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ABSTRACT

Offline reinforcement learning (Offline RL) brings new methods to tackle real-
world decision-making problems by leveraging pre-collected datasets. Despite
substantial progress in single-agent scenarios, the application of offline learn-
ing to multiplayer games remains largely unexplored. Therefore, we introduce a
novel paradigm offline equilibrium finding (Offline EF) in extensive-form games
(EFGs), which aims at computing equilibrium strategies from offline datasets. The
primary challenges of offline EF include i) the absence of a comprehensive dataset
of EFGs for evaluation; ii) the inherent difficulties in computing an equilibrium
strategy solely from an offline dataset, as equilibrium finding requires referencing
all potential action profiles; and iii) the impact of dataset quality and completeness
on the effectiveness of the derived strategies. To overcome these challenges, we
make four main contributions in this work. First, we construct diverse datasets,
encompassing a wide range of games, which form the foundation for the offline
EF paradigm and serve as a basis for evaluating the performance of offline EF
algorithms. Second, we design a novel framework, BOMB, which integrates the
behavior cloning technique within a model-based method. BOMB can seamlessly
integrate online equilibrium finding algorithms to the offline setting with minimal
modifications. Third, we provide a comprehensive theoretical and empirical anal-
ysis of our BOMB framework, offering performance guarantees across various
offline datasets. Finaly, extensive experiments have been carried out across differ-
ent games under different offline datasets, and the results not only demonstrate the
superiority of our approach compared to traditional offline RL algorithms but also
highlight the remarkable efficiency in computing equilibrium strategies offline.

1 INTRODUCTION

Extensive-form games (EFGs) provide a versatile framework for modeling the interactions between
multiple players under stochastic and imperfect information settings (Nisan et al., 2007). The canon-
ical solution concept is Nash Equilibrium (NE), where no player can increase his own utility by uni-
laterally deviating. There are various methods designed for solving extensive-form games, including
linear programming (Shoham & Leyton-Brown, 2008), double-oracle algorithms (McMahan et al.,
2003), counterfactual regret minimization (CFR) (Zinkevich et al., 2007), and policy-space response
oracles (PSRO) (Lanctot et al., 2017). These methods have been successfully applied to real-world
large-sale EFGs, e.g., pursuit-evasion games (Xue et al., 2021; Li et al., 2023), poker games (Brown
& Sandholm, 2018; 2019; Zha et al., 2021) and Stratego (Perolat et al., 2022).

Despite the successes, existing algorithms require continuous interaction with the game environment
or an accurate simulator. For example, CFR-based algorithms necessitate traversing the game tree to
compute regret values, and PSRO and its variants demand simulations within the game environment
to compute the best response oracle and estimate the entries in the meta-game. We call this paradigm
to compute NE as “online equilibrium finding”. However, in many real-world applications, such as
sports games (Liu et al., 2022), network intrusion detection (Khraisat et al., 2019), and automated
negotiations (Kiruthika et al., 2020), the immediate interaction with the environment may be ex-
pensive and inefficient and the accurate simulator cannot be built. Therefore, offline learning is a
preferred option for equilibrium finding in real-world applications.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Online Equilibrium Finding Offline Equilibrium Finding

Sec. 3 Sec. 4

Game Env Dataset

Env Model

MB Policy πmb

CKA
Sim.

Predictor

BC Policy πbc

Eq. Policy πEq. Policy π

Collect

Behavior
Cloning

1− α

α

Learn

Deploy

Figure 1: Comparison between online and offline equilibrium finding

Offline reinforcement learning (Offline RL) has successfully tackled numerous real-world problems
by leveraging its offline learning paradigm (Levine et al., 2020). These algorithms fall into two
categories: model-free and model-based. Model-free approaches, such as Best-Action Imitation
Learning (BAIL) (Chen et al., 2020), directly learn optimal policies from datasets. Conversely,
model-based approaches, like Model-based Offline Policy Optimization (MOPO) (Yu et al., 2020)
first construct a dynamic model from the dataset, then proceed with planning. The success of these
algorithms showcases the significant impact of the offline learning paradigm in advancing RL appli-
cations. In recent years, there have been several attempts to formalize the offline learning paradigm
in the context of games. StarCraft II Unplugged (Mathieu et al., 2021) provides a dataset of human
game-plays in a two-player zero-sum symmetric game. Some previous works (Cui & Du, 2022;
Zhong et al., 2022) also explore the necessary properties of offline datasets of two-player zero-
sum Markov games to successfully infer their NEs. However, these works mainly focus on solving
Markov games, leaving a gap in the literature when it comes to solving extensive-form games in the
offline setting. Furthermore, to our understanding, there has been no study focusing specifically on
multi-player games in an offline setting. More importantly, there is a notable absence of systematic
definitions and research efforts aimed at formalizing offline learning within the context of games.

To address this gap, we propose the novel offline equilibrium finding (Offline EF) paradigm, which
computes the equilibrium strategies using offline datasets. There are several challenges for offline
EF. First, the absence of comprehensive benchmarking standards complicates the evaluation and
comparison of algorithm performance. Without universally accepted benchmarks, it becomes diffi-
cult to objectively measure progress within the field. Second, accurately computing or approximat-
ing equilibrium strategies solely from offline datasets is inherently difficult. Specifically, data from
just two action profiles are often insufficient for determining proximity to an equilibrium strategy, as
equilibrium identification requires all other potential action profiles for reference (Cui & Du, 2022).
Third, the quality and completeness of data within offline datasets can significantly impact the ef-
fectiveness of derived strategies. Offline datasets fail to cover all possible game states, and this lack
of comprehensive coverage can skew the algorithm’s ability to generalize from the available data.

This work presents a comprehensive investigation of Offline EF. Specifically, our contributions are
fourfold: i) We curate a collection of diverse offline datasets, including random datasets, expert
datasets, learning datasets, and hybrid datasets in different extensive-form games; ii) we propose
the BOMB framework, which integrates behavior cloning and model-based methods along with a
novel parameter estimation method and the model-based method can incorporate any online EF
algorithm, e.g., CFR, into the offline context; iii) we provide a comprehensive theoretical analysis
for our BOMB framework, offering performance guarantees under different datasets; and iv) we
demonstrate the effectiveness of our BOMB framework in computing equilibrium strategies offline
through extensive experiments on various offline datasets.

2 PRELIMINARIES

Imperfect-Information Extensive-Form Games. We use a tuple to represent an imperfect-
information extensive-form game (IIEFG), i.e., G = (N,H,A, P, I, u) (Shoham & Leyton-Brown,
2008). The set of players is represented by N = {1, ..., n}, and H represents the set of histories (i.e.,
the possible action sequences). Especially, the root node of the game tree is represented by the empty
sequence ∅, which is included in H . Every prefix of a sequence in H is also included in H . The set
of terminal histories is represented by Z and belongs to H , i.e., Z ⊆ H . A(h) = {a : (h, a) ∈ H}
is the set of available actions at any non-terminal history h ∈ H \Z. P is the player function, which
maps each non-terminal history to a player, i.e., P (h) 7→ N ∪ {c},∀h ∈ H \ Z, where c is the

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

“chance player” representing these stochastic events outside of the players’ controls. I denotes the
set of information set, which forms a partition over the set of histories where player i takes actions,
such that player i cannot distinguish these histories within the same information set Ii. Every infor-
mation set Ii ∈ Ii corresponds to one decision point of player i which means that P (h1) = P (h2)
and A(h1) = A(h2) for any h1, h2 ∈ Ii. For convenience, we use A(Ii) and P (Ii) to represent the
action set A(h) and the player P (h) for any h ∈ Ii. For each player i, a utility function ui : Z → R
specifies the payoff of player i for every terminal history. The behavior strategy of player i, σi, is
a function mapping every information set of player i to a probability distribution over A(Ii), and
Σi is the set of strategies for player i. A strategy σi is defined as a pure strategy if ∀Ii ∈ I and
∀a ∈ A(Ii), σi(Ii, a) ∈ {0, 1}. It is defined as a mixed strategy if ∀Ii ∈ I and ∀a ∈ A(Ii),
σi(Ii, a) ∈ [0, 1]. Moreover, σi is considered a fully mixed strategy if ∀Ii ∈ I and ∀a ∈ A(Ii),
σi(Ii, a) > 0. A strategy profile σ is a tuple of strategies, one for each player, (σ1, σ2, ..., σn), with
σ−i referring to all the strategies in σ except σi. Let πσ(h) =

∏
i∈N∪{c} π

σ
i (h) be the reaching

probability of history h when all players choose actions according to σ, where πσ
i (h) is the contri-

bution of player i to this probability. Given a strategy profile σ, the expected value to player i is the
sum of expected payoffs of these resulting terminal nodes, ui(σ) =

∑
z∈Z πσ(z)ui(z).

Solution Concepts. The common solution concept for IIEFGs is Nash equilibrium (NE) (Nash,
1950), where no player can increase their utility by unilaterally deviating. Formally, a strategy
profile σ∗ forms an NE if it satisfies ui(σ

∗) = maxσ′
i∈Σi

ui(σ
′
i, σ

∗
−i),∀i ∈ N . To measure

the distance from the NE, we use the metric NASHCONV(σ) =
∑

i∈N NASHCONVi(σ), where
NASHCONVi(σ) = maxσ′

i
ui(σ

′
i, σ−i) − ui(σ). When NASHCONV(σ) = 0, it indicates that σ is

the NE. Especially, for n-player general-sum games, apart from NE, (Coarse) Correlated Equilib-
rium ((C)CE) is also a common solution concept. Similar to the NE, a CE is a joint mixed strategy
in which no player has the incentive to deviate (Aumann, 1987). Formally, let Si be the strategy
space for player i and S be the joint strategy space. The strategy profile σ∗ forms a CCE if it sat-
isfies for ∀i ∈ N, si ∈ Si,ui(σ

∗) ≥ ui(si, σ
∗
−i) where σ∗

−i is the marginal distribution of σ∗ on
strategy space S−i. Analogous to NE, the (C)CE Gap Sum is adopted to measure the distance from
the (C)CE (Marris et al., 2021).

Methods Work w/o Converge to
env equilibrium

Offline RL ! %

OM % %

Online EF % !

Table 1: Issues of Existing Methods.

Why Existing Methods Fail? Offline RL focuses
on learning the optimal strategies in single-agent
scenarios (Levine et al., 2020), which fails to com-
pute the equilibrium in games with offline datasets.
Opponent modeling (OM) (He et al., 2016) are used
to predict the opponents’ behavior strategies. How-
ever, opponent modeling algorithms aim at comput-
ing the best response strategy of one player instead
of the equilibrium strategy, and they also need ac-
cess to the game environment, which is not applica-
ble to Offline EF. The widely used equilibrium finding algorithms, including no-regret methods, e.g.,
CFR (Zinkevich et al., 2007) and empirical game theoretic analysis (EGTA), e.g., PSRO (Lanctot
et al., 2017), require the interactions with the game environments or an accurate simulator (termed
as “online EF”) and cannot be applied to Offline EF. A clear comparison of existing methods is
presented in Table 1 and App. B provides a detailed discussion of related methods.

Problem Statement. To facilitate the widespread application of game theory, we extend the of-
fline learning framework into the extensive-form games and introduce the offline equilibrium finding
paradigm, which focuses on learning equilibrium strategy from historical game-playing data.
Definition 2.1 (Offline EF). Let D be an offline dataset of an IIEFG G, generated by an unknown
behavior strategy profile σ. The goal of the offline equilibrium finding paradigm is to deduce a
strategy profile σ̂ from D to achieving a minimal gap from the equilibrium strategy σ∗. Formally,
σ̂ = argminσ′∈Σ GAP(σ′, σ∗), where GAP(·) is a metric function that measures the gap between a
given strategy and the equilibrium strategy. σ is an ϵ-equilibrium if GAP(σ, σ∗) ≤ ϵ.

Building on the definition of the offline EF paradigm, we can instantiate this paradigm by defining a
metric for the gap from the equilibrium strategy, such as the NASHCONV for NE (Nash, 1950) and
(C)CE Gap Sum for (C)CE (Aumann, 1987). While offline EF shares similarities with offline RL to
some extent, it also presents distinct differences and unique challenges. Firstly, unlike offline RL,
which aims to compute an optimal strategy (Levine et al., 2020), the offline EF paradigm seeks to
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achieve an equilibrium strategy. This objective necessitates an iterative process to calculate the best
response strategy, introducing distinct complexities. Secondly, the offline EF paradigm involves at
least two players, making the game dynamics particularly sensitive to distribution shifts and other
uncertainties – a stark contrast to offline RL. Thirdly, while in offline RL, the data from two actions
may suffice to determine which action is better, in the offline EF paradigm, simply comparing the
data of two action tuples is inadequate for identifying which tuple is closer to an equilibrium strategy,
as equilibrium identification requires other action tuples for references (Cui & Du, 2022).

3 DATASETS

Datasets play a pivotal role in offline learning, however, there are no publicly available datasets
specifically tailored for the offline EF paradigm. Consequently, we outline our methods to collect
datasets at different expert levels that will serve as a basis for advancing offline EF research.

Figure 2: Dataset of Offline EF.

Formats. Before delving into the meth-
ods of dataset collection, it is essential
to outline the data formats of the of-
fline EF dataset for IIEFGs. The of-
fline dataset can be represented by D =
(st, at, st+1, ut+1, dt+1). Here, st and
st+1 represent the game states at time
step t and t + 1 respectively from the
game-level perspective. Specifically, st
encompasses all relevant game infor-
mation at time step t, which includes
the information sets for each player and
other game information GI out of the
control of players, such as the results of
chance node (It1, I

t
2, ..., I

t
n, GI), the player who needs to act (pt), the set of available actions for the

acting player (A(Itpt)), i.e., st = (It1, I
t
2, ..., I

t
n, GI, pt, A(Itpt)). Notable, pt may represent a chance

player c to include the game’s stochastic events outside of all players’ control. The utility for each
player at time step t+ 1 is represented by ut+1 = (ut+1

1 , ut+1
2 , ..., ut+1

n ). Finally, the variable dt+1

indicates whether the game ends at state st+1, with a value of 1 if the game ends and 0 otherwise.

Collecting Methods. Similar to the practices in the offline RL domain, datasets in the offline EF
area must be diverse to serve as effective benchmarks for developing and evaluating algorithms.
Many benchmarks in the offline RL area, such as those discussed in (Fujimoto et al., 2019; Gul-
cehre et al., 2020), collected data from online RL training runs. Additionally, D4RL (Fu et al., 2020)
incorporates a range of dataset collection methods inspired by real-world applications, including hu-
man demonstrations, exploratory agents, and hand-coded controllers. Inspired by these benchmarks
in the offline RL area, we propose several methods for collecting offline datasets at different expert
levels. The first one, referred to as the random method, involves each player adopting a uniform strat-
egy and participating repeatedly in the game to collect data as the random dataset. This approach is
motivated by the innate exploratory tendency and mimics a novice’s initial gaming experience. The
second method, the learning-based method, draws inspiration from the player skill improvement
process. We implement an existing equilibrium finding algorithm, such as CFR (Zinkevich et al.,
2007) or PSRO (Lanctot et al., 2017), collecting and storing intermediate game interactions to com-
pile the learning dataset. The final method, the expert method, capitalizes on insights gained from
observing expert players’ strategies. In this approach, each player follows an assigned equilibrium
strategy and repeatedly engages in the game to generate the expert dataset. Additionally, to enhance
realism and increase dataset diversity, we propose a hybrid approach that combines the random and
expert datasets in varying proportions, resulting in a more comprehensive collection of datasets.

Statistics of Datasets. We developed a benchmark dataset for offline EF, employing previously out-
lined collection methods on eight commonly used IIEFGs, as depicted in Fig. 2. In total, our offline
EF dataset comprises approximately 3.8 million data points, occupying about 11GB of memory.
For each game, we have generated three distinct types of datasets: Expert, random, and Learning,
each reflecting our data collection methods. The proportions of each dataset are visually detailed
and comprehensive statistics on the distribution of these datasets are detailed further in App. C.2.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 BOMB: FRAMEWORK AND THEORETICAL ANALYSIS

Inspiring by the success of Offline RL, there are two main directions to develop the algorithmic
framework for Offline EF: i) behavior cloning (BC) (Fujimoto & Gu, 2021), which basically imi-
tates the strategies used to collect the offline data with additional exploration, and ii) model-based
methods (Yu et al., 2020; Kidambi et al., 2020), which first learns a world model from the offline
dataset and then learn the strategy from the world model. However, BC may fail when the collecting
policy is a random policy, which can be exploited by the opponent and model-based methods may
fail when the collecting strategies are an equilibrium strategy, in which only a small portion of the
game state is visited. To mitigate these issues, we propose the BOMB framework which combines
Behavior clOning and Model-Based method for offline EF paradigm.

4.1 BOMB FRAMEWORK

Algorithm 1 BOMB Framework
1: Input: an offline dataset D
2: Train policy σθ based on D using BC technique;
3: Train an environment model Eθe based on D;
4: Learn σmb policy using any EF algorithm on Eθe ;
5: Select α using parameter estimation method;
6: σ = α · σθ + (1− α) · σmb;
7: Output: Policy σ

BOMB. Alg. 1 shows the whole frame-
work of BOMB. Given an offline dataset
D, we first train the policy σθ based
on the dataset D using a behavior
cloning (BC) technique (Line 2). Note
D = (st, at, st+1, ut+1, dt+1) and st =
(It1, I

t
2, ..., I

t
n, GI, pt, A(Itpt)). Since the

policy network σθ is trained to mimic the
behavior strategy, only the information
set Itpt and the corresponding action at
in D are required for training. The cross-entropy loss is taken as the training loss, defined as
Lbc = −E(It

pt
,at)∼D[at · log(σ(Itpt ; θ))]. On the other hand, inspired by model-based offline RL

algorithms, where a dynamic model is trained to simulate the real environment (Kidambi et al.,
2020; Yu et al., 2020; Matsushima et al., 2020), we learn an environment model Eθe is trained
based on dataset D and Eθe is used for learning the MB policy σmb by any online EF algorithm,
e.g., PSRO (Lanctot et al., 2017), (Lines 3-4). Specifically, we use the game state st and corre-
sponding action at as inputs, with the subsequent game state st+1, reward ut+1 and the termination
variable dt+1 serving as labels. Stochastic gradient descent (SGD) is employed as the optimizer
for parameter updates, and the mean squared error loss is used as the training loss, defined as
Lenv = E(st,at,st+1,ut+1,dt+1)∼D[MSE((st+1, ut+1, dt+1), E(st, at; θe))]. The final policy is ob-
tained to combine the BC and MB policies, i.e., σ = ασθ + (1− α)σmb where α denote the weight
of the BC policy (Lines 5-6). The estimation method for determining α is introduced below.

Figure 3: Learning-based estimation method.

Estimation of Parameter α. Here, we introduce
three estimation methods of parameter α. The sim-
plest method is randomly selecting a value from the
interval [0, 1] as the parameter α. Although this
method can be implemented fully offline, it lacks
guarantees for achieving the most effective com-
bined strategy. The second method is the grid search
method, in which we define a set of 11 candidate val-
ues for α, i.e., α = {0, 0.1, ..., 1}, and these values
are used to configure combined policies, which are
then tested in a real environment. The value of α that
results in the smallest gap from the equilibrium strat-
egy is selected as optimal. This method can yield the
best performance and similar techniques that deter-
mine offline parameters or fine-tune offline policies
through online interactions are commonly employed in offline RL (Kalashnikov et al., 2018; Lee
et al., 2022). To render our approach fully offline while still achieving optimal parameter values,
we propose a learning-based method, depicted in Fig. 3. In this method, a predictor is trained to
estimate α based on the difference between the BC and the MB policies. We first use the grid search
method to get optimal parameter values as labels. The predictor takes the centered kernel alignment
(CKA) (Kornblith et al., 2019) similarity vector between the BC and the MB policies as input and
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outputs the estimated α. The predictor can be trained in one game where access to the environment
is feasible, and reuse the predictor in similar games. Though the predictor can only provide an
approximate optimal parameter value, it requires no further online interactions once trained.

Advantages of BOMB. There are several advantages of BOMB. First, by combining the BC and
MB, BOMB can work on the datasets collected by any strategies, i.e., either random or equilibrium
strategies. Second, with the learned world model for games, BOMB can seamlessly integrate the
online EF algorithms, thus BOMB can generalize to different equilibria. For example, for computing
NE, we adapt PSRO (Lanctot et al., 2017) and Deep CFR (Brown et al., 2019) methods, referred
to as MB-PSRO and MB-CFR, respectively. Additionally, we adapt the JPSRO method (Marris
et al., 2021) (MB-JPSRO) for computing (C)CE. iii) BOMB is game-agnostic, which can learn the
game rules from the offline datasets and do not rely on the knowledge of the game, which shares the
similar advantages with MuZero (Schrittwieser et al., 2020)

4.2 THEORETICAL ANALYSIS

Figure 4: Game example.

In the offline RL area, dataset coverage over the optimal pol-
icy is sufficient for offline learning (Rashidinejad et al., 2021;
Xie et al., 2021). However, we found the dataset assumption
that the dataset generated by the equilibrium strategy is not suf-
ficient for computing equilibrium strategies in an offline manner.
It can be confirmed by the counter-example illustrated in Fig. 4.
In this game, we can easily get NE strategy, σ∗ = (σ∗

1 , σ
∗
2) =

({I1 : a1}, {I2 : b2}). If we use this equilibrium strategy to
generate the offline dataset D, then D would only include the
data point ((It11 = I1, I

t1
2 = ∅, GI = ∅, 1, {a1, a2}), a1, (It21 =

I1a1, I
t2
2 = ∅, GI = ∅,−1, ∅), (0, 0), 1). Clearly, the dataset D

is not sufficient for computing the NE strategy since there is no
information about Player 2. Another assumption — that the equi-
librium strategy is covered by the offline dataset — is also insufficient for the offline EF paradigm,
as we prove in App. D.1. In this section, we outline the necessary and sufficient conditions for
the coverage of an offline dataset that guarantees the convergence of our methods in IIEFGs with
perfect recall. We start by introducing two key concepts of dataset coverage: uniform coverage and
equilibrium coverage.
Definition 4.1. An offline datasetD is said to be a uniform coverage of an IIEFG G if and only if the
offline datasetD covers all possible state-action pairs. Formally, (st, at, st+1, ut+1, dt+1),∀st, at ∈
A(st) and st+1 ∈ T (st, at) where T is the transition function of game G.
Definition 4.2. An offline dataset D is said to be an ϵ-equilibrium coverage over an IIEFG G if
and only if its underlying behavior strategy σD satisfies GAP(σD, σ

∗) < ϵ, where σD is defined
as σD(st, at) = C(st,at)

C(st)
and σD(st, at) > 0 for all st and at ∈ A(st), with C(st, at) and C(st)

denoting the counts of data points containing (st, at) and st in D, respectively.

Building on the dataset coverage definitions previously introduced, we now discuss the conditions
under which our method achieves convergence. To facilitate this analysis, we introduce an assump-
tion about the error in training neural networks within the algorithm. All subsequent theorems are
derived under this assumption unless stated otherwise.
Assumption 4.3. The error in training neural networks within our method is assumed to be smaller
than an arbitrarily small ϵ, provided that the dataset contains a sufficient amount of data.

To further support this assumption, we provided a general generalization bound for the training error
under a dataset with size m in App. D.2. Then we present our result as follows.
Theorem 4.4. Let σMB(D) be the strategy profile learned by our model-based algorithm based on
the offline dataset D with sufficient data under Assumption 4.3. Then, σMB(D) is guaranteed to be
an ϵ-equilibrium strategy of the IIEFG G if and only if D is a uniform coverage of G and σMB(D) is
an ϵ-equilibrium strategy for the trained environment model within the model-based algorithm.

Sketch Proof. According to Assumption 4.3, the error in training the environment game model based
on D can be considered negligible. Consequently, the trained environment game model is identical
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to the original game G, as the dataset D provides full coverage of all state transitions. There-
fore, if σMB(D) is an ϵ-equilibrium strategy for the trained environment game model, it is also
an ϵ-equilibrium strategy for the original game G. Any slight violation of these conditions would
invalidate the convergence result. A complete proof is provided in App. D.1.

Theorem 4.5. Let σBC(D) be the strategy profile learned by our behavior cloning algorithm based
on the offline datasetD with sufficient data under Assumption 4.3. Then σBC(D) is guaranteed to be
an ϵ-equilibrium strategy of IIEFG G if and only if the offline datasetD is an ϵ-equilibrium coverage
of the IIEFG G.

Sketch Proof. According to Assumption 4.3, the error in training the behavior cloning strategy
σBC(D) from the dataset D is negligible. Therefore, by the behavior cloning process, σBC(D)

is identical to the behavior strategy underlying D, i.e., σBC(D) = σD. Consequently, if D is
an ϵ-equilibrium coverage of G, then σBC(D) is an ϵ-equilibrium strategy for the IIEFG G, as
GAP(σD, σ

∗) < ϵ implies GAP(σBC(D), σ
∗) < ϵ. Any slight violation of these conditions would

invalidate the convergence result. The full proof is provided in App. D.1.

Building on the insights provided by the preceding two theorems, we propose the following theorem
concerning the performance of BOMB under a general case where an unknown strategy profile
generates the offline dataset. The full proof can be found in App. D.1.

Theorem 4.6. Let σBOMB(D) represent the strategy profile learned by our BOMB algorithm based
on the offline dataset D with sufficient data under Assumption 4.3, σD represent the underlying
behavior strategy of D and σ∗ represent the equilibrium strategy of IIEFG G. Then the gap be-
tween σBOMB(D) and σ∗ is at most equal to, or smaller than, the gap between σD and σ∗, i.e.,
GAP(σBOMB(D), σ

∗) ≤ GAP(σD, σ
∗).

To better analyze the performance of our algorithm under real-world cases, we first analyze the
offline dataset we generated for the offline EF paradigm. Based on dataset collection procedures,
we find that the random dataset can be considered as a uniform coverage of the game G when
the dataset is sufficiently large. This is because the random dataset is collected using a uniform
strategy, ensuring that every action is adequately sampled as long as enough data is collected. On
the other hand, the expert dataset can be considered as an ϵ-equilibrium coverage of game G, where
ϵ decreases as the dataset size increases. Since the expert dataset is generated by an equilibrium
strategy, a larger sample size means the underlying behavior strategy of the dataset more closely
approximates the equilibrium strategy, resulting in a smaller ϵ. Therefore, the above properties of
our algorithm hold under these two datasets, as shown in the following experimental results.

5 EXPERIMENTAL RESULTS

To assess the performance of our proposed algorithm – BOMB, we conduct the following experi-
ments: i) we compare two offline RL algorithms to our BOMB algorithm; ii) we evaluate the per-
formance of different estimation methods; and iii) we run the BOMB framework on various offline
datasets to evaluate its performance in computing different equilibrium strategies.

We use OpenSpiel1 (Lanctot et al., 2019) as our experimental platform, as it offers a well-established
collection of environments and algorithms for game research, thereby facilitating future replicabil-
ity. We select several poker games, Liar’s Dice and Phantom Tic-Tac-Toe, which are all widely used
in previous works (Lisý et al., 2015; Brown et al., 2019). Experiments are conducted on a worksta-
tion with a ten-core 3.3GHz Intel i9-9820X CPU and NVIDIA RTX 2080Ti GPU. All results are
averaged over three seeds and error bars are also reported. To demonstrate the performance of our
algorithm, we present our results by answering the following research questions (RQs).

RQ1: Can the BOMB framework outperform offline RL methods?

To support this claim that offline RL algorithms are insufficient for the offline EF paradigm, we
choose one model-free algorithm–Best-Action Imitation Learning (BAIL) (Chen et al., 2020) and
one model-based algorithm–Model-based Offline Policy Optimation (MOPO) (Yu et al., 2020) as

1https://github.com/deepmind/open_spiel
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Figure 5: Comparison with offline RL.
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Figure 6: Results of different estimation methods.

the representative of offline RL algorithms. Fig. 5 shows the comparison results in two-player Kuhn
poker and Leduc poker games under hybrid datasets. The x-axis represents the proportion of data
from the random datasets in the hybrid dataset. When the ratio is zero, the hybrid dataset is equiv-
alent to the expert dataset; conversely, when the ratio is one, the hybrid dataset is reduced to the
random dataset. We found that BOMB outperforms both offline RL algorithms in all cases. It means
that neither of these offline RL algorithms can produce a strategy profile close enough to the equi-
librium strategy, which might be attributed to the players’ policies being optimized independently.

RQ2: How do different parameter estimation methods perform?

As introduced previously, we propose three combination methods: random method, grid search
method, and learning-based method. To evaluate the performance of different combination methods,
we conduct experiments on poker games. For the learning-based method, we train the parameter
predictor on the two-player Kuhn poker game. And then, we test the parameter predictor in other
poker games. Fig. 6 shows the performance results of three combination methods on three-player
Kuhn poker and two-player Leduc poker games. We can find that the grid search method achieves
the best performance and the learning-based method performs similarly to the grid search method on
the three-player Kuhn poker while it performs slightly worse on the two-player Leduc poker game.
It implies that the performance of the parameter predictor mainly depends on the difference between
the test game and the game used to train the predictor. The most interesting result is that the random
method performs well in many cases, which means that even a simple combination works well. In
the rest of the experiments, we use the grid search method as the parameter estimation method.

RQ3: Can the BOMB framework compute NE?
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Figure 7: Experimental results on computing NE in two-player games.

To answer this question, we conduct extensive experiments covering two-player cases, multi-player
cases, and real-world scenarios simulated using learning datasets. This comprehensive approach
allows for an adequate evaluation of our method’s performance in computing the NE strategy.

Two-Player Cases. We first move to evaluate the performance of our algorithm, BOMB, in comput-
ing the NE strategy. In addition to performing the BOMB framework, we also assess the individual
performance of the behavior cloning technique and the model-based algorithm. This assessment not
only helps in understanding the strengths and weaknesses of each component but also provides a
comprehensive insight into the efficacy of the BOMB framework in computing the equilibrium of-
fline. Figs. 7(a)-7(c) show results on some two-player games under different sizes of offline datasets.
Here, we use MB-CFR or MB-PSRO to compute the NE strategy. The MB framework’s perfor-
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Figure 8: Experimental results on computing NE in multi-player games.

mance is independent of the algorithm used to compute the NE strategy (shown in App. F). As the
proportion of the random dataset increases, we observe that the performance of BC decreases while
the performance of MB slightly increases. Additionally, we notice that as the size of offline data
increases, the improvement of the BC’s performance is not significant and the MB’s performance
improves. It means that the performance of BC mainly depends on the quality of datasets, i.e.,
the quality of the behavior policy generating the dataset, and the performance of MB relies on the
similarity between the environment model and the actual environment. These figures show that our
algorithm, BOMB, outperforms both BC and MB methods in all cases, demonstrating its effective-
ness in computing NE strategy for two-player imperfect-information extensive-form games.

To further analyze the performance of the BOMB method in two-player games, we plot the parame-
ter α for these combined policies, as illustrated in Fig. 7(d). The results show that as the proportion
of the random dataset in the hybrid dataset increases, the weight of the BC policy decreases. It
confirms that the BC policy performs better under the expert dataset while the MB policy performs
better under the random dataset from another side.

Multi-Player Cases. We also conduct experiments on multi-player games, specifically evaluating
the performance of our method in computing the NE strategy across several multi-player games,
as shown in Fig. 8. The results demonstrate that our BOMB framework consistently performs as
well as or better than both BC and MB algorithms, similar to the findings in two-player scenarios.
Furthermore, as the proportion of the random dataset increases, the performance of BC decreases,
while MB shows instability with a slight downward trend. It is important to note that we adopt MB-
CFR as the model-based algorithm, and since CFR-based algorithms do not guarantee convergence
to the NE strategy in multi-player games, the performance of MB may be affected. Additionally,
the performance of the model-based method also relies on the accuracy of the trained environment
game model. Consequently, the underperformance of the MB algorithm may be due to either an
inadequately trained environment game model or the limitations of the CFR-based algorithm in
multi-player settings. Therefore, developing an effective equilibrium-finding algorithm and train-
ing an accurate environment game model are both key challenges for offline EF in multi-player
imperfect-information extensive-form games.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t 

of
 B

C
 (

) Data Size (1e3)
Data Size (5e3)

(a) Kuhn poker (3p)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t 

of
 B

C
 (

) Data Size (5e3)
Data Size (2e4)

(b) Kuhn poker (4p)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t 

of
 B

C
 (

)

Data Size (1e4)
Data Size (2e4)

(c) Kuhn poker (5p)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t 

of
 B

C
 (

) Data Size (1e4)
Data Size (2e4)

(d) Leduc poker (3p)

Figure 9: Proper weight of BC policy in multi-player games.

