
Under review as a conference paper at ICLR 2024

CONSTRAINED VARIATIONAL GENERATION FOR GEN-
ERALIZABLE GRAPH LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Out-of-distribution (OOD) generalization aims at dealing with scenarios where the
test data distribution can largely differ from training data distributions. Existing
works for OOD generalization on graphs generally propose to extract invariant
subgraphs that provide crucial classification information even under unseen test
distributions. However, such a strategy is suboptimal due to two challenges: (1)
intra-graph correlations, i.e., correlated structures that are partial invariant, and
(2) inter-graph distinctions, i.e., significant distribution shifts among graphs. To
solve these challenges and achieve better generalizability, we innovatively propose
a Constrained Variational Generation (CVG) framework to generate generalizable
graphs for classification. Our framework is implemented based on the Variation
Graph Auto-Encoder (VGAE) structure and optimized under the guidance of the
Graph Information Bottleneck (GIB) principle, with its effectiveness validated by
our theoretical analysis. We conduct extensive experiments on real-world datasets
and demonstrate the superiority of our framework over state-of-the-art baselines.

1 INTRODUCTION

Graph-structured data is present in various crucial real-world domains, such as social networks,
biological networks, and chemical molecules (Xu et al., 2019). Recently, relevant works have fo-
cused on learning graph representations by encoding graphs into vectorized representations (Wu
et al., 2019). Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Veličković et al., 2018), for
instance, employ an iterative learning mechanism to extract valuable graph information and have
achieved success in various real-world applications. However, current methods for learning graph
representations heavily rely on the assumption that testing and training graph data are independently
drawn from the same distribution, known as the I.I.D. assumption. In real-world scenarios, dis-
tribution shifts of graph data can be prevalent and inevitable due to the uncontrollable underlying
data generation processes (Wu et al., 2022a). Nonetheless, most existing approaches struggle to
generalize well when faced with out-of-distribution (OOD) testing graph data (Gui et al., 2022).

More recently, various methods have been proposed to tackle the OOD generalization problem on
graph data (Wu et al., 2022c; Chen et al., 2022; Li et al., 2022b). In particular, they primarily focus
on exploiting the invariant property across different graph data distributions. More specifically, they
extract invariant subgraphs from any given graph, such that the extracted subgraphs are generalizable
and thus can be utilized as input for prediction (Li et al., 2022a; Buffelli et al., 2022). In general,
they rely on the assumption that the invariant information in these extracted subgraphs is shared
across various graph distributions and consequently more generalizable (Miao et al., 2022).

However, in practice, such an assumption can often be unrealistic, primarily due to two significant
challenges, as illustrated in Fig. 1. (1) Intra-Graph Correlations. The target of extracting invariant
subgraphs is to provide a domain-invariant subgraph for classification. However, such a strategy is
suboptimal in entirely extracting invariant information, as the identification of distinct invariant sub-
graphs can be challenging due to the complex correlations present within various graphs (Bevilacqua
et al., 2021). For example, due to the complicated interactions (as edges) of atoms (as nodes) in a
molecule graph, extracting a specific node may inevitably include both invariant and variant infor-
mation, thus reducing the effectiveness of the extracted invariant subgraph (Gui et al., 2022). As a
result, the strategy of extracting subgraphs struggles to maximally incorporate invariant information.
(2) Inter-Graph Distinctions. The strategy of extracting invariant subgraphs faces substantial lim-

1

Under review as a conference paper at ICLR 2024

itations in the presence of significant distribution shift (Zhang et al., 2021; Li et al., 2022a), where
the invariant subgraphs are less informative or even do not exist. For example, if an unseen test
molecule largely deviates from the training molecules in terms of graph structures, the model will
easily fail to extract invariant information that is shared across training and test molecules (Li et al.,
2022a). Therefore, the resulting subgraph can be uninformative and unhelpful for classification.

Figure 1: The two challenges of existing
works that extract invariant subgraphs.

To address the above two challenges, we innova-
tively propose a generative framework that aims to
tackle the graph OOD generalization problem via
Constrained Variational Generation (CVG). In par-
ticular, our framework consists of two crucial strate-
gies to solve the two challenges, respectively: (1)
Varaitional Generation. Instead of extracting in-
variant subgraphs, we propose to generate entirely
new graphs for classification. This design allows
us to flexibly preserve valuable information without
the need for extracting discrete structures, thereby
ensuring that the intra-graph correlation information
can be maximally preserved. The incorporation of
variation also strengthens the robustness of the gen-
eration (Miao et al., 2022). (2) Optimization Con-
straints. To effectively handle potentially significant
distribution shifts, we propose to leverage the Graph
Infomation Bottleneck (GIB) principle (Yu et al., 2021) to constrain the optimization of the gen-
erator. Based on our theoretical analysis of GIB, we further introduce a regularization loss and a
generation loss that can reduce the reliance of the generator on the original graph while focusing
on label-relevant information. In consequence, the generated graphs can be more generalizable to
handle distinct distribution shifts. In summary, our contributions are as follows:

• Problem. We investigate the challenges of extracting invariant subgraphs in OOD generalization
on graphs: from the perspectives of Intra-Graph Correlations and Inter-Graph Distinctions. We
further discuss the necessity of tackling these challenges to enhance model generalizability.

• Method. We develop a novel framework with two essential strategies to learn generalizable graph
representations: (1) a variational generative framework to generate graphs that can maximally
leverage correlation information for generalizability; (2) a GIB-based strategy that constrains the
optimization of the generator to handle inter-graph distinctions based on our theoretical analysis.

• Experiments. We conduct extensive experiments on four graph datasets that cover both synthetic
and real-world out-of-distribution data. The results of significant performance improvement fur-
ther demonstrate the superiority of our proposed framework over other state-of-the-art baselines.

2 PROBLEM FORMULATION

In this section, we present the formulation for the out-of-distribution (OOD) generalization problem
on graphs. Generally, we are provided with a set of graph datasets Dall = {D1,D2, . . . ,D|Dall|},
referred to as different environments (Chen et al., 2022). Sampling (G, Y) ∼ P (G, Y |Di) from a
specific environment Di can be considered as drawn independently from an identical distribution
P (G, Y |Di) (Zhu et al., 2021; Zhang et al., 2022), where G ∈ G, and Y ∈ Y represents the
associated label. Here G and Y denote the graph space and the label space, respectively. Moreover,
we can represent a graph as G = (V, E , X) with its associated label Y , where G ∈ G and Y ∈ Y.
V and E denote the sets of nodes and edges, respectively. Additionally, X = {xi}|V|

i=1 represents the
set of node features, where xi is the dx-dimensional attributes of the i-th node.

