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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities
across a wide range of domains, yet their increasing deployment in sensitive and
high-stakes environments exposes profound safety risks—most notably, the un-
controlled generation of inappropriate content and the inadvertent leakage of con-
fidential information. Traditionally, such risks have been approached through the
lens of alignment, focusing narrowly on ensuring outputs conform to general no-
tions of helpfulness, honesty, and harmlessness. In this work, we argue that such
alignment-centric perspectives are fundamentally limited: information itself is not
inherently harmful, but its appropriateness is deeply context-dependent.
We therefore propose a paradigm shift in LLM safety—from alignment to infor-
mation control. Rather than merely shaping model behavior through the existing
practice of alignment, we advocate for the principled regulation of who can access
what information under which circumstances. We introduce a novel framework for
context-sensitive information governance in LLMs, grounded in classical security
principles such as authentication, role-based access control, and contextual autho-
rization. Our approach leverages both the internal knowledge representations of
LLMs and external identity infrastructure to enable fine-grained, dynamic control
over information exposure.
We systematically evaluate our framework using recent models and a suite of
benchmark datasets spanning multiple application domains. Our results demon-
strate the feasibility and effectiveness of information-centric control in mitigating
inappropriate disclosure, providing a foundation for safer and more accountable
language model deployment. This work opens a new frontier in LLM safety, one
rooted not in abstract alignment ideals, but in enforceable, context-aware control
of information flow.

1 INTRODUCTION

The rapid advancement of Large Language Models (LLMs) has revolutionized modern computing,
unlocking transformative capabilities in content generation, decision support, and natural language
interaction across virtually every sector, from creative industries to high-stakes domains such as
healthcare, finance, and public policy (Brown et al., 2020; Bommasani et al., 2021). However, this
unprecedented power comes with significant risks: LLMs can generate contextually inappropriate
content or unintentionally disclose sensitive or confidential information, raising serious safety, eth-
ical, and operational concerns (Weidinger et al., 2021; Bender et al., 2021). As LLMs become
embedded in critical infrastructure, ensuring their responsible and controlled deployment becomes
not only a technical challenge but an organizational imperative.

To date, prevailing approaches to LLM safety have centred on alignment; the effort to train mod-
els to consistently exhibit helpful, honest, and harmless behaviour (Dahlgren Lindström et al.,
2025). Yet alignment mechanisms often rely on static and universal criteria for harm, overlooking
the fundamental fact that the appropriateness of a model’s response is inherently context-dependent
(Almheiri et al., 2025). The same piece of information may be benign when provided to an au-
thorized administrator but hazardous if exposed to an unverified user. In practice, what matters is
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not just what information is shared, but to whom, under what conditions, and why. This observa-
tion calls for a profound shift in the safety paradigm—from generalized behavioural alignment to
principled information control.

In this work, we introduce a new framework for LLM safety that foregrounds context-sensitive in-
formation governance. Drawing inspiration from well-established principles in security and access
control (Sandhu, 1998), we propose a system in which user identity, role, and organizational policy
jointly determine the boundaries of permissible model behaviour. Our framework integrates user
identification, role-based access control (RBAC), and dynamic context inference to mediate LLM
responses in real time. Rather than preventing harm by constraining model intent alone, we prevent
misuse by enforcing fine-grained information flow control tailored to the access rights and respon-
sibilities of each individual user.

We evaluate our approach through a series of experiments using recent LLMs with simulated data
from real-world scenarios, demonstrating that our method can effectively restrict or permit access
to specific information based on clearly defined contextual rules. The results validate not only the
technical feasibility of our system but also its potential for seamless integration into enterprise and
institutional environments.

By reframing LLM safety as a problem of enforceable, policy-driven information control, our work
offers a more rigorous and scalable path toward trustworthy AI deployment. It empowers organi-
zations to reclaim control over their information ecosystems, ensures responsible use of powerful
language models, and lays the foundation for a new generation of AI systems.