The appropriate weights of the BC policy (α) within the BOMB framework across different hybrid
datasets are presented in Fig. 9. In three-player and four-player Kuhn poker games, we observe
that the weight of the BC policy quickly drops to zero as the proportion of the random dataset in
the hybrid dataset increases, indicating that the MB method generally outperforms the BC method,
except when the random dataset proportion is low. In contrast, in five-player Kuhn poker and three-
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Figure 10: Results on learning dataset.
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Figure 11: Results on computing CCE.

player Leduc poker games, the weight of the BC policy remains high in most cases, except when the
proportion of the random dataset is high. This may be due to the poor performance of the MB method
in these games, highlighting the challenge of learning an approximate equilibrium strategy using the
MB method in complex, multi-player games, where both developing an effective equilibrium-finding
algorithm and training an accurate environment game model are particularly difficult.

Simulating Real-World Cases. We also conduct experiments on the learning dataset, which closely
approximates real-world conditions. Fig. 10(a) shows the results of Kuhn poker games with different
numbers of players and Fig. 10(b) shows the results of Phantom Tic-Tac-Toe under different numbers
of offline data. It indicates that given an offline dataset generated by an unknown strategy, our
algorithm can also perform better than BC and MB in approximating the NE strategy.

RQ4: Can the BOMB framework compute CCE?

We proceed to evaluate the performance of the model-based method in computing the CCE strategy.
We do not perform the BC technique and the BOMB framework to compute the CCE strategy since
the offline dataset is collected using an independent strategy for each player, rather than a joint
strategy. Fig. 11 shows the results of performing the MB-JPSRO algorithm on three-player Kuhn
poker and Leduc poker games. We can observe that as the size of the offline data increases, the
performance of MB-JPSRO improves. This further supports the notion that the performance of the
model-based method primarily depends on the quality of the trained environment model and also
highlights its significance in computing equilibrium strategy offline.

6 CONCLUSION

We investigated the paradigm of offline equilibrium finding (Offline EF) in extensive-form games,
which focuses on finding equilibrium strategies from offline datasets. To be specific, we first created
the offline EF datasets using several established data-collecting methods, which solves the challenge
of the absence of a comprehensive dataset for evaluation. Then, we proposed a novel algorithm,
BOMB, which combines the behavior cloning technique with a model-based approach that can adapt
regular online equilibrium finding algorithms to the offline setting by introducing an environment
model. To better understand the algorithm, we provide a comprehensive theoretical and empirical
analysis, providing performance guarantees of our algorithms across different offline datasets. Fi-
nally, extensive experimental results further validated the superiority of the BOMB framework over
existing offline RL algorithms, affirming its efficacy for computing equilibrium strategies in an of-
fline manner. We hope our efforts can open up new avenues in equilibrium finding and accelerate
research in large-scale game theory.

Limitations and Future Work. There are several limitation of this work. First, the games consid-
ered are relatively small-scale, and the large-scale games including Texas Hold’em poker (Brown &
Sandholm, 2018) and football games (Liu et al., 2022) will be included in the future work. Second,
this work primarily focus on NE and CCE, more solution concepts will be considered such as quan-
tal response equilibrium (QRE) (McKelvey & Palfrey, 1995) and α-rank (Omidshafiei et al., 2019).
We will investigate the genealizability of both the datasets and the BOMB framework to novel so-
lution concepts in the future work. Third, the relationships between the datasets and the offline EF
algorithms can be further investigated, where instead of collecting the datasets by researchers, we
can apply the offline EF to human-play datasets toward real deployment (Wang et al., 2024).
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Marc Lanctot, Vinicius Zambaldi, Audrūnas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien
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A FREQUENTLY ASKED QUESTIONS

Q1: What are the potential impacts of this work?

This work fills the lack of offline learning in the game theory field. Benefiting from the offline
learning framework, we anticipate that our offline equilibrium finding setting could pave a path
to solving real-world problems using these game theory-based methods and inspire new research
directions in equilibrium finding. Furthermore, the equilibrium strategy is more robust compared
with just the optimal strategy in some security-related scenarios. Consequently, offline EF plays a
crucial role in obtaining more robust strategies for tackling these competitive real-world problems.

Q2: Why offline EF is important and is more difficult than offline cooperative MARL?

Utilizing offline EF algorithms specifically designed for adversarial environments is crucial in
strictly competitive games, such as security games. This setting fundamentally differs from offline
multi-agent reinforcement learning, which generally focuses on cooperation between agents rather
than strict competition. For instance, consider the class of pursuit-evasion games, where the pursuer
(defender) chases the evader (attacker). In this scenario, we cannot make any assumptions about
the attacker’s strategy beforehand, as the attacker is strategic and capable of learning. Employing a
vanilla offline RL algorithm to learn the defender’s optimal strategy based solely on historical data
might lead to a significant utility loss, as the defender’s optimal strategy could be exploitable. In
other words, the attacker may switch to the best response against the computed strategy of the de-
fender instead of adhering to their past behavior estimated from the data. Therefore, achieving Nash
Equilibrium (NE) may be a more suitable solution, as NE strategies are non-exploitable.

To be more specific, traditional offline RL focuses on learning the optimal strategy, i.e., obtaining the
highest utility, for an agent acting in a dynamic environment modeled as a single MDP, which does
not depend on the actions of other agents. In contrast, in two-player games, the dynamics for one
player depend not only on the environment but also on the strategy of the opponent. In other words,
the MDP in which a player acts in games is determined by both the game and the fixed strategy
of the opponent, and hence a change in the opponent’s strategy instigates a corresponding change
in the MDP. This makes computing the best strategy for the defender against a strategic opponent
using offline RL significantly more difficult. The framework of offline EF we introduced provides
methods for computing a player’s NE strategy, which is their optimal strategy against a strategic
opponent (i.e., the worst case for the player).

Q3: What are the differences between Offline EF and EGTA?

1) As described in (Wellman, 2006), EGTA takes the game simulator as input and performs strategic
reasoning through interleaved simulation and game-theoretic analysis. Therefore, the game simu-
lator is required in EGTA. However, only the offline dataset is available in the offline EF paradigm
and the game simulator is not required. 2) The estimated game model (empirical game) in EGTA
is built based on the simulation’s results, which are obtained by performing known strategies on the
simulator. In contrast, in the offline EF paradigm, the offline dataset is generated with an unknown
strategy. Although we use different behavior strategies to generate several offline datasets, we do
not utilize these strategies in the offline EF paradigm.

Q4: What are the novelties of the proposed Offline EF algorithm – BOMB?

To our knowledge, we are the first ones to propose an empirical algorithm for computing the equi-
librium strategy from the offline dataset, i.e., the offline EF paradigm. Unlike traditional offline RL
algorithms, which belong to either model-based or model-free categories, our algorithm combines
the advantages of both model-based and model-free approaches to efficiently compute equilibrium
strategies in an offline manner. Our BOMB framework integrates the behavior cloning technique
with a model-based method, equipping novel parameter estimation methods. We introduce an en-
vironment model to design the model-based method that can generalize regular online equilibrium
finding algorithms to the offline setting. Furthermore, we proposed several different methods to
determine the combination parameter value. In different scenarios, according to whether the on-
line interaction is available, there are corresponding algorithms to determine the parameter value.
Finally, experimental results show that BC and MB cannot perform consistently well and BOMB
outperforms them in all cases. It indicated that our BOMB framework takes advantage of both
algorithms and performs well in computing equilibrium strategies in an offline manner.
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B MORE RELATED WORK

Equilibrium Finding Algorithms. As described in the main paper, the contemporary state-of-
the-art algorithms for solving IIEFGs may be roughly divided into two groups: no-regret methods
derived from CFR (Zinkevich et al., 2007), and incremental strategy-space generation methods of
the PSRO framework (Lanctot et al., 2017). Next, we will introduce these two classes of algorithms.

For the first group, CFR is a family of iterative methods for approximately solving imperfect-
information extensive-form games. Let σt

i be the strategy used by player i in iteration t. We use
ui(σ, h) to define the expected utility of player i given that the history h is reached and all play-
ers act according to strategy σ from that point on. Accordingly, ui(σ, h · a) is used to define the
expected utility of player i given that the history h is reached and all players play according to
strategy σ except player i selects action a in history h. Formally, ui(σ, h) =

∑
z∈Z πσ(h, z)ui(z)

and ui(σ, h · a) =
∑

z∈Z πσ(h · a, z)ui(z). The counterfactual value of the information set I ,
vσi (I), is the expected value of information set I given that player i attempts to reach it. This
value is the weighted average of the expected utility of each history in the information set. The
weight is proportional to the contribution of all players except player i to reach each history. Thus,
vσi (I) =

∑
h∈I π

σ
−i(h)ui(σ, h). For any action a ∈ A(I), the counterfactual value of action a is

vσi (I, a) =
∑

h∈I π
σ
−i(h)ui(σ, h · a). The instantaneous conterfactual regret for an action a in in-

formation set I during iteration t is rt(I, a) = vσ
t

P (I)(I, a)− vσ
t

P (I)(I). Therefore, the conterfactual

regret for an action a in inforamtion set I on iteration T is RT (I, a) =
∑T

t=1 r
t(I, a). In vanilla

CFR, players use Regret Matching to pick a distribution over available actions in an information set
proportional to the cumulative regret of those actions. Formally, in iteration T + 1, player i selects
action a ∈ A(I) according to probabilities

σT+1(I, a) =


RT

+(I,a)∑
b∈A(I) R

T
+(I,b)

if
∑

b∈A(I)

RT
+(I, b) > 0,

1
|A(I)| otherwise,

where RT
+(I, a) = max{RT (I, a), 0} is the position portion of the regret value since we often are

most concerned about the cumulative regret when it is positive. If a player acts according to regret
matching in the information set I on every iteration, then in iteration T , RT (I) ≤ ∆i

√
|Ai|
√
T

where ∆i = maxz ui(z) − minz ui(z) is the range of utilities of player i. Moreover, RT
i ≤∑

I∈Ii
RT (I) ≤ |Ii|∆i

√
|Ai|
√
T . Therefore, limT→∞

RT
i

T = 0. In two-player zero-sum games,

if both players’ average regret RT
i

T ≤ ϵ, their average strategies (σT
1 , σ

T
2 ) over all iterations form

a 2ϵ-equilibrium (Waugh et al., 2009). Some CFR-based variants are proposed to solve large-scale
imperfect-information extensive-form games. Some sampling-based CFR variants (Lanctot et al.,
2009; Gibson et al., 2012; Schmid et al., 2019) are proposed to effectively solve large-scale games
by traversing a subset of the game tree instead of the whole game tree. With the development of deep
learning techniques, neural network function approximation can be applied to the CFR algorithm.
Deep CFR (Brown et al., 2019), Single Deep CFR (Steinberger, 2019), and Double Neural CFR (Li
et al., 2019) are algorithms using deep neural networks to replace the tabular representation.

