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Abstract

Deep learning methods have boosted the adoption of NLP systems in real-life
applications. However, they turn out to be vulnerable to distribution shifts over
time which may cause severe dysfunctions in production systems, urging practi-
tioners to develop tools to detect out-of-distribution (OOD) samples through the
lens of the neural network. In this paper, we introduce TRUSTED, a new OOD
detector for classifiers based on Transformer architectures that meets operational
requirements: it is unsupervised and fast to compute. The efficiency of TRUSTED
relies on the fruitful idea that all hidden layers carry relevant information to detect
OOD examples. Based on this, for a given input, TRUSTED consists in (i) aggre-
gating this information and (ii) computing a similarity score by exploiting the
training distribution, leveraging the powerful concept of data depth. Our extensive
numerical experiments involve 51k model configurations, including various check-
points, seeds, and datasets, and demonstrate that TRUSTED achieves state-of-the-art
performances. In particular, it improves previous AUROC over 3 points.

1 Introduction

The number of Al systems put into production has steadily increased over the last few years. This
is because advanced techniques of Machine Learning (ML) and Deep Learning (DL) have brought
significant improvements over previous state-of-the-art (SOTA) methods in many areas such as
finance [17, 57], transportation [59], and medicine [ 14, 77]. However, the increasing use of black-box
models has raised concerns about their societal impact: privacy [33, 64, 74, 29], security [6, 3, 20],
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safety [4 1, 50, 18], fairness [5, 72], and explainability [ 13, 63] which became areas of active research
in the ML community.

This paper is about a critical safety issue, namely Out-Of-Distribution (OOD) detection [ 1 1], which
refers to a change of distribution of incoming data that may cause failures of in-production Al
systems. When data are tabular and of small dimension, simple statistical methods can be efficient,
and one may, for instance, monitor the mean and variance of each marginal over time. However,
these traditional methods do not work anymore when data are high-dimensional and/or unstructured.
Thus, the need to design new techniques that incorporate incoming data and the neural networks
themselves.

Distinguishing OOD examples from in-distribution (ID) examples is challenging for modern deep
neural architectures. DL models transform incoming data into latent representations from which
reliable information extraction is cumbersome. Because of that, designing new tools of investigation
for large pretrained models, judiciously named foundation models by [9], is an essential line of
research for the years to come. In computer vision, methods are more mature thanks to the availability
of appropriate deformation techniques that allow for sensitivity analysis. In contrast, the nature
of tokens in Natural Language Processing (NLP) makes it more difficult to develop such suitable
methods.

In this paper, we focus on classifiers for textual data and on the ubiquitous BERT [34], Disti1BERT
[83], and RoBERTa [68] architectures. Existing methods can be grouped according to their positioning
with respect to the network. Some works exploit only the incoming data and compare them with
in-distribution examples through likelihood ratios [42, 19]. Another line of research consists in
incorporating robust constraints during training, with [48] or without [103, 60] access to some
available OOD examples. Another line of research focuses on post-processing methods that can be
used on any pretrained models. In our view, these are the most promising tools because typical users
rely on transformers without retraining. Within post-processing methods, one can distinguish softmax-
based tools that compute a confidence score based on the predicted probabilities and threshold to
decide whether a sample is OOD or not. Notice that this does not require direct access to in-
distribution data. The seminal work is due to Hendrycks [47] who uses the maximum soft-probability,
and has been pushed further in [62, 52]. In [67], authors suggest looking one step deeper into
the network, namely, to compute a confidence score based on the projections of the pre-softmax
layer. More recently, [75] achieved SOTA results on transformer-based encoder by computing the
Mahalanobis distance [71, 32] between a test sample and the in-distribution law [58], estimated
through accessible training data points.