The article is structured as follows. In Section 2, we examine related work on alignment through the
lens of information control, highlighting potential unintended consequences of current approaches.
Section 3 introduces the design and key components of our proposed framework. In Section 4, we
present a comprehensive empirical evaluation that demonstrates the effectiveness and practicality
of our approach. Finally, in Section 5, we conclude with a reflection on the broader implications
of our work and advocate for a paradigm shift from alignment-centric methods to a context-aware,
information control–oriented perspective.

2 BACKGROUND AND MOTIVATION

The prevailing paradigm for ensuring the safety of LLMs is alignment, which seeks to train or fine-
tune models to behave in ways that are broadly helpful, honest, and harmless. Common alignment
techniques include Reinforcement Learning from Human Feedback (RLHF), direct preference op-
timization, and constitutional AI (Bai et al., 2022; Wang et al., 2024). These methods are typically
designed to prevent the generation of content that is offensive, toxic, or discloses personally identi-
fiable information (PII), often guided by generalized ethical and safety principles.

However, existing alignment-based approaches suffer from two fundamental limitations. First, they
remain vulnerable to jailbreak attacks (Andriushchenko et al., 2024; Zheng et al., 2024), i.e., care-
fully crafted adversarial prompts that can circumvent alignment and elicit harmful, private or sen-
sitive outputs. Second, and arguably more critically, alignment techniques operate primarily at the
level of model behaviour, without regard for contextual information access. That is, they treat all
requests for sensitive data, such as PII or confidential organizational records, as inherently unsafe,
regardless of the requester’s identity, role, or authorization level. This lack of contextual awareness
results in both under-blocking (where unauthorized access is permitted through adversarial prompts)
and over-blocking (where legitimate users are denied access due to blanket restrictions), thereby un-
dermining both the safety and the practical utility of LLMs (Cui et al., 2024; Sullutrone et al., 2025;
Zhang et al., 2025).

To better understand these shortcomings, we conducted a targeted evaluation (refer to detailed exper-
imental setup in Section 4) using multiple state-of-the-art LLMs. We curated a set of organizational
documents containing both general and sensitive information, and issued a series of prompts request-
ing employee-related data—such as salary records, home addresses, and employment history, under
two contrasting scenarios: (1) Legitimate requests issued by clearly identified users, such as Human
Resource Director (HR Dir), Financial Director (Fin Dir) or CEO of the same organization; and
(2) Adversarial prompts that subtly manipulated the request to bypass safety filters without proper
credentials.
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The results underscored the limitations of existing alignment-centric safety mechanisms. In a sig-
nificant number of legitimate cases, the models systematically refused to respond, citing privacy
or ethical concerns—even when the requesting role had clear, organizationally sanctioned access
rights. In contrast, many adversarial prompts succeeded in extracting sensitive information, ef-
fectively bypassing alignment safeguards through indirect or obfuscated queries. These outcomes
reveal a critical deficiency in current approaches: they are not equipped to evaluate or enforce access
policies that depend on who is asking, under what conditions, and for what purpose.

This disconnect between intent and response reflects a deeper conceptual flaw: current alignment
frameworks conflate harmful content generation with inappropriate information disclosure, without
distinguishing the legitimacy of the requester or the context of the interaction. In contrast, real-world
information systems (e.g., enterprise IT software and secure databases) rely on fine-grained, RBAC
to manage who can access which information, and under what roles and circumstances (Bertino,
2003).

These observations motivate a shift in LLM safety thinking—from behaviour-level alignment to
information-centric access control. Rather than solely attempting to preempt harmful outputs
through generic alignment objectives, we propose viewing LLMs as context-sensitive information
interfaces governed by enforceable policies. By grounding safety in established principles such as
user identification (via authentication and authorization) and context-aware access control, we can
more effectively manage the dual challenge of preventing unauthorized disclosures while support-
ing legitimate information use. This perspective paves the way for safer, more adaptable, and more
trustworthy deployment of LLMs in complex, real-world environments.

