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ABSTRACT

Today’s computer vision models achieve human or near-human level performance
across a wide variety of vision tasks. However, their architectures, data, and learn-
ing algorithms differ in numerous ways from those that give rise to human vision.
In this paper, we investigate the factors that affect the alignment between the repre-
sentations learned by neural networks and human mental representations inferred
from behavioral responses. We find that model scale and architecture have essen-
tially no effect on the alignment with human behavioral responses, whereas the
training dataset and objective function both have a much larger impact. These find-
ings are consistent across three datasets of human similarity judgments collected
using two different tasks. Linear transformations of neural network representa-
tions learned from behavioral responses from one dataset substantially improve
alignment with human similarity judgments on the other two datasets. In addition,
we find that some human concepts such as food and animals are well-represented
by neural networks whereas others such as royal or sports-related objects are not.
Overall, although models trained on larger, more diverse datasets achieve better
alignment with humans than models trained on ImageNet alone, our results in-
dicate that scaling alone is unlikely to be sufficient to train neural networks with
conceptual representations that match those used by humans.

1 INTRODUCTION

Representation learning is a fundamental part of modern computer vision systems, but the paradigm
has its roots in cognitive science. When Rumelhart et al.| (1986)) developed backpropagation, their
goal was to find a method that could learn representations of concepts that are distributed across
neurons, similarly to the human brain. The discovery that representations learned by backpropa-
gation could replicate nontrivial aspects of human concept learning was a key factor in its rise to
popularity in the late 1980s (Sutherland,|1986; Ng & Hinton, [2017). A string of empirical successes
has since shifted the primary focus of representation learning research away from its similarities to
human cognition and toward practical applications. This shift has been fruitful. By some metrics,
the best computer vision models now outperform the best individual humans on benchmarks such
as ImageNet (Shankar et al., 2020; |[Beyer et al., 20205 |Vasudevan et al.,[2022). As computer vision
systems become increasingly widely used outside of research, we would like to know if they see the
world in the same way that humans do. However, the extent to which the conceptual representations
learned by these systems align with those used by humans remains unclear.

Do models that are better at classifying images naturally learn more human-like conceptual represen-
tations? Prior work has investigated this question indirectly, by measuring models’ error consistency
with humans (Geirhos et al.l [2018; Rajalingham et al.l [2018; |Geirhos et al.| [2021) and the ability
of their representations to predict neural activity in primate brains (Yamins et al., 2014} |Gii¢li &
van Gerven, 2015} Schrimpf et al., [2020), with mixed results. Networks trained on more data make
somewhat more human-like errors (Geirhos et al., 2021)), but do not necessarily obtain a better fit to
brain data (Schrimpf et al., 2020). Here, we approach the question of alignment between human and
machine representation spaces more directly. We focus primarily on human similarity judgments
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collected from an odd-one-out task, where humans saw triplets of images and selected the image
most different from the other two (Hebart et al.l [2020). These similarity judgments allow us to
infer that the two images that were not selected are closer to each other in an individual’s concept
space than either is to the odd-one-out. We define the odd-one-out in the neural network represen-
tation space analogously and measure neural networks’ alignment with human similarity judgments
in terms of their odd-one-out accuracy, i.e., the accuracy of their odd-one-out “judgments” with
respect to humans’, under a wide variety of settings. We confirm our findings on two independent
datasets collected using the multi-arrangement task, in which humans arrange images according
to their similarity |Cichy et al.| (2019); |KKing et al.| (2019). Based on these analyses, we draw the
following conclusions:

* Scaling ImageNet models improves ImageNet accuracy, but does not consistently improve align-
ment of their representations with human similarity judgments. Differences in alignment across
ImageNet models arise primarily from differences in objective functions and other hyperparam-
eters rather than from differences in architecture or width/depth.

* Models trained on image/text data, or on larger, more diverse classification datasets than Ima-
geNet, achieve substantially better alignment with humans.

* A linear transformation trained to improve odd-one-out accuracy on THINGS substantially in-
creases the degree of alignment on held-out THINGS images as well as for two human similarity
judgment datasets that used a multi-arrangement task to collect behavioral responses.

* We use a sparse Bayesian model of human mental representations (Muttenthaler et al., 2022)
to partition triplets by the concept that distinguishes the odd-one-out. While food and animal-
related concepts can easily be recovered from neural net representations, human alignment is
weak for dimensions that depict sports-related or royal objects, especially for ImageNet models.

2 RELATED WORK

Most work comparing neural networks with human behavior has focused on the errors made during
image classification. Although ImageNet-trained models appear to make very different errors than
humans (Rajalingham et al.,[2018};|Geirhos et al.;|2020;/2021)), models trained on larger datasets than
ImageNet exhibit greater error consistency (Geirhos et al.l 2021)). Compared to humans, ImageNet-
trained models perform worse on distorted images (RichardWebster et al.| 2019; [Dodge & Karam,
2017; Hosseini et al., [2017; |Geirhos et al.| [2018) and rely more heavily on texture cues and less on
object shapes (Geirhos et al., 2019;|Baker et al.| 2018)), although reliance on texture can be mitigated
through data augmentation (Geirhos et al.,[2019; Hermann et al.| |2020; Li et al., [2021)), adversarial
training (Geirhos et al.l|2021), or larger datasets (Bhojanapalli et al., 2021).

Previous work has also compared human and machine semantic similarity judgments, generally us-
ing smaller sets of images and models than we explore here. Jozwik et al|(2017) measured the
similarity of AlexNet and VGG-16 representations to human similarity judgments of 92 object im-
ages inferred from a multi-arrangement task. |Peterson et al.|(2018)) compared representations of five
neural networks to pairwise similarity judgments for six different sets of 120 images. Aminoff et al.
(2022) found that, across 11 networks, representations of contextually associated objects (e.g., bicy-
cles and helmets) were more similar than those of non-associated objects; similarity correlated with
both human ratings and reaction times. [Roads & Love|(2021) collect human similarity judgments for
ImageNet and evaluate triplet accuracy on these similarity judgments using 12 ImageNet networks.
Most closely related to our work, Marjieh et al.{(2022) measure aligment between representations of
networks that process images, videos, audio, or text and the human pairwise similarity judgments of
Peterson et al.| (2018). They report a weak correlation between parameter count and alignment, but
do not systematically examine factors that affect this relationship.

Other studies have focused on perceptual rather than semantic similarity, where the task mea-
sures perceived similarity between a reference image and a distorted version of that reference im-
age (Ponomarenko et al.l [2009; |[Zhang et al.l [2018), rather than between distinct images as in our
task. Whereas the representations best aligned with human perceptual similarity are obtained from
intermediate layers of small architectures (Berardino et al., [2017}; [Zhang et al., [2018};|Chinen et al.,
2018; |[Kumar et al) [2022), the representations best aligned with our odd-one-out judgments are
obtained at final model layers, and architecture has little impact. Jagadeesh & Gardner| (2022) com-
pared human odd-one-out judgments with similarities implied by neural network representations and
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brain activity. They found that artificial and biological representations distinguish the odd one out
when it differs in category, but do not distinguish natural images from synthetic scrambled images.

Our work fits into a broader literature examining relationships between in-distribution accuracy
of image classification and other model quality measures, including accuracy on out-of-distribution
(OOD) data and downstream accuracy when transferring the model. OOD accuracy correlates nearly
linearly with accuracy on the training distribution (Recht et al.| 2019} [Taori et al.,[2020; Miller et al.}
[2021), although data augmentation can improve accuracy under some shifts without improving in-
distribution accuracy (Hendrycks et al, 2021). When comparing the transfer learning performance
across different architectures trained with similar settings, accuracy on the pretraining task correlates
well with accuracy on the transfer tasks (Kornblith et all 2019b), but differences in regularization,
training objective, and hyperparameters can affect linear transfer accuracy even when the impact on
pretraining accuracy is small (Kornblith et al.}2019b};[202T; [Abnar et al.,[2022). In our study, we find
that the training objective has a significant impact, as it does for linear transfer. However, in contrast
to previous observations regarding OOD generalization and transfer, we find that better-performing
architectures do not achieve greater human alignment.

3 METHODS

Human

3.1 DATA

Our primary analyses use images and corre-
sponding human odd-one-out triplet judgments
from the THINGS dataset (Hebart et al.|, [2019). N\
THINGS consists of a collection of 1,854 object R i =
categories, concrete nameable nouns in the En- S ]

glish language that can be easily identified as Figure 1: An example triplet from [Hebart et al. (2020),
a central object in a natural image, along with ~Where neural nets choose a different odd-one-out than
representative images for these categories. For @ human. The images in this triplet are copyright-free
presentation purposes, we have replaced the im-  1Mages from THINGS + (Stoinski et al} 2022).

ages used in [Hebart et al (2020) with images similar in appearance that are licensed under CCO
(Stoinski et al.}[2022). We additionally consider two datasets of images with human similarity judg-
ments obtained from a multi-arrangement task (Cichy et al 2019} [King et all, [2019). We briefly
describe the procedures that were used to obtain these datasets below.