For the second group, PSRO is a general framework that scales Double Oracle (DO) (McMahan
et al., 2003) to large extensive-form games via using reinforcement learning to compute the best re-
sponse strategy approximately. To make PSRO more effective in solving large-scale games, Pipeline
PSRO (P2SRO) (McAleer et al., 2020) is proposed by parallelizing PSRO with convergence guar-
antees. Extensive-Form Double Oracle (XDO) (McAleer et al., 2021) is a version of PSRO where
the restricted game allows mixing population strategies not only at the root of the game but every
information set. It can guarantee to converge to an approximate NE in a number of iterations that
are linear in the number of information sets, while PSRO may require a number of iterations expo-
nential in the number of information sets. Neural XDO (NXDO) as a neural version of XDO learns
approximate best response strategies through any deep reinforcement learning algorithm. Recently,
Anytime Double Oracle (ADO) (McAleer et al., 2022), a tabular double oracle algorithm for two-
player zero-sum games is proposed to converge to an NE while decreasing exploitability from one
iteration to the next. Anytime PSRO (APSRO) as a version of ADO calculates best responses via re-
inforcement learning algorithms. Except for NEs, we also consider (Coarse) Correlated equilibrium
((C)CE). Joint Policy Space Response Oracles (JPSRO) (Marris et al., 2021) is proposed for training
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agents in n-player, general-sum extensive-form games, which provably converges to (C)CEs. The
excellent performance of these equilibrium-finding algorithms depends on the interactions with the
actual game environment or a precise simulator. Therefore, these algorithms cannot directly be ap-
plied to the offline EF paradigm. In our paper, we propose a model-based method that can adapt
existing equilibrium finding algorithms to the offline context.

Opponent Modeling. Opponent modeling algorithm is necessary for multi-agent settings where
secondary agents with competing goals also adapt their strategies, yet it remains challenging because
policies interact with each other and change (He et al., 2016). One simple idea of opponent modeling
is to build a model each time a new opponent or group of opponents is encountered (Zheng et al.,
2018). However, it is infeasible to learn a model every time. A better approach is to represent
an opponent’s policy with an embedding vector. Grover et al. (2018) use a neural network as an
encoder, taking the trajectory of one agent as input. Imitation learning and contrastive learning
are also used to train the encoder. Then, the learned encoder can be combined with reinforcement
learning algorithms by feeding the generated representation into the policy and/or value network.
DRON (He et al., 2016) and DPIQN (Hong et al., 2017) are two algorithms based on DQN, which
use a secondary network that takes observations as input and predicts opponents’ actions. However,
if the opponents can also learn, these methods become unstable. Therefore, it is necessary to take the
learning process of opponents into account. Foerster et al. (2017) propose a method named Learning
with Opponent-Learning Awareness (LOLA), in which each agent shapes the anticipated learning
of the other agents in the environment. Further, the opponents may still be learning continuously
during execution. Therefore, Al-Shedivat et al. (2017) propose a method based on a meta-policy
gradient named Mata-MPG. It uses trajectories from current opponents to perform multiple meta-
gradient steps and constructs a policy that favors updating the opponents. Meta-MAPG (Kim et al.,
2021) extends Mate-MPG by including an additional term that accounts for the impact of the agent’s
current policy on the future policies of opponents, similar to LOLA. Yu et al. (2021b) propose model-
based opponent modeling (MBOM), which employs the environment model to adapt to various
opponents. In our offline EF paradigm, our goal is to compute the equilibrium strategy based on the
offline dataset. Applying opponent modeling is not enough for the offline EF paradigm since it only
aims at computing the best response strategy instead of the equilibrium strategy.

Empirical Game Theoretic Analysis. Empirical game theoretic analysis (EGTA) is an empirical
methodology that bridges the gap between game theory and simulation for practical strategic reason-
ing (Wellman, 2006). In EGTA, game models are iteratively extended through a process of generat-
ing new strategies based on learning from experience with prior strategies. The strategy exploration
problem (Jordan et al., 2010) that how to efficiently assemble an efficient portfolio of policies for
EGTA is the most challenging problem. Schvartzman & Wellman (2009b) deploy tabular RL as a
best-response oracle in EGTA for strategy generation. They also build the general problem of strat-
egy exploration in EGTA and investigate whether better options exist beyond best-responding to an
equilibrium (Schvartzman & Wellman, 2009a). Investigation of strategy exploration was advanced
significantly by the introduction of the Policy Space Response Oracle (PSRO) framework (Lanctot
et al., 2017) which is a flexible framework for iterative EGTA, where at each iteration, new strategies
are generated through reinforcement learning. Note that when employing NE as the meta-strategy
solver, PSRO reduces to the double oracle (DO) algorithm (McMahan et al., 2003). In EGTA, a
space of strategies is examined through simulation, which means that it needs a simulator, and the
policies are known in advance. However, in the offline EF paradigm, only an offline dataset is
provided. Therefore, techniques in EGTA cannot be directly applied to the offline EF paradigm.

Offline Reinforcement Learning. Offline reinforcement learning (offline RL) is a data-driven
paradigm that learns exclusively from static datasets of previously collected interactions, mak-
ing it feasible to extract policies from large and diverse training datasets (Levine et al., 2020).
This paradigm can be extremely valuable in settings where online interaction is impractical, either
because data collection is expensive or dangerous (e.g., in robotics (Singh et al., 2021), educa-
tion (Singla et al., 2021), healthcare (Liu et al., 2020), and autonomous driving (Kiran et al., 2022)).
Therefore, efficient offline RL algorithms have a much broader range of applications than online
RL and are particularly appealing for real-world applications (Prudencio et al., 2022). Due to its
attractive characteristics, there have been a lot of recent studies. Here, we can divide the research of
offline RL into two categories: model-based algorithm and model-free algorithm.

Model-free offline RL algorithms learn a good policy directly from the offline dataset. To do this,
there are two types of algorithms: actor-critic and imitation learning methods. Those actor-critic
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algorithms focus on implementing policy regularization and value regularization based on existing
reinforcement learning algorithms. Haarnoja et al. (2018) propose soft actor-critic (SAC) by adding
an entropy regularization term to the policy gradient objective. This work mainly focuses on policy
regularization. For the research of value regularization, an offline RL method named Constrained
Q-Learning (CQL) (Kumar et al., 2020) learns a lower bound of the true Q-function by adding value
regularization terms to its objective. Another line of model-free offline RL research is imitation
learning which mimics the behavior policy based on the offline dataset. Chen et al. (2020) propose
a method named Best-Action Imitation Learning (BAIL), which fits a value function, then uses it to
select the best actions. Meanwhile, Siegel et al. (2020) propose a method that learns an Advantage-
weighted Behavior Model (ABM) and uses it as a prior in performing Maximum a-posteriori Policy
Optimization (MPO) (Abdolmaleki et al., 2018). It consists of multiple iterations of policy evalua-
tion and prior learning until they finally perform a policy improvement step using their learned prior
to extracting the best possible policy.

Model-based algorithms rely on the offline dataset to learn a dynamics model or a trajectory dis-
tribution used for planning. The trajectory distribution induced by models is used to determine the
best set of actions to take at each given time step. Kidambi et al. (2020) propose a method named
Model-based Offline Reinforcement Learning (MOReL), which measures their model’s epistemic
uncertainty through an ensemble of dynamics models. Meanwhile, Yu et al. (2020) propose an-
other method named Model-based Offline Policy Optimization (MOPO), which uses the maximum
prediction uncertainty from an ensemble of models. Concurrently, Matsushima et al. (2020) pro-
pose the BehaviorREgularized Model-ENsemble (BREMEN) method, which learns an ensemble of
models of the behavior MDP, as opposed to a pessimistic MDP. In addition, it implicitly constrains
the policy to be close to the behavior policy through trust-region policy updates. More recently,
Yu et al. (2021a) proposed a method named Conservative Offline Model-Based policy Optimization
(COMBO), a model-based version of CQL. The main advantage of COMBO concerning MOReL
and MOPO is that it removes the need for uncertainty quantification in model-based offline RL ap-
proaches, which is challenging and often unreliable. However, these above offline RL algorithms
cannot be directly applied to the offline EF paradigm, which we have described in Section 2 and
experimental results empirically verify this claim.
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C DATASETS

C.1 DATASET FORMAT

Figure 12: An example game.

To better introduce the format of our of-
fline EF dataset, we provide an exam-
ple to show the composition of the offline
dataset. According to the data format in-
troduced in the main paper, the data point
would be (st, at, st+1, ut+1, dt+1) and st =
(It1, I

t
2, ..., I

t
n, GI, pt, A(Itpt)). Especially, if

the st+1 is the terminal state, i.e., dt+1 =
1, then we define the pt+1 = −1 to iden-
tify that there is no player need to decide this
state. Fig. 12 shows one two-player imperfect-
information extensive-form game G. I1 and I2
are information set for Player 1 and Player 2,
respectively. If an offline dataset D covers all
state-action pairs, thenD would include the fol-
lowing data points:

((It11 = I1, I
t1
2 = ∅, GI = ∅, 1, {a1, a2}), a1, (It21 = I1a1, I

t2
2 = I2, GI = ∅, 2, {b1, b2}), (0, 0), 0),

((It11 = I1, I
t1
2 = ∅, GI = ∅, 1, {a1, a2}), a2, (It21 = I1a2, I

t2
2 = I2, GI = ∅, 2, {b1, b2}), (0, 0), 0),

((It21 = I1a1, I
t2
2 = I2, GI = ∅, 2, {b1, b2}), b1, (It31 = I1a1, I

t3
2 = I2b1, GI = ∅,−1, ∅), (1,−1), 1),

((It21 = I1a1, I
t2
2 = I2, GI = ∅, 2, {b1, b2}), b2, (It31 = I1a1, I

t3
2 = I2b2, GI = ∅,−1, ∅), (2,−2), 1),

((It21 = I1a2, I
t2
2 = I2, GI = ∅, 2, {b1, b2}), b1, (It31 = I1a2, I

t3
2 = I2b1, GI = ∅,−1, ∅), (0, 0), 1),

((It21 = I1a2, I
t2
2 = I2, GI = ∅, 2, {b1, b2}), b2, (It31 = I1a2, I

t3
2 = I2b2, GI = ∅,−1, ∅), (3,−3), 1).

We can find that in states (It21 = I1a1, I
t2
2 = I2, GI = ∅, 2, {b1, b2}) and (It21 = I1a2, I

t2
2 =

I2, GI = ∅, 2, {b1, b2}), the information set for Player 2 is the same, as shown in the game tree.
Since our dataset is collected from the perspective of the game, we can still distinguish them through
the game information of other players and the game information GI . Note that there is no chance
node in this game, the game information GI is an empty set here. If there is a chance node in the
game, the results of the chance node would be recorded into game information GI within the game
state and we can distinguish these game states through game information GI .