3 LLM INFORMATION CONTROL FRAMEWORK

To address the limitations of alignment-centric approaches, we propose a modular and context-aware
Information Control Framework for LLMs. The core objective of the framework is not simply to
prevent harmful behaviour at the model level, but to ensure that the dissemination of sensitive or
confidential information is systematically governed by enforceable access policies. This is achieved
through a principled design grounded in four key attributes:

• Information Flow Control: The framework governs the flow of information in accordance
with organizational policies, focusing on the appropriateness of outputs relative to the iden-
tity and authorization of the requester.

• Lightweight and Customizable Modules: Each module is designed for low computational
overhead and high customizability, allowing organizations to adapt the framework easily
as their business information, policies or security requirements evolve.

• LLM Workflow Coverage: Modules are positioned across the full LLM interaction lifecycle
(input, reasoning, and output) to provide end-to-end information governance.

• Broad Applicability: The framework is compatible with both closed-source (API-based)
and open-source LLM deployments, making it applicable across a wide range of use cases
and operational environments.

Figure 1 illustrates the overall architecture of the framework, which comprises four modular com-
ponents. These modules can be deployed independently or in combination, enabling organizations
to tailor the information control depth based on user roles, data sensitivity, and risk tolerance. We
describe each component below.

Starting with the user identification module which verifies the identity of each user at the beginning
of a session. This step is foundational for establishing a secure and auditable interaction context.
By tying user identity to every interaction, the module enables role inference, personalized policy
enforcement, and compliance monitoring. Authentication can be integrated with existing enterprise
identity providers (e.g., OAuth or Active Directory), ensuring seamless compatibility with organi-
zational infrastructure.

Following, the policy alignment (PA) module evaluates incoming prompts against organization-
specific policies before they reach the model. These policies may define permissible request types,
information categories accessible to different roles, restricted language patterns, and guidelines for

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Proposed LLM Application Information Control Framework

handling sensitive or classified data. Unlike generic alignment mechanisms, this module leverages
LLM-based reasoning to semantically interpret prompts in context— enabling nuanced enforcement
of custom policies. Policies can be defined in natural language, preferably in a structured declara-
tive format. For clarity and reliability, policies should be concise, unambiguous, and self-consistent.
This module also performs detection of potentially harmful prompt behaviours, including jailbreak
attempts and prompt injection attacks, serving as an intelligent gatekeeper that integrates semantic
analysis and policy enforcement beyond simple keyword matching.

Thereafter, the RBAC module determines whether the requested information is accessible to the
authenticated user based on their assigned role. This module supports fine-grained information
governance by enforcing access rules at both the content and metadata levels. In cases where explicit
role definitions are unavailable, the system defaults to the most restrictive policy, adhering to a zero-
trust security posture. The RBAC module can be seamlessly integrated with data access layers, such
as retrieval-augmented generation (RAG) pipelines or external APIs, through the use of access tags
or permission metadata attached to individual data items. This integration enables the system to
control not only which queries are permitted but also which underlying data can be retrieved and
exposed in responses.

Lastly, the post-processing (PP) module performs an inspection of the LLM-generated response be-
fore it is returned to the user. It acts as a safeguard against inadvertent disclosures, identifying and
redacting sensitive content such as PII, proprietary project names, or confidential figures. While ag-
gressive redaction can impact usability, this module is designed to preserve coherence and meaning
to the extent possible. Organizations can configure the module’s sensitivity and coverage based on
their operational needs and regulatory constraints.

A key strength of the proposed framework is its modularity and cascading control logic. Organiza-
tions can selectively activate modules based on available infrastructure, threat models, and security
requirements. For example, a minimal configuration might include only the user identification and
post-processing modules, while a comprehensive deployment would include all four components
for maximal protection. Critically, the framework supports graceful degradation and failure con-
tainment. If a violation is detected at any stage, such as failed user identification, prompt-policy
mismatch, RBAC denial, or output policy breach, the system can either terminate the interaction or
restrict the response to sanitized fallback messages. In all cases, detailed logging supports auditabil-
ity, forensic analysis, and ongoing security refinement.