THINGS triplet task Hebart et al.|(2020) collected similarity judgments from human participants on
images in THINGS in the form of responses to a triplet task. In this task, images from three distinct
categories are presented to a participant, and the participant selects the image that is most different
from the other two (or equivalently the pair that are most similar). The triplet task has been used
to study properties of human mental representation for many decades (e.g., [Fukuzawa et al. [T988},
[Robilotto & Zaidi, [2004} [Hebart et al.,[2020). Compared to tasks involving numerical/Likert-scale
pairwise similarity judgments, the triplet task does not require different subjects to interpret the scale
similarly and does not require that the degree of perceived similarity is cognitively accessible.

Hebart et al.| (2020) collected 1.46 million unique responses crowdsourced from 5,301 workers.
See Figure 1| for an example triplet. Some triplets offer an obvious answer to the triplet task, e.g.
“cat”, “dog”, “candelabra”, whereas others can be ambiguous, e.g. “knife”, “table”, “candelabra.”
To estimate the consistency of triplet choices among participants [Hebart et al.| (2020) collected 25
responses for each triplet in a randomly selected set of 1,000 triplets. From these responses,

(2020) determined that the maximum achievable odd-one-out accuracy is 67.22% + 1.04%.

Multi-arrangement task The multi-arrangement task is another task commonly used to measure
human similarity judgments (Kriegeskorte & Mur, 2012). In this task, subjects arrange images
on a computer screen so that the distances between them reflect their similarities. We use multi-
arrangement task data from two recent studies. [Cichy et al| (2019) collected similarity judgments
from 20 human participants for 118 natural images from ImageNet (Deng et al [2009), and King|
collected similarity judgments from 20 human participants for two natural image sets
with 144 images per image set. The 144 images correspond to 48 object categories, each with three
images. For simplicity, we report results based on only one of these two sets of images.
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3.2 METRICS

Zero-shot odd-one-out accuracy To measure alignment between humans and neural networks on
the THINGS triplet task, we examine the extent to which the odd-one-out can be identified directly
from the similarities between images in models’ representation spaces. Given representations i,
T2, and x3 of the three images that comprise the triplet, we first construct a similarity matrix
S € R3*3 where S;; = x, x;/(||zi|l2]|z;||2), the cosine similarity between a pair of repre-
sentations|'| We identify the closest pair of images in the triplet as arg max; ;- S;,;; the remaining
image is the odd-one-out. We define zero-shot odd-one-out accuracy as the proportion of triplets
where the odd-one-out identified in this fashion matches the human odd-one-out response. When
evaluating zero-shot odd-one-out accuracy of supervised ImageNet models, we report the better of
the accuracies obtained from representations of the penultimate embedding layer and logits; for self-
supervised models, we use the projection head input; for image/text models, we use the representa-
tion from the joint image/text embedding space; and for the JFT-3B model, we use the penultimate
layer. In Figure[B.T|we show that representations obtained from earlier layers performed worse than
representations from top layers, as in previous work (Montavon et al.| | 2011).

Probing In addition to measuring zero-shot odd-one-out accuracy on THINGS, we also learn a linear
transformation of each neural network’s representation that maximizes odd-one-out accuracy and
then measure odd-one-out accuracy of the transformed representation on triplets comprising a held-
out set of images. Following |Alain & Bengio| (2017), we refer to this procedure as linear probing.
To learn the linear probe, we formulate the notion of the odd-one-out probabilistically, as in Hebart;
et al.| (2020). Given image similarity matrix .S and a triplet {4, j, k} (here the images are indexed by
natural numbers), the likelihood of a particular pair, {a,b} C {4, j, k}, being most similar, and thus
the remaining image being the odd-one-out, is modeled by the softmax of the object similarities,

p({a,b}{i, j, k}, §) = exp(Sap)/ (exp(Si;) + exp(Sik) + exp(Sjk)) - )
We learn the linear transformation that maximizes the log-likelihood of the triplet odd-one-out judg-
ments plus an /5 regularization term. Specifically, given triplet responses ({as, bs}, {is, js, ks })n_y
we find a square matrix W yielding a similarity matrix S;; = (W;) " (W ;) that optimizes

. 1< o
argmin — — E log p ({as, bs}{is, js, ks}, S) +X||W]|3. )
w n

s=1

odd-one-out prediction

Here, we determine A via grid-search during k-fold cross-validation (CV). To obtain a minimally
biased estimate of the odd-one-out accuracy of a linear probe, we partition the m objects into two
disjoint sets. Experimental details about the optimization process, k-fold CV, and how we partition
the objects can be found in Appendix [A.T|and Algorithm [T]respectively.

RSA To measure the alignment between human and neural net representation spaces on multi-
arrangement datasets, following previous work, we perform representational similarity analysis
(RSA; [Kriegeskorte et al.| (2008)) and compute correlation coefficients between neural network
and human representational similarity matrices (RSMs) for the same sets of images (Kriegesko-
rte & Kievit, 2013; [Cichy et al., [2019). We construct RSMs using a Pearson correlation kernel and
measure the Spearman correlation between RSMs. We measure alignment on multi-arrangement
datasets in a zero-shot setting as well as after applying the linear probe W learned on THINGS.

3.3 MODELS

Vision models In our evaluation, we consider a diverse set of pretrained neural networks, including
a wide variety of self-supervised and supervised models trained on ImageNet-1K and ImageNet-
21K; three models trained on EcoSet (Mehrer et al., 2021)), which is another natural image dataset;
a “gigantic” Vision Transformer trained on the proprietary JFT-3B dataset (ViT-G/14 JFT) (Zhai
et al.,2022); and image/text models CLIP (Radford et al., 2021), ALIGN (Jia et al.,|2021)), and BA-
SIC (Pham et al.,[2022). A comprehensive list of models that we analyze can be found in Table
To obtain image representations, we use thingsvision, a Python library for extracting activa-
tions from neural nets (Muttenthaler & Hebart, 2021). We determine the ImageNet top-1 accuracy
for networks not trained on ImageNet-1K by training a linear classifier on the network’s penultimate
layer using L-BFGS (Liu & Nocedall [1989).

"'We use cosine similarity rather than dot products because it nearly always yields similar or better zero-shot
odd-one-out accuracies, as shown in Figure[B.2}
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Figure 2: Zero-shot odd-one-out accuracy on THINGS only weakly correlates with ImageNet accuracy and
varies with training objective but not with model architecture. Top left: Zero-shot accuracy as a function of
ImageNet accuracy for all models. Diagonal line indicates least-squares fit. Top center: Models with the
same architecture (ResNet-50) trained with a different objective function or different data augmentation. Since
MixUp alters both inputs and targets, it is listed under both objectives and augmentations. Top right: Models
trained with the same objective (softmax cross-entropy) but with different architectures. Bottom left: Perfor-
mance of different SSL models. Bottom center: Zero-shot accuracy is negatively correlated with ImageNet
accuracy for image/text models. Bottom right: A subset of ImageNet models with their number of parameters,
colored by model family. Note that, in this subplot, models that belong to different families come from different
sources and were trained with different objectives, hyperparameters, etc.; thus, models are only directly compa-
rable within a family. In all plots, horizontal lines reflect chance-level or ceiling accuracy. See also Table@

VICE Several of our analyses make use of human concept representations obtained by Variational
Interpretable Concept Embeddings (VICE), an approximate Bayesian method for finding represen-
tations that explain human odd-one-out responses in a triplet task (Muttenthaler et al., 2022). VICE
uses mean-field VI to learn a sparse representation for each image that explains the associated be-
havioral responses. VICE achieves an odd-one-out accuracy of ~64% on THINGS, which is only
marginally below the ceiling accuracy of 67.22% (Hebart et al., [2020). The representation dimen-
sions obtained from VICE are highly interpretable and thus give insight into properties humans deem
important for similarity judgments. We use the representation dimensions to analyze the alignment
of neural network representations with human concept spaces. However, VICE is not a vision model,
and can only predict odd-one-out judgments for images included in the training triplets.

4 EXPERIMENTS

Here, we investigate how closely the representation spaces of neural networks align with humans’
concept spaces, and whether concepts can be recovered from a representation via a linear transfor-
mation. Odd-one-out accuracies are measured on THINGS, unless otherwise stated.

4.1 ODD-ONE-OUT VS. IMAGENET ACCURACY

‘We begin by comparing zero-shot odd-one-out accuracy for THINGS with ImageNet accuracy for all
models in Figure 2] (top left). ImageNet accuracy generally is a good predictor for transfer learning
performance (Kornblith et al., |2019b; Djolonga et al., [2021} [Ericsson et al., | 2021). However, while
ImageNet accuracy is highly correlated with odd-one-out accuracy for a reference triplet task that
uses the CIFAR-100 superclasses (see Appendix [C), its correlation with accuracy on human odd-
one-out judgments is very weak (r = 0.099). This raises the question of whether there are model,
task, or data characteristics that influence human alignment.