It is noteworthy that in graph datasets, the environment label for graphs is unobserved, as it is
excessively expensive and laborious to assign environment labels for graphs in real-world appli-
cations (Li et al., 2022b; Wu et al., 2022c;b). Therefore, the overall graph data can be split
into the training environment Dtr and the test environment, i.e., Dall = {Dtr,Dte}. We can
denote the graphs in each environment as Dtr = {(G1, Y1), (G2, Y2), . . . , (G|Dtr|, Y|Dtr|)} and
Dte = {(G1, Y1), (G2, Y2), . . . , (G|Dte|, Y|Dte|)}.

2

Under review as a conference paper at ICLR 2024

Following existing works, the overall process of OOD graph generalization can be formulated via a
classification function f(·) and a mapping function g(·). Generally, g(·) : G → G maps a raw input
graph to another (invariant) graph for classification. Note that in previous works, g(·) is typically
defined as an invariant identifier to extract subgraphs, while in our framework, we consider g(·) as
a generator to output generalizable graphs C. f(·) : G → Y is the classifier that takes the graph
obtained from g(·) as input and aims to predict its label Y . By introducing a loss function ℓ, we can
express the empirical risk (i.e., the optimization objective) of classifier f(·) and generator g(·) under
environment Dtr as follows:

R(f, g,Dtr) = E(G,Y)∼P(G,Y |Dtr)[ℓ (f(g(G;Dtr)), Y)]. (1)

By optimizing the above risk, we aim to train a classifier f(·) and a generator g(·) that minimize the
risk on the test environment, i.e., R(f, g,Dte).

3 METHODOLOGY

In this section, we elaborate on our proposed framework CVG, which aims to tackle the OOD graph
generalization problem via constrained variational generation of generalizable graphs.

3.1 CONSTRAINED VARIATIONAL GENERATION (CVG) FOR OOD GENERALIZATION

We innovatively propose to tackle the OOD generalization problem via Constrained Variational
Generation (CVG). We specify our goal as generating generalizable graphs via a generator trained
in constraints such as class labels. It is noteworthy that CVG only constrains the generation during
training, unlike conditional generation methods that incorporate specific information during both
training and inference (Sohn et al., 2015; Mishra et al., 2018; Kim et al., 2021). This is because we
have no access to the label during inference, and thus it is unreasonable and impractical to condition
on labels. We first formulate the objective of CVG as follows,

maxP (C|G), s.t. KL (P (Y |G)∥P (Y |C)) ≤ γ, (2)

where γ ≥ 0 is used to constrain the KL-divergence between the P (Y |G) and P (Y |C), i.e., the
label distributions of the original graph G and the generalizable graph C, respectively.

Notably, although we propose the CVG objective in Eq. (2), it is difficult to optimize as the result
can easily lead to a trivial solution where C = G for any given G. Therefore, we propose to optimize
it via the Graph Information Bottleneck principle.

3.2 GRAPH INFORMATION BOTTLENECK FOR CVG

GIB Objective. The idea of Graph Information Bottleneck (GIB) is prevalently used to guide the
learning of label-relevant parts such as subgraphs and promote model generalizability by reducing
the effect of the label-irrelevant part (Tishby & Zaslavsky, 2015; Wu et al., 2020; Yu et al., 2021).
To leverage the GIB principle for our framework, we formulate the GIB objective as follows:

max I(C;Y)− βI(C;G), (3)

where β ≥ 0 is a scalar to control the weight of the first term, and C is the generalizable graph
we aim to generate. The main idea of GIB is to learn specific representations for graphs such that
they maintain the crucial label-relevant information for classification while reducing the mutual
information between them and the original graphs.

Figure 2: The illustration of the original GIB
and the GIB with latent Z.

Latent Representation Z. Although GIB is proven
to be effective (Miao et al., 2022) in OOD gener-
alization, it is difficult to leverage it to generate C
from G based on the simple objective. Therefore, we
leverage a variational latent representation Z that is
directly related to C and G, as illustrated in Fig. 2.
Based on the chain rule, we can transform the sec-
ond term as I(C;G) = I(C;G,Z)− I(C;Z|G). In
this manner, the objective of generating C with Z is as follows:

I(C;Y)− βI(C;G) = I(C;Y)− βI(C;G,Z) + βI(C;Z|G). (4)

3

Under review as a conference paper at ICLR 2024

Figure 3: The overall framework of CVG. For each input graph, we leverage a VGAE, comprised
of an encoder and decoder, to process it into a Gaussian distribution and sample N times from it to
generate a new graph C. Then C is input into the classifier to obtain prediction results. We optimize
the framework based on the GIB principle, and each of the three terms is transformed into a loss.

By decomposing the term I(C;G) into two terms involving the latent representations Z, we con-
struct a connection between the generalizable graph C and the original G via Z. Such a strategy
enables the utilization of variational inference to learn more generalizable Z and C.

Lower Bound. Nevertheless, the objective in Eq. (4) is still intractable. To enable the optimization
in a parameterized manner, we derive a lower bound for each term in it to enable the optimization
of the objective. The detailed proof of the following theorem is provided in Appendix A.
Theorem 3.1. Introducing a variational approximation Q(C), a lower bound for the GIB objective
is as follows:

I(C;Y)− βI(C;G) ≥ E [logP (Y |G)] +H(Y)− KL (P (Y |G)∥P (Y |C))

−βE[KL(Pg(C|G,Z)∥Q(C))] + βE [log (Pg(C|G,Z))] + βH(C|G).
(5)

The notation KL(·∥·) represents the Kullback-Leibler (KL) divergence. Naturally, the term P (Y |C)
and P (C|G,Z) can be considered as the classifier f(·) : G → Y and the generator g(·) : G → G,
respectively, as defined in the problem formulation in Sec. 2.