Nevertheless, the distance-based score is computed on the last-layer embedding only, suggesting that
going deeper inside the network might improve OOD detection power. Moreover, the computation of
Mabhalanobis-based scores requires inverting the covariance matrix of the training data, which can be
prohibitive in high dimensions. It is worth noticing that the Mahalanobis-based scores can be seen
as a data depth [97, ] through a simple re-scaling [60], that is a statistical function measuring
the centrality of an observation with respect to a probability distribution. Although data depths are
quite natural in the context of OOD detection, they remain overlooked by the ML community. In the
present work, we rely on the recently introduced Integrated Rank-Weighted depth [76, 94] in order to
remedy the drawbacks of the Mahalanobis-based scores for OOD detection.

1.1 Our contribution

We first leverage the observation introduced by previous work that all hidden layers of a neural
network carry useful information to perform textual OOD detection. For a given input x, our method
consists in computing its average latent representation X and then its OOD score through the depth
score of X with respect to the averaged in-distribution law (see Fig. 1 for an illustration). Notice that
the ability to compute averaged latent representations crucially relies on the structure of transformers
layers that share the same dimension. The depth function we are using is based on the computation
of the projected ranks of the test inputs using randomly sampled directions. From a theoretical
viewpoint, this novel method requires fewer assumptions on the data structure than the Mahalanobis
score.

We conduct extensive numerical experiments on three transformers architectures and eight datasets
and benchmark our method with previous approaches. To ensure reliable results, we introduce a new



framework for evaluating OOD detection that considers hyperparameters that were unreported before.
It consists of computing performances for various choices of checkpoints and seeds, which allows us
to report a variance term that makes some previous methods fall within the same performance range.
Our conclusions are drawn by considering over 51k configurations, and show that our new detector
based on data depth improves SOTA methods by 3 AUROC points while having less variance. This
result supports the intuition that OOD detection is a matter of looking at the information available
across the entire network. Our contribution can be summarized as follows:

1. We introduce a novel OOD detection method for textual data. Our detector TRUSTED! relies
on the full information contained in pretrained transformers and leverages the concept of data depth:
a given input is detected as being in-distribution or OOD sample based on its depth score with respect
to the training distribution.

2. We conduct extensive numerical experiments and prove that our method improves over SOTA
methods. Our evaluation framework is more reliable than previous studies as it includes the variance
with respect to seeds and checkpoints.

3. We release open-source code and data to ease future research, ensure reproducibility and
reduce computation overhead.

2 Problem Formulation

Training distribution and classifier. Let us denote by X the textual input space. Consider the
multiclass classification setup with target space ) = {1,...,C} of size C > 2. We assume the
dataset under consideration is made of N > 11i..d. samples (x1, 1), - ., (Xn, yn) with probability
law denoted by pxy and defined on X x ). Accordingly, we will denote by px and py the marginal
laws of pxy . Finally, we denote by fn : X — ) the classifier that has been trained using (x;, y;).

Open world setting. In real-life scenarios, the trained model f is deployed into production and
will certainly be faced with input data whose law is not pxy . To each test point (x, i), we associate
a variable z € {0, 1} such that z = 0 if (x,y) stems from pxy and z = 1 otherwise. It is worth
emphasizing that in our setting fx has never been faced with OOD examples before deployment.
This is usually referred to as the open-world setting. From a probabilistic viewpoint, the test set

distribution of the input data p'¢** is a mixture of in-distribution and OOD samples:

test(

px (%) = apxiz(x]z =1) + (1 — a) px|z(x[z = 0),

where o € (0, 1). In this work, we will not make any further assumptions on the proportion « of
OOD samples and on the OOD pdf px|z(x|z = 1), making the problem more difficult but at the
same time more well suited for practical use. Indeed, for textual data, it does not appear to be realistic
to model how a corpus can evolve.

OOD detection. The objective of OOD detection is to construct a similarity function s : X — R
that accounts for the similarity of any element in X’ with respect to the training in-distribution. For a
given test input x, we then classify x as in-distribution or OOD according to the magnitude of s(x).
Therefore, one fixes a threshold ~ and classifies IN (i.e. 2 = 0) if s(x) > v or OOD (i.e. 2 = 1) if
s(x) < . Formally, denoting g(+,~y) the decision function, we take:

1 ifs(x) <7,
g(x,’y)—{ 0 ifs(x)>n~. (1)

Performance evaluation. The OOD problem is a (unbalanced) classification problem, and classically,
two quantities allow to measure the performance of a method. The false alarm rate is the proportion
of samples that are classified as OOD while they are IN. For a given threshold 7, it is theoretically
given by Pr (s(X) < v|Z = 0). The true detection rate is the proportion of samples that are
predicted OOD while being OOD. For a given threshold 7, it is theoretically given by Pr (s(X) <

v Z =1).