Architecture or objective? We investigate odd-one-out accuracy as a function of ImageNet accu-
racy for models that vary in the training objective/final layer regularization, data augmentation, or
architecture with all other hyperparameters fixed. Models with the same architecture (ResNet-50)
trained with different objectives (Kornblith et al.l 2021} yield substantially different zero-shot odd-
one-out accuracies (Figure [2] top center). Conversely, models with different architectures trained
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with the same objective (Kornblith et al., 2019b) achieve similar odd-one-out accuracies, although
their ImageNet accuracies vary significantly (Figure 2| top right). Thus, whereas architecture does
not appear to affect odd-one-out accuracy, training objective has a significant effect.

Training objective also affects which layer yields the best human alignment. For networks trained
with vanilla softmax cross-entropy, the logits layer consistently yields higher zero-shot odd-one-out
accuracy than the penultimate layer, but among networks trained with other objectives, the penulti-
mate layer often provides higher odd-one-out accuracy than the logits (Figure [E.2). The superiority
of the logits layer of networks trained with vanilla softmax cross-entropy is specific to the odd-one-
out task and RSA and does not hold for linear transfer, as we show in Appendix

Self-supervised learning Jigsaw (Noroozi & Favaro, 2016) and RotNet (Gidaris et al.,[2018]) show
substantially worse alignment with human judgments than other SSL models (Figure 2|bottom left).
This is not surprising given their poor performance on ImageNet. Jigsaw and RotNet are the only
SSL models in our analysis that are non-Siamese, i.e., they were not trained by connecting two
augmented views of the same image. For Siamese networks, however, ImageNet performance does
not correspond to alignment with human judgments. SimCLR (Chen et al.,[2020) and MoCo-v2 (He
et al.,[2020), both trained with a contrastive learning objective, achieve higher zero-shot odd-one-out
accuracy than Barlow Twins (Zbontar et al.,[2021), SWAV (Caron et al.,[2020), and VICReg (Bardes
et al., |2022)—of which all were trained with a non-contrastive learning objective—although their
ImageNet performances are reversed. This indicates that contrasting positive against negative exam-
ples rather than using positive examples only improves alignment with human similarity judgments.

Model capacity Whereas one typically observes a positive correlation between model capacity and
task performance in computer vision (Tan & Lel[2019; Kolesnikov et al., 2020;[Zhai et al.| [2022)), we
observe no relationship between model parameter count and odd-one-out accuracy (Figure 2|bottom
right). Thus, scaling model width/depth alone appears to be ineffective at improving alignment.

4.2 CONSISTENCY OF RESULTS ACROSS DIFFERENT DATASETS

Although the multi-arrangement task is quite different from the triplet odd-one-out task, we observe
similar results for both human similarity judgment datasets that leverage this task (see Figure [3)).
Again, ImageNet accuracy is not correlated with the degree of human alignment, and objective
function and training data, but not architecture or model size, have a substantial impact.

4.3 HOW MUCH ALIGNMENT CAN A LINEAR PROBE RECOVER?

We next investigate human alignment of neural network representations after linearly transforming
the representations to improve odd-one-out accuracy, as described in §3] In addition to evaluating
probing odd-one-out accuracies, we perform RSA after applying the transformation matrix obtained
from linear probing on the triplet odd-one-out task to a model’s raw representation space. Note
that the linear probe was trained exclusively on a subset of triplets from |[Hebart et al.| (2020) (see
Appendix [E)), without access to human responses from the two other human similarity judgments
datasets (Cichy et al.l 2019} King et al., 2019).

Across all three datasets, we observe that the transformation matrices obtained from linear probing
substantially improve the degree of alignment with human similarity judgments. The probing odd-
one-out accuracies are correlated with the zero-shot odd-one-out accuracies for both the embedding
(Figure [] left; p = 0.774) and the logit layers (Figure p = 0.880). Similarly, we observe a
strong correlation between the human alignment of raw and transformed representation spaces for
the embedding layer for both multi-arrangement task datasets from [Cichy et al| (2019) (Figure f]
center; p = 0.749) and King et al| (2019) (Figure d]right; p = 0.519) respectively. After applying the
transformation matrices to neural nets’ representations, we find that image/text models and ViT-G
/14 JFT are better aligned than ImageNet or EcoSet models for all datasets and metrics.

As we discuss further in Appendix [E} the relationship between probing odd-one-out accuracy and
ImageNet accuracy is generally similar to the relationship between zero-shot odd-one-out accuracy
and ImageNet accuracy. The same holds for the relationship between Spearman’s p and ImageNet
accuracy and Spearman’s p (+ transform) and ImageNet accuracy. The correlation between Ima-
geNet accuracy and probing odd-one-out accuracy remains weak (r = 0.222). Probing reduces
the variance in odd-one-out accuracy or Spearman’s p among networks trained with different loss
functions, self-supervised learning methods, and image/text models, yet we still fail to see improve-
ments in probing accuracy with better-performing architectures or larger model capacities. However,
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Figure 3: Spearman correlation between human and neural network representational similarity matrices is not
correlated with ImageNet accuracy for ImageNet models and is negatively correlated for image/text models.
Alignment varies with training objective but not with model architecture or number of parameters for both sim-
ilarity judgment datasets (Cichy et al] 2019} [King et al| 2019). See caption of Figure 2] for further description
of panels. Diagonal lines indicate least-squares fits.

whereas image/text models exhibit a negative correlation between ImageNet accuracy and zero-shot
odd-one-out accuracy is negative in Figures[2and[3] the correlation between ImageNet accuracy and
probing odd-one-out accuracy is small but positive.

Interestingly, for EcoSet models, transformation matrices do not improve alignment as much as they
do for architecturally identical ImageNet models. Although one goal of EcoSet was to provide data
that yields better alignment with human perception than ImageNet (Mehrer et al.}[2021)), we find that
models trained on EcoSet are less aligned with human similarity judgments than ImageNet models.

4.4 HOW WELL DO PRETRAINED NEURAL NETS REPRESENT HUMAN CONCEPTS?

Below, we examine zero-shot and linear probing odd-one-out accuracies for individual human con-
cepts. To investigate how well neural nets represent these concepts, we filter the original dataset D to
produce a new dataset D* containing only triplets correctly predicted by VICE. Thus, the best attain-
able odd-one-out accuracy for any model is 1 as opposed to the upper-bound of 0.6722 for the full
data. We further partition D* into 45 subsets according to the 45 VICE dimensions, D7, ..., Djs.
A triplet belongs to D when the sum of the VICE representations for the two most similar objects
in the triplet, x,, ', attains its maximum in dimension j, j = arg max;, ;- + p,j’-
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Figure 4: Left panel: Zero-shot and probing odd-one-out accuracies for the embedding layer of all neural
nets. Right panels: Spearman rank correlation coefficients with and without applying the transformation matrix
obtained from linear probing to a model’s raw representation space. Dashed lines indicate y = .

4.4.1 HUMAN ALIGNMENT IS CONCEPT-SPECIFIC

In Figure[5] we show zero-shot and linear probing odd-one-out accuracies for a subset of three of the
45 VICE dimensions for a large subset of the models listed in Table[B.1I] Zero-shot and probing odd-
one-out accuracies for a larger set of dimensions can be found in Appendix[J} Since the dimensions
found for THINGS are similar both in visual appearance and in their number between Muttenthaler
et al.[(2022) and |Hebart et al.|(2020), we infer a labeling of the human dimensions from|Hebart et al.
(2020) who have evidenced the interpretability of these dimensions through human experiments.

Although models trained on large datasets — image/text models and ViT-G/14 JFT — generally
show a higher zero-shot odd-one-out accuracy compared to self-supervised models or models trained
on ImageNet, the ordering of models is not entirely consistent across concepts. For dimension 10
(vehicles), ResNets trained with a cosine softmax objective were the best zero-shot models,
whereas image/text models were among the worst. For dimension 4, an animal-related concept,
models pretrained on ImageNet clearly show the worst performance, whereas this concept is well
represented in image/text models. Differences in the representation of the animal concept across
models are additionally corroborated by the t-SNE visualizations in Appendix

Linear probing yields more consistent patterns than zero-shot performance. For almost every human
concept, image/text models and ViT-G/14 JFT have the highest per-concept odd-one-out accuracies,
whereas AlexNet and EfficientNets have the lowest. This difference is particularly apparent for
dimension 17, which summarizes sports-related objects. For this dimension, image/text models and
ViT-G/14 JFT perform much better than all remaining models. As shown in Appendix even
for triplets where VICE predicts that human odd-one-out judgments are very consistent, ImageNet
models make a substantial number of errors. By contrast, image/text models and ViT-G/14 JFT
achieve a near-zero zero-shot odd-one-out error for these triplets.