We consider P (Y |G) as a deterministic distribution for each G, and thus it can be neglected during
optimization. Similarly, H(Y) and H(C|G) can also be considered as a constant. Therefore, by
rearranging Eq. (5), we can achieve the final optimization objective for GIB in Eq. (3) as follows:

max βE [log (Pg(C|G,Z))]− βE[KL(Pg(C|G,Z)∥Q(C))]− KL (P (Y |G)∥P (Y |C)) . (6)

3.3 CONSTRAINED VARIATIONAL GENERATION VIA VGAE

Although we have derived the objective for optimization with GIB, it remains challenging to model
Z with suitable generator architectures, especially in the absence of the ground truth C. Particularly,
we propose to leverage the VGAE structure (Kipf & Welling, 2016; Simonovsky & Komodakis,
2018) for generation. The reason is that the VGAE optimization objective, under the constraints
based on class labels, aligns with the GIB objective according to our derivation presented below.
The detailed proof is provided in Appendix B.
Theorem 3.2. By deriving the evidence lower bound (ELBO) for P (C|G), the VGAE objective for
constrained variational generation (CVG), with a hyper-parameter λ, is as follows:

max EQ[logP (C|G,Z)]− KL(Q(Z)∥P (Z|G))− λKL (P (Y |G)∥P (Y |C)) . (7)

In Theorem 3.2, we theoretically validate that the constrained generation objective for VGAE in
Eq. (7) complies with the GIB objective in Eq. (6) with β = 1/λ, except for the KL-divergence
KL(Q(Z)∥P (Z|G) that acts as a regularization term. Therefore, leveraging the VGAE structure as
our generator can ease the difficulty of optimizing our framework based on the GIB principle.

In Fig. 3, we present the architecture of our generator, which consists of an encoder and a decoder,
following the conventional structure of VAEs (Kingma et al., 2019). The encoder, implemented as

4

Under review as a conference paper at ICLR 2024

a GNN, processes the input graph G = (V, E , X) and then computes a stochastic latent variable
Z = {zi}Ni=1. Here zi ∈ Rdz corresponds to the latent variable of a specific node (Kipf & Welling,
2016; Yang et al., 2019). Here N is the number of nodes in each generated graph, which is a
controllable hyper-parameter. Notably, to keep the consistency of generated graphs, we use the same
value of N throughout training and inference, with its benefit evaluated in Sec. 4.3. The decoder
then utilizes Z to generate the generalizable graph C. Specifically, we generate Z = {zi}Ni=1 by
individually sampling N times from a single distribution N (z|µ, diag(σ2)) as follows:

zi ∼N (z|µ, diag(σ2)), i = 1, 2, . . . , N,

where µ =
1

|V|

|V|∑
j=1

GNNµ(V, E , X)j , and log σ =
1

|V|

|V|∑
j=1

GNNσ(V, E , X)j .
(8)

Here GNNµ and GNNσ are two separate GNNs used for generating the mean value and standard
deviation for sampling the latent variable zi, respectively. Moreover, GNN(V, E , X)i denotes the
i-th row vector of GNN(V, E , X). In addition, we calculate the logarithmic value of the standard
deviation (i.e., log σ) instead of direct computation of σ, which is to smoothly scale the deviation
and enable the appearance of smaller or larger values for σ.

In the above process, the learning of zi can be considered as sampling from the average of all
learned latent variables on G, thus being a graph embedding of G. In particular, the reasons for
learning a single latent distribution instead of multiple ones are two-fold: (1) We can control the
number of nodes in the generated consistent graphs. In works (Kipf & Welling, 2016; Simonovsky
& Komodakis, 2018) that learn an individual latent distribution for each node, the resulting generated
graph has the same number of nodes with V , which is rather inflexible. (2) More importantly, this
strategy aligns with the KL-divergence term E[KL(Pg(C|G,Z)∥Q(C))]. This term implies that the
generated classification C should be close to a prior distribution. Therefore, we fix the number of
generated nods across training and inference to better minimize the KL-divergence.

With the obtained latent representations Z, we can generate node features X∗ as follows:
X∗ = {x∗

1,x
∗
2, . . . ,x

∗
N}, where x∗

i = Wizi. (9)

Here Wi ∈ Rd∗
x×dz is the projection layer weight for zi. d∗x and dz are the dimension sizes for X∗

and Z, respectively. Then we further generate edges from the latent variables zi as follows:

P (E∗) =

N∏
i=1

N∏
j=1

p(e∗ij |zi, zj), where p(e∗ij = 1|zi, zj) = αij = σ((Wizi)
⊤ ·Wjzj). (10)

Here e∗ij = 1 if there exists an edge between the i-th node and the j-the node in the generated graph,
and e∗ij = 0, otherwise. That being said, each e∗ij ∼ Bernoulli(αij) follows a Bernoulli distribution.
σ(x) = 1/(1 + exp(−x)) is the Sigmoid function. Note that directly sampling edges based on
Eq. (10) cannot provide computable gradients. Therefore, to ensure optimization based on gradient
descent, we adopt the gumbel-sigmoid (Jang et al., 2017) strategy to sample edges. In this way, we
can generate a new generalizable graph C based on Eq. (8), Eq. (9), and Eq. (10):

C = (V∗, E∗, X∗) = g(G), where G = (V, E , X). (11)
It is noteworthy that we stochastically generate discrete edges, instead of using continuous edge
weights. Such a strategy provides an additional way to extract useful information from the generated
C, thus enhancing the generalizability of C. Its effectiveness is empirically verified in Sec. 4.3. Note
that during inference, we remove all stochasticity and only keep the top-ranked edges.

3.4 OPTIMIZATION BASED ON GIB

In this subsection, we introduce how to optimize our framework according to GIB the objective
described in Eq. (6). We formulate the three terms into three different losses, respectively.

Supervision Loss. For the term −βKL (P (Y |G)∥P (Y |C)), maximizing it is equal to minimizing
the discrepancy between the predicted labels of generated C and the original graph G. Specifically,
we consider the value of p(y|G) as 1 if y is the label of G, and P (y|G) = 0, otherwise. In this
manner, the loss for maximizing this term is formulated as follows:

Ls(C,G, Y) = −
∑
y∈Y

p(y|G) log p(y|C). (12)

5

Under review as a conference paper at ICLR 2024

In practice, the classification probabilities (i.e., p(y|C)) are achieved by inputting C into the classi-
fier f(·), which is implemented as a GNN and an MLP.