There exist several ways to measure the effectiveness of an OOD method. We will focus on four
metrics. The first two are specifically designed to assess the quality of the similarity function s.

'TRUSTED stands for deTectoR USing inTegrated rank-wEighted Depth.



Area Under the Receiver Operating Characteristic curve (AUROC) [10]. It is the area under the
ROC curve v — (Pr (s(X) >~|Z = 0),Pr (s(X) < v| Z = 1)), which plots the true detection
rates against the false alarm rates. The AUROC corresponds to the probability that an in-distribution
example X;,, has higher score than an OOD sample X,,,;: AUROC = Pr(s(X;;,) > s(Xout)), as can
be checked from elementary computations.

Area Under the Precision-Recall curve (AUPR-IN/AUPR-QUT) [31]. Itis the area under the precision-
recall curve v — (Pr(Z = 1]s(X) < v),Pr(s(X) < v|Z = 1)) which plots the recall (true
detection rate) against the precision (actual proportion of OOD amongst the predicted OOD). The
AUPR is more relevant to unbalanced situations.

The third metric we will use is more operational as it computes the performance at a specific threshold
~ corresponding to a security requirement.

False Positive Rate at 95% True Positive Rate (FPR). In practice, one wishes to achieve reasonable
level of OOD detection. For a desired detection rate r, this incites to fix a threshold ~,- such that the
corresponding TPR equals r. At this threshold, one then computes:

Pr(s(X) >7,|2=0) with 7, s.t. TPR(v,) =r. 2
In our work, we set 7 = 0.95 in (2).

Error of the best classifier (Err (%)). This refers to the lowest classification error obtained by
choosing the best threshold.

3 TRUSTED: Textual OOD-Detection using Integrated Rank-Weighted Depth

In this work, we focus on OOD detection when using a contextual encoder (e.g., BERT). We denote
by {¢1,...,¢r} the L functions corresponding to the layers of the encoder: for every 1 <[ < L and
a given textual input x, ¢;(x) € R is the embedding of x in the I-th layer, where d is the dimension
of the corresponding embedding space. Notice that all layers share the same dimension d.

3.1 TRUSTED in a nutshell.

Our OOD detection method is composed of three steps. For a given input x with predicted label y:

. . . . L
1. We first aggregate the latent representations of x via an aggregation function F : (R%)” — R<.
We choose to take the mean and compute

L
Fon(x) 1= F(on(x), ., 60(0) = 7 3 u(x) := % 3)
=1

We will further elaborate on this choice of aggregation function in Sec. 3.2.

2. We compute a similarity score D(Fpn (%), Fpu (Sff éj‘/”‘)) between Fpy(x) and the distribution of
the mean-aggregation of the training distribution samples with same predicted target as x (i.e. ) that
we denote by IFpy (Sff?lm) Formally, if x3, ..., X, are the training data, this distribution is given
by (1/ng) > 5= 5FP’1;I(X7’,)’ with ng = [{i : §; = y}| and J, is the Dirac measure in 2. We take as
similarity score D a depth function, namely the integrated rank-weighted depth, that we introduce in
Sec. 3.3.

3. The last step consists in thresholding the previous similarity score D(Fpp(x), FpM(S;f%i’l)):
under a given threshold v, we classify x as an OOD example.

3.2 Layer aggregation choice

Most recent work in textual OOD detection with a pretrained transformer solely relies on the last

layer of the encoder [100, 75]. Although detectors using information available in multiple layers
have been proposed previously, mostly for image data, they rely on post-score aggregation heuristics
that are either supervised [58, 44] (and thus require having access to OOD samples) or heavily use

arbitrary heuristics [85]. TRUSTED differentiates from previous OOD detection methods as it relies
on a pre-score aggregation function.