4.4.2 CAN HUMAN CONCEPTS BE RECOVERED VIA LINEAR REGRESSION?

To further understand the extent to which human concepts can be recovered from neural networks’
representation spaces, we perform f,-regularized linear regression to examine models’ ability to
predict VICE dimensions. The results from this analysis — which we present in detail in Appendix[F]
— corroborate the findings from models trained on image/text data and ViT-G/14 JFT consis-
tently provide the best fit for VICE dimensions, while AlexNet and EfficientNets show the poorest
regression performance. We compare odd-one-out accuracies after linear probing and regression re-
spectively. The two performance measures are highly correlated for the embedding (r = 0.982) and
logit (r = 0.972; see Figure [F3) layers, which additionally supports our observations from linear
probing. Furthermore, we see that the leading VICE dimensions, which are the most important for
explaining human triplet responses, could be fitted with an R? score of > 0.7 for most of the models
— the quality of the regression fit declines with the importance of a dimension (see Figure [F.4).

5 DISCUSSION

In this work, we evaluated the alignment of neural network representations with human concepts
spaces through performance in an odd-one-out task and by performing representational similarity
analysis. Before discussing our findings we will address limitations of our work. One limitation is
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Figure 5: Zero-shot and linear probing odd-one-out accuracies differ across VICE concepts. Results are shown
for the embedding layer of all models for three of the 45 VICE dimensions. See Appendix [J] for additional di-
mensions. Color-coding is determined by training data/objective. Violet: Image/Text. Green: Self-supervised.
Orange: Supervised (ImageNet-1K). Cyan: Supervised (ImageNet-21K). Black: Supervised (JFT-3B).

that we did not consider non-linear transformations. It is possible that simple non-linear transfor-
mations could provide better alignment for the networks we investigate. We plan to investigate such
transformations further in future work. Another limitation stems from our use of pretrained models
for our experiments, since they have been trained with a variety of objectives and regularization
strategies. We have mitigated this by comparing controlled subsets of models in Figure 2}

Nevertheless, we can draw the following conclusions from our analyses. First, scaling ImageNet
models does not lead to better alignment of their representations with human similarity judgments.
Differences in human alignment across ImageNet models are mainly attributable to the objective
function with which a model was trained, whereas architecture and model capacity are both in-
significant. Second, models trained on image/text or more diverse data achieve much better align-
ment than ImageNet models. Albeit not consistent for zero-shot odd-one-out accuracy, this is clear
in both linear probing and regression results. These conclusions hold for all three datasets we have
investigated, indicating that they are true properties of human/machine alignment rather than id-
iosyncrasies of the task. Finally, good representations of concepts that are important to human
similarity judgments can be recovered from neural network representation spaces. However, rep-
resentations of less important concepts, such as sports and royal objects, are more difficult to
IECOVer.

How can we train neural networks that achieve better alignment with human concept spaces? Al-
though our results indicate that large, diverse datasets improve alignment, all image/text and JFT
models we investigate all attain probing accuracies of 60-61.5%. By contrast, VICE representations
achieve 64%, and a Bayes-optimal classifier achieves 67%. Since our image/text models are trained
on datasets of varying sizes (400M to 6.6B images) but achieve similar alignment, we suspect that
further scaling of dataset size is unlikely to close this gap. To obtain substantial improvements, it
may be necessary to incorporate additional forms of supervision when training the representation
itself. Benefits of improving human/machine alignment may extend beyond accuracy on our triplet
task, to transfer and retrieval tasks where it is important to capture human notions of similarity.
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A  EXPERIMENTAL DETAILS
A.1 LINEAR PROBING

Initialization We initialized the transformation matrix W € RP*? used in Eq. with values from a
tight Gaussian centered around 0, such that W ~ N(0, 1021 at the beginning of the optimization
process.

Training We optimized the transformation matrix W via gradient descent, using Adam (Kingma
& Bal [2015) with a learning rate of n = 0.001. We performed a grid-search over the learning rate
7, where 7 € {0.0001,0.001,0.01} and found 0.001 to work best for all models in Table We
trained the linear probe for a maximum of 100 epochs and stopped the optimization process early
whenever the generalization performance did not change by a factor of 0.0001 for 7" = 10 epochs.
For most of our evaluation and linear probing experiments, we use PyTorch (Paszke et al., 2019).

Cross-validation To obtain a minimally biased estimate of the odd-one-out accuracy of a linear
probe, we performed k-fold CV over objects rather than triplets. We partitioned the m objects into
two disjoint sets for train and test triplets. Algorithm [I] demonstrates how object partitioning was
performed for each of the k folds.

Algorithm 1 Algorithm for object partitioning during k-fold CV

Input: (D, m) > Here, D = ({as, bs}, {is, Js, ks } )71 and m is the number of objects
m] = {1,....,m} > [[m)| = m
Oyrain ~ U([m]) > Sample a number of train objects uniformly at random without replacement
Otest == [m] \ Oprain > Test objects are the remaining objects
Diain = {} > Initialize an empty set for the train triplets
Diest = {} > Initialize an empty set for the test triplets

forse{l,...,n}do
assignments £ list() > For each triplet initialize an empty list to control object assignments
for x € {is, js, ks } do
if (x € Oygin) then
assignment £ “train”
else
assignment
end if
assignments <— assignment > Append current assignment to the list of assignments
end for
if (len(set(assignments)) # 1) then
continue > If not all objects in a triplet belong to the same set of objects, discard triplet

A
N “test”

else
assignment = pop (set (assignments)) > Get object set assignment of current triplet
if (assignment is “train”) then
Drrain = Dirain U Dy > Assign current triplet to the train set
else
Diest ‘= Diest U D > Assign current triplet to the test set
end if
end if
end for
Output: (Dyin, Diest) > Return both train and test triplet sets

Note that the number of train objects that are sampled uniformly at random without replacement
from the set of all objects is dependent on k. We performed a grid-search search over k, where
k € {2,3,4,5}, and observed that 3-fold and 4-fold CV lead to the best linear probing results.
Since the objects in the train and test triplets are not allowed to overlap, loss of data was inevitable
(see Algorithm [T). One can easily see that minimizing the loss of triplet data comes at the cost
of disproportionally decreasing the size of the test set. We decided to proceed with 3-fold CV
in our final experiments since using 2/3 of the objects for training and 1/3 for testing resulted
in a proportionally larger test set than using 3/4 for training and 1/4 for testing (~ 433k train
and ~ 54k test triplets for 3-fold CV vs. ~ 616k train and ~ 23k test triplets for 4-fold CV). In
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general, the larger a test set, the more accurate the estimate of a model’s generalization performance.
To find the optimal strength of the /2 regularization for each linear probe, we performed a grid-
search over A\ for each k value individually. The optimal A varied between models, where A €
{0.0001,0.001,0.01,0.1,1}.

A.2 TEMPERATURE SCALING

It is widely known that classifiers trained to minimize cross-entropy tend to be overconfident in their
predictions (Szegedy et al., [2016} |Guo et al., 2017; Roelofs et al., [2022]), which is in stark contrast
to the high-entropy predictions of VICE. For this purpose, we performed temperature scaling (Guo
et al., 2017)) on the model outputs for THINGS and searched over the scaling parameter 7 for each
model. In particular, we considered temperature-scaled predictions

. exp(7Sa.p)

p({a7 b}|{lﬂ j? k}? TS) eXp(TSZ‘J‘) + eXp(TSi7k) + eXp(TSj’]g) 9
where we multiply S in Eq. [I| by a constant 7 > 0 and S; ; is the inner product of the model
representations for images ¢ and j, i.e. the zero-shot similarities. There are several conceivable
criteria that could be minimized to find the optimal scaling parameter 7 from a set of candidates.
For our analyses, we considered the following,

» Average Jensen-Shannon (JS) distance between model zero-shot probabilities and VICE proba-
bilities over all triplets

» Average Kullback-Leibler divergence (KLD) between model zero-shot probabilities and VICE
probabilities over all triplets

» Expected Calibration Error (ECE) (Guo et al.,|[2017)

The ECE is defined as follows. Let D = ({as, bs} , {is, js, ks })r_, be the set of triplets and human
responses from [Hebart et al.| (2020). For a given triplet {i, j, k} and similarity matrix S we define

confidence as
({a, 0} [{i,4,k},S).

This corresponds to the expected accuracy of the Bayes classifier for that triplet according to the
probability model from S with Eq. |1} We define B,,(.S) to be those training triplets where

conf ({¢,7,k},S) = max
({i, 4.k}, S) (el P

. m—1 m
conf ({stjsaks},s) € |:10710:| .

For a similarity matrix, S, and a set of triplets with responses, D’ C D, we define acc (D’, S) to be
the portion of triplets in D’ correctly classified according to the highest similarity according to S.
Finally for a set of triplets D’ C D and similarity matrix S we define conf(D’) to be the average
confidence over that set (triplet responses are simply ignored). The ECE is defined as

~ |Bun (9]
ECE(r,S) = Y "=~ |acc(B, (r8)) — conf (B, (75))].
n
m=1
Intuitively, the ECE is low if for each subset, B,,(7.S), the model’s accuracy and its confidence are
near each other. A model will be well-calibrated if its confidence in predicting the odd-one-out in a
triplet corresponds to the probability that this prediction is correct.