Regularization Loss. Considering the term −E[KL(Pg(C|G,Z)∥Q(C))], maximizing it is equal
to reducing the difference between the distribution of C (given G and Z) and the prior distribution
Q(C). Notably, the lower bound derived in Eq. (5) is true for any Q(C). Particularly, we define
Q(C) as follows. As the generated C consists of two components, i.e., node features X∗ and edges
E , we decompose Q(C) into two parts: Q(C) = Q(X, E) = Q(X) ·Q(E). As a result, the original
term becomes −E[KL(Pg(X|G,Z)∥Q(X))+KL(Pg(E|G,Z)∥Q(E))], as the generation of X and
E are inherently decoupled in our framework. In practice, we define the prior distribution Q(X)
as a Gaussian distribution, i.e., N (0, I), where I ∈ Rd∗

x×d∗
x is an identity matrix. For the second

KL-divergence term, we formulate Q(E) as |E| independent and identical Bernoulli distributions:
e∗ij ∼ Bernoulli(ϵ), where ϵ ∈ [0, 1] is a pre-defined hyper-parameter. In this manner, we can
consider the generation of the edge between any node pair in C as a Bernoulli distribution and
calculate the KL-divergence between them and Q(E). Note that as X is linearly projected from
Z, we use the values of Z for calculation. In summary, the regularization loss, consisting of two
KL-divergence terms, can be formulated as follows:

Lr(C) =
1

2

d∗
x∑

i=1

(σ2
i + µ2

i − 2 log σi) +
N∑
i=1

N∑
j=i

βij log
αij

ϵ
+ (1− αij) log

1− αij

1− ϵ
. (13)

The regularization term on the latent variables and the generated edges can ensure that the model
behaves in a more predictable manner, thereby potentially improving the generalizability even in the
absence of the ground truth C.

Generation Loss. For the last term E [log (Pg(C|G,Z))], the direct optimization is infeasible, as
we lack the ground truth, i.e., the optimal C for each G. Therefore, we propose a similarity loss
base on the intuition that the generated C should be similar to the same Z while different from C
generated from other G.

Lg(C) = −
S∑

i=1

sim(C,Ci)/τ + log

(
K∑

k=1

exp (sim(C,C ′
k)/τ)

)
, (14)

where S and K are the numbers of positive samples and negative samples, respectively. τ ≥ 0 is the
temperature parameter. Specifically, we sample positive samples by repeatedly generating multiple
C from G. For negative samples, we choose C with different labels from the positive samples. The
similarity function sim(C,Ci) is implemented as the dot product of the hidden representations of C
and Ci learned by f(·) before the final MLP layer.

In summary, the supervision loss Ls acts as a term that helps our framework learn from the class
labels of graphs, which are the mere supervision information in OOD generalization on graphs. The
regularization loss Lr is used to constrain the generated graphs C in a predictable way, such that
they can be more generalizable to unseen distributions. The similarity loss aims to provide a more
stable generation of C and more clearly distinguish C of different classes. Combining these three
losses, we can formulate the training objective of our framework CVG as follows:

L = E(G,Y)∼P(G,Y |Dtr) [Ls(C,G, Y) + βrLr(C) + βgLg(C)] , where C = g(G). (15)

Here βr and βg are two hyper-parameters that control the importance of Lr and Lg , respectively.
With the proposed loss, we can effectively optimize the objective for the constrained variational
generation to tackle the OOD generalization problem on graph data.

3.5 DISCUSSION

The major difference between CVG and existing works (also the main contribution of our work) is
to leverage a variational generative framework to tackle the OOD generalization problem on graphs.
To the best of our knowledge, CVG is the first to propose a generative workflow for learning gen-
eralizable graph representation. Although multiple works (Guo et al., 2020; Liu et al., 2022) also
use generators for OOD generlization, they do not directly use generated graphs for predictions.
Moreover, by introducing variational generation, the generated graphs are also more generalizable
as the learned information on them is well preserved.

6

Under review as a conference paper at ICLR 2024

Table 1: The graph OOD generalization results (Test accuracy in % for SP-Motif, MNIST-75sp, and
Graph-SST2, ROC-AUC for Molhiv). The best results are in bold.

Dataset
SP-Motif

MNIST-75sp Graph-SST2 Molhiv
Balanced b = 0.5 b = 0.7 b = 0.9

ERM 42.99±1.93 39.69±1.73 38.93±1.74 33.61±1.02 12.71±1.43 81.44±0.59 76.20±1.14

Attention 43.07±2.55 39.42±1.50 37.41±0.86 33.46±0.43 15.19±2.62 81.57±0.71 75.84±1.33

ASAP 44.44±8.19 44.25±6.87 39.19±4.39 31.76±2.89 15.54±1.87 81.57±0.84 73.81±1.17

Top-k Pool 43.43±8.79 41.21±7.05 40.27±7.12 33.60±0.91 14.91±3.25 79.78±1.35 73.01±1.65

GIB 41.52±1.22 36.09±1.61 35.15±2.05 33.94±2.15 15.17±1.38 80.14±1.79 76.12±2.64

GSN 43.18±5.65 34.67±1.21 34.03±1.69 32.60±1.75 19.03±2.39 82.54±1.16 74.53±1.90

GSAT 74.95±2.18 69.72±1.93 67.31±1.86 61.49±3.46 24.93±1.30 82.81±0.56 80.67±0.95

IRM 42.26±2.69 41.30±1.28 40.16±1.74 35.12±2.71 18.62±1.22 81.01±1.13 74.46±2.74

Group DRO 41.51±1.11 39.38±0.93 39.32±2.23 33.90±0.52 15.13±2.83 81.29±1.44 75.44±2.70

V-REx 42.83±1.59 39.43±2.69 39.08±1.56 34.81±2.04 18.92±1.41 81.76±0.08 75.62±0.79

DIR 47.03±2.46 45.50±2.15 43.36±1.64 39.87±0.56 20.36±1.78 83.29±0.53 77.05±0.57

GIL 55.44±3.11 54.56±3.02 53.12±2.18 46.04±3.51 21.94±0.38 83.44±0.37 79.08±0.54

CIGA 76.52±4.39 71.58±3.57 68.25±4.70 64.01±3.17 25.29±2.53 81.02±1.29 79.75±1.06

CVG (Ours) 79.62±2.24 76.57±2.89 72.25±3.12 65.80±2.95 30.12±1.25 84.21±0.99 81.09±0.72

Moreover, our framework is also capable of using different generative architectures, as another
contribution of our work is the derivation of the GIB principle for optimization. Compared to
GSAT (Miao et al., 2022) that stochastically learn edge weights, CVG preserves higher flexibility as
we also generate node features and different graph structures. Furthermore, we provide theoretical
justification for the GIB-based objective that involves a latent variable Z. In this manner, we can
effectively train CVG without the ground truth of C.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We utilize a combination of synthetic and real datasets for OOD generalization tasks.
Further details on dataset statistics, GNN architectures, and the training process are in Appendix C.

• SP-Motif (Ying et al., 2019): This is a synthetic dataset, where each graph is composed of a
base (Tree, Ladder, and Wheel) and a motif (Cycle, House, and Crane). The graph label is solely
determined by the motif. The false relations between the base and the label are introduced and
controlled by a hyper-parameter b. The distribution shifts are from the inclusion of spuiors bases.

• MNIST-75sp (Knyazev et al., 2019): This dataset converts each MNIST image into a superpixel
graph of ten classes. Superpixels represent nodes, while edges denote the distance between nodes.
The distribution shifts are created by adding random noises.

• Graph-SST2 (Socher et al., 2013; Yuan et al., 2022): Graph-SST2 comprises graphs labeled
according to sentence sentiment, where nodes represent tokens, and edges indicate node relations.
The distribution shifts are based on average node degrees.

• Molhiv (OGBG-Molhiv) (Wu et al., 2018; Hu et al., 2020; 2021): This molecule graph dataset is
designed for molecular property prediction, where nodes represent atoms, and edges are chemical
bonds. Each graph is labeled based on whether a molecule inhibits HIV replication or not. The
distribution shifts originate from the inhere distinctions in various molecular structures.

Baselines. To provide a fair and thorough evaluation of our framework, we conduct experiments
on two groups of baselines. (1) Interpretable GNNs. This group consists of methods proposed
for explainability on graphs, including Graph Attention Networks (Veličković et al., 2018), Top-k
Pool (Gao & Ji, 2019), ASAP (Ranjan et al., 2020), GIB (Yu et al., 2021) , GSN (Bouritsas et al.,
2022), and GSAT (Miao et al., 2022). (2) Invariant Learning Methods. This group includes base-
lines proposed for out-of-distribution generalization, including IRM (Arjovsky et al., 2019), Group

7

Under review as a conference paper at ICLR 2024

1/3 0.4 0.5 0.6 0.7 0.8 0.9
Degree of Bias

50

55

60

65

70

75

Te
st

 A
cc

ur
ac

y
(%

)

CVG
CVG w/o g

CVG w/o r
CIGA

(a) Results on intra-graph correlations

1/3 0.4 0.5 0.6 0.7 0.8 0.9
Degree of Bias

55

60

65

70

75

80

Te
st

 A
cc

ur
ac

y
(%

)

CVG
CVG w/o g

CVG w/o r
CIGA

(b) Results on inter-graph distinctions

Figure 4: The results on varying degrees of intra-graph correlations and inter-graph distinctions,
obtained on SP-Motif-Cor and SP-Motif, respectively. Here b = 1/3 denotes the balanced setting.

DRO (Sagawa et al., 2020), V-REx (Krueger et al., 2021), DIR (Wu et al., 2022c), GIL (Li et al.,
2022b), and CIGA (Chen et al., 2022). For each dataset, we utilize the same GNN structure for all
baselines as well as our framework CVG. More details of the baselines are provided in Appendix C.

Evaluation. For the evaluation metrics, we use ROC-AUC for Molhiv, and Accuracy for other
datasets. We run the experiments with ten different seeds and calculate the average and standard
deviation for the results of each method and dataset.

4.2 COMPARATIVE RESULTS

In this subsection, we evaluate our framework CVG and all baselines on the four datasets, with de-
tails provided in Appendix C. From the results in Table 1, we can obtain the following observations:

• CVG consistently outperforms other baselines on all datasets. Specifically, CVG archives a
significant performance improvement on dataset SP-Motif and MNIST-75sp, compared to other
state-of-the-art baselines. Although the types of major distribution shifts are different (structural
shift for SP-Motif and feature shift for MNIST-75sp), CVG still outperforms other baselines on
these two datasets. On other datasets, CVG also achieves better performance with generally
lower variance. The overall results strongly validate that CVG preserves better generalization
ability under different environments.

• CVG preserves generalizability even with a large bias degree. From the results on dataset SP-
Motif with different degrees of bias, we can observe that interpretable GNN methods generally
encounter a significant performance drop when the bias degree increases. This is primarily be-
cause their strategy of extracting subgraphs cannot effectively tackle the problem of inter-graph
distinctions, thus leading to suboptimal performance. Nevertheless, our framework CVG consis-
tently outperforms all baselines, even in the presence of a large bias.

4.3 ABLATION STUDY

Effects of Graph Structures on Intra-Graph Correlations. We evaluate the effectiveness of our
framework in terms of tackling the challenge of intra-graph correlations. As it is difficult to measure
the degree of such correlations in real-world datasets, we create a novel synthetic dataset, SP-Motif-
Cor, with node features correlated across graph structures (details provided in Appendix C). The
results are presented in Fig. 4a. We first observe that CVG consistently outperforms the strongest
baseline CIGA and other variants under all bias degrees, highlighting that our method can effectively
handle the problem of intra-graph correlations. The results further demonstrate that the generation
of graphs can tackle such challenges when the degree is higher.

Effects of GIB-based Optimization on Inter-Graph Distinctions. We evaluate the robustness of
our framework under various degrees of inter-graph distinctions. We utilize the dataset SP-Motif and
present the results in Fig. 4b. Specifically, we can observe that CVG is robust to different degrees
of inter-graph distinctions and achieves better results than other varaints. Moreover, the superiority
of CVG over CIGA and the variant without regularization loss reflects the effects of leveraging the
GIB principle for optimization.

8

Under review as a conference paper at ICLR 2024

3 5 10 20
Value of N

0.
1

0.
5

1
5

Va
lu

eo
f

r

72.96 73.71 74.07 74.70

74.04 75.58 75.65 75.57

74.80 76.57 76.27 75.92

73.03 75.71 74.16 76.23
73

74

75

76

Figure 5: The results of regulariza-
tion loss and the number of nodes

Effects of Regularization Loss and Graph Size. We aim
to explore the joint effects of the regularization loss weight
βr and the number of nodes N in the generated graph C.
We present the results on SP-Motif with b = 0.5 in Fig. 5.
From the results, we can observe that, in general, increas-
ing the weight of the regularization loss will bring perfor-
mance improvement. However, an excessively large value
of βr will adversely impact the performance. Similarly, the
number of nodes around N = 5 is more suitable for OOD
generalization on SP-Motif. Moreover, we observe that with
a larger N , the optimal weight of the regularization loss also
increases. This observation demonstrates that a larger gener-
ated graph requires more regularization to ensure its stability.

1/3 0.5 0.7 0.9
Value of b

50

60

70

80

Te
st

 A
cc

ur
ac

y
(%

) CVG
CVG w/o V

CVG w/o R
CVG w/o VR

Figure 6: The results on variational
generation and regularization.

