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Abstract
Interpreting and understanding the predic-001
tions made by deep learning models poses a002
formidable challenge due to their inherently003
opaque nature. Many previous efforts aimed at004
explaining these predictions rely on input fea-005
tures, specifically, the words within NLP mod-006
els. However, such explanations are often less007
informative due to the discrete nature of these008
words and their lack of contextual verbosity. To009
address this limitation, we introduce the Latent010
Concept Attribution method (LACOAT), which011
generates explanations for predictions based on012
latent concepts. Our foundational intuition is013
that a word can exhibit multiple facets, con-014
tingent upon the context in which it is used.015
Therefore, given a word in context, the latent016
space derived from our training process reflects017
a specific facet of that word. LACOAT functions018
by mapping the representations of salient input019
words into the training latent space, allowing it020
to provide latent context-based explanations of021
the prediction.1022

1 Introduction023

The opaqueness of deep neural network (DNN)024

models is a major challenge to ensuring a safe and025

trustworthy AI system. Extensive and diverse re-026

search works have attempted to interpret and ex-027

plain these models. One major line of work strives028

to understand and explain the prediction of a neu-029

ral network model using the attribution of input030

words to prediction (Sundararajan et al., 2017a;031

Denil et al., 2014).032

However, the explanation based solely on input033

words is less informative due to the discrete na-034

ture of words and the lack of contextual verbosity.035

A word consists of multifaceted aspects such as036

semantic, morphological, and syntactic roles in a037

sentence. Consider the word “trump” in Figure 1.038

It has several facets such as a verb, a verb with spe-039

cific semantics, and a named entity representing a040

1The codebase is available at ANNONYMIZED.

Figure 1: An example of various facets of word “trump”

certain aspect such as tower names, family names, 041

etc. We argue that given various contexts of a word 042

in the training data, the model learns these diverse 043

facets during training. Given a test instance, de- 044

pending on the context a word appears, the model 045

uses a particular facet of the input words in making 046

the prediction. The explanation based on salient 047

words alone does not reflect the facets of the word 048

the model has used in the prediction and results in 049

a less informed explanation. 050

Dalvi et al. (2022) showed that the latent space of 051

DNNs represents the multifaceted aspects of words 052

learned during training. The clustering of training 053

data contextualized representations provides access 054

to these multifaceted concepts, hereafter referred to 055

as latent concepts. Given an input word in context 056

at test time, we hypothesize that the alignment of 057

its contextualized representation to a latent concept 058

represents the facet of the word being used by the 059

model for that particular input. We further hypoth- 060

esize that this latent concept serves as a correct 061

and enriched explanation of the input word. To 062

this end, we propose the LAtent COncept ATtribu- 063

tion (LACOAT) method that generates an explanation 064

of a model’s prediction using the latent concepts. 065

LACOAT discovers latent concepts of every layer 066

of the model by clustering contextualized repre- 067

sentations of words in the training corpus. Given 068

a test instance, it identifies the most salient input 069

representations of every layer with respect to the 070

prediction and dynamically maps them to the latent 071

concepts of the training data. The shortlisted latent 072

concepts serve as an explanation of the prediction. 073
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Lastly, LACOAT integrates a plausibility module that074

generates a human-friendly explanation of the la-075

tent concept-based explanation.076

LACOAT is a local explanation method that pro-077

vides an explanation of a single test instance. The078

reliance on the training data latent space makes the079

explanation reliable and further reflects on the qual-080

ity of learning of the model and the training data.081

We perform qualitative and quantitative evaluation082

of LACOAT using four classification tasks across083

four pre-trained models. LACOAT generates an en-084

riched explanation that is useful in understanding085

the model’s reasoning for a prediction. We also086

conduct a human evaluation to measure the utility087

of LACOAT with a human-in-the-loop. Moreover,088

we measure the faithfulness of the most salient la-089

tent concept to the prediction using representation090

manipulation and show that it alters the prediction091

up to 46% of the time.092

2 Methodology093

LACOAT consists of the following four modules:094

• The first module, ConceptDiscoverer, discov-095

ers latent concepts of a model given a corpus.096

• PredictionAttributor, the second module, se-097

lects the most salient words (along with their con-098

textual representations) in a sentence with respect099

to the model’s prediction.100

• Thirdly, ConceptMapper, maps the representa-101

tions of the salient words to the latent con-102

cepts discovered by ConceptDiscoverer and103

provides a latent concept-based explanation.104

• PlausiFyer takes a latent concept explanation105

as input and generates a plausible and human-106

understandable explanation of the prediction.107

Consider a sentiment classification dataset and108

a sentiment classification model as an example.109

LACOAT works as follows: ConceptDiscoverer110

takes the training dataset and the model as input and111

outputs latent concepts of the model. At test time,112

given an input sentence, PredictionAttributor113

identifies the most salient input representations114

with respect to the prediction. ConceptMapper115

maps these salient input representations to the train-116

ing data latent concepts and provides them as an117

explanation of the prediction. PlausiFyer takes118

the test sentence and its concept-based explana-119

tion and generates a human-friendly and insightful120

explanation of the prediction.121

Consider M represents the DNN model being 122

interpreted, with L layers, each of size H . Let 123
−→z wi be the contextual representation of a word 124

wi in an input sentence {w1, w2, ..., wi, ....}. The 125

representation can belong to any particular layer in 126

the model, and LACOAT will generate explanations 127

with respect to that layer. 128

2.1 ConceptDiscoverer 129

The words are grouped in the high-dimensional 130

space based on various latent relations such as se- 131

mantic, morphology and syntax (Mikolov et al., 132

2013; Reif et al., 2019). With the inclusion of 133

context i.e. contextualized representations, these 134

groupings evolve into dynamically formed clusters 135

representing a unique facet of the words called la- 136

tent concept (Dalvi et al., 2022). Figure 1 shows a 137

few examples of latent concepts that capture differ- 138

ent facets of the word "trump". 139

The goal of ConceptDiscoverer is to discover 140

latent concepts given a model M and a dataset D. 141

We follow an identical procedure to Dalvi et al. 142

(2022) to discover latent concepts. Specifically, for 143

every word wi in D, we extract contextual repre- 144

sentations −→z wi . We then cluster these represen- 145

tations using agglomerative hierarchical cluster- 146

ing (Gowda and Krishna, 1978). The distance be- 147

tween any two representations is computed using 148

the squared Euclidean distance, and Ward’s mini- 149

mum variance criterion is used to minimize total 150

within-cluster variance. 151

Each cluster represents a latent concept. Let 152

C = C1, C2, ..., CK represents the set of latent 153

concepts extracted by ConceptDiscoverer, where 154

each Ci = w1, w2, ... is a set of words in a par- 155

ticular context. For sequence classification tasks, 156

we also consider the [CLS] token (or a represen- 157

tative classification token) from each sentence in 158

the dataset as a “word” and discover the latent con- 159

cepts. In this case, a latent concept may consist of 160

words only, [CLS] tokens only, or a mix of both. 161

2.2 PredictionAttributor 162

Given an input instