observe convergence to a reward less than 2, indicating that when these policies attempt
to deviate from the suboptimal strategy, they only reduce their own payoffs. This behaviour aligns
precisely with the definition of Nash equilibria. Moreover, the specific equilibrium they converge to
is reflective of the risk-dominant Nash equilibrium in the MGSD Stag Hunt (Section 3.1).

6 Discussion

Our results indicate that agents trained in Group B environments converge to suboptimal strategies
(Observation 1) and that these policies empirically represent Nash equilibria strategies (Observation
5). However, we also discover that agents are in-fact capable of learning more-optimal strategies
within these environments (Observation 3). Despite the viability of higher-reward strategies, we
observe that agents systematically converge to the suboptimal Nash equilibrium strategy (i.e., mutual
foraging). We suggest that this behaviour is a result of the increased complexity introduced by our
modifications to the gridworld Stag Hunt. To support this, we explore three alternative explanations
for our empirical findings:

First, although the observation space for each agent includes the positions of all entities within the
grid, converging on higher-reward strategies in more complex environments, such as those in Group
B, may require previous observations, actions, or rewards to be included in the agent’s observation.
However, this information is not available in a one-shot version of the game and thus cannot be
considered a viable solution. Second, it could be that performing higher-reward strategies in Group
B environments is significantly improbable due to highly randomised environment dynamics, and
hence agents are behaving as expected, converging to the most optimal strategy (i.e., maximising
long-term reward). We mitigate this proposition (and also the first explanation) by demonstrating
empirically that through curriculum learning the same agents are able to learn significantly more
cooperative strategies (Observation 3). Third, the dynamics of Group B environments might simply
require more suitable hyperparameter values or additional training time, e.g., to increase exploration
behaviour or allow more time to discover better strategies. Thus, in Appendix C.2, we run further
training experiments in Group B, including multiple hyperparameter searches, for 12,000 iterations.
The results show that no further improvements are made under any circumstances, indicating that the
observed behaviour is likely not an artifact of hyperparameter selection or insufficient training time,
but a systematic defection toward lower-reward strategies due to increased environment complexity.

Thus, our findings suggest that the observed suboptimal convergence behaviour is a direct result of
the increased complexity found in the Group B environments. Examining the environment dynamics
within Group B indicates that the complexity introduced by a randomly moving stag—environments
labelled by xxR—induces significant uncertainty which constrains learned strategies to suboptimal
equilibria. Indeed, in three of the four environments featuring a randomly moving stag, our agents
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are consistently unable to learn cooperative strategies. Furthermore, environments with intermediate
levels of complexity— i.e., those in-between FFF and RRR—maintain average rewards above
the suboptimal strategy threshold (Observation 2) and show rewards decreasing proportionally to
increased environment complexity.

Finally, our results show that even within the framework of SSDs, multiple variants of the gridworld
Stag Hunt can map to the same MGSD (Observation 4) and yet slight variations in environment
dynamics, i.e., increased complexity, can promote convergence to vastly different strategies. Future
work will seek to formalise Nash equilibria strategies in SSDs, and the notion of environment
complexity, in the context of these empirical findings.
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A Gridworld Stag Hunt

Figure 3: Rendering of the gridworld Stag Hunt environment used in this study.
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B Hyperparameters

In Table 6, we list the relevant hyperparameters for RLlib’s PPO implementation which was employed
throughout this study, using the stated hyperparameter values. All parameters not stated were set to
None.

Table 6: Hyperparameter values used for training PPO policies throughout this study. The second
column includes the range of values used for hyperparameter tuning in Section C.2, where values
given in square brackets [x,y,z] represent a discrete choice over values x, y and z, and values in round
brackets (x,y) represent a continuous range, sampled according to the stated distribution.