Effects of Variational Generation. In Fig. 6, we present the
results on SP-Motif using static generation, i.e., removing
the sampling of generated node features and edges, denoted
as CVG w/o V. Here, the edges are directly assigned the con-
tinuous values of αij . We also include the results without the
regularization loss (CVG w/o R) to explore their effect on
both static and variation generation. We use CVG w/o VR
to denote the variant that removes both. From the results,
we can observe that for CVG w/o V, the performance drops
the most, as the learned representations are less informa-
tive. Without regularization, the static generation performs
the second worst. Moreover, variation generation without
regularization results in a larger variance in the generated C, thereby detrimenting the efficacy.

5 RELATED WORKS

Out-of-Distribution Generalization. Out-of-distribution (OOD) generalization pertains to the task
of learning a model that is generalizable to unseen test distributions, trained on related yet distinct
training data. Prior research on invariant learning (Arjovsky et al., 2019; Ganin & Lempitsky, 2015;
Li et al., 2018a;b) typically focuses on establishing a consistent input-output relationship across
different distributions, often by learning invariant features (Peng et al., 2019; Sun et al., 2016) or op-
timizing worst-case group performance (Hu et al., 2018; Sagawa et al., 2020). In contrast, adaptive
methods for OOD generalization adapt the learned models to a specific domain (Kumagai & Iwata,
2018). For instance, ARM (Zhang et al., 2021) proposes an adaptive framework that extracts infor-
mation from data points in the test domain for adaptation, while another work (Kumagai & Iwata,
2018) treats contexts from the test domain as probabilistic latent variables to achieve adaptation.

Graph Out-of-Distribution Generalization. Recently, there has been a growing interest in ad-
dressing the graph OOD generalization problem (Chen et al., 2022; Li et al., 2022b;a; Wu et al.,
2022a;c; Miao et al., 2022). Among these approaches, DIR (Wu et al., 2022c) leverages a set of
graph representations as causal rationales and performs interventional augmentations to generate
additional distributions. GIL (Li et al., 2022b) and CIGA (Chen et al., 2022) both focus on learn-
ing invariant graph representations. While GIL aims to identify invariant subgraphs with a GNN,
CIGA extracts subgraphs that optimally preserve invariant intra-class information. In contrast to
these methods that extract invariant subgraphs, our framework resorts to generating new graphs for
classification, which tackles the challenges of intra-graph correlations and inter-graph distinctions.

6 CONCLUSION

In this work, we investigate the crucial problem of out-of-distribution generalization on graphs.
Specifically, we propose a novel framework for constrained variational generation, based on the
VGAE structure and optimized according to the GIB principle. We provide further theoretical anal-
ysis to verify the effectiveness of our framework CVG, along with extensive experiments conducted
on a variety of synthetic and real-world graph datasets. The results validate the superiority of our
framework over other state-of-the-art baselines on graph out-of-distribution generalization tasks.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv:1907.02893, 2019.

Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph representations for
graph classification extrapolations. In ICML, 2021.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE TPAMI, 2022.

Davide Buffelli, Pietro Liò, and Fabio Vandin. Sizeshiftreg: a regularization method for improving
size-generalization in graph neural networks. NeurIPS, 2022.

Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, MA Kaili, Binghui Xie, Tongliang Liu,
Bo Han, and James Cheng. Learning causally invariant representations for out-of-distribution
generalization on graphs. NeurIPS, 2022.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
ICML, 2015.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In International Conference on Machine Learning,
2019.

Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. Good: A graph out-of-distribution benchmark.
In NeurIPS Datasets and Benchmarks Track, 2022.

Xiaojie Guo, Liang Zhao, Zhao Qin, Lingfei Wu, Amarda Shehu, and Yanfang Ye. Interpretable
deep graph generation with node-edge co-disentanglement. In SIGKDD, 2020.

Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama. Does distributionally robust supervised
learning give robust classifiers? In ICML, 2018.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS,
2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc:
A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
ICLR, 2017.

Jaehyeon Kim, Jungil Kong, and Juhee Son. Conditional variational autoencoder with adversarial
learning for end-to-end text-to-speech. In ICML, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the 2015 International Conference on Learning Representations, 2015.

Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. Foundations
and Trends in Machine Learning, 2019.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv:1611.07308, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and generalization
in graph neural networks. In NeurIPS, 2019.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
lation (rex). In ICML, 2021.

Atsutoshi Kumagai and Tomoharu Iwata. Zero-shot domain adaptation without domain semantic
descriptors. arXiv:1807.02927, 2018.

10

Under review as a conference paper at ICLR 2024

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with adversarial
feature learning. In CVPR, 2018a.

Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-of-distribution generalization on
graphs: A survey. arXiv preprint arXiv:2202.07987, 2022a.

Haoyang Li, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning invariant graph representations
for out-of-distribution generalization. In NeurIPS, 2022b.

Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao.
Deep domain generalization via conditional invariant adversarial networks. In ECCV, 2018b.

Songtao Liu, Rex Ying, Hanze Dong, Lanqing Li, Tingyang Xu, Yu Rong, Peilin Zhao, Junzhou
Huang, and Dinghao Wu. Local augmentation for graph neural networks. In ICML, 2022.

Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic atten-
tion mechanism. In ICML, 2022.

Ashish Mishra, Shiva Krishna Reddy, Anurag Mittal, and Hema A Murthy. A generative model for
zero shot learning using conditional variational autoencoders. In CVPR Workshop, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, 2019.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In ICCV, 2019.

Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. Asap: Adaptive structure aware pooling for
learning hierarchical graph representations. In AAAI, 2020.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks. In ICLR, 2020.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In ICANN, 2018.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In EMNLP, 2013.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. NeurIPS, 2015.

Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation. In
AAAI, 2016.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 IEEE Information Theory Workshop (ITW), 2015.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simpli-
fying graph convolutional networks. In ICML, 2019.

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
invariance perspective. In ICLR, 2022a.

Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. Neural Infor-
mation Processing Systems, 2020.

Ying-Xin Wu, Xiang Wang, An Zhang, Xia Hu, Fuli Feng, Xiangnan He, and Tat-Seng Chua.
Deconfounding to explanation evaluation in graph neural networks. arXiv:2201.08802, 2022b.

11

Under review as a conference paper at ICLR 2024

Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
rationales for graph neural networks. In ICLR, 2022c.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical Science, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. Conditional structure generation
through graph variational generative adversarial nets. NeurIPS, 2019.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. In NeurIPS, 2019.

Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. Graph information
bottleneck for subgraph recognition. In ICLR, 2021.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A
taxonomic survey. IEEE TPAMI, 2022.

Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, and Chelsea
Finn. Adaptive risk minimization: Learning to adapt to domain shift. NeurIPS, 2021.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic graph
neural networks under spatio-temporal distribution shift. NeurIPS, 2022.

Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming the
limitations of localized graph training data. NeurIPS, 2021.

12

Under review as a conference paper at ICLR 2024

A THEOREM 3.1 AND PROOF

In this section, we provide proof for Theorem 3.1.
Theorem 3.1. Introducing a variational approximation Q(C), a lower bound for the GIB objective
is as follows:

I(C;Y)− βI(C;G) ≥ E [logP (Y |G)] +H(Y)− KL (P (Y |G)∥P (Y |C))

− βE[KL(Pg(C|G,Z)∥Q(C))] + βE [log (Pg(C|G,Z))] + βH(C|G).
(16)

Proof. Specifically, we aim to transform or provide a lower bound for each of the three terms in

I(C;Y)− βI(C;G) = I(C;Y)− βI(C;G,Z) + βI(C;Z|G). (17)

We provide the detailed deviation as follows:

I(C;Y) = EC,Y

[
log

P (Y |C)

P (Y)

]
= E

[
log

P (Y |G)

P (Y)

]
− KL (P (Y |G)∥P (Y |C))

= E [logP (Y |G)] +H(Y)− KL (P (Y |G)∥P (Y |C)) .

(18)

I(C;Z|G) = EC,Z,G

[
log

P (C,Z|G)

P (C|G)P (Z|G)

]
= EC,Z,G

[
log

P (C|G,Z)

P (C|G)

]
= EC,Z,G [log (P (C|G,Z))] +H(C|G)

(19)

For the following derivation, we introduce a variational approximation Q(C):

−I(C;G,Z) = −EC,G

[
log

(
P (C|G,Z)

Q(C)

)]
+ KL(P (C)∥Q(C))

≥ −EC,G

[
log

(
P (C|G,Z)

Q(C)

)]
= −EG[KL(P (C|G,Z)∥Q(C))].

(20)

Therefore, we can finally achieve the following results:

I(C;Y) = E [logP (Y |G)] +H(Y)− KL (P (Y |G)∥P (Y |C)) (21)

I(C;G,Z) ≤ EG[KL(P (C|G,Z)∥Q(C))]. (22)
I(C;Z|G) = EC,Z,G [log (P (C|G,Z))] +H(C|G). (23)

Combing the above three equations (or inequations), we can achieve the final results:

I(C;Y)− βI(C;G) ≥ E [logP (Y |G)] +H(Y)− KL (P (Y |G)∥P (Y |C))

− βE[KL(Pg(C|G,Z)∥Q(C))] + βE [log (Pg(C|G,Z))] + βH(C|G).
(24)

B THEOREM 3.2 AND PROOF

In this section, we provide proof for Theorem 3.2.
Theorem 3.2. By deriving the evidence lower bound (ELBO) for P (C|G), the VGAE objective for
constrained variational generation (CVG), with a hyper-parameter λ, is as follows:

max EQ[logP (C|G,Z)]− KL(Q(Z)∥P (Z|G))− λKL (P (Y |G)∥P (Y |C)) . (25)

13

Under review as a conference paper at ICLR 2024

Proof. We first derive an evidence lower bound (ELBO) for the VGAE objective P (C|G):

logP (C|G)

= log

∫
Z

P (C,Z|G)dZ

= log

∫
Z

Q(Z|G)
P (C,Z|G)

Q(Z|G)
dZ

(using Jensen’s Inequality)

≥
∫
Z

Q(Z) log
P (C,Z|G)

Q(Z)
dZ

= EQ[log
P (C,Z|G)

Q(Z)
]

(using the property of conditional probabilities)

= EQ[log
P (C|Z, G) · P (Z|G)

Q(Z)
]

= EQ[logP (C|Z, G)]− EQ[log
Q(Z)

P (Z|G)
]

(using the definition of KL-divergence)
= EQ[logP (C|G,Z)]− KL(Q(Z)∥P (Z|G))

(26)

In this manner, we can optimize the VGAE by maximizing the derived ELBO. Since we aim to
perform constrained variational generation, we still need to add the constraint from the supervision
of class labels. Therefore, by introducing λ to control the importance of the constraint, the CVG
objective with the VGAE architecture can be formulated as follows:

max EQ[logP (C|G,Z)]− KL(Q(Z)∥P (Z|G))− λKL (P (Y |G)∥P (Y |C)) . (27)

C EXPERIMENTAL SETTINGS

In this section, we introduce the detailed settings and the datasets used in our experiments. Our code
is provided at https://github.com/AnonymousSubmissionPaper/CVG.

C.1 DATASET STATISTICS AND DETAILS

In this subsection, we introduce the detailed statistics and the creation process for each dataset.
Specifically, for the generation process of SP-Motif, MNIST-75sp, Graph-SST2, and Molhiv, we
follow the settings in DIR (Wu et al., 2022c) to keep consistency. We create a novel dataset SP-
Motif-Cor following the idea of SP-Motif.

• SP-Motif (Spurious-Motif) (Ying et al., 2019): This is a synthetic dataset that consists of 18,000
graphs. Each graph is composed of a base (Tree, Ladder, Wheel denoted by S = 0, 1, 2,, re-
spectively) and a motif (Cycle, House, Crane denoted by C = 0, 1, 2,, respectively). The
true label Y is solely determined by the motif C. In the training set, we introduce false
relations of varying degrees between the base S and the label Y . Specifically, each motif
is sampled from a uniform distribution, while the distribution of its base is determined by
P (S) = b × I(S = C) + (1 − b)/2 × I(S ̸= C). We manipulate the parameter b to create
Spurious-Motif datasets with distinct biases. In the testing set, motifs, and bases are randomly
attached to each other, and we include graphs with large bases to magnify the distribution gaps.

• MNIST-75sp (Knyazev et al., 2019): This dataset converts MNIST images into 70,000 superpixel
graphs, with each graph containing at most 75 nodes. Superpixels represent nodes, while edges
denote the spatial distance between the nodes. Each graph is labeled into one of 10 classes, and
random noises are added to nodes’ features in the testing set.

14

https://github.com/AnonymousSubmissionPaper/CVG

Under review as a conference paper at ICLR 2024

• Graph-SST2 (Socher et al., 2013; Yuan et al., 2022): Graph-SST2 comprises graphs labeled
according to sentence sentiment. More specifically, nodes represent tokens, and edges indicate
node relations. Graphs are partitioned into different sets based on their average node degree to
induce dataset shifts.