Of the three considered criteria, ECE resulted in the clearest optima when varying 7, whereas KLD
plateaued with increasing 7 and JS distance was numerically unstable, most probably because the
model output probabilities were near zero for some pairs, which may result in very large JS distance.
For all models, we performed a grid-search over 7 € {1-10°,7.5-107!,5.1071,2.5- 1071, 1 -
1071,7.5-1072,5-1072,2.,5-1072,1-1072,7.5-1073,5-1073,2.5-1073,1-1073,5- 1074, 1 -
1074,5-107%,1-10°}.

A.3 LINEAR REGRESSION

Cross-validation We used ridge regression, that is ¢o-regularized linear regression, to find the trans-
formation matrix A;. and bias b; that result in the best fit. We employed nested k-fold CV for
each of the d VICE dimensions. For the outer CV we performed a grid-search over k, where
k € {2,3,4,5}, similarly to how k-fold CV was performed for linear probing (see Appendix [A.T).
For our final experiments, we used 5-fold CV to obtain a minimally biased estimate for the R? score
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of the regression fit. For the inner CV, we leveraged leave-one-out CV to determine the optimal «
for Eq. BJusing RidgeCV from [Pedregosa et al.| (2011). We performed a grid search over «, where
a € {0.01,0.1,1, 10, 100, 1000, 10000, 100000, 1000000}.

B MODELS

First, we evaluate supervised models trained on ImageNet (Russakovsky et al. 2015), such as

AlexNet [2014), various VGGs (Simonyan & Zisserman), [2015), ResNets (He et al.
[2016), EfficientNets 2019), ResNext models (Xie et al.,2017), and Vision Transformers
(ViTs) trained on ImageNet-1K (Dosovitskiy et al., [2021)) or ImageNet-21K (Steiner et al., 2022)
respectively. Second, we analyze recent state-of-the-art models trained on image/text data, CLIP-
RN & CLIP-ViT (Radford et al} 2021)), ALIGN and BASIC-L [2022).

Third, we evaluate self-supervised models that were trained with a contrastive learning objective
such as SimCLR [2020) and MoCo-v2 [2020), recent SSL models that were
trained with a non-contrastive learning objective (no negative examples), BarlowTwins
2021), SWAV (Caron et al.| [2020), and VICReg (Bardes et al.,2022), as well as earlier SSL,
non-Siamese models, Jigsaw (Noroozi & Favaro},[2016), and RotNet (Gidaris et al.| 2018)). All self-
supervised models have a ResNet-50 architecture. For SimCLR, MoCo-v2, Jigsaw and RotNet, we
leverage model weights from the VISSL library (Goyal et al.| [2021)). For the other models we use
weights from their official GitHub repositories. Last, we evaluate the largest available ViT
2022), trained on the proprietary JFT-3B image classification dataset, which consists of ap-

proximately three billion images belonging to approximately 30,000 classes 2022). See
Table [B.1]for further details regarding the models evaluated.
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Figure B.1: Zero-shot odd-one-out accuracy for different layers for a subset of selected models.
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dot product as a similarity measure.
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Model Source Architecture Dataset Objective ImageNet Zero-Shot Probing
AlexNet AlexNet ImageNet-1K Supervised (softmax) 56.52%  50.47% 53.84%
AlexNet ebart AlexNet Ecoset Supervised (softmax) - 50.00% 51.30%
ALIGN EfficientNet ALIGN dataset Image/Text (contr.) 85.11%  43.60% 60.81%
Basic-L CoAtNet ALIGN + JFT-5B Image/Text (contr.) 89.45% 50.65% 61.24%
CLIP RN101 ResNet CLIP dataset Image/Text (contr.) 75.70%  51.26% 60.22%
CLIP RN50 ResNet CLIP dataset Image/Text (contr.) 73.30% 52.78% 59.92%
CLIP RN50x16 Radford ct al. ResNet CLIP dataset Image/Text (contr.) 81.50%  49.63% 60.86%
CLIP RN50x4 adford ct al | ResNet CLIP dataset Image/Text (contr.) 78.20% 50.24% 60.38%
CLIP RN50x64 adford et al. ResNet CLIP dataset Image/Text (contr.) 83.60%  47.64% 61.07%
CLIP ViT-B/16 Radford et al. ViT CLIP dataset Image/Text (contr.) 80.20%  50.34% 60.72%
CLIP ViT-B/32 adford et al. ViT CLIP dataset Image/Text (contr.) 76.10% 51.41% 60.54%
CLIP ViT-L/14 adford et al.. ViT CLIP dataset Image/Text (contr.) 83.90% 46.71% 60.64%
DenseNet-121 ornblith et al. DenseNet  ImageNet-1K Supervised (softmax) 75.64%  50.37% 55.18%
DenseNet-169 @ DenseNet  ImageNet-1K Supervised (softmax) 76.73%  50.52% 55.36%
DenseNet-201 ornblith et al. DenseNet ~ ImageNet-1K Supervised (softmax) 77.14%  50.45% 55.37%
EfficientNet BO an & Le| 201 EfficientNet ImageNet-1K Supervised (softmax) 77.69%  45.42% 50.82%
EfficientNet B1 an & Lel 2019 EfficientNet ImageNet-1K Supervised (softmax) 79.84%  45.08% 51.30%
EfficientNet B2 an & Lel 2019 EfficientNet ImageNet-1K Supervised (softmax) 80.61%  43.23% 49.33%
EfficientNet B3 an & Lel 2019 EfficientNet ImageNet-1K Supervised (softmax) 82.01%  39.94% 50.79%
EfficientNet B4 an & L} 2010, EfficientNet ImageNet-1K Supervised (softmax) 83.38%  38.52% 50.65%
EfficientNet BS an & Le} 2010, EfficientNet ImageNet-1K Supervised (softmax) 83.44%  45.10% 51.47%
EfficientNet B6 an & Le) 2010 EfficientNet ImageNet-1K Supervised (softmax) 84.01%  45.97% 51.56%
EfficientNet B7 an & Le) 2010 EfficientNet ImageNet-1K Supervised (softmax) 84.12%  45.77% 52.41%
Inception-RN V2 ornblith et al.| 2019b Inception ImageNet-1K Supervised (softmax) 80.26%  51.31% 55.78%
Inception-V1 Inception ImageNet-1K Supervised (softmax) 73.63% 50.43% 54.97%
Inception-V2 Inception ImageNet-1K Supervised (softmax) 75.34% 50.70% 54.97%
Inception-V3 Inception ImageNet-1K Supervised (softmax) 78.64%  51.59% 55.84%
Inception-V4 Inception ImageNet-1K Supervised (softmax) 7992%  51.58% 55.47%
MobileNet-V1 MobileNet  ImageNet-1K Supervised (softmax) 72.39%  50.70% 54.98%
MobileNet-V2 MobileNet  ImageNet-1K Supervised (softmax) 71.67%  50.45% 55.17%
MobileNet-V2 (1.4) MobileNet  ImageNet-1K Supervised (softmax) 74.66% 50.67% 55.11%
NASNet-L NASNet ImageNet-1K Supervised (softmax) 80.77%  51.68% 55.78%
NASNet-Mobile ornl ! NASNet ImageNet-1K Supervised (softmax) 73.57%  51.23% 55.48%
RN-50-BarlowTwins bontar et al. ResNet ImageNet-1K Self-sup. (non-contr.) 71.80%  42.44% 50.50%
RN-50-Jigsaw Goyal et al.} |2 ResNet ImageNet-1K Self-sup. (non-Siamese)  48.57%  39.56% 50.11%
RN-50-MoCo-v2 Goyal et al. ResNet ImageNet-1K Self-sup. (contr.) 66.40%  47.85% 55.94%
RN-50-RotNet Goyal et al. ResNet ImageNet-1K Self-sup. (non-Siamese)  54.93%  39.83% 50.82%
RN-50-SimCLR Goyal et al. ResNet ImageNet-1K Self-sup. (contr.) 69.68%  47.28% 56.37%
RN-50-SWAV Caron et al. ResNet ImageNet-1K Self-sup. (non-contr.) 74.92%  42.27% 51.79%
RN-50-VICReg (Bardes ctal. ResNet ImageNet-1K Self-sup. (non-contr.) 7320%  42.44% 50.50%
RN-18 cetal. ResNet ImageNet-1K Supervised (softmax) 69.76%  51.05% 54.97%
RN-34 He et al. ResNet ImageNet-1K Supervised (softmax) 73.31% 50.93% 55.30%
RN-50 e etal. ResNet ImageNet-1K Supervised (softmax) 80.86%  49.44% 53.72%
RN-101 e etal, ResNet ImageNet-1K Supervised (softmax) 81.89%  47.40% 52.06%
RN-152 e et al. ResNet ImageNet-1K Supervised (softmax) 82.28%  46.61% 50.74%
RN-101 ResNet ImageNet-1K Supervised (softmax) 78.56%  50.86% 55.95%
RN-152 ResNet ImageNet-1K Supervised (softmax) 79.29%  50.95% 56.04%
RN-50 ResNet ImageNet-1K Supervised (softmax) 76.93%  51.02% 56.05%
RN-50 (dropout) ResNet ImageNet-1K Supervised (softmax-+) 77.42% 51.26% 55.40%
RN-50 (extra WD) ResNet ImageNet-1K Supervised (softmax+) 77.82% 52.62% 56.16%
RN-50 (label smoothing) ResNet ImageNet-1K Supervised (softmax+) 77.63%  45.78% 55.52%
RN-50 (logit penality) ResNet ImageNet-1K Supervised (softmax+) 71.67%  47.67% 54.21%
RN-50 (mixup) ResNet ImageNet-1K Supervised (softmax+) 77.92%  46.70% 56.29%
RN-50 (AutoAugment) ResNet ImageNet-1K Supervised (softmax) 77.64% 50.67% 56.10%
RN-50 (logit norm) ResNet ImageNet-1K Supervised (softmax+) 77.83% 51.05% 55.63%
RN-50 (cosine softmax) ResNet ImageNet-1K Supervised (softmax+) 77.86% 52.82% 56.73%
RN-50 (sigmoid) 412021 ResNet ImageNet-1K Supervised (sigmoid) 78.18%  44.72% 55.34%
RN-50 (softmax) 1 2021] ResNet ImageNet-1K Supervised (softmax) 76.94%  50.89% 55.97%
RN-50 (squared error) 112021) ResNet ImageNet-1K Supervised (sq. error) 77.13%  41.04% 49.87%
RN-50 A h lsr&H_eb_a'nl ResNet Ecoset Supervised (softmax) - 46.96% 50.63%
ResNeXt-50 32x4d 112017 ResNeXt ImageNet-1K Supervised (softmax) 81.20%  46.97% 51.44%
ResNeXt-101 32x8d ResNeXt ImageNet-1K Supervised (softmax) 81.89%  48.46% 50.82%
VGG-11 isserman,|2015) VGG ImageNet-1K Supervised (softmax) 69.02%  52.04% 55.91%
VGG-13 VGG ImageNet-1K Supervised (softmax) 69.93%  52.24% 55.84%
VGG-16 VGG ImageNet-1K Supervised (softmax) 71.59%  52.09% 55.86%
VGG-19 VGG ImageNet-1K Supervised (softmax) 72.38%  52.09% 55.86%
VGG-16 ﬂp VGG Ecoset Supervised (softmax) - 51.96% 53.58%
VIiT-B/16 11K ViT ImageNet-1K Supervised (sigmoid) 77.66%  38.31% 50.48%
ViT-B/16 121K 2022, ViT ImageNet-21K  Supervised (sigmoid) 83.77%  44.62% 56.49%
VIiT-B/32 11K 2022, ViT ImageNet-1K Supervised (sigmoid) 72.08%  37.45% 46.99%
ViT-B/32 121K 2022 ViT ImageNet-21K  Supervised (sigmoid) 79.16%  44.74% 56.78%
VIiT-L/16 11K 2022 ViT ImageNet-1K Supervised (sigmoid) 75.11%  37.03% 51.42%
VIiT-L/16 121K 2022, ViT ImageNet-21K  Supervised (sigmoid) 83.13%  40.99% 51.27%
ViT-S/32 11K 112022 ViT ImageNet-1K Supervised (sigmoid) 72.18%  40.28% 48.31%
ViT-$/32 121K 3022 ViT ImageNet-21K  Supervised (sigmoid) 72.93%  46.16% 56.60%
ViT-G/14 JFT hai et al.[[2022) ViT JFT-3B Supervised (sigmoid) 89.01%  53.94% 61.18%
ViT-B-16 Dosovitskiy et al. ViT ImageNet-1K Supervised (softmax) 81.07%  42.02% 47.89%
ViT-B-32 osovitskiy et al. Mw ViT ImageNet-1K Supervised (softmax) 7591%  42.52% 48.69%