C.2 VISUALIZATION

Figure 13: Visualization of the offline EF dataset

Fig. 13 shows a full view of our offline EF dataset. In our offline EF dataset, we collected data for
eight games, including two-player Kuhn poker, three-player Kuhn poker, four-player Kuhn poker,
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five-player Kuhn poker, two-player Leduc poker, three-player Leduc poker, Phantom Tic-Tac-Toe,
and Lair’s Dice games. For each game, we generated three datasets, a random dataset, an expert dat-
set, and a learning dataset, following our data collection methods. To validate the diversity of these
collected offline datasets and gain insights into them, we also introduce a visualization method for
comparing them. Firstly, we generate the game tree for the corresponding game. Subsequently, we
traverse the game tree using depth-first search (DFS) (Tarjan, 1972) and assign an index to each leaf
node based on the DFS results. Then, we count the frequency of each leaf node within the dataset.
The reason why we do this is that each leaf node represents a unique sampled trajectory originating
from the root node of the game tree. As a result, the frequency of leaf nodes can effectively capture
the distribution of the dataset. Finally, these frequency data can be plotted to visualize. Fig. 14
visualizes some datasets of some games. From these figures, we can find that in the random dataset,
the frequency of leaf nodes is nearly uniform, whereas, in the expert dataset, the frequency of leaf
nodes is uneven. The distribution of the learning dataset and the hybrid dataset falls between that of
the expert dataset and the random dataset. These observations confirm that the distribution of these
datasets differs, thus validating the diversity of our proposed offline datasets.

(a) Kuhn poker (2p) (b) Kuhn poker (3p) (c) Leduc poker (2p) (d) Leduc poker (3p)

Figure 14: Frequency of leaf node in different offline datasets.
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D THEORETICAL ANALYSIS

In this section, we provide a comprehensive theoretical analysis of the offline EF paradigm and our
BOMB framework to facilitate the understanding of the offline EF paradigm and BOMB framework.
We first provide the minimal dataset assumption that is sufficient to compute the equilibrium strategy
in the offline setting. Then we provide a general generalization bound for training neural network
models. Finally, we give the performance guarantee for our algorithm. In the following sections, we
assume that all extensive-form games discussed here are perfect recall and timetable.

D.1 MINIMAL DATASET ASSUMPTION FOR OFFLINE EF

As demonstrated in offline RL papers (Rashidinejad et al., 2021; Xie et al., 2021), a dataset coverage
condition over the optimal policy is sufficient for offline learning. Therefore, it is straightforward
to extend this dataset coverage assumption to the offline EF paradigm. In the main paper, we have
proved that the dataset generated by the equilibrium strategy is not sufficient for computing the equi-
librium strategy in an offline manner by providing a counter-example. Furthermore, we also provide
another dataset assumption related to the equilibrium strategy, shown in the following assumption.
Assumption D.1. (Single Strategy Coverage) The offline dataset D is said to be single strategy
coverage if the equilibrium strategy profile σ∗ is covered by the offline dataset D, i.e., for each
player i, each information set Ii, and action ai with σ∗

i (Ii, ai) > 0, there is a corresponding state-
action pair (st, ai) in D.

Subsequently, a question arises: is the single strategy coverage assumption also sufficient for com-
puting equilibrium strategy in the offline setting? We employ the following theorem to answer this
question and elucidate the rationale behind this.
Theorem D.2. Single strategy coverage assumption over offline dataset D is not sufficient for com-
puting computing an ϵ-equilibrium for an arbitrarily small ϵ in the offline setting.

(a) G1 game. (b) G2 game.

Figure 15: Counter-example for proving Theorem D.2.

Proof. We prove this theorem by providing a counter-example. To this end, we consider two two-
player IIEFGs G1 and G2, represented in Fig. 15. We can easily find that the NE of the game G1

is strategy profile σ1 = (σ1
1 , σ

1
2) = ({I1 : a1}, {I2 : b1}), i.e., Player 1 plays a1 at information

set I1 and Player 2 plays b1 at information set I2. The NE of the game G2 is strategy profile
σ2 = (σ2

1 , σ
2
2) = ({I1 : a2}, {I2 : b2}). Now we consider an offline dataset D which is generated

using a strategy profile σD. The σD is set to be the uniform distribution over the strategy profiles σ1

and σ2, which means that dataset D covers both σ1 and σ2. Therefore, the offline dataset D satisfies
the single strategy coverage assumption for these two games G1 and G2. However, no algorithm can
distinguish these two extensive-form games only based on dataset D since these two games are both
consistent on dataset D. In conclusion, the single strategy converges assumption is not sufficient for
computing an ϵ-equilibrium for an arbitrarily small ϵ in the offline setting.

From the above proof, we know that the single strategy coverage assumption is sufficient for com-
puting the optimal strategy in the offline RL setting while it is not sufficient for computing an NE
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strategy in the offline setting. The intuition behind this is that in an offline RL setting, we can easily
use the data of two actions to decide which action is better, whereas, in the offline EF paradigm, we
cannot use data from only two action pairs to know which action pair is closer to NE, because identi-
fying NE requires other action pairs as inferences. Based on this analysis, Cui & Du (2022) provide
a minimal coverage assumption which is sufficient for computing an NE strategy in the two-player
zero-sum Markov games, which is defined as follows,
Assumption D.3. (Deterministic Unilateral Coverage) For all deterministic strategy σi for player i,
(σi, σ

∗
−i) are covered by the dataset, where (σ∗

1 , ..., σ
∗
n) is one NE strategy.

Assumption D.4. (Unilateral Coverage) For all (possible stochastic) strategy σi for all player i,
(σi, σ

∗
−i) are covered by the dataset, where (σ∗

1 , ..., σ
∗
n) is one NE strategy.

Note that deterministic unilateral coverage assumption is equivalent to unilateral coverage assump-
tion. The intuition behind this is that any mixed strategy can be represented by a combination of
deterministic strategies. Therefore, if all deterministic strategies are covered by the dataset, then all
mixed strategies are also covered. Based on this finding, in the following proof, we only consider all
deterministic strategies. Previously, Cui & Du (2022) established that unilateral coverage assump-
tion is the minimal sufficient condition for computing an NE strategy in the two-player zero-sum
Markov games. However, this unilateral coverage assumption over the offline dataset is not suf-
ficient for our model-based method to compute the equilibrium strategy in the offline setting. We
formally proved this limitation through the following theorem.
Theorem D.5. The unilateral coverage assumption over offline dataset D is not sufficient for our
model-based method to converge to an ϵ-equilibrium for an arbitrarily small ϵ in the offline setting.

(a) (b)

(c) (d)

Figure 16: Counter-example for proving Theorem D.5.

Proof. We prove this theorem by providing a counter-example. First, we consider an IIEFG M3,
represented in Fig. 16(a). We can easily find that the NE strategy of game G3 is strategy profile
σ∗ = (σ1, σ2) = ({I1 : a1}, {I2 : b1}). To build a dataset D satisfying the unilateral coverage
assumption, the dataset needs to cover (σ∗

1 , σ2) for all deterministic strategy σ2 and (σ1, σ
∗
2) for
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all deterministic strategy σ1. We show the state-action pairs covered by these strategy profiles in
Figs. 16(b)-16(c). It means that if the dataset D satisfies the unilateral coverage assumption, then
the dataset D would cover these state-action pairs marked by these orange lines. When applying
our model-based method on the dataset D, the first step is to train an environment model based
on the dataset D. Assume that the environment model can be trained well (i.e., Assumption 4.3
holds) which means that the environment model can precisely represent all game information in
the dataset. Therefore, the game represented by the trained environment model would be G∗

3 in
Fig. 16(d). Note that there is some missing data in the game. Although our trained environment
model can give approximate results for these missing data, it may result in a different equilibrium
strategy. For example, if the missing value in G∗

3 is (0, 0) or (−1, 1), then the strategy profile
σ = (σ1, σ

′
2) = ({I1 : a1}, {I2 : b2}) would be the NE strategy of game G∗

3. However, the
strategy profile σ is not the NE strategy for the original game G3. Therefore, the unilateral coverage
assumption over the dataset is not sufficient for our model-based method to converge to to an ϵ-
equilibrium for an arbitrarily small ϵ.

To guarantee the convergence of our model-based method, we provide a minimal dataset coverage
assumption for our model-based method to converge to the equilibrium strategy of the original game
under the offline setting.

Definition D.6 (Definition 4.1). An offline dataset D is said to be a uniform coverage of an
IIEFG G if and only if the offline dataset D covers all possible state-action pairs. Formally,
(st, at, st+1, ut+1, dt+1),∀st, at ∈ A(st) and st+1 ∈ T (st, at) where T is the transition function
of game G.

Theorem D.7 (Theorem 4.4). Let σMB(D) be the strategy profile learned by our model-based al-
gorithm based on the offline dataset D with sufficient data under Assumption 4.3. Then, σMB(D) is
guaranteed to be an ϵ-equilibrium strategy of the IIEFG G if and only ifD is a uniform coverage of G
and σMB(D) is an ϵ-equilibrium strategy for the trained environment model within the model-based
algorithm.

Figure 17: G′ Game.

Proof. From the example in the proof of Theorem D.5, we find that a slight violation of the uniform
coverage assumption, i.e., only one state-action pair is missing, will impede the computation of the
equilibrium strategy using our model-based method. In other words, any state-action pair that is not
covered by the dataset may cause failure in computing the equilibrium strategy of the original game
using our model-based method.

Next, we need to prove that the dataset satisfying the uniform coverage assumption can guarantee
the convergence to the equilibrium strategy of the original game using our model-based method.
In our model-based method, we need to train an environment model based on the offline dataset.
Therefore, to prove the convergence guarantee under the uniform coverage dataset assumption, we
need to verify whether the game reconstructed from the dataset satisfying the uniform coverage
assumption is the same as the original game. Here, we reuse the example in the App. C.1. In that
example, the offline datset D of the IIEFG G covers all state-action pairs. Therefore, the offline
dataset D satisfies the uniform coverage dataset assumption. From the offline dataset D, we can
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easily rebuild the game G′, as shown in Fig. 17. In the game G′,

S1 = (It11 = I1, I
t1
2 = ∅, GI = ∅, 1, {a1, a2}), S2 = (It21 = I1a1, I

t2
2 = I2, GI = ∅, 2, {b1, b2}),

S3 = (It21 = I1a2, I
t2
2 = I2, GI = ∅, 2, {b1, b2}), S4 = (It31 = I1a1, I

t3
2 = I2b1, GI = ∅,−1, ∅),

S5 = (It31 = I1a1, I
t3
2 = I2b2, GI = ∅,−1, ∅), S6 = (It31 = I1a2, I

t3
2 = I2b1, GI = ∅,−1, ∅),

S7 = (It31 = I1a2, I
t3
2 = I2b2, GI = ∅,−1, ∅).

Especially, for game states S2 and S3, the player acting is both Player 2 and the information set for
Player 2 is the same. Therefore, these two game states correspond to different game nodes under
the same information set. Although Player 2 cannot distinguish these two game states, from the
perspective of the game, we can still distinguish them by the information set of Player 1. Particularly,
if there is a chance node in the game, the result of the chance node would be recorded in GI within
the game state S. Therefore, we can still distinguish these game states by game information GI .
Since the dataset satisfying the uniform coverage assumption covers all state-action pairs, the links
between game states can be built following these data points in the dataset. According to Assumption
4.3, the error in training the environment game model based on D can be considered negligible.
Consequently, the trained environment game model is identical to the original game G, as the dataset
D provides full coverage of all state transitions. Therefore, we can find that the reconstructed game
tree has the same game states and the same transition function as the original game, thereby the same
equilibrium strategy. Therefore, our reconstructed game model can provide the same information
as the underlying game of the offline dataset. Then applying our model-based equilibrium finding
algorithm to the reconstructed game model definitely can converge to the equilibrium strategy of
the underlying game in the offline setting. Formally, if σMB(D) is an ϵ-equilibrium strategy for the
trained environment game model, it is also an ϵ-equilibrium strategy for the original game G.

