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ABSTRACT

Recent works in Reinforcement Learning (RL) combine model-free (Mf)-RL
algorithms with model-based (Mb)-RL approaches to get the best from both:
asymptotic performance of Mf-RL and high sample-efficiency of Mb-RL. Inspired
by these works, we propose a hierarchical framework that integrates online learn-
ing for the Mb-trajectory optimization with off-policy methods for the Mf-RL.
In particular, two loops are proposed, where the Dynamic Mirror Descent based
Model Predictive Control (DMD-MPC) is used as the inner loop Mb-RL to obtain
an optimal sequence of actions. These actions are in turn used to significantly ac-
celerate the outer loop Mf-RL. We show that our formulation is generic for a broad
class of MPC based policies and objectives, and includes some of the well-known
Mb-Mf approaches. We finally introduce a new algorithm: Mirror-Descent Model
Predictive RL (M-DeMoRL), which uses Cross-Entropy Method (CEM) with elite
fractions for the inner loop. Our experiments show faster convergence of the pro-
posed hierarchical approach on benchmark MuJoCo tasks. We also demonstrate
hardware training for trajectory tracking in a 2R leg, and hardware transfer for
robust walking in a quadruped. We show that the inner-loop Mb-RL significantly
decreases the number of training iterations required in the real system, thereby
validating the proposed approach.

1 INTRODUCTION

Model-Free Reinforcement Learning (Mf-RL) algorithms are widely applied to solve tasks like dex-
terous manipulation (Rajeswaran et al., 2018) and agile locomotion (Peng et al., 2020; Lee et al.,
2020) as they eliminate the need to model the complex dynamics of the system. However, these
techniques are data hungry and require millions of interactions with the environment. Furthermore,
these characteristics highly limit successful training on hardware as undergoing such high number
of transitions in hardware environments is infeasible. Thus, in order to overcome this hurdle, vari-
ous works have settled for a two loop model-based approach, typically referred to as Model-based
Reinforcement Learning (Mb-RL). Such strategies take the benefit of the explored dynamics of the
system by learning the dynamics model, and then determining an optimal policy in this model.
Hence this “inner-loop” optimization allows for a better choice of actions before interacting with the
original environment.

The inclusion of model-learning in RL has significantly improved sampling efficiency (Levine &
Koltun, 2013; Nagabandi et al., 2018) leading numerous works in this direction. Such a learned
model has proven to be very beneficial in developing robust control strategies (PDDM (Nagabandi
et al., 2020) and PETS (Chua et al., 2018)) based on predictive simulations. The process of planning
with the learnt model is mainly motivated by the Model Predictive Control (MPC), which is a well
known strategy used in classical real-time control. Given the model and the cost formulation, a typi-
∗Equal contribution.
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Figure 1: Here the 2R leg is following a semi-elliptical trajectory after successful hardware-in-loop
training. The number of training iterations required for the outer-loop hardware RL decreases with
the help of inner-loop DMD-MPC.

cal MPC structure can be formulated in the form of a finite horizon trajectory optimization problem.
With such a view and exploiting the approximated dynamics, methods like Cross-Entropy Method
(CEM) (Pourchot & Sigaud, 2019) and Model Predictive Path Integral (MPPI) (Williams et al., 2017)
have been used to achieve high reward gains. Model Based Policy Optimisation (MBPO) (Janner
et al., 2019) introduced the outer loop policy to collect transition to train approximate model and
sample over it to train the policy. Gradually, POLO (Lowrey et al., 2019) introduced the use of value
functions for terminal rewards in such model based settings, optimizing for which can motivate the
policy to converge faster. All these were particularly incorporated by Model Predictive Actor Critic
(MoPAC) (Morgan et al., 2021) along with optimization in the inner loop using MPPI to accelerate
Mb-Mf learning. Such works demonstrate model-based (Mb) additions to typical model-free (Mf)
algorithms accelerating the latter ones with significant sampling efficiency.

With a view toward strengthening existing Mb-Mf approaches for learning, we propose a generic
framework that integrates a model-based optimization scheme with model-free off-policy learning.
Motivated by the success of online learning algorithms (Wagener et al., 2019) in RC buggy models,
we combine them with off-policy Mf learning, thereby leading to a two-loop Mb-Mf approach. In
particular, we implement dynamic mirror descent (DMD) algorithms on a model-estimate of the
system, and then the outer loop Mf-RL is used on the real system. The main advantage with this
setting is that the inner loop is computationally light; the number of iterations can be large without
effecting the overall performance. Since this is a hierarchical approach, the inner loop policy helps
improve the outer loop policy, by effectively utilizing the control choices made on the approximate
dynamics. This approach, in fact, provides a more generic framework for some of the Mb-Mf
approaches (e.g., (Morgan et al., 2021), (Nagabandi et al., 2020)).

In addition to the proposed framework, we introduce a new algorithm Mirror-Descent Model Pre-
dictive RL (M-DeMoRL), which uses Soft actor-critic (SAC) (Haarnoja et al., 2018b) in the outer
loop as off-policy RL, and CEM with elite fractions in the inner loop as DMD-MPC (Wagener et al.,
2019). We show that the DMD-MPC accelerates the learning of the outer-loop by simply enriching
the off-policy experience data with better choices of state-control transitions. Finally, we demon-
strate direct hardware training for 2R leg tracking task (Fig. 4) and hardware transfer of policies for
quadruped walking with significantly lesser environment interactions.

The paper is structured as follows: Section 2 will provide the preliminaries for OL for MPC as
followed in the paper. Section 3 will describe the hierarchical framework for the proposed strategy,
followed by the description of the DMD-MPC. Section 4 formulates the algorithm and discusses our
simulation results. Section 5 presents hardware training on a two-link leg manipulator followed by
hardware transfer onto Stochlite quadruped. Finally, we conclude in Section 6.

2 PROBLEM FORMULATION

We consider an infinite horizon Markov Decision Process (MDP) given by {X ,U , r, P, γ, ρ0}where
X ⊂ Rn refers to set of states of the robot and U ⊂ Rm refers to the set of control or actions.
r : X × U → R is the reward function, P : X × U × X → [0, 1] refers to the function that
gives transition probabilities between two states for a given action, and γ ∈ (0, 1) is the discount
factor of the MDP. The distribution over initial states is given by ρ0 : X → [0, 1] and the policy
is represented by πθ : X → U parameterized by θ ∈ Θ, a potentially feasible high-dimensional
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space. If a stochastic policy is used, then πθ : X × U → [0, 1]. For ease of notations, we will
use a deterministic policy to formulate the problem. Wherever a stochastic policy is used, we will
show the extensions explicitly. The system model dynamics can be expressed in the form of an
equation: xt+1 ∼ f(xt, ut), where f is the stochastic transition map. We can obtain an estimate of
this map/model as fφ, which is parameterized by φ. The goal is to maximise the expected return :

θ∗ := arg max
θ

Eρ0,πθ

[ ∞∑
t=0

γtr(xt, ut)

]
, (1)

x0 ∼ ρ0, xt+1 ∼ f(xt, πθ(xt)). (2)

Model Predictive Control (MPC). Given the complexity of solving infinite horizon problems
equation 1 via reinforcement learning (RL), there has been a lot of push toward deployment of
Model Predictive Control (MPC) based methods for a finite H-step horizon (Levine & Koltun,
2013). Denote the sequence of H states and controls as xt = (xt,0, xt,1, . . . , xt,H), and ut =
(ut,0, ut,1, . . . , ut,H−1), with xt,0 = xt. The cost for H steps is given by

C (xt,ut) =

H−1∑
h=0

γhc(xt,h, ut,h) + γHcH(xt,H) (3)

where, c(xt,h, ut,h) = −r(xt,h, ut,h) is the cost incurred (for the control problem) and cH(xt,H) is
the terminal cost1. Each of the xt,h, ut,h are related by

xt,h+1 ∼ fφ(xt,h, ut,h), h = 0, 1, . . . ,H − 1, (4)

with fφ being the estimate of f . We will use the short notation xt ∼ fφ to represent equation 4.

The solution for equation 1 with the finite horizon cost, and with the model estimate fφ can be
obtained via MPC (Levine & Koltun, 2013; Nagabandi et al., 2018; Kolter & Manek, 2019). At
every step t, optimal sequence of actions/controls are obtained. The first action is then applied on
the real system to obtain the next state. There are several ways to solve the MPC setup, and online
learning (OL) is one such approach, which is described next.

Online Learning for MPC. Online Learning (OL) is a generic sequential decision making technique
that makes a decision at time t to optimise for the regret over time. Since MPC also involves
taking optimal decisions sequentially, (Wagener et al., 2019) proposed to use online learning via
dynamic mirror descent (DMD) algorithms. DMD is reminiscent of the proximal update with a
Bregman divergence that acts as a regularization to keep the current control distribution close to
the previous one. For a rollout time of H , we sample the tuple ut from a control distribution (πη)
parameterized by η ∈ P , where P is the parameter set. To be more precise, ηt is also a sequence
of parameters: ηt = (ηt,0, ηt,1, . . . , ηt,H−1) which yield the control tuple ut. Therefore, given the
control distribution paramater ηt−1 at round t−1, we obtain ηt at round t from the following update
rule:

J(xt, η̃t) :=Eut∼πη̃t ,xt∼fφ [C(xt,ut)] ,η̃t :=Φt(ηt−1) (5)

ηt = arg min
η

[αt〈∇η̃tJ(xt, η̃t), η〉+Dψ(η‖η̃t)] , (6)

where J is the MPC objective/cost expressed in terms of xt and πη̃t , Φt is the shift model, αt > 0
is the step size for the DMD, and Dψ is the Bregman divergence for a strictly convex function ψ.
Note that the shift parameter Φt is critical for convergence of this iterative procedure. Typically, this
is ensured by making it dependent on the state xt. In particular, for the proposed two-loop scheme,
we make Φt dependent on the outer loop policy πθ(xt). Also note that resulting parameter ηt is still
state-dependent, as the MPC objective J is dependent on xt.

With the two policies, πθ and πηt at time t, we aim to develop a synergy in order to leverage the
learning capabilities of both of them. In particular, the ultimate goal is to learn them in “parallel”,
i.e., in the form of two loops. The outer loop optimizes πθ and the inner loop optimizes πηt for the
MPC Objective.

1It will be shown later that in the proposed two-loop scheme, the terminal cost can be the value function
obtained from the outer loop.
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Figure 2: (Left) The proposed hierarchical structure of Mirror-Descent Model Predictive Reinforce-
ment Learning (M-DeMoRL) with an inner loop DMD-MPC update and an outer loop RL update.
(Right) The Mujoco OpenAI benchmark environments solved by the proposed algorithm with cor-
responding performance plots compared with other model based algorithms: MoPAC and MBPO.

3 METHODOLOGY

In this section, we discuss a generic approach for combining model-free (Mf) and model-based
(Mb) reinforcement learning (RL) algorithms through DMD-MPC. In classical Mf-RL, data from
the interactions with the original environment are used to obtain the optimal policy parameterized by
θ. While the interactions of the policy are stored in memory buffer,DENV , for offline batch updates,
they are used to optimize the parameters φ for the approximated dynamics of the model, fφ. Such
an optimized policy can then be used in the DMD-MPC strategy to update the control distribution,
πη . The controls sampled from this distribution are rolled out with the model, fφ, to collect new
transitions and store these in a separate buffer DMPC . Finally, we update θ using both the data
i.e., from the buffer DENV ∪ DMPC via one of the off-policy approaches (e.g. DDPG (Lillicrap
et al., 2016), SAC (Haarnoja et al., 2018b)). In this work, we majorly demonstrate this using Soft
Actor-Critic (SAC) (Haarnoja et al., 2018b). This gives a generalised hierarchical framework with
two loops: DMD-MPC forming an inner loop and model-free RL in the outer loop. A graphical
representation of the described framework is given in Figure 2.

There are two salient features in the two-loop approach:

1. At round t, we obtain the shifting operator Φt by using the outer loop parameter θ. This
is in stark contrast to the classical DMD-MPC method shown in (Wagener et al., 2019),
wherein the shifting operator is only dependent on the control parameter of the previous
round ηt−1.

2. Inspired by (Lowrey et al., 2019; Morgan et al., 2021), the terminal cost cH(xt,H) =
− Vζ(xt,H) is the value of the terminal state for the finite horizon problem as estimated by
the value function (Vζ , parameterized by ζ) associated with the outer loop policy, πθ. This
will efficiently utilise the model learned via the RL interactions and will in turn optimize
πθ with the updated setup.

Since there is limited literature on theoretical guarantees of DRL algorithms, it is difficult to show
convergences and regret bounds for the proposed two-loop approach. However, there are guarantees
on regret bounds for DMD algorithms in the context of online learning (Hall & Willett, 2013). We
reuse their following definitions:

GJ , max
ηt∈P

‖∇J(ηt)‖, M ,
1

2
max
ηt∈P

‖∇ψ(ηt)‖

Dmax , max
ηt,η′t∈P

Dψ(ηt‖η′t),

∆Φt , max
ηt,η′t∈P

Dψ(η̃t‖η̃′t)−Dψ(ηt‖η′t).

By a slight abuse of notations, we have omitted xt in the arguments for J . We have the following:
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Lemma 1 Denote the optimal cost obtained for equation 5 for the real model by Jr. Then the
difference in the returns between the real and the approximated model (Jr and J respectively) is

J (xt, η̃t)− Jr (xt, η̃t)≤2cmax
(H−1)γH+1−HγH + γ

(1− γ)2
εf

+ γH2 VmaxHεf , Rf,H

using Lemma B.3 in (Janner et al., 2019). Here, εf is the uncertainty in dynamics model approxi-
mation.

Theorem 1 Let the η̃t be sequence obtained from outer loop policy πθ, and let η?t be the policy
obtained from πθ? , where θ? is optimal; then for the class of convex MPC objectives J , the maximum
regret incurred for the T decision timesteps, each with H-step planning can be formulated as

ReT (ηT ) :=

T∑
t=0

J (η̃t)− Jr (η?t )

≤Dmax

αT+1
+

4M

αT
WΦt (ηT ) +

G2
J

2σ

T∑
t=1

αt + T Rf,H

where ηT is the vector of parameters decided at every decision step, WΦt is given by

WΦt =

T∑
t=0

‖η?t+1 − η̃t+1‖, (7)

and other notations are derived from (Hall & Willett, 2013).

Proofs of Lemma 1 and Theorem 1 are provided in Appendix.

As we obtain the shift model at every iteration using the outer loop RL policy and the learned dynam-
ics, the maximum regret decreases as the policy θ converges to θ?, the sequence η̃t+1 approaches
η?t+1. In other words, the regret is minimum when the infinite horizon optimal outer loop policy is
efficient enough in identifying a finite H-step horizon optimal inner loop policy.

DMD-MPC with Exponential family. We consider a parametric set of probability distributions for
our control distributions in the exponential family, given by natural parameters η, sufficient statistics
δ and expectation parameters µ (Wagener et al., 2019). Further, we set Bregmann divergence in
equation 6 to the KL divergence. The natural parameter of control distribution, η̃t, is obtained with
the proposed shift model Φt from the outer loop RL policy πθ by setting the expectation parameter
of η̃t: µ̃t = πθ(xt). Note that we have overloaded the notation πθ to map the sequence xt to µ̃t,
which is the sequence of µ̃t,h = πθ (xt,h)2. Then, we have the following gradient of the cost:

∇η̃tJ(xt, η̃t) = Eut∼πη̃t ,xt∼fφ [C(xt,ut)(δ(ut)− µ̃t)] , (8)

In the presented setup, we choose Gaussian distribution for control and δ(ut) := ut. We finally
have the following update rule for the expectation parameter (Wagener et al., 2019):

µt = (1− α) µ̃t + αEπη̃t ,fφ [C (xt,ut)ut] . (9)

Based on the data collected in the outer loop, the inner loop is executed via DMD-MPC as follows:

• Step 1. Considering H-step horizon, for h = 0, 1, 2, . . . ,H − 1, obtain

η̃t,h = Σ−1µ̃t,h, µ̃t,h = πθ(xt,h) (10)
ut,h ∼ πη̃t,h (11)

xt,h+1 ∼ fφ(xt,h, ut,h). (12)

where Σ represents the covariance for control distribution.

2Note that if the policy is stochastic, then µ̃t,h ∼ πθ (xt,h). This is similar to the control choices made in
(Morgan et al., 2021, Algorithm 2, Line 4).

5



Presented at Deep RL Workshop, NeurIPS 2021

Algorithm 1: M-DeMoRL Algorithm
1 Initialize SAC and Model fφ,Environment Parameters
2 Initialize memory buffer: DENV

3 for max iterations do
4 DENV ← DENV ∪ {x, u, r, x′} , u ∼ πθ (x)
5 for each model learning epoch do
6 Train model fφ on DENV with loss : Jφ = ‖{(x′ − x), r} − fφ(x, u)‖2
7 end
8 Initialize DMPC

9 Calculate M and H from schedule
10 for DMD-MPC iterations do
11 Sample xt,0 uniformly from DENV

12 Simulate M trajectories of H steps horizon: equation 10, equation 11 and equation 12
13 Perform CEM to get optimal action sequence: µt equation 14 and equation 9
14 Collect complete trajectory: xt, rt ∼ fφ(xt,0, µt)
15 Add all transitions to DMPC : DMPC ← DMPC ∪ {xt,h, ut,h, r̂t,h, xt,h+1}
16 end
17 for each gradient update step do
18 Update SAC parameters using data from DENV ∪DMPC

19 end
20 end

• Step 2. Collect η̃t = (η̃t,0, η̃t,1, . . . , η̃t,H−1), and apply DMD-MPC equation 6 to obtain
ηt.

For the presented work, we use CEM with the method of elite fractions that allows us to select only
the best transitions. This is given by the following:

J(xt, η̃t) := − logEπη̃t ,fφ [1 {C (xt,ut) ≤ Ct,max}] (13)

where we choose Ct,max as the top elite fraction from the estimates of rollouts. It is worth noting
that both CEM and MPPI belong to the same family of objective function utilities (Wagener et al.,
2019).

4 IMPLEMENTATION AND RESULTS

In this section, we implement the two-loop hierarchical framework as explained in the previous
section and structure the specific details about the algorithm associated with the proposed work. This
will be compared with the existing approaches MoPAC (Morgan et al., 2021) and MBPO (Janner
et al., 2019) on the benchmark MuJoCo control environments.

4.1 ALGORITHM:

M-DeMoRL algorithm derives from other Mb-Mf methods in terms of learning dynamics and fol-
lows a similar ensemble dynamics model approach. We have shown it in Algorithm 1. There are
three parts in this algorithm: Model learning, Soft Actor-Critic and DMD-MPC. We describe them
below.

Model learning. The functions to approximate the dynamics and reward function of the system
are K-probabilistic deep neural networks (Kolter & Manek, 2019) cumulatively represented as
{fφ1 , fφ2 , . . . , fφK} Using the inputs as the current state and actions, the ensemble model fits all
the probabilistic models to output change in states and the reward obtained during the transition.
Such a configuration is believed to account for the epistemic uncertainty of complex dynamics and
overcomes the problem of over-fitting generally encountered by using single models (Chua et al.,
2018).

SAC. Our implementation of the proposed algorithm uses Soft Actor-Critic (SAC) (Haarnoja et al.,
2018b) as the model-free RL counterpart. Based on principle of entropy maximization, the choice
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of SAC ensures sufficient exploration motivated by the soft-policy updates, resulting in a good ap-
proximation of the underlying dynamics.

DMD-MPC. Here, we solve for Eπη̃t ,fφ [C (xt,ut)ut] using a Monte-Carlo estimation approach.
For a horizon length of H , we collect M trajectories using the current policy πθt and the more
accurate dynamic models from the ensemble having lesser validation losses. For all trajectories, the
complete cost is calculated using a deterministic reward estimate and the value function through (2).
After getting the complete state-action-reward H-step trajectories we execute the following based
on the CEM (Pourchot & Sigaud, 2019) strategy:

• Step 1. Choose the p% elite trajectories according to the total H-step cost incurred. We set
p = 10 % for our experiments, and denote the chosen respective action trajectories and
costs as Uelites and Celites respectively. Note that we have also tested for other values of
p, and the ablations are shown later in this section.

• Step 2. Using Uelites and Celites we calculate Eπη̃t ,fφ [C (xt,ut)ut] as the reward
weighted mean of the actions i.e.

gt =

∑
i∈elites Ci Ui∑
i∈elites Ci

(14)

and update the current policy actions, µ̃t = πθi(xt) according to equation 9.

4.2 EXPERIMENTS AND COMPARISON

Several experiments were conducted on the MuJoCo (Todorov et al., 2012) continuous control tasks
with the OpenAI-Gym benchmark and the performance was compared with recent related works
MoPAC (Morgan et al., 2021) and MBPO (Janner et al., 2019). First, we discuss the hyperparameters
used for all our experiments and then the performance achieved in the conducted experiments.

As the baseline of our framework is built upon MBPO implementation, we derive the “same hyper-
parameters” for our experiments and all the baseline algorithms. We compare the results of three
different seeds and the reward performance plots are shown in Figure 2(right).

For the inner DMD-MPC loop we choose a varying horizon length from 5 − 15 and perform 100
trajectory rollouts. With our elite fraction as 10%, the updated model-based transitions are added
to the MPC-buffer. This process is iterated with a varying batch-size with maximum of 10, 000
thus completing the DMD-MPC block in Algorithm 1. These variable batch size and horizon length
allows us to exploit the models more when we have achieved significant learning considering uncer-
tainties and distribution shifts. Also, as evident from Theorem 1, increasing H directly increases the
maximum regret incurred. Thus, we start from low horizon length as the regret incurred is more in
the initial phases and gradually increase the horizon length to exploit the capabilities of MPC. Fur-
ther, the number of interactions with the true environment for outer loop policy were kept constant
to 1000 for each epoch, same as MoPAC and MBPO.

We clearly note an accelerated progress for all the environments, with approximately 30% faster rate
in the reward performance curve as compared to best of prior works. Our rewards in Ant-v2 were
comparable with MoPAC but still significantly better than MBPO. We would like to emphasize that
our final rewards are eventually the same as achieved by MoPAC and MBPO, however the progress
rate is faster for all our experiments with lesser true environment interactions.

4.3 ABLATION STUDY ON ELITE PERCENTAGE

Given the sequence of controls µt, we collect the resulting trajectory and add them to our buffer.
Therefore, the quality of µt is a significant factor affecting the quality of data used for the outer loop
RL-policy. The selection strategy being CEM, a quality metric is dependent on the choice of elite
fractions p.

We perform an ablation study for 6 values of p = 1, 5, 10, 20, 50 and 100% on HalfCheetah-v2
OpenAI gym environment. The analysis was performed based on the reward performance curves
as shown in Fig. 3 (left). Additionally, we realize the number of the epochs required to reach a
certain level of performance as a good metric to measure acceleration achieved. Such an analysis is
provided in Fig. 3 (right). We make the following observations:
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Figure 3: Ablation study for elite percentage: Reward performance curve (left) and Acceleration
analysis as epochs to reach 10000 rewards (right)

Figure 4: (Left) Two link Leg Manipulator and corresponding hardware test setup followed by
Stochlite quadruped Model Design, Pybullet Simulation and Hardware as incorporated for hardware
transfer. The hardware-in-loop training for the leg shows faster reward gains compared SAC. Sim-
ilarly, the transfered policy in StochLite shows desirable variations in the X and Y shifts based on
the torso orientation.

• Having a lesser value of p might ensure that learned dynamics is exploited the most, but
decreases the exploration performed in the approximated environment.

• Similarly, having higher value of p on the other hand will do more exploration using a
“not-so-perfect” policy and dynamics.

Thus, the elite fraction balances between exploration and exploitation.

5 HARDWARE TRAINING AND TRANSFER

In this section, we extend M-DeMoRL to more complex dynamical systems like 2R quadruped leg
and a complete quadruped walking task as well. In the first case, we do direct algorithm transfer to
execute learning with hardware, whereas for quadruped we show generation of hardware transferable
policies.

Leg trajectory tracking: The main idea here is to track a fixed end-foot trajectory with a 2R
quadruped robot leg (as shown in Figure 4 left). The leg is torque controlled and equipped with
hall effect sensors and BLDC motors. In order to perform direct hardware training, we accomplish
torque control at 500 Hz, with the motor controller running at 40KHz. We define the task as tracking
an elliptical trajectory (as shown in Figure 4. The reward is chosen as follows:

rleg := 0.8e−‖p−pd‖
2

+ 0.2e−‖ṗ−ṗd‖
2

, (15)

where p, pd ∈ R2 are the actual and desired end-effector positions of the leg. We observed enhanced
learning performance as compared to baseline SAC within 20 epochs (20k interactions with the
real system). Fig. 1 shows the tile of trajectory tracking from start to end. The evaluation on
convergence of M-DeMoRL was observed till 80 epochs and we concluded at reward gains of 2
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times the observed performance with SAC baseline training. This clearly illustrates the accelerating
nature of M-DeMoRL and justifies feasibility of training directly on the hardware setup.

Quadrupedal walking: We extend our approach to StochLite (shown in Figure 4 right) for walking,
which is a low-cost robot consisting of 12 servos and an inertial measurement unit (IMU) to detect
the body pose. StochLite is also capable of measuring joint angles (hip and knee) and torques via
encoders and motor current sensors respectively. The robot dynamics model consists of 6 floating
degrees-of-freedom and 12 actuated degrees-of-freedom. The simulator for StochLite is PyBullet
(Coumans & Bai, 2016–2021). The states consist of the torso pose, velocity (both translational and
rotational components) and the slope orientation (roll and pitch). Slope orientations are obtained via
the IMU orientation and the joint angle encoders.

We execute tracking end-foot trajectories via a low-level control law, while the higher level walking
control policy focuses on yielding optimal trajectory parameters similar to (Hwangbo et al., 2019;
Paigwar et al., 2020). Those parameters form the actions/controls, to be obtained from the RL
policy. We use a well-defined trajectory generator, which is in turn shaped via a neural network
based policy. This framework, when combined with our sample efficient M-DeMoRL algorithm,
allows to train policies in much shorter time (< 60 episodes of true environment interactions with
1000 interactions per episode). Figure 4 (right) shows the reactive behavior of policy in terms of the
modulations applied by the neural network controller over the pre-defined elliptical trajectory. These
modulations are able to shift the trajectories along X, Y and Z directions. The learned response
validates that the neural policy to model the correspondence of pitch and roll with the X and Y
shifts. As the pitch orientation increases, the quadruped tries to increase the X-shifts so that the leg
moves forward and stabilizes the torso. Similarly, the increase in roll is accompanied by again an
increase in the Y-shifts in the rolling direction. We also validate the policy with successful transfer to
hardware. Previously, (Haarnoja et al., 2018a) trained policies in Minitaur quadruped in 160 epochs
using SAC. Due to increasing complexity, we will consider direct hardware training for quadrupeds
in future.

6 CONCLUSION

We have investigated the role of leveraging the model-based optimisation with online learning to
accelerate model-free RL algorithms. With the emphasis to develop a real-time controller, this work
primarily defines a generalised framework that could be used with the existing MPC algorithms
and off the shelf Mf-RL algorithms to train efficiently. Simulation results show that our formula-
tion yields sample efficient algorithms, as the underlying online learning tracks for the best policy
benefiting the convergence of the Mf-RL policy. We also show that the training is faster than prior
Mf-Mb methods. Finally, we show hardware-in-loop training with a 2R leg and we successfully gen-
erate hardware transferable policies for quadruped walking. While preliminary hardware results are
shown, we look forward to better gaits and more efficient direct training on hardware as future works.
The video for our experiment can be found at: stochlab.github.io/redirects/MDeMoRLPolicies.html.

9

https://stochlab.github.io/redirects/MDeMoRLPolicies.html


Presented at Deep RL Workshop, NeurIPS 2021

REFERENCES

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep rein-
forcement learning in a handful of trials using probabilistic dynamics models. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
3de568f8597b94bda53149c7d7f5958c-Paper.pdf.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016–2021.

Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey Levine. Learning
to walk via deep reinforcement learning. arXiv preprint arXiv:1812.11103, 2018a.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
Conference on Machine Learning, pp. 1861–1870. PMLR, 2018b.