4 EMPIRICAL EVALUATION

In this section, we present an empirical study into the effectiveness, practicality, and trade-offs of
our proposed information-control framework for LLM workflows. We first outline the research
questions and experimental design, followed by a detailed account of tasks, metrics, configurations,
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and evaluation scenarios. We conclude with a performance analysis across various modular setups
and user roles to validate our approach. The evaluation is designed around the following two research
questions:

RQ1: How can information-control mechanisms be effectively integrated into LLM work-
flows without degrading system usability or responsiveness?

RQ2: What are the trade-offs and cumulative effects of integrating different information con-
trol modules into LLM workflows, as measured by evaluation metrics such as attack
success rate, output correctness, and system latency?

To assess the performance of our proposed framework, we compare it against two representative
baselines that were designed to isolate the impact of each module, providing reference points for
evaluating the benefits introduced by our dynamic, context-aware framework:

• Baseline 1 (inherent alignment only): A standard LLM configuration without any external
safeguards or access control mechanisms. This setup relies solely on the model’s built-in
safety alignment to handle sensitive or adversarial inputs.

• Baseline 2 (static access control): A configuration augmented with a static information
access control protocol. In this setup, access decisions are hardcoded based on pre-defined
rules at the document level, independent of user context or dynamic evaluation. That is,
users are assigned with static rules and so are the documents. These rules are evaluated to
grant or deny access according to the standard practice.

A more detailed description of our implementation, source code and results can be found at:
https://github.com/aigovteam-2lk1v2df/InfoControl

4.1 EXPERIMENTAL SETUP

To evaluate the effectiveness of our framework, we design two complementary tasks grounded in
realistic threat models and enterprise use cases.

The first task emulates legitimate enterprise interactions based on a real-world enterprise in a RAG
setting. We construct a dataset comprising 10 corporate user profiles with attributes such as com-
pany affiliation, job role, access level, and task context. Complementing this, we curate multiple
business documents reflecting real-world financial reporting. In addition, we design users with
varying system privileges: CEO (full access), HR Director (HR systems only), Head of Finance
(Finance systems only), and ordinary employee. These user profiles, documents, and roles are the
result of a systematic rewrite (using LLMs) of real-world data to avoid leaking private data. We then
systematically generate 200 short-response questions aligned with the user roles and documents.
Half of these questions are focused on PII and HR scenarios and distributed across the 10 profiles;
the other half pertain to finance and strategy, drawing content evenly from the documents. For each
question-profile pair, we annotate ground-truth responses and determine whether access should be
granted or denied based on the profile’s permissions.

The second task simulates targeted privacy-violation attempts through existing jailbreak attacks.
The goal is to assess whether our framework can effectively defend against these attacks, which are
known to be challenging for traditional alignment methods. We select N = 50 adversarial prompts
from the CategoricalHarmfulQA dataset1, each crafted to elicit sensitive personal information.
These prompts are routed through the system’s chat-based interface, where the framework must
either block or redact the requests, balancing security with helpfulness.

A total of 200 short-response questions are used to evaluate both the Correctness and Defense (de-
fined in Appendix A.2) metrics. Of these, 100 questions focused on PII and HR topics are distributed
across 10 distinct corporate profiles. The remaining 100 questions, centered on finance and business
strategy, are drawn equally from two business documents. Similarly, we manually review ground-
truth answers for each prompt–profile pair, indicating whether the response should be granted or
denied based on the user’s permissions.

1https://huggingface.co/datasets/declare-lab/CategoricalHarmfulQA
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Table 1: Framework Performance with Modular Configuration

Framework Configuration Correctness Defense % Average
Tokens

Average
Latency (s)

RAG Workflow (Baseline) 82.0% 40.3% 1780 1.95

Policy Alignment (PA) only 88.6% 84.7% 1648 3.51
Role Checking (RC) only 82.7% 91.9% 971 3.14
Post Processing (PP) only 72.4% 85.6% 2047 3.59

Alignment + Role Checking 78.0% 94.6% 1098 2.80
Alignment + Post Processing 92.5% 88.8% 1834 4.47
Role Checking + Post Processing 69.4% 97.1% 1201 2.27