Most popular layer aggregation techniques for Transformer based architecture involve either Power
Means [46, 82] or Wasserstein barycenters [260]. Motivated by both simplicity and computational
efficiency, we discard the Wasserstein barycenters and decide to work with Power Mean (case p = 1).

3.3 OOD Score Computation via Integrated Rank-Weighted Depth

Since its introduction by John Tukey in 1975 [97] to extend the notion of median to the multivariate
setting, the concept of statistical depth has become increasingly popular in multivariate data analysis.
Multivariate data depths are nonparametric statistics that measure the centrality of any element of
R?, where d > 2, w.r.t. a probability distribution (respectively a random variable) defined on any
subset of R?. Let X be a random variable. We denote by Px the law of X . Formally, a data depth is

defined as follows:
D: RIxPRY) — [0,1],

(x,Px) — D(x,Px). “)
The higher D(x, Px), the deeper x is in Px. Data depth finds many applications in statistics and
ML ranging from anomaly detection [87, 80, 92, 96, 91] to regression [79, 45] and text automatic

evaluation [95]. Numerous definitions have been proposed, such as, among others, the halfspace
depth [97], the simplicial depth [65], the projection depth [66] or the zonoid depth [56], see [90, Ch.
2] for an excellent account of data depth. The halfspace depth is the most popular depth function
probably due to its attractive theoretical properties [37, 104]. However, it is defined as the solution of
an optimization problem (over the unit hypersphere) of a non-differentiable quantity and is therefore
not easy to compute in practice [ 1, 39]. Furthermore, it has been show in [73] that the approximation
of the halfspace depth suffers from the curse of dimensionality involving statistical rates of order
O((log(n)/n)'/(4=1)) (see Equation (12) in [73]) where n is the sample size. Recently, the Integrated
Rank-Weighted (IRW) depth has been introduced in [76], replacing the infimum with an expectation
(see also [16, 94]) in order to remedy this drawback. In contrast to the halfspace depth, it has been
show in [94] that the approximation of the IRW depth doesn’t suffer from the curse of dimensionality
(see Corollary B.3 in [94]). The IRW depth of x € R w.r.t. to a probability distribution Px on R is
given by:

Digrw (x, Px) :/ min {F, ((u,x)),1 — F, ((u,x))} du,

Sd—1

where F,(t) = Pr((u, X) < t) and S?~! is the unit hypersphere. In practice, the expectation can be
approximated by means of Monte-Carlo. Given a sample S,, = {X1, ..., Xy}, the approximation of
the IRW depth is defined as:

_ 1 MNproj . 1 n 1 n
Dirw (x,8,) = — Z min {n ZH{(u;ﬁXZ— -x) <0}, - Z]I{(uk7xi —x) > 0}} ,
ProJ k=1 i=1 i=1

where uy, € S%~! and npy0; is the number of direction sampled on the sphere. The approximation
version of the IRW depth can be computed in O(npro5nd) and is then linear in all of its parameters.
In addition, the IRW depth has many appealing properties such as invariance to scale/translation
transformations or robustness [76, 16]. Furthermore, it has been successfully applied to anomaly
detection [94] making it a natural choice for OOD detection.

Connection to Mahalanobis-based score. Interestingly enough, the Mahalanobis distance [71]
can be seen as a data depth via an appropriate rescaling as suggested in [66]. It measures the
distance between an element in R? and a probability distribution having finite expectation and
invertible covariance matrix differing from the Euclidean perspective by taking account of cor-
relations. Precisely, the Mahalanobis depth function Dy;(x, Px) is defined as: Dy (x,px) =

(1+(x—-EX])"S 7 (x— E[X]))fl, where X~ is the precision matrix of the r.v. X. Even
though interesting results relying on this notion have been highlighted in [75] for OOD detection, we
experimentally observe better results with the IRW depth. Additionally, the Mahalanobis distance
requires the first two moments to be finite and to compute ¥ ~! in high dimension, which can be
ill-conditioned in low data regimes. Last, inverting ¥ requires O(d®) operations or storing C matrix,
which can become a burden when the number of classes grows [7].