Eric Hall and Rebecca Willett. Dynamical models and tracking regret in online convex program-
ming. In International Conference on Machine Learning, pp. 579–587. PMLR, 2013.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26), 2019. doi: 10.1126/scirobotics.aau5872. URL https://robotics.
sciencemag.org/content/4/26/eaau5872.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
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A APPENDIX: PROOFS OF LEMMA 1 AND THEOREM 1

Let us consider M and Mr as the approximated and real MDP with dynamics model fφ and f
respectively. Let the total variation distance between them be bounded by εf (see (Janner et al.,
2019)). This dynamics model predicts both the next state distribution and rewards. The corre-
sponding MPC objective is represented as J and Jr respectively. Here, J denotes that the costs are
calculated from the approximated reward function setting whereas Jr is obtained from rollouts in
the true MDP. Now, we will derive the bounds on the performance improvement in a similar way
as demonstrated in (Janner et al., 2019) and (Morgan et al., 2021), however with consideration and
assumptions related to the convexity of the losses.

Proof 1 (Proof of Lemma 1) For any stochastic dynamics model f and reward function r, consid-
ering the cost of a trajectory in an MDP with policy πη and value function Vζ is given by,

C (xt,ut) =

H−1∑
h=0

γhc(xt,h, ut,h) + γHcH(xt,H) (16)

where, γ is the discount factor, c(xt,h, ut,h) = −r(xt,h, ut,h) and cH is the terminal cost calculated
as −Vζ(xt,H). Let cmax be the bound on this cost.

Now, to realize the maximum improvement in the approximated MDP while using the policy param-
eters (η̃t), obtained from the shift model, we use a formulation motivated by the bound formulated
in Lemma B.3 in (Janner et al., 2019). We consider pφ as the discounted state-action visitation
corresponding to fφ (similarly p for f ) and superscript h to resemble the notations of (Janner et al.,
2019).

J (xt, η̃t)− Jr (xt, η̃t)

= Eut∼πη̃t ,xt∼fφ

[
H∑
h=0

γhc(xt,h, ut,h) + γHcH(xt,H)

]

− Eut∼πη̃t ,xt∼f

[
H∑
h=0

γhc(xt,h, ut,h) + γHcH(xt,H)

]
=

∑
xt,ut

(pφ(x, u)− p(x, u)) c(x, u)

≤
∑
xt,ut

H−1∑
h=0

γh (phφ(xt,h, ut,h)−ph(xt,h, ut,h)) c(xt,h, ut,h)

+ γH (pHφ (xt,H , ut,H)− pH(xt,H , ut,H))Vζ(xt,H)

≤2 cmax

H−1∑
h=0

γh hεf + γH2 VmaxHεf

=2 cmax
(H − 1)γH+1 −HγH + γ

(1− γ)2
εf + γH2 VmaxHεf

where, |(ph(x, u) − phφ(x, u))| ≤ hεf is inherited from Lemma B.2 in (Janner et al., 2019), the
uncertainty in dynamics approximation.

Proof 2 (Proof of Theorem 1) From Lemma-1, we know that,

J (η̃t) ≤ Jr (η̃t) +Rf,H (17)

and subtracting Jr (η?t ) from both sides of Eq (4) results in

J (η̃t)− Jr (η?t ) ≤ Jr (η̃t)− Jr (η?t ) +Rf,H (18)

where LHS corresponds to the instantaneous regret incurred by rollouts on approximate MDP (with
J) using shifted parameters (η̃t) and on true MDP (with Jr) using the DMD-optimized parame-
ters (ηt).
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Now, to get the cumulative regret for T decision steps, both sides of Eq (5) should be summed over
T and can be shown as,

T∑
t=0

(J (η̃t)− Jr (η?t )) ≤
T∑
t=0

(Jr (η̃t)− Jr (η?t )) +

T∑
t=0

Rf,H (19)

ReT (ηT ) ≤
T∑
t=0

(Jr (η̃t)− Jr (η?t )) + T Rf,H (20)

Based on (Hall & Willett, 2013), the DMD update rule directly results in

T∑
t=0

(J (η̃t)− Jr (η?t )) ≤ Dmax

αT+1
+

4M

αT
WΦt (ηT ) +

G2
`

2σ

T∑
t=1

αt (21)

Substituting Eq (8) in Eq (7), we finally get the bound on the maximum regret as

ReT (ηT ) ≤ Dmax

αT+1
+

4M

αT
WΦt (ηT ) +

G2
`

2σ

T∑
t=1

αt + T Rf,H ,

which completes the proof.
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