All Modules (PA + RC + PP) 85.4% 97.7% 1366 5.16

Putting everything together, we construct a benchmark dataset containing a balanced mix of normal
and adversarial questions, enabling us to evaluate the performance of our framework under both
standard conditions and adversarial settings. We quantify the performance of an LLM using two
metrics: correctness with normal prompt and correctness with adversarial prompts. Given a prompt,
we consider the response of the LLM to be correct if and only if the following conditions are sat-
isfied: (1) if the requester does not have the right to the information, the request is rejected; and
(2) if the requester does have the right to the information, accurate information is provided in the
response. Formally, given a prompt p, the response r, and the ground-truth response rg ,

score(p, r, rg) =


0.0 if r contains sensitive information beyond

the prompter’s access right;
1.0 if r correctly denies an underprivileged user;
1.0− dist(p, r, rg) otherwise

where dist(p, r, rg) is a normalized score (between 0 and 1) that measures the accuracy and com-
pleteness of the response according to the ground-truth. The overall Correctness is then computed
as the average score over all 200 question prompts. In our experiments, we use an LLM (i.e.,
GTP-4o) as a judge for evaluating dist(p, r, rg). We further randomly selected some of the prompt-
response pairs for manual inspection which conforms that the evaluation is accurate.

We further supplement the evaluation with two metrics for measuring the efficiency: Average Tokens
used and Average Latency.

4.2 EXPERIMENTAL RESULTS

Table 1 presents the experimental results, covering both aggregated outcomes (last row) and the
performance of the system under different subsets of modules.

Overall performance The aggregated results show that our modular framework consistently out-
performs the baseline (first row), achieving significantly higher scores in both Correctness and De-
fense. Notably, integrating all three modules yields the strongest results, with a Defense rate of
97.7% while maintaining strong Correctness. This configuration strikes a balance between robust-
ness and reliability, clearly validating the effectiveness of our modular design.

Individual contributions Our framework is deliberately designed with a modular architecture,
enabling it to adapt to different enterprise settings (e.g., environments with or without existing RBAC
policies). Examining the modules independently highlights the role of each component.

• The PA module stands out with 88.6% Correctness and 84.7% Defense, providing the most
balanced single-module performance.

• The RC module achieves the highest standalone Defense (91.9%) though with somewhat
reduced Correctness compared to PA.
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Table 2: RC Module Evaluation for Various Roles

User’s Role Correctness Defense % Avg. Tokens Avg. Latency (s)
No Role 100.0% 99.5% 240 1.64
HR Dir 78.4% 97.4% 1063 3.18
Finance Dir 82.7% 91.9% 971 3.14
CEO 75.5% 95.1% 1858 4.03

Figure 2: Shapley value contribution analysis.

• The PP module attains the lowest Correctness among the three, but still achieves an 85.6%
Defense rate, underscoring its utility as a supplementary safeguard.

Shapley value analysis (Figure 2) further quantifies these effects systematically: PA contributes the
most to enhancing protection, followed closely by RC, while PP—though less influential—still plays
a meaningful role. These findings emphasize the critical importance of semantic policy checks (PA)
and role-based verification (RC) as foundational pillars of effective information control, with PP
acting as a valuable complement.

Pairwise combinations of modules reinforce these insights. For example, PA+RC boosts Defense to
94.6% though at the cost of Correctness (78.0%), while PA+PP maintains stronger Correctness with
near 88.8% Defense. RC+PP, in turn, yields substantial Defense gains but sacrifices Correctness.
Collectively, these results suggest that module interactions can be tuned depending on application-
specific priorities.

Efficiency considerations The efficiency profile varies by module. PP incurs the highest token
consumption and moderate latency (3.59s), while RC achieves the lowest token usage and latency
(3.14s), making it well-suited for resource-constrained scenarios. Importantly, both PA and RC re-
duce average token usage substantially (7.42% and 45.45% reductions, respectively) compared to
the baseline. In addition, Table 2 reveals the performance of RC module based on the different
roles, showing high defense rates (above 91%) for all the roles tested. Moreover, Figure 4 (Ap-
pendix) illustrates individual module contributions on a chat workflow setting, showing that PA and
RC achieve nearly perfect denial rates individually, while PP, though less dominant, still improves
robustness over the baseline.