Application to TRUSTED. The second step of TRUSTED uses an OOD score on the aggregated features.
Thanks to its appealing properties, we choose to rely on the Integrated Rank-Weighted Depth Digw



In
Out

averaged embeddings
layer 1 layer 2 layer L1 layer L

Frequency

0.36 0.38 0.40 0.42 0.44 0.46

XQ , ———» 00D score: D(%.P)
t (a) Dirw

depth function

1o
20
Iy In

1)

§1.5 out
g140
T 0.5

O‘00.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

L
mean-aggregation: X = 1 ’Zl orL(xi)

Fig. 1: TRUSTED detector. It relies on two steps: mean layer (b) Dumt

aggregation followed by the computation of Dipw. Fig. 3: Histogram scores

that measures the “similarity” between a test sample x and a training dataset S**, One independent
Dirw is computed per class on the final aggregated layer. The decision is taken by taking the D
score of the predicted class. Formally the final score is taken as:

strustep(X) = Dirw (FPM (%), Fpum (Srtlr?,m)) ) (5)

where we recall that Fpy (S:Lrgin) is the distribution of the mean-aggregation of the training distribu-
tion samples with same predicted target as x (i.e. ).

4 Experimental Settings

In this section, we first discuss the limitation of the previous works on textual OOD detection, then
present the chosen benchmark, the pretrained encoders, and baseline methods.

4.1 Previous works and their limitations

Previous works in OOD detection [62, 84, 52, 67, 75] mostly rely on a single model to determine
which methods are the best. This undermines the soundness of the conclusions that may only hold for
the particular instance of the chosen model (e.g. for a specific checkpoint trained with a specific seed).
To the best of our knowledge, no work studies the impact of the several sources of randomness that
are involved, such as checkpoint and seed selections [86]). Nevertheless, these hyperparameters do
impact the OOD detectors’ performances. This is illustrated in Fig. 9 of the supplementary material,
which gathers several Mahalanobis scores for various checkpoints of the same model.

In the light of Fig. 9, we choose to study both the impact of the checkpoint and the seed choice in
our experiment. Specifically, for each model, we consider 5 different checkpoints. We save and
probe models after 1k, 3k, 5k, 10k, 15k, and 20k finetuning steps. We additionally reproduce this
experiment for 3 different seeds. As the reuse of checkpoints reduces the cost of research and allows
for easy head-to-head comparison, our library also contains the probed models to draw general robust
conclusions about the performance of the considered class of models [30, 38, ].

4.2 Dataset selection

Dataset selection is instrumental for OOD detection evaluation as it is unreasonable to expect a
detection method to achieve good results on any type of OOD data [1]. Since there is a lack of
consensus on which benchmark to use for OOD detection in NLP, we choose to rely on the benchmark
introduced by [103] which is an extension of the one proposed by [49].

Benchmark description. The considered benchmark is composed of three different types of in
distribution datasets (referred to as IN-DS) which are used to train the classifiers: sentiment analysis
(i.e., SST2 [88] and IMDB [70]), topic classification (i.e., 20Newsgroup [54]) and question answering
(i.e., TREC-10 [61]). For splitting we use either the standard split or the one provided by [103]. For
the OOD datasets (referred to as OUT-DS), we first consider the aforementioned datasets (i.e., any pair



of datasets can be considered as OOD). Then, we also rely on four other datasets: a concatenation
of premises and respective hypotheses from two NLI datasets (i.e., RTE [12, 51] and MNLI [99]),
Multi30K [40] and the source of the English-German WMT16 [8]. We gather in Tab. 5 the statistics
of the various data-sets and refer the reader to reference [103] for further details.

4.3 Baseline methods and pretrained models
Baseline methods. We consider the three following baselines:
1. Maximum Soft-max Probability (MSP). This method has been proposed by [47]. Given an input X,

it relies on the final score syisp defined by sysp(x) = 1 — maxyey py|x (y[x), where py | x (-|x))
is the soft-probability predicted by the classifier after x has been observed.