So far, we have proved that the uniform dataset coverage assumption is sufficient for our model-
based method to converge to the equilibrium strategy under the offline setting. For our behavior
cloning method, these dataset coverage assumptions may not be sufficient to converge to the equi-
librium strategy since its performance mainly depends on the underlying behavior strategy of the
dataset. In the following theorem, we provide a minimal dataset coverage assumption for our be-
havior cloning method to converge to the equilibrium strategy in the offline setting.

Definition D.8 (Definition 4.2). An offline datasetD is said to be an ϵ-equilibrium coverage over an
IIEFG G if and only if its underlying behavior strategy σD satisfies GAP(σD, σ

∗) < ϵ, where σD is
defined as σD(st, at) =

C(st,at)
C(st)

and σD(st, at) > 0 for all st and at ∈ A(st), with C(st, at) and
C(st) denoting the counts of data points containing (st, at) and st in D, respectively.

This definition ensures that the unique correspondence relationship between the equilibrium-covered
dataset and the equilibrium strategy. Specifically, the dataset is generated by the equilibrium strategy
and the strategy represented by the dataset would be the same as the equilibrium strategy.

Theorem D.9 (Theorem 4.5). Let σBC(D) be the strategy profile learned by our behavior cloning
algorithm based on the offline dataset D with sufficient data under Assumption 4.3. Then σBC(D)

is guaranteed to be an ϵ-equilibrium strategy of IIEFG G if and only if the offline dataset D is an
ϵ-equilibrium coverage of the IIEFG G.

Figure 18: Game example.
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Proof. According to Assumption 4.3, the error in training the behavior cloning strategy σBC(D)

from the dataset D is negligible. Therefore, by the behavior cloning process, σBC(D) is iden-
tical to the behavior strategy underlying D, i.e., σBC(D) = σD. Consequently, if D is an ϵ-
equilibrium coverage of G, then σBC(D) is an ϵ-equilibrium strategy for the IIEFG G, and vice
visa, as GAP(σD, σ

∗) < ϵ if and only if GAP(σBC(D), σ
∗) < ϵ. Next, we prove that any slight

violation of these conditions would invalidate the convergence result.

Here, we reuse the example in Section 4.2, as shown in Fig. 18. Note that the NE strategy of the game
is a pure strategy, i.e, σ∗ = (σ∗

1 , σ
∗
2) = ({I1 : a1}, {I2 : b2}). If we use this equilibrium strategy to

generate the offline dataset D, then D would only include the data point ((It11 = I1, I
t1
2 = ∅, GI =

∅, 1, {a1, a2}), a1, (It21 = I1a1, I
t2
2 = ∅, GI = ∅,−1, ∅), (0, 0), 1). We cannot get the equilibrium

strategy only fromD. In this example game, the offline datasetD is generated by a pure equilibrium
strategy instead of a fully mixed equilibrium strategy, and the behavior cloning method cannot get
the equilibrium strategy from the offline dataset D since there is no information about Player 2.
Another example is the dataset D′ covering the equilibrium strategy σ∗, i.e., the D′ includes the
data points

((It11 = I1, I
t1
2 = ∅, GI = ∅, 1, {a1, a2}), a1, (It21 = I1a1, I

t2
2 = ∅, GI = ∅,−1, ∅), (0, 0), 1),

((It11 = I1, I
t1
2 = ∅, GI = ∅, 1, {a1, a2}), a2, (It21 = I1a2, I

t2
2 = I2, GI = ∅, 2, {b1, b2}), (0, 0), 0),

((It21 = I1a2, I
t2
2 = I2, GI = ∅, 2, {b1, b2}), b2, (It21 = I1a2, I

t2
2 = I2b2, GI = ∅,−1, ∅), (−2, 2), 1).

To cover the equilibrium strategy of Player 2, the data point ((It11 = I1, I
t1
2 = ∅, GI =

∅, 1, {a1, a2}), a2, (It21 = I1a2, I
t2
2 = I2, GI = ∅, 2, {b1, b2}), (0, 0), 0) should also be visited.

Although D′ covers the equilibrium strategy, D′ does not satisfy the ϵ-equilibrium coverage assump-
tion since the D′ dose not created by the ϵ-equilibrium strategy. Then the behavior cloning method
cannot converge to the equilibrium strategy σ∗ based on D′ since BC cannot get the pure strategy for
Player 1 under the influence of the data point ((It11 = I1, I

t1
2 = ∅, GI = ∅, 1, {a1, a2}), a2, (It21 =

I1a2, I
t2
2 = I2, GI = ∅, 2, {b1, b2}), (0, 0), 0). Therefore, a slight violation of the equilibrium

coverage assumption would cause failure in computing the ϵ-equilibrium strategy of the original
game using our behavior cloning method. In conclusion, the equilibrium coverage assumption is the
minimal dataset coverage assumption that guarantees the convergence to the equilibrium strategy
of the original game using our behavior cloning method. Formally, σBC(D) is guaranteed to be an
ϵ-equilibrium strategy of IIEFG G if and only if the offline dataset D is an ϵ-equilibrium coverage
of the IIEFG G.

Theorem D.10 (Theorem 4.6). Let σBOMB(D) represent the strategy profile learned by our BOMB
algorithm based on the offline dataset D with sufficient data under Assumption 4.3, σD represent
the underlying behavior strategy of D and σ∗ represent the equilibrium strategy of IIEFG G. Then
the gap between σBOMB(D) and σ∗ is at most equal to, or smaller than, the gap between σD and
σ∗, i.e., GAP(σBOMB(D), σ

∗) ≤ GAP(σD, σ
∗).

Proof. According to Assumption 4.3, the error in training the behavior cloning strategy σBC(D)

from the dataset D is negligible. Therefore, by the behavior cloning process, σBC(D) is identi-
cal to the behavior strategy underlying D, i.e., σBC(D) = σD. Then GAP(σBOMB(D), σ

∗) =
GAP(σD, σ

∗) if α = 1 in our BOMB algorithm.

If the dataset satisfies the uniform coverage, by Theorem 4.4, GAP(σBOMB(D), σ
∗) ≤

GAP(σD, σ
∗) if α = 0 in our BOMB algorithm.

Therefore, in general case, GAP(σBOMB(D), σ
∗) ≤ GAP(σD, σ

∗).

D.2 GENERALIZATION BOUND FOR TRAINING MODEL

As described in the main paper, to conduct the BOMB framework, we need to train one behavior
cloning policy and an environment model which are both neural network models. Furthermore,
these two models are trained in a supervised learning manner with different loss functions based
on the offline EF dataset. Here, we provide a general generalization bound for training such neural
network models facilitating the following analysis of the BOMB framework.
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As we know, the supervised learning framework includes a data-generation distribution σ, a hypoth-
esis class H of the neural network approximator, a training dataset D, and evaluation metrics to
evaluate the performance of any approximator. Here, we can use the loss function l to evaluate the
performance of any approximation. The learning framework aims to minimize the true risk function
Lσ(h) which is the expected loss function of h ∈ H under the distribution σ,

Lσ(h) = Ed∼σ[l(h(d), d)].

Accordingly, the empirical risk function LD(h) on the training dataset D can be defined as:

LD =
1

|D|
∑
d∼D

[l(h(d), d)].

To get a generalization bound, we use an auxiliary lemma from (Shalev-Shwartz & Ben-David,
2014). Therefore, we can measure the capacity of the composition function class l ◦ H using the
empirical Rademacher complexity on the training set D with size m, which is defined as:

RD(l ◦ H) =
1

m
Ex∼{+1,−1}m [sup

h∈H

m∑
i=1

xi · l(h(di), di)]

where x is distributed i.i.d. according to uniform distribution in {+1,−1}. Before providing the
generalization bound, we first provide the distance between two different approximators and one
common theorem to facilitate the proof of the generalization bound.

Definition D.11. (r-cover) We say function class Hr r-cover H under ℓ∞,1-distance if ∀h, h ∈ H,
there exists hr inHr such that ||h− hr||∞,1 = maxx∈D ||h(x)− hr(x)||1 ≤ r.

Definition D.12. (r-covering number) The r-covering number ofH, N∞,1(H, r), is the cardinality
of the smallest function class Hr that r-coversH under ℓ∞,1-distance.

Theorem D.13. (Shalev-Shwartz & Ben-David, 2014) LetD be a training set of size m drawn i.i.d.
from distribution σ. Then with probability of at least 1− δ over draw of D from σ, for all h ∈ H,

Lσ(h)− LD(h) ≤ 2RD(l ◦ H) + 4

√
2 ln (4/δ)

m
.

We provide the bound to measure the generalizability of the trained approximator in a training
dataset with size m.

Theorem D.14 (Generalization bound). Assume that the loss function l is T -Lipschitz continuous,
then for hypothesis classH of approximator and distribution σ, with probability at least 1− δ over
draw of the training set D with size m from σ, for all h ∈ H, we have

Lσ(h)− LD(h) ≤ 2 · inf
r>0

[

√
2 logN∞,1(H, r)

m
+ Tr] + 4

√
2 ln (4/δ)

m
.

Proof. According to Theorem D.13, we have

Lσ(h)− LD(h) ≤ 2RD(l ◦ H) + 4

√
2 ln (4/δ)

m
.