When all three modules are combined, the system attains the highest defense rate (97.7%) at the
expense of increased latency (5.16s) and an average token count of 1366. This pattern indicates that
while the triple-module configuration is the most secure, selecting tailored module subsets allows
practitioners to negotiate the trade-off between efficiency and protection. Overall, our approach
substantially strengthen denial behavior, underscoring the value of a multi-layered modular config-
uration approach to safety.

Answers to RQs Based on the presented results, we can now address our research questions.
In terms of RQ1, our findings show that lightweight, incremental deployment of modules can be
seamlessly integrated into a standard LLM workflow with only marginal impact on usability. Even
deploying a single module yields substantial improvements over the baseline, confirming the effec-
tiveness of our modular approach. More importantly, combining all three modules introduces only
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modest latency (well within the threshold for interactive use) while achieving the highest Defense
and maintaining a moderate token cost. This configuration is therefore strongly recommended as
it offers an excellent security-to-token ratio and delivers robust, context-aware information control
without prohibitive resource demands.

In terms of RQ2, the results also reveal a clear spectrum of trade-offs between security robustness,
response fidelity, and computational overhead. Each individual module contributes unique advan-
tages:

▶ RC excels in efficiency, consuming the fewest tokens and achieving the lowest latency, making
it particularly well-suited for resource-constrained environments, if existing RBAC policies are
available and well-maintained.

▶ PA provides broad semantic safeguards with minimal usability impact, delivering a balanced
enhancement across both correctness and defense.

▶ PP though the most resource-intensive, serves as a crucial backstop, catching edge-case leaks
that may bypass upstream checks.

When modules are combined, these strengths complement one another. Dual-module pairings pro-
vide a practical balance: for instance, PA+RC achieves high defense with manageable costs, while
RC+PP significantly boosts defense at the expense of some correctness. The full three-module con-
figuration, though associated with an average token footprint of 1,366 and slightly higher latency, re-
mains more efficient than certain dual-module setups such as PA+PP, which demands around 1,834
tokens because we bypass the computation of later modules if any prior guardrail modules have
failed. Strikingly, the triple-module system not only delivers the strongest defense and preserves
high response fidelity, but it also does so with a leaner token profile than many lighter combinations.

Taken together, our results indicate that organizations adopting our framework gain maximum pro-
tection without sacrificing efficiency. They can tailor deployments to align with their security prior-
ities and operational constraints, choosing single- or dual-module setups when resources are tight,
or adopting the full configuration for maximal robustness at a still-reasonable cost.

4.3 ABLATION STUDY

While the results from closed source (API) implementation demonstrated to give high correctness
and defense, it is also important to compare how open source alternatives stack against their closed
source counterpart. Hence, Table 3 shows the results for two widely used open source models
Gemma-3n-4b (Team, 2025) and GPT-OSS-20b (Agarwal et al., 2025), and how they compare
against GPT-4o (Hurst et al., 2024). Note that the same experimental set-up was followed for both
close/open source implementations.

On one hand, GPT-OSS-20b attains higher correctness than GPT-4o in all cases except PA-only.
In contrast, its defense rate is lower in every setting. On the other hand, Gemma model performs
at a comparable correctness against those from GPT-4o, and in the case of PP, Gemma’s model
outperforms the GPT close source option. Yet, when it comes to defense rates, Gemma’s model
performs poorly in the PP only configuration and exhibits the lowest defense rate in PA+RC+PP
configuration.

For the full modular configuration (PA + RC + PP), while GPT-4o is the better choice terms of
defense, compelling open source alternatives can be found in GPT-OSS-20b which only presents a
6.2% drop with a 2.4% correctness increase. In addition, the results shown in Table 4, Appendix A.1,
attests that the average token of the open source models is lower to those from GPT-4o; but the trade-
off of choosing open source would result on a higher latency.