Table B.1: Pretrained neural networks that we considered in our analyses. “RN” = ResNet, “Self-sup.”

self-supervised, “contr.” = contrastive. “RN-50 (extra WD)” is a ResNet-50 with higher weight decay on the
final network layer. The “ImageNet” column contains the accuracy on the ImageNet dataset. The “Zero-Shot”
column contains the THINGS zero-shot odd-one-out accuracy of the better of the embedding and logits layer.

The “Probing” column contains the THINGS probing odd-one-out accuracy of the embedding layer.
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Figure[B.T|shows the odd-one-out accuracy as a function of layer depth in a neural network for a few
different network architectures. Later layers generally perform better which is why we performed
our analyses exclusively for the logits or penultimate/embedding layers of the models in Table [B}
Figure compares the odd-one-out accuracy of using dot product versus cosine similarity and
shows that cosine similarity generally yields better alignment.

C CIFAR-100 TRIPLET TASK

C e

Figure C.1: An example triplet from the CIFAR-100 coarse dataset. The left two images are from one of the
two CIFAR-100 “vehicle” superclasses, so the rightmost image is the odd-one-out.

In a similar vein to the THINGS triplet task, we constructed a reference triplet task from the CIFAR-
100 dataset (Krizhevsky & Hinton},[2009). To show pairs of images that are similar to each other, but
do not depict the same object, we leverage the 20 coarse classes of the dataset rather than the original
fine-grained classes. For each triplet, we sample two images from the same and an one odd-one-out
image from a different coarse class. We restrict ourselves to examples from the CIFAR-100 train set
and exclude the validation set. We randomly sample a total of 50,000 triplets which is equivalent to
the size of the original train set. Figure [C.I|shows an example triplet for this task.

1.0

We find that ImageNet accuracy is highly correlated with
odd-one-out accuracy for the CIFAR-100 coarse task (see
Figure[C.2} r = 0.70), which is in stark contrast to its cor-
relation with accuracy on human odd-one-out judgments,
which is significantly weaker (see Figure2).

094 =
.

0.87 * *

g
0.74 +7 Xol R

0.64 % L0 °s

The main reason for constructing this task was to exam- o5y

ine whether or not any findings from comparing human
to neural network responses for the THINGS triplet odd- 0s = = — —
one-out task can be attributed to the nature of the triplet ' ImageNet accuracy '
task. Instead of using the CIFAR-100 class labels, we
specifically used the coarse super-classes that are possibly
comparablq to_higher-level concepts that are relevant to ... " strong correlation with mageNet
human similarity judgments on the THINGS odd-one-out ,ccyracy. Diagonal line indicates a least-
task. [Hebart et al (2020) and [Muttenthaler et al.| (2022)) squares fit.

have shown that humans only use a small set of concepts

for making similarity judgments in the triplet odd-one-out task. These concept representations are
sparse representations. That is, there are only k objects that are important for a concept, where
k < m. Recall that m denotes the number of objects in the data (e.g., 1854 for THINGS). The
importance of objects is defined in |[Hebart et al.| (2020) and Muttenthaler et al.[(2022)). Similarly,
the coarse super-classes in CIFAR-100 are sparse. Although the CIFAR-100 triplet task may be dif-
ferent, we believe that additionally testing models on this task is one reasonable way to figure out
whether findings (e.g., the correlation of ImageNet accuracy with triplet odd-one-out accuracy) are
attributable to the nature of the triplet task itself rather than to variables related to alignment.

0Odd-one-out accuracy

0.4

Figure C.2: Zero-shot odd-one-out accuracy
on a triplet task based on CIFAR-100 coarse

22



Published as a conference paper at ICLR 2023

D TRANSFERABILITY OF PENULTIMATE LAYER VS. LOGITS

In Figure [E2] we show that the logits typically outperform the penultimate layer in terms of zero-
shot odd-one-out accuracy. In this section, we perform a similar comparison of the performance
of the penultimate layer and logits in the context of transfer learning. We find that, contrary to
odd-one-out accuracy, transfer learning accuracy is consistently highest in the penultimate layer.

Following Kornblith et al.[|(2019b), we report the accuracy of ¢5-regularized multinomial logistic re-
gression classifiers on 12 datasets: Food-101 dataset (Bossard et al,[2014), CIFAR-10 and CIFAR-
100 (Krizhevsky & Hinton, 2009), Birdsnap (Berg et al., [2014), the SUN397 scene dataset
et al.l 2010), Stanford Cars (Krause et al. 2013), FGVC Aircraft (Maji et al., , the PAS-
CAL VOC 2007 classification task (Everingham et al. [2010), the Describable Textures Dataset
(DTD) (Cimpoi et al), 2014), Oxford-IIIT Pets (Parkhi et al., 2012), Caltech-101
[2004), and Oxford 102 Flowers (Nilsback & Zisserman, [2008). We use representations of the 16
models previously studied by Kornblith et al.| (2019b)) (see Table[B.1)), and follow the same procedure
for training and evaluating the classifiers.

Results are shown in Figure [D.1I] For nearly all models and transfer datasets, the penultimate layer
provides better representations for linear transfer than the logits layer.