2. Energy-based score (E) [67] is defined as the score sg(x) = T X log [Zyey exp (gy;x))} ,
where g, (x) represents the logit corresponding to the class label y.

3. Mahalanobis (D). Following [75, 60, 1, the last layer of the encoder is considered leading
to the score: sy (x) = —Du(Fpm(x), Fpm(S)5™)) where § represents the label predicted by the

classifier based on the observation of x.

Aggregation procedures. Both Dy and Digryw rely on feature representations of the data which are
extracted from the neural networks. Our goal is to demonstrate that our aggregation procedure F'p s
defined in Eq. 3 is a relevant choice to be plugged in Eq. 5. To do so, we also perform experiments on
other natural aggregation strategies we introduce in the following.

1. Logits layer selection. We use the raw non-normalized predictions of the classifier. In this case
Frogits = F ($1(x),...,0L(x)) = dr41(x).

2. Last layer selection. Following previous work in textual OOD detection [100], we also consider
the last layer of the network. Formally Fy, = F (¢1(x), ..., ¢n(X)) = ¢5(x).

3. Layer concatenation. We follow the BERT pooler and explore the concatenation of all layers.
Formally, Frot = F (¢1(X),...,¢5(x)) = [¢1(X),- -+ , ¢ (x)] represents the concatenated vector.
The main limitation of layer concatenation is that the dimension of the considered features linearly
increases with the number of layers which can be problematic for very deep networks [98].

Pretrained encoders. To provide an exhaustive ~IN-DS BERT Acc DIS. Acc ROB. Acc

comparison, we choose to work with different 20ng 929 92.0 927
types of pretrained encoders. We test the various imdb 91.7 90.6 93.6
methods on DISTILBERT (DIS.) [83], BERT [35] sst2 927 91.7 95.2
and ROBERTA (ROB.) [68]. We trained all models trec 96.8 97.0 97.0

with a dropout rate [89] of 0.2, a batch size of 32, ] .
we use ADAMW [55]. Additionally, the weight Tab. 1: Average test accuracy achieved by dif-
decay is set to 0.01, the warmup ratio is set to 0.06 ferent classifier when training is initialized with
and the learning rate to 1075. different seeds.

5 Static Experimental Results

In this section, we demonstrate the effectiveness of our proposed detector using various pretrained
models. Due to space limitations, additional tables are reported in the Supplementary Material.

5.1 Methods comparison

In Tab. 2, we report the aggregated score obtained by each method combined with a different
aggregation function. We observe that TRUSTED obtains the best overall scores followed by Digw
using Fi.:. Similarly to previous works [75], we notice in general that score leveraging information

2Contrarily to [75], we do not use likelihood ratio as it would require using extra language models, which are
not available in our setting.

3 An alternative is to compute the minimum of all Mahalanobis distance computed on all the classes. However,
we observe slightly better performance when using the predicted label 3.



Tab. 2: Average OOD detection performance (in %). The averages are taken over 1440 configurations
and include four different IN-DS (20ng, imdb, sst2, trec), eight 00D-DS, three different seeds, five
different checkpoints and three different pretrained encoders. Due to space constraints, different
aggregations and related discussions are relegated to Appendix B.

Score Aggregation AUROC AUPR-IN  AUPR-OUT FPR Err

E Fri 89.9 o7 849 +100 799 273 449 334 239 1000

MSP Soft. 89.7 +o 843 189 804 +256 4550205 2544014

Dyt Fr, 93.8 +o.8 89.2 +20.1 915 +164 198 +237 127 +17.0
Fr i1 T1.7 137 547 320 733 1284 62.6 423 37.0 +22.0
Fr,o41) 81.7 =207 60.7 =200 83.8 4203  T73.4 035 33.0-213
Fron+1 83.6 106 619 303 794 1260 81510 304 +1s88
Frut 904 +115 84.0 +22.1 88.0 +197 289 +262 17.6 +188
Fpum 81.2 +153  67.7 +287  82.1 +2202  40.2 w280 23.1 +203