• Molhiv (OGBG-Molhiv) (Wu et al., 2018; Hu et al., 2020; 2021): This dataset is designed for
molecular property prediction and contains molecule graphs. Specifically, nodes represent atoms,
and edges represent chemical bonds. Each graph is labeled based on whether a molecule inhibits
HIV replication or not.

• SP-Motif-Cor: We create this synthetic dataset to manually inject various degrees of intra-graph
correlations for evaluation. Specifically, we keep the same number of graphs in different subsets
as SP-Motif. To inject correlations for each graph, given a defined bias degree b, we set the
features of 50% randomly selected nodes on its base graph (i.e., Tree, Ladder, or Wheel) to the
same values as Y (i.e., 0, 1, 2). For others, the probability is set to (1 − b)/2 for the other two
labels. We only alter the features on 50% nodes to avoid the model naively learning classification
from averaging all node features. Note that the features are only injected into the base graph.
Therefore, existing methods that extract invariant subgraphs (i.e., motifs in this case) inevitably
involve nodes in the base graph, which is spurious for classification based on the motif. As
a result, extracting such correlated and spurious nodes will adversely impact the classification
performance based on motifs.

C.2 BASIC SETTINGS

In this subsection, we introduce the basic settings in our experiments.

Backbone Settings. Specifically, the classifier f(·) in our framework consists of a GNN and an
MLP. For the GNN, we leverage a 3-layer GCN (Kipf & Welling, 2016) with a hidden size of 128,
except for SP-Motif, on which we use a hidden size of 64. The dropout rate on all datasets is 0.1.
The GNN is followed by an MLP to calculate the final prediction for the specific label of a graph.
For the encoder GNN in our generator g(·), we follow the setting sin DIR (Wu et al., 2022c) and use
various GNNs for different datasets. The activation functions are all set as the ReLU function.

Training Settings. For the training, we conduct all experiments on a NVIDIA A6000 GPU with
48GB memory. We utilize the batched GNN pipeline and set the batch size as 32 for all datasets. The
learning rate is set as 10−3. For optimization, we use the Adam optimizer (Kingma & Ba, 2015)
with a weight decay rate of 0. We follow the specific dataset split used in DIR. For all datasets,
we train our framework for 500 epochs. We report the performance of the model obtained on the
epoch that achieves the best validation performance. All the experiments are implemented with
PyTorch (Paszke et al., 2019) under a BSD-style license. The required packages are listed below.

• Python == 3.7.10

• torch == 1.8.1

• torch-cluster == 1.5.9

• torch-scatter == 2.0.6

• torch-sparse == 0.6.9

• torch-geometric == 1.4.1

• numpy == 1.18.5

• scipy == 1.5.3

C.3 HYPER-PARAMETER SETTINGS

In this section, we introduce the detailed parameter settings for our experiments. Specifically, we
set the number of nodes in C as N = 5. For the regularization loss weight βr and the generation
loss βg , we both set them as 1. The ϵ in the regularization loss is set as 0.7 for SP-Motif and 0.5
for other datasets. The number of positive samples S and the number of negative samples K in the
generation loss are set as 1 and 5, respectively. The temperature is set as 1.

15

Under review as a conference paper at ICLR 2024

D EXPERIMENTAL ANALYSIS

Table 2: The statistics of generated graphs
and the corresponding performance (accu-
racy in %).

Nodes N = 5 N = 10

Method # Edges Acc. # Edges Acc.
CVG w/o Lg 3.74 70.08 16.25 69.30
CVG w/o Lr 12.81 68.96 37.28 67.58

CVG 5.68 76.57 22.17 76.27

Quality of Generated Graphs. Here we first pro-
vide statistics (average number of edges) of generated
graphs with different losses removed, such that we can
explore the relationship between the generation qual-
ity and performance. From results presented in Ta-
ble 2, we can observe that with different components
removed, the statistics of generated graphs will also
change and influence the performance. Specifically,
the generation loss results in a denser generated graph.
As generation loss tends to enforce graph representa-
tions to be similar, it will more easily lead to denser
graphs, of which the representations learned by GNNs
will be similar. The regularization loss will lead to a sparse graph, as the regularization term makes
edges more evenly distributed. In concrete, our designed losses based on the GIB principle can
affect the generalization performance in various aspects.

Table 3: The degree distribution of each
node on the generated graphs regarding
different labels.

Node Index 1 2 3 4 5
Label 1 (Cycle) 3.21 0.35 0.22 0.31 2.05
Label 2 (House) 1.10 1.25 0.98 0.15 0.13
Label 3 (Crane) 0.20 0.05 3.55 3.32 0.18

Relationship between Structures and Labels. More-
over, we provide statistics (degree distribution) about
the relationship between label information and the
generated graphs on the SP-Motif dataset. Note that
as we use a weight matrix for each node (index) in the
generated graph, they maintain distinct information.
From the results presented in Table 3, we can observe
that for generated graphs of different labels, the de-
gree distribution is distinct. For example, in generated
graphs of label 1 (cycle), most degrees are distributed
on node 1 and node 5. For label 2 (house), the degrees are more averagely distributed among node 1,
node 2, and node 3. That being said, our framework can indeed capture the crucial label information
and encode it in the graph structures.

Visualization. In addition to the quantitative evaluation, we also provide visualizations as examples
for interpreting the structures of generated graphs. We present a showcase from the test set in
the dataset SP-Motif while highlighting the important nodes, i.e., nodes with significantly higher
average degrees. From the visualization presented in Fig. 7, we observe that for generated graphs
of various labels, the structures are also different, represented by the high degrees of specific nodes
(e.g., node 1 and node 5 for label 1). The results align with Table 3, where we find the distinct degree
distributions regarding different labels. The visualization results indicate that our strategy encodes
label information within specific structures in the generated graphs.

Figure 7: Visualizations of the generated graphs for samples of various labels from the testing set in
the SP-Motif dataset.

16

	Introduction
	Problem Formulation
	Methodology
	Constrained Variational Generation (CVG) for OOD Generalization
	Graph Information Bottleneck for CVG
	Constrained Variational Generation via VGAE
	Optimization based on GIB
	Discussion

	Experiments
	Experimental Settings
	Comparative Results
	Ablation Study

	Related Works
	Conclusion
	Theorem 3.1 and Proof
	Theorem 3.2 and Proof
	Experimental Settings
	Dataset Statistics and Details
	Basic Settings
	Hyper-Parameter Settings

	Experimental Analysis