According to the assumption, the loss function l(x, y) is T -Lipschitz continuous under ℓk-distance,
i.e., |l(x, y)− l(x′, y)| ≤ T ||x− x′||k, where || · ||k is the k-norm. LetHr be the function class that
r-coverH for some r > 0 and |Hr| = N∞,1(H, r) be the r-covering number ofHr. For all h ∈ H,
hr ∈ Hr is denoted to be the function approximator that r-covers h. Based on above equation, we
have

|l(h(x), y)− l(hr(x), y)| ≤ T ||h(x)− hr(x)||k ≤ Tr.
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Then we have

RD(l ◦ H) =
1

m
Ex∼{+1,−1}m [sup

h∈H

m∑
i=1

xi · l(h(di), di)] (1)

=
1

m
Ex∼{+1,−1}m [sup

h∈H

m∑
i=1

xi · (l(hr(di), di) + l(h(di), di)− l(hr(di), di))] (2)

≤ 1

m
Ex∼{+1,−1}m [ sup

hr∈Hr

m∑
i=1

xi · l(hr(di), di)] +
1

m
Ex∼{+1,−1}m [sup

h∈H

m∑
i=1

|xi · Tr|]

(3)

≤ sup
hr∈Hr

√√√√ m∑
i=1

(ℓ(hr, di))2 ·
√

2 logN∞,1(H, r)
m

+
Tr

m
Ex||x||1 (4)

≤
√

2 logN∞,1(H, r)
m

+ Tr (5)

The reduction from Eq. 3 to Eq. 4 is based on Massart’s lemma (Shalev-Shwartz & Ben-David,
2014). Finally,

Lσ(h)− LD(h) ≤ 2RD(l ◦ H) + 4

√
2 ln (4/δ)

m
≤ 2 · inf

r>0
[

√
2 logN∞,1(H, r)

m
+ Tr] + 4

√
2 ln (4/δ)

m

Therefore, given a training dataset with size m, we can have a generalization bound for the error
depending on the characteristic of the loss function. In this paper, we follow the supervised learning
framework to train the behavior cloning policy and environment model. Therefore, we can pro-
vide the following assumptions for the trained policy and environment models based on the above
theorem.
Assumption D.15. Suppose the error for training the behavior cloning policy is less than an ex-
tremely small ϵ on the dataset with enough data (the size of data can be computed according to the
above theorem). In that case, we consider that the trained behavior cloning policy is the same as the
underlying behavior strategy of the dataset.
Assumption D.16. Suppose the error for training the environment model is less than an extremely
small ϵ on the dataset with enough data. In that case, we consider that the trained environment model
can provide the full information for the underlying game of the dataset.
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E IMPLEMENTATION DETAILS

Here, we provide the details for the model-based method by introducing our instantiate algorithms:
MB-PSRO and MB-CFR, which are adaptions from two widely-used online equilibrium finding
algorithms PSRO and Deep CFR.

E.1 MB-PSRO

Algorithm 2 MB-PSRO
1: Input: Trained environment model Eθe
2: Initial policy sets Π for all players;
3: Compute expected rewards UΠ for each strategy π ∈ Π based on the environment model Eθe ;
4: Initialize mate-strategies σi = UNIFORM(Πi), ∀i;
5: repeat
6: for each player i ∈ [1, .., n] do
7: for best response episodes t ∈ [1, ..., T ] do
8: Sample π−i ∼ σ−i;
9: Train best response policy π′

i over ρ ∼ (π′
i, π−i), which samples on the environment

model Eθe ;
10: end for
11: add the best response policy π′

i to policy set Πi;
12: end for
13: Compute missing entries in UΠ based on the environment model Eθe ;
14: Compute the meta-strategy σ using any meta-solver;
15: until Meet the convergence condition
16: Output: Policy set Π and meta-strategy σ

We present the whole framework in Alg. 2. In the beginning, we need the well-trained environment
model Eθe as input to replace the function of the actual environment. Firstly, we initialize policy sets
Π for all players using random strategies. Then, we estimate the expected utilities for each strategy
profile based on the environment model Eθe to form the meta-game matrix. In vanilla PSRO, this
process needs to interact with the actual game environment. However, in the offline setting, the
actual game environment is not available. Therefore, we use the well-trained environment model
Eθe to replace the actual game environment to provide the information needed in the algorithm.
After building the meta-game matrix, the meta-strategy is initialized by a uniform strategy. Next,
we compute the best response policy for every player and add these trained best response policies to
their policy sets. When training the best response policy oracle using DQN or other RL algorithms,
we sample the training data based on the environment model Eθe . After adding these trained best
response policies, we compute missing entries in the meta-game matrix still based on the trained
environment model Eθe . Then, the meta-strategy σ of the meta-game matrix can be computed using
any meta-solver, such as Nash solver or α-rank algorithm. For games with more than two players, the
α-rank algorithm is taken as the meta-solver. Finally, we repeat the above processes until meeting the
convergence condition and output the policy set and meta-strategy as the approximate equilibrium
strategy.

To compute the CCE strategy, we also instantiate one algorithm: MB-JPSRO, an adaptation from
the JPSRO algorithm. The process of JPSRO is similar to PSRO except for the best response com-
putation and meta solver. Therefore, MB-JPSRO is also similar to MB-PSRO. For this reason, we
do not cover MB-JPSRO in detail here.

E.2 MB-CFR

Alg. 3 shows the process of MB-CFR, which is adapted from the Deep CFR algorithm. It also needs
the well-trained environment model Eθe as input for the MB-CFR algorithm. We first initialize
regret and strategy networks for each player and then initialize regret and strategy memories for
each player (Lines 2-4). Then we need to update the regret network for every player. To do this,
we perform a traverse function to collect corresponding training data. The traverse function can be
any sampling-based CFR algorithm. Here, we use the external sampling algorithm as the traverse
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Algorithm 3 MB-CFR
1: Input: Trained environment model Eθe
2: Initialize regret network R(I, a|θr,p) for all players;
3: Initialize strategy network S(I|θπ,p) for all players;
4: Initialize regret memory Mr,p and strategy memory Mπ,p for every player p;
5: for iteration t = 1 to T do
6: for player p ∈ [1, ..., n] do
7: for traverse episodes k ∈ [1, ...,K] do
8: TRVERSE(ϕ, p, θr,p, θπ,−p,Mr,p, Mπ,−p, Eθe );

# Use sample algorithm to traverse the game tree and record regret and strategy training
data

9: end for
10: Train θr,p from scratch based on regret memory Mr,p for every player p;
11: end for
12: end for
13: Train θπ,p based on strategy memory Mπ,p for every player p;
14: Output:θπ,p for every player p

Algorithm 4 TRVERSE(s, p, θr,p, θπ,−p,Mr,p, Mπ,−p, Eθe )-External Sampling Algorithm
1: if s is terminal state then
2: Get the utility up(s) from the environment model Eθe ;
3: Output: up(s)
4: else if s is a chance state then
5: Sample an action a from the available actions, which is obtained from model Eθe ;
6: s′ = Eθe(s, a);
7: Output:TRAVERSE(s′, p, θr,p, θπ,−p,Mr,p, Mπ,−p, Eθe )
8: else if P (s) = p then
9: I ← s[p]; # Get the corresponding information set from the game state

10: σ(I)← strategy of I computed using regret values R(I, a|θr,p) based on regret matching;
11: for a ∈ A(s) do
12: s′ = Eθe(s, a);
13: u(a)← TRAVERSE(s′, p, θr,p,θπ,−p,Mr,p, Mπ,−p, Eθe );
14: end for
15: uσ ←

∑
a∈A(s) σ(I, a)u(a);

16: for a ∈ A(s) do
17: r(I, a)← u(a)− uσ;
18: end for
19: Insert the infoset and its action regret values (I, r(I)) into regret memory Mr,p;
20: Output: uσ

21: else
22: I ← s[p];
23: σ(s)← strategy of I computed using regret value R(I, a|θr,−p) based on regret matching;
24: Insert the infoset and its strategy (I, σ(s)) into strategy memory Mπ,−p;
25: Sample an action a from distribution σ(s);
26: s′ = Eθe(s, a);
27: Output: TRAVERSE(s′, p, θr,p, θπ,−p,Mr,p, Mπ,−p, Eθe );
28: end if

method to collect training data, and the process of external sampling is shown in Alg. 4. In this
traverse function, we collect the regret training data of the traveler, and the strategy training data
of other players are also gathered. After performing the traverse function several times, the regret
network can be updated based on the regret memory. The above processes are repeated for T times.
Then the average strategy network for every player is trained based on its corresponding strategy
memory. Finally, the trained average strategy networks are output as the approximate equilibrium
strategy.
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F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide more experimental results and an ablation study. Finally, we provide the
main parameters we used in our experiments.

F.1 EXPERIMENTAL RESULTS
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Figure 19: Results of different MB methods

Here, we first verify that the performance of the
model-based approach is independent of the al-
gorithm used for computing equilibrium strat-
egy. To this end, we perform both MB-CFR
and MB-PSRO algorithms in the two-player
Kuhn poker game under different sizes of of-
fline datasets. Fig. 19 shows the results. We
can find that under the same size of an of-
fline dataset, MB-PSRO and MB-CFR achieve
nearly identical results. When the size of the of-
fline dataset increases, the performance of both
algorithms becomes better. It may be caused by
the environment model being well-trained with more data. These observations indicate that the
performance of the model-based algorithm is independent of the algorithm used to compute the
equilibrium strategy and mainly relies on the similarity between the trained environment model and
the actual environment.

F.2 ABLATION STUDY
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(c) Leduc poker (2p)
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(d) Leduc poker (2p)

Figure 20: Abalation results for different hidden layer sizes.
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Figure 21: Abalation results for different train epochs.

To investigate the influence of hyperparameters, we conduct several ablation experiments on two-
player Kuhn poker and Leduc poker games. We consider different model structures with various
numbers of hidden layers. Specifically, for the 2-Player Kuhn poker game, we use different envi-
ronment models with 16, 32, and 64 hidden layers. For the 2-Player Leduc poker game, which is
a more complicated game, the numbers of hidden layers for different models are 32, 64, and 128.
In addition, we train the environment models for different epochs to evaluate the robustness of our
approach. Figs. 20-21 show these ablation results. We find that the number of hidden layers and
the number of training epochs have little effect on the performance of the BC algorithm. These
results further verify that the performance of the BC algorithm primarily depends on the quality of
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the dataset. As we know, the performance of the model-based method mainly depends on the trained
environment model. Since the number of the hidden layer and the number of training epochs influ-
ence the training phase of the environment model, the number of the hidden layer and the number
of train epochs have a slight impact on the performance of the model-based method. As long as the
size of the hidden layer and the number of training epochs can guarantee that the environment model
is trained accurately, the performance of the model-based method will not be affected.
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F.3 PARAMETER SETTING

We list the parameters used to train the behavior cloning policy and environment model for all games
used in our experiments in Tab. 2.

Methods Behavior Cloning Algorithm Environment Model Training

Games Kuhn Poker (2p) Kuhn Poker (3p) Kuhn Poker (2p) Kuhn Poker (3p)

Data size 500 1000 1000 5000 500 1000 1000 5000
Hidden layer 32 32 32 32 32 32 32 32

Batch size 32 32 32 32 32 32 32 32
Train epoch 1000 2000 5000 5000 1000 2000 2000 5000

Games Kuhn Poker (4p) Kuhn Poker (5p) Kuhn Poker (4p) Kuhn Poker (5p)

Data size 5000 20000 10000 20000 5000 20000 10000 20000
Hidden layer 64 64 64 64 64 64 64 64

Batch size 64 128 128 128 64 128 128 128
Train epoch 5000 5000 5000 5000 5000 5000 5000 5000

Games Leduc Poker (2p) Leduc Poker (3p) Leduc Poker (2p) Leduc Poker (3p)

Data size 10000 20000 10000 20000 10000 20000 10000 20000
Hidden layer 128 128 128 128 64 128 128 128

Batch size 128 128 128 128 64 128 128 128
Train epoch 10000 10000 10000 5000 10000 10000 10000 10000

Games Liar’s Dice Phantom TTT Liar’s Dice Phantom TTT

Data size 10000 20000 10000 20000 10000 20000 10000 20000
Hidden layer 64 64 128 128 64 64 128 128

Batch size 128 128 128 128 64 128 128 128
Train epoch 5000 5000 5000 5000 5000 5000 5000 5000

Table 2: Parameters for Behavior Cloning algorithm
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