Hyperparameter IPPO/PPO (Section 5) IPPO Extended (Section C.2)

clip 0.3 [0.2, 0.3, 0.4, 0.45]
discount 0.99 [0.98, 0.99, 0.995, 0.999]
training batch size 4000 4000
sgd batch size 128 [128, 256, 512]
num_sgd_iter 30 30
kl coeffient 0.2 0.2
kl target 0.2 0.2
entropy coefficient 0 log_uniform(5× 10−2, 3× 10−1)
vf clip 10.0 10.0
vf loss coefficient 1.0 uniform(0.5, 1.0)
λ (GAE) 1.0 [0.92, 0.95, 0.98]
optimizer Adam Adam
learning rate 5× 10−5 log_uniform(1× 10−6, 5× 10−2)

C Environment Complexity and Strategy Convergence

In this section, we provide results of the supplementary experiments we conducted to substantiate our
claims in Section 5.1.

C.1 Centralised PPO

To establish a baseline for our earlier results in Section 5.1, which used the IPPO training methodology,
we trained a single joint-action policy that controls both agents, labelled PPO. The distinction between
IPPO and PPO is that while IPPO agents treat other learners as part of their own environment, PPO
controls both agents under a single policy. This distinction allows us to assess the extent to which
independent multi-agent interaction is necessary to achieve globally optimal outcomes in the gridworld
Stag Hunt.

Our results, presented in Figure 4, further suggest that environment complexity promotes convergence
to suboptimal strategies. We find that the same grouping of environments from IPPO (Figure 1)
applies to PPO agents. Although the performance of PPO in Group B resembles that of IPPO in
Group B, we observe that performance in Group A exhibits significantly larger variance between
trials compared to IPPO. Specifically, multiple trials in the same environment, including the fully
deterministic environment, FFF, show convergence to vastly different strategies. This observation
highlights the necessity of independent multi-agent interaction in navigating the social dilemma
aspects of our environment, where PPO may be overly influenced by early biases in training runs.
Despite this, in Figure 4 we continue to observe that an increase in environment complexity correlates
with decreased pay-offs.

C.2 Extended Training in Group B Environments

In Section 5.1, we found that IPPO agents converged to suboptimal strategies in Group B, whilst
converging to more optimal strategies in Group A. To investigate whether the observed suboptimal
convergence behaviour could be explained through either: inappropriate hyperparameters for the
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Figure 4: Training performance of PPO across eight environments of varying complexity, with labels
detailed Table 4. Environments are grouped by reward patterns: Group A (left) includes FFF, RFF,
FRF, RRF, FRR, and Group B (right) includes FFR, RFR, RRR. Bold lines represent the average
performance across five trials and the shading represents ±1 standard deviation from each point.

given environment variants, or insufficient training time to discover more optimal strategies, we
conducted an extended training experiment with hyperparameter tuning.

Initially, we trained IPPO agents in each of the group B environments (FFR, RFR, RRR) for five
trials, each consisting of 1,000 iterations. Each of these trials used HyperOpt’s Tree Parzen Estimator
(TSE) search algorithm [2] and the Asynchronous Hyperband (ASHA) scheduler [15] to estimate the
optimal hyperparameter values for each trial, where the hyperparameter ranges used are listed in the
second column of Table 6. Subsequently, we selected the best performing trial in each environment,
measured by maximum mean combined episode reward, to extract the optimal set of hyperparameter
values for each environment. Finally, we used the set of optimal hyperparameter values to run an
additional training experiment for each environment, consisting of 12,000 iterations, i.e., 4.8× 107

sampled timesteps, representing a tenfold increase over the training duration used in Section 5.1.

Our results in Figure 5, show that IPPO agents continue to converge to the suboptimal strategy previ-
ously observed, despite the hyperparameter tuning and extended training duration. This indicates that
the cause of this behaviour is likely neither insufficient training time nor unsuitable hyperparameter
values. Rather, our results suggest that the convergence behaviour displayed is a direct result of the
increased complexity of environments in Group B.
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Figure 5: Training performance of IPPO in Group B environments from Section 5.1, using the best
hyperparameters found from five trials consisting of 1,000 iterations each.
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