Food-101 CIFAR-10 CIFAR-100 Birdsnap SUN397 Stanford Cars
0.94 7 2 7 7 7
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Figure D.1: Penultimate layer embeddings consistently offer higher transfer accuracy than the logits layer.
Points reflect the accuracy of a multinomial logistic regression classifier trained on the penultimate layer em-
beddings (z-axis) or logits (y-axis) of the 16 models from |Kornblith et al.|(2019b), which were all trained with
vanilla softmax cross-entropy. Dashed lines reflect y = x.
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E LINEAR PROBING

In Figure [E.T] we compare probing odd-one-out accuracy with zero-shot odd-one-out accuracy for
models pretrained on ImageNet-1K or ImageNet-21K. We observe a strong positive correlation of
r = 0.963 between probing and zero-shot odd-one-out accuracies.

Logits

0.571
0.531
0.49+ g
0.454
0.411

0.37 Supervised (ImageNet-1k)
« Supervised (ImageNet-21k)

Probing odd-one-out accuracy

033+ : ‘ ‘ : :
033 037 041 045 049 053 057

Zero-shot odd-one-out accuracy

Figure E.1: Probing odd-one-out accuracy as a function of zero-shot odd-one-out accuracy for the logits layer
of all ImageNet models in Table[B.1]

In the top left panel of Figure[E.3] we show probing odd-one-out accuracy as a function of ImageNet
accuracy for all models in Table [B.1] Similarly to the findings depicted in the top left panel of
Figure [2| we observe a low Pearson correlation coefficient (r = 0.213). The remaining panels of
Figure [E.3]visualize probing odd-one-out accuracy as a function of ImageNet accuracy for the same
subsets of models as shown in Figure 2] Again, the relationships are similar to those observed for
zero-shot odd-one-out accuracy in Figure

Probing accuracies show less variability than zero-shot accuracies among the networks trained with
the different loss functions from |[Kornblith et al.| (2021) (Figure [2] top center), although cosine soft-
max, which performed best for the zero-shot setting, is also among the best-performing models
here. Moreover, probing reduced the differences between different Siamese self-supervised learning
models (Figure [2]bottom left), although Siamese models still performed substantially better than the
non-Siamese models. Yet, as in our analysis of zero-shot accuracy (§4.1), architecture (Figure 2] top
right) or model size (Figure 2]bottom right) did not affect odd-one-out accuracy. These findings hold
across every dataset we have considered in our analyses (see Figure [E.4).

Whereas the logits often achieve a higher degree of alignment with human similarity judgments
than the penultimate layer for zero-shot performance, alignment is nearly always highest for the
penultimate layer after applying W — the transformation matrix learned during linear probing
— to a model’s raw representation space and then performing the odd-one-out task or RSA (see

Figure [E.2).
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Logits

Logits

Figure E.2: Performance of the logits vs. penultimate layer for all models across all three datasets without (top
row) and with (bottom row) applying the transformation matrix obtained from linear probing to a model’s raw
representation space. x-axis and y-axis represent odd-one-out accuracy for[Hebart et al| (2020) and Spearman’s
p for Cichy et al.| (2019) and King et al.| (2019). Networks are colored by their loss function. “softmax+”

(Hebart et al., 2020)

(Cichy et al., 2019)

(King et al., 2019)
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Figure E.3: Probing odd-one-out accuracy as a function of ImageNet accuracy or number of model parameters.
Top left: Probing odd-one-out accuracies for the embedding layer of all models considered in our analysis.
Top center: Models have the same architecture (ResNet-50) but were trained with a different objective func-
tion (Kornblith et al| 2021). Top right: Models were trained with the same objective function but vary in

ImageNet accuracy

architecture (Kornblith et al., 2019b). Bottom left: Performance for different SSL models. Bottom center:
Different image/text models with their ImageNet accuracies. Bottom right A subset of ImageNet models in-
cluding their number of parameters. Dashed diagonal lines indicate a least-squares fit. Dashed horizontal lines

ImageNet accuracy

reflect chance-level or ceiling accuracy respectively.
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(Cichy et al., 2019)
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Figure E.4: Spearman rank correlation after applying W to a neural net’s representation space is weakly
correlated with ImageNet accuracy and varies with training objective but not with model architecture or number
of parameters for both human similarity judgment datasets from [Cichy et al| (2019) and [King et al.| (2019)

ImageNet accuracy

ImageNet accuracy

respectively. Diagonal lines indicate a least-squares fit.
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F LINEAR REGRESSION

In this section, we elaborate upon the results that we presented in §4.4.2]in more detail. For each of
the 45 representation dimensions j from VICE, we minimize the following least-squares objective

m
argmin Y (Vi ; — (Aj.2; + b)) +a;[| 4,3, 3)
Asebi =1 MSE
where Y; ; is the value of the 5™ VICE dimension Embedding

for image 4, x; is the neural net representation of
image ¢, and «; > 0 is a regularization hyperparam-
eter. We optimize each dimension separately, select-
ing cv; via cross validation (see Appendix [A3), and
assess the fit in two ways. First, we directly mea-
sure the R? for held-out images. Second, we evalu-
ate odd-one-out accuracy of the transformed neural
net representations using a similarity matrix S with e
Sij = (A:Bl—kb)—r (A:I}] +b)’ Wlth A and b Obtained Probing odd-one-out accuracy

from Eq.[3|(i.e., regression odd-one-out accuracy).
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Figure F.1: Regression as a function of prob-

In Figure m we compare odd-one-out accuracies ing odd-one-out accuracies for all models in Ta-

after linear probing and regression respectively. The ble[B.1}

two performance measures are highly correlated for the embedding (r = 0.982) and logit (r =
0.972; see Figure layersE| We provide R? values for individual concepts in Appendix [l We
observe that the leading VICE dimensions, which are the most important for explaining human
triplet responses, could be fitted with an R? score of > 0.7 for most of the models — the quality of
the regression fit generally declines with the importance of a dimension (see Figure [F.4).

We compared zero-shot with regression odd-one-out accuracies (as defined in §4.4.2)) for the em-
bedding layer of all models in Table and observe a strong positive relationship (r = 0.795;
Figure [F2). In addition, we contrasted regression odd-one-out accuracy between logit and penul-
timate layers for ImageNet models. The results are consistent with the findings obtained from the
linear probing experiments, shown in Figure d] Moreover, we observe that probing and regression
odd-one-out are highly correlated, thus applying similar transformations to a neural net’s represen-
tation space. This is demonstrated in Figure [F.1] for the embedding layer of all models in Table [B.T]
and in Figure for the logit layers of the ImageNet models. Figure shows R? scores of the
linear regression fit from embedding-layer representations of all models in Table [B.I] to the same
subset of VICE dimensions that we leveraged for the linear probing experiments in Figure 3}
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Figure F.2: Left: Zero-shot and regression odd-one-out accuracies for the embedding layer of all neural nets.
Right: Regression odd-one-out accuracy for the embedding and logits layer for all supervised models trained
on ImageNet-1K or ImageNet-21K.

Note that odd-one-out accuracies are slightly higher for linear regression (Figure . ‘We hypothesize that
this is because VICE is trained on all images, and thus the transformation matrix learned in linear regression
has indirect access to the images it is evaluated on, whereas the linear probe has no access to these images (see

Appendix @)
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Figure F.3: Regression as a function of probing odd-one-out accuracies for the logits layers of all ImageNet
models in Table B.T}
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Figure F.4: R? scores for all models in Table after fitting an /-regularized linear regression to predict
individual VICE dimensions from the embedding-layer representation of the images in THINGS. Color-coding
was determined by training data/objective. Violet: Image/Text. Green: Self-supervised. : Supervised
(ImageNet-1K). Brown: Supervised (Ecoset). Cyan: Supervised (ImageNet-21K). Black: Supervised (JFT-
3B).

G ENTROPY

Let A := {{3,7)},{¢, k}, {4, k}} be the set of all combinations of pairs in a triplet. The entropy of
a triplet can then be written as

H({ij k}) == 3 p({a,b}{i.5, k}) log p({x, y} {7, 3, k),
{a,b}eA
where p({a, b}|{4, j, k}) is derived from the VICE model and is defined precisely in Equation 6 in
Muttenthaler et al.| (2022)).

To understand how aleatoric uncertainty of odd-one-out predictions varies across different models,
we calculated the entropy of each triplet in THINGS for every model in Table [B.T]and subsequently
computed the Pearson correlation coefficient of these per-triplet entropies for every pair of models.

Although models with the same architecture often correlated strongly with respect to their aleatoric
uncertainty across triplets, not a single model achieves a strong positive correlation to VICE (see
Figure[G.T)and Figure[G.2]respectively). Interestingly, the choice of the objective function appeared
to play a crucial role for the entropy-alignment of a neural net with other neural nets or with VICE.