Dirw Fy, 92.6 +s0 885 +17.7 86.3 107 378 +or.3  23.6 +20.4
Friq 824 +140 7724210 721 4208 685205 38.0 1253
Fl,p+1) 95.5 100 91.2 w150 941 w200 2354315 137 +153
Fren+1 959 “100 91.0 =200 94.0 110 155 +205 13.0 +16.0
Feat 96.1 +19  91.8 140 941 +1120 19.1 4216 141 +16.2

TRUSTED  Fpy 97.0 +40 93.2 115 951 +1w.0 154 192 117 +137

available from the training set (i.e., Dy and Dirw) achieve stronger results than those relying on
output of softmax scores solely (i.e., ¥ and MSP).

Interestingly, we observe that Dy achieves the best results when relying on the last layer solely (i.e.,
using F,41). Considering additional layers through concatenation or mean hurts the performances of
Dy;. This is not the case when relying on Dy gryy. Indeed layer aggregation improves the performance
of the detector demonstrating the relevance of using Dyry over Dy as an OOD score. Relying
on Mahalanobis as OOD score suppose that the representation follows a multivariate Gaussian
distribution which might be too strong assumption in the case of layer aggregation. On the contrary
Dirw do not rely on any distributional assumption.

5.2 On the pretrained encoder choice

Tab. 3: Average (over 480 model configurations) performance per pretrained encoder type.

Model  Score Aggregation  AUROC AUPR-IN AUPR-OUT FPR Err

BERT _ MSP Soft. 89.6 841 808 364 258
E Fri 89.7 1« 852 1102 799 455 235
Dy Fr 959 6o 919 93.1 15.9 10.7
Fri 70.7 519 743 00 623 374
Frat 922 155 819 92.2 293 21.5
Fou 80.5 100 65900 819 42.1 24.9
Dirw  Fr 92.6 88.7 +150 87.0 4101 380+0rs 238
Fri 8LI 4117 76.6+20s TL7 000 723200 40.8 2
Frat 96.5 52 921 1157 958 1o 159 12.8
TRUSTED _Fpu 97.4 93.6 96.4 126 104
DIS.  MSP Soft. 882 827 01 772 516 280
E Fri 88.1 833 208 7714200 503 262
Dy Py 94100 89402 906 216204 138
Fri 723 55.7 723200 638101 37840
Frat 89.2 83.9 1217 856425 30807 174
Fou 80.0 68.6 792 007 438 24.1
Drw  Fr 91.2 1« 86.5 1100 84.6 43.0 26.8
Fri 784 73.5 67.8 76.1 417
Frat 96.3 915 94.0 18.9 14.3
TRUSTED _ Fpy 97.3 933 100 951100 141 111
ROB.  MSP Soft. 914 o 859 0. 830 »0 390 0 226
E Fri 91.7 86.2 116¢ 826 39.2 22,0
Dy Fr 91.7 86.6 90.9 216 13.5
Fro 72.1 56.1 734 61.7 359
Fear 89.8 85.9 1200 86.5 26.8 14.4
Feu 82.8 68.4 85.0 107 35.1 20.5
Dirw Fy 938 06 902 87.4 1150 329000 205 s
Fri 8724100 8104210 764 om0 581000 3224000
Frat 95.7 91.9 92.6 106 221 ok 152
TRUSTED _Fpy 963 17 927 93.9 19.1 134

When training and deploying a classifier, a key question is choosing a pretrained encoder. It can be
beneficial in critical applications to trade off the main task accuracy to ensure better OOD detection.
In Tab. 3, we report the individual performance of OOD methods on three types of classifiers.
Although TRUSTED achieves state-of-the-art on all configurations, it is worth noticing a difference in
performance concerning the type of pretrained model. It is also important to remark that for ROB both
MSP and E achieve on-par performances with Dy; while not requiring any extra training information.
Overall, for a given method (i.e. Dy; or Digw), the ranking of detectors performances according to
the type of feature extractor remain still. This validates the use of the mean-aggregation procedure of
TRUSTED. Overall, based on the difference of OOD detection performance of Tab. 3, we recommend
to use TRUSTED on BERT or DIS. if accurate OOD detection is required.



5.3 Impact of the training dataset

OOD detection performance depends on the nature of what is considered in-distribution (the training
distribution in our case). Thus, it is interesting to study the performance per-IN-DS as reported in
Tab. 4. Even though TRUSTED achieves strong results in terms of AUROC, we observe a high FPR on
SST2. From Fig. 4, we observe that IMDB and SST2 are harder to detect, especially for Dy. Finally,
since high AUROC does not necessarily imply a low FPR, it is crucial to take both into account when

designing an OOD detector.

AUROC AUPR-IN  AUPR-OUT FPR Err
09 IN-DS  Score
o 20ng TRUSTED 98.4 968 1= 980 o 8.0+ 6.4 0
g“ . Dyt 97.6 95.1 +9 974 <60 101 +156 7.6 475
207 re imdb TRUSTED  98.6 -2 998 01  88.6 155 8.0=+i30 5.2 +20
i Dy 933 05 98051 773 207 193 1206 6.4 4os
06 sst2 TRUSTED 93.8 155  86.0 172 939 o1 30.7 221 +17.9
: Dy 863 123 717205 905 120 43.0=252 304 1220
08 trec TRUSTED  97.6 -2 91.8 +5 99.3 +1 12.2 41 11.0 +12
Dy 99.0 949 s 99.8 - 44 -7 4.3

Fig. 4: AUROC&FPR trade-off. Tab. 4: Average OOD detection performance per IN-DS.

6 Dynamic Experimental Results

Most OOD detection methods are tested on specific checkpoints, where the selection criterion is often
unclear. The consequences of this selection on OOD detection are rarely studied. This section aims
to respond to this by measuring the OOD detection performance of methods on various checkpoint
finetuning of the pretrained encoder. We will use 5 different checkpoints taken after 1k, 3k, 5k,
10k, 15k, and 20k iterations. Training curves of the models are given in Fig. 7. Notice that after 3k
iterations models have converged and no over-fitting is observed even after 20k iterations (i.e., we do
not observe an increase in validation loss).

Overall analysis. We report the results of the dynamic analysis on the various pretrained models
in Fig. 5. For all the methods and models (except Dy; on ROB), we observe that training longer
the classifier hurts detection. Interestingly, this drop in performance has a higher impact on FPR
compared to AUROC. Thus, it is better to use an early stopping criterion to ensure proper OOD
detection performance. In addition, we observed that TRUSTED (corresponding to Dirw) achieves
better detection results and that Dy outperforms TRUSTED for checkpoints larger than 10k on ROB.
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Fig. 5: Detection performance of different pretrained encoder during finetuning. First column
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correspond to BERT, second to ROB and last to DIS.
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a similar trend to the previous experiment: train- Method

ing longer the classifiers hurt their OOD detection b Dal
performances. Similar observations hold for FPR, 025 050 075 1.00 1.25 150 175 2.00
AUPR-IN, and AUPR-OUT that are postponed to the steps

Supplementary Material (see Fig. 10). Fig. 6: AUROC per IN-DS during fine-tuning.

7 Conclusions and Future Directions

In this work, we introduced TRUSTED a novel OOD detector that relies on information available
in all the hidden layers of a network. TRUSTED leverages a novel similarity score built on top of
the Integrate Rank-Weighted depth. We conduct extensive numerical experiments proving that it
consistently outperforms previous approaches, including detection based on the Mahalanobis distance.
Our comprehensive evaluation framework demonstrates that, in general, OOD performances vary
depending on several hyperparameters of the models, the datasets, and the detector’s feature extraction
step. Thus, we would like to promote the use of such exhaustive evaluation frameworks for future
search to assess Al systems’ safety tools properly. Another interesting question is the detection
inference-time / accuracy trade-off, which is instrumental for the practitioner.
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