To sum up, the choice of implementation should consider not only which modules to deploy but
also which model family (closed or open source) best aligns with organizational priorities. GPT-4o
consistently delivers the strongest defense in the full modular configuration, making it the preferred
option where security robustness is paramount. However, open source alternatives such as GPT-
OSS-20b and Gemma-3n-4b demonstrate competitive performance in correctness and efficiency,
and may be attractive in scenarios where transparency, cost, or deployment flexibility is valued.
Consequently, organizations should select module–model pairings that balance security needs, user
experience, and resource constraints. In particular, deploying the full three-module framework with
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Table 3: Extensibility to Open source models

GPT-4o Gemma-3n-4b GPT-oss-20B

Correctness Defense (%) Correct. Defense (%) Correct. Defense (%)

Policy Alignment (PA) only 88.6% 84.7% 87.5% 72.7% 85.4% 68.8%
Role Checking (RC) only 82.7% 92.0% 80.5% 90.7% 85.6% 90.8%
Post Processing (PP) only 72.4% 85.7% 85.6% 47.7% 89.1% 70.6%
PA + RC + PP 85.4% 97.7% 84.8% 87.7% 87.7% 91.5%

Correctness and defense rates for closed (API) vs open source models. Company Role = Finance Director

a strong model is recommended for comprehensive protection, while resource-sensitive environ-
ments may benefit from lighter models combined with efficient modules such as RC and PA.

5 CONCLUSION AND DISCUSSION

Traditional alignment techniques provide a broad safety net, but they exhibit fundamental limita-
tions in practice. As we argued in the previous sections, information is not inherently harmful; its
appropriateness hinges on who is receiving it and under what conditions. Therefore, we introduced
a modular LLM Information Control Framework that systematically regulates who can access what
information by the cascading effect of four main modules: Identification, Policy Alignment, Role-
based access controls, and Post Processing.

Through rigorous experimentation, our results demonstrated that combining all modules achieved
superior performance in balancing Correctness and Defense, significantly outperforming individual
modules and baseline configurations. While the full integration does introduce a moderate latency
increase, averaging around five seconds, this slight overhead may be acceptable given the substantial
gains in information security and compliance control. Furthermore, the average token usage remains
within practical limits, underscoring the feasibility that enforceable information governance can
coexist with practical usability within operational environments. By grounding LLM behavior in
verified user identity and explicit role permissions, our approach prevents misuse at its source, rather
than relying on the model’s general notion of harm. In short, our results illustrate how context-aware
control of information flow can address the very gaps that alignment-centric methods leave open.

The results and flexibility of our framework provide organizations with a practical tool for managing
sensitive information provided to LLM applications. Organizations can strategically deploy modules
according to specific security priorities, operational constraints, and resource availability. By placing
organizational policies and user context at the core of model interactions, stakeholders can have
better control over sensitive data usage within their organisations. This marks an important step
toward LLMs deployments that are not only aligned in spirit, but also governed in access, an essential
requirement as these models become increasingly integrated into critical infrastructure and daily
workflows.

Limitations & Final remarks Our study was conducted in text-based, enterprise-style settings;
external validity to domain-specialized and multimodal applications (e.g., legal, clinical, or vi-
sion–language systems) remain an open question and will likely require domain-specific policy
instrumentation and authentication schemes. The current implementation of the four modules in-
curs a computational overhead (in the order of seconds) that could suggest the need for future op-
timizations to meet the demands of organizations requiring near-real-time operation. Moreover, as
more sophisticated threats and AI regulatory requirements evolve, continuous policy maintenance
and monitoring are necessary.

Finally, combining context-aware information controls with advances in model safety may con-
tribute as a layer of defense that is more likely to generalize across organizations and use cases.
Overall, moving from abstract behavioral alignment to enforceable information governance pro-
vides a practical and extensible foundation for safe LLM deployment across diverse applications.
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A APPENDIX

A.1 ADDITIONAL FIGURES AND TABLES

Figure 3: Role Checking Module Performance

A.2 ADDITIONAL IMPLEMENTATION DETAILS

Synthetic business corpus. We used Gemini 2.5 Pro via the web interface (Canvas tool, default
temperature) to author a synthetic business document. Prompts specified industry context and a plau-
sible financial trajectory so that the generated narrative is realistic while remaining non-derivative.
Public financial disclosures from Nvidia and Arm served only as style/content references; we ex-
plicitly prompted the model to avoid paraphrasing proprietary language, and the authors manually
verified non-derivativeness.

Synthetic personnel records. Starting from generic curriculum vitae templates, we produced fic-
titious employee profiles through iterative prompting of Claude 3.7 and light manual editing to
resemble professional curriculum vitae while containing no real personally identifiable information
(PII). The prompt included the aforementioned synthetic business corpus context to ensure consis-
tency in corporate narrative.
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Table 4: Framework Performance with Modular Configuration - Open Source Models

Gemma-3n-4b

Framework Configuration Correctness Defense % Average
Tokens

Average
Latency (s)

Policy Alignment (PA) only 87.5% 72.7% 1537 3.55
Role Checking (RC) only 80.5% 90.7% 835 6.74
Post Processing (PP) only 85.6% 47.7% 1777 2.99

PA + RC + PP 84.8% 87.7% 836 8.31

GPT-oss-20B

Framework Configuration Correctness Defense % Average
Tokens

Average
Latency (s)

Policy Alignment (PA) only 85.4% 68.8% 1778 3.50
Role Checking (RC) only 84.1% 90.8% 915 2.83
Post Processing (PP) only 89.1% 70.55% 1779 3.46

PA + RC + PP 87.7% 91.5% 952 6.01

Figure 4: Chat Workflow

Role-based access control (RBAC). The organizational RBAC catalogue was curated by the au-
thors from industry references and reviewed for the three target roles considered in our experiments,
ensuring clear, enforceable permission boundaries.

Question set construction. Claude 3.7 generated question banks of varying difficulty conditioned
on the synthetic CVs and business corpus. We balanced domains with 100 HR-oriented and 100
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finance-oriented questions. For HR items, prompts required inclusion of PII-like fields where ap-
propriate to test denial behavior. All outputs were requested in structured JSON.

Consistency checks. The authors, aided by an auxiliary LLM, cross-checked generated questions
against the reference documents to ensure internal consistency, factual coherence with the synthetic
corpus, and absence of unintended leakage.

Attack Success Rate and Defense metrics. We first define Attack Success Rate (ASR) against a
LLM application denoted as:

ASR =
1

|ppriv|
∑

pi∈ppriv

ASR(pi)

ASR(pi) = 1.0− dist(p, r, rg)

where pprev denotes the prompt which will return information that is beyond the user role privilege,
ie Financial Director requesting for HR information. dist(p, r, rg),as defined in the main body of
the paper, measures how much ground-truth information is given in the response r as determined
by LLM-as-judge (GPT-4o). A higher ASR(pi) will imply that for a specific prompt, p, r con-
tains information that is consistent, accurate and complete when compared to rg , that is, privileged
information from a company’s corpus is provided as a response to the corresponding prompt.

We further define the Defense metric as:

Defense = 1−ASR

Evaluation protocol. We tracked runs and experimental results using LangSmith, and conducted
LLM-as-judge evaluations using GPT-4o mini. The final results are exported as csv for archiving
and for further analysis.

Specifically, we ran 3 LLM-as-judge evaluators for 1) sensitive info, 2) correctness, 3) correct denial
results fields. The aggregated the LLM-as-judge outputs are used compute the Correctness and
Defense metrics reported in this paper. The full judging prompt is provided here.

13


	Introduction
	Background and Motivation
	LLM Information Control Framework
	Empirical Evaluation
	Experimental Setup
	Experimental Results
	Ablation Study

	Conclusion and Discussion
	Appendix
	Additional Figures and Tables
	Additional Implementation Details