G.1 HUMAN UNCERTAINTY DETERMINES ODD-ONE-OUT ERRORS

Since VICE provides a probabilistic model of humans’ responses on the odd-one-out task, we can
use the entropy of a given triplet’s probability distribution to infer humans’ uncertainty regarding
the odd-one-out. In this section, we evaluate a model’s odd-one-out classification error as a function
of a triplet’s entropy. For this analysis, we partitioned the original triplet dataset D into 11 sets
D, ...,Dy1, corresponding to 11 bins. A triplet belongs to a subset D; if the entropy of the VICE
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Logits: Correlation of Entropy
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Figure G.1: The correlation coefficient of entropy of the output probabilities for each triplet in THINGS.

output distribution for that triplet falls in between the (i — 1)™ and i™ bins’ boundaries. We define
a triplet’s entropy as the entropy over the three possible odd-one-out responses, estimated using 50
Monte Carlo samples from VICE (see details in Appendix [G)). Note that the entropy for a discrete
probability distribution with 3 outcomes lies in [0, log(3)].

Unsurprisingly, all models in Table [B.I] yield a high zero-shot odd-one-out classification error for
triplets that have high entropy, and all models’ error rates increase monotonically as human triplet
entropies increase. However, most models make a substantial number of errors even for triplets
where entropy is low and thus humans are very certain. We find that VGGs, ResNets, EfficientNets,
and ViTs trained on ImageNet-1K or ImageNet-21K and SSL models show a similarly high zero-
shot odd-one-out error, between 0.1 and 0.3, for triplets with low entropy, whereas ALIGN and in
particular CLIP-RN, CLIP-ViT, BASIC-L and ViT-G/14 JFT achieve a near-zero zero-shot odd-one-
out error for the same set of triplets (see Figure[G.3).
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Figure G.2: The correlation coefficient of entropy of the output probabilities for each triplet in THINGS.
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Figure G.3: Zero-shot odd-one-out prediction errors as a function of a triplet’s entropy differ across model
classes. Top: Logits layer of ImageNet supervised models. Bottom: Embedding layer of SSL, Image/Text
models and ViT-G/14 JFT. Since models with the same architecture, trained on the same data (e.g., ImageNet-
1K) with the same objective function, perform very similarly in their odd-one-out choices, we aggregated their
predictions and report the average. To isolate architecture and training data from any other potentially con-
founding variables, we excluded models from [Kornblith et al] (2021)) when aggregating the ResNet predictions.
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(d) AlexNet (e) VGG-16
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(i) EfficientNet B3

(j) ResNet-50 (SimCLR) (k) ResNet-50 (BarlowTwins) (1) ResNet-50 (Jigsaw)

Figure H.1: t-SNE visualizations for the embedding layer of a subset of the models in Table[B.1| Data points
are labeled according to higher-level categories provided in the THINGS database (Hebart et al.,{2019).

H DIFFERENT CONCEPTS ARE DIFFERENTLY DISENTANGLED IN DIFFERENT
REPRESENTATION SPACES

In this section, we show t-SNE (Van der Maaten & Hintonl, [2008)) visualizations of the embedding
layers of a subset of the models in Table [B.I] To demonstrate the difference in disentanglement of
higher-level concepts - which are provided in the THINGS database (Hebart et al.}[2019) - in different
representation spaces, we have chosen a representative model for a subset of the architectures and
training objectives. Figure [H.I] shows that the animal concept is substantially more disentangled
from other high-level categories in the representation space of image/text models such as CLIP-
RN/CLIP-ViT (Radford et al,2021) than it is for ImageNet models. The bottom row of Figure [H.T]
shows that higher-level concepts appear to more distributed and poorly disentangled in Jigsaw, a
non-Siamese self-supervised model, compared to SimCLR and BarlowTwins, contrastive and non-
contrastive self-supervised models respectively.
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I ODD-ONE-OUT AGREEMENTS REFLECT REPRESENTATIONAL SIMILARITY

To understand whether odd-one-out choice agreements between different models reflect similarity
of their representation spaces, we compared the agreement in odd-one-out choices between pairs of
models with their linear Centered Kernel Alignment (CKA), a widely adopted similarity metric for
neural network representations (Kornblith et al.l |2019a; [Raghu et al., [2021). Let X € R™*P1 and
Y € R™*P2 be representations of the same m examples obtained from two neural networks with p;
and p, neurons respectively. Assuming that the column (neuron) means have been subtracted from
each representation (i.e., centered representations), linear CKA is defined as

vec(XXT)-vec(YYT)
XX TellYY Tl

Intuitively, the representational similarity (Gram) matrices X X " and Y'Y " measure the similarity
between representations of different examples according to the representations contained in X and
Y. Linear CKA measures the cosine similarity between these representational similarity matrices
after flattening them to vectors.

CKAlinear(Xa Y) =

In Figure [T we show heatmaps for both zero-shot odd-one-out agreements and CKA for the same
pairs of models. The regression plot shows zero-shot odd-one-out choice agreement between all
pairs of models in Table [B.T] as a function of their CKA. We observe a high correlation between
odd-one-out choice agreements and CKA for almost every model pair. That is, odd-one-out choice
agreements appear to reflect similarities of neural network representations.

Odd-one-out choice agreement Centered Kernel Alignment

11
. !

Figure I.1: Left: Heatmaps for zero-shot odd-one-out choice agreements and CKA for the same pairs of models.
For better readability, we omitted labeling the names of the individual models. Right: Zero-shot odd-one-out
choice agreements between all pairs of models as a function of CKA plus a linear regression fit.

Zero-shot odd-one-out agreement

0.1 0.2 03 0.4 0.5 06 0.7 0.8 0.9
Centered Kernel Alignment

J HUMAN ALIGNMENT IS CONCEPT SPECIFIC

In Figure and Figure@we compare zero-shot odd-one-out accuracy and R? scores respectively
between the best-aligned ImageNet model and the best-aligned overall model. Although ViT-G/14
JFT achieves better alignment with human similarity judgments for most VICE dimensions, the
best ImageNet model outperformed ViT-G/14 JFT for a small subset of the concepts, e.g., tools,
technology, paper, liquids. That is, there appear to be some human concepts which Ima-
geNet models can represent fairly well without an additionally learned linear transformation matrix,
even better than a model trained on a larger, more diverse dataset. However, the R2 scores show a
different pattern. In linear regression, representations of ViT-G/14 JFT could clearly be fitted better
to the VICE dimensions for every concept compared to the best ImageNet model.

In Figure [J.3| we show per-concept zero-shot and probing odd-one-out accuracies for all models in
Table@%rl all 45 VICE dimensions. Whereas zero-shot odd-one-out performances did not show
a consistent pattern across the individual dimensions, probing odd-one-out performances clearly
demonstrated that image/text models and ViT-G/14 JFT are better aligned with human similarity
judgments for almost every concept. However, there are some concepts (e.g., outdoors-related ob-
jects/dimension 8; powdery/dimension 22) for which these models are worse aligned than ImageNet
models. The difference in human alignment between image/text models plus ViT-G/14 JFT and Im-
ageNet models is largest for royal and sports-related objects - i.e, dimension 7 and 17 respectively
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-, where image/text models and ViT-G/14 JFT outperformed ImageNet models by a large margin.
The bottom panel of the figure shows R? scores of the regression fit for each VICE dimension using
the embedding layer representations of all models in Table [B.I] We observe that more important
concepts are generally easier to recover. Recall that dimensions are numbered according to their
importance (Muttenthaler et al., [2022]).

In addition, Figulrfzﬁ - Figure [I.7) show both zero-shot and probing odd-one-out accuracies for all

models in Table

for a larger set of human concepts as we do in the main text, including the 6

most important THINGS images/categories for the dimensions themselves.
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Figure J.1: Comparison of zero-shot odd-one-out accuracy between the best ImageNet and the best overall
model for all 45 VICE dimensions.
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Figure J.2: Comparison of the regression R%-scores between the best ImageNet and the best overall model for
all 45 VICE dimensions.
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Figure J.4: Zero-shot and probing accuracy for triplets discriminated by VICE dimensions 1-6, following the
approach described in §4.4] Color-coding is determined by training data/objective. Violet: Image/Text. Green:
Self-supervised. Orange: Supervised (ImageNet-1K). Cyan: Supervised (ImageNet-21K). Black: Supervised
(JFT-3B).
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Figure J.5: Zero-shot and probing accuracy for triplets discriminated by VICE dimensions 7-12, following the
approach described in §4.4] Color-coding is determined by training data/objective. Violet: Image/Text. Green:
Self-supervised. Orange: Supervised (ImageNet-1K). Cyan: Supervised (ImageNet-21K). Black: Supervised
(JFT-3B).
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Figure J.6: Zero-shot and probing accuracy for triplets discriminated by VICE dimensions 13-18, following the
approach described in §4.4]Color-coding is determined by training data/objective. Violet: Image/Text. Green:
Self-supervised. Orange: Supervised (ImageNet-1K). Cyan: Supervised (ImageNet-21K). Black: Supervised
(JFT-3B).
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Figure J.7: Zero-shot and probing accuracy for triplets discriminated by VICE dimensions 19-24, following the
approach described in §4.4]Color-coding is determined by training data/objective. Violet: Image/Text. Green:
Self-supervised. Orange: Supervised (ImageNet-1K). Cyan: Supervised (ImageNet-21K). Black: Supervised
(JFT-3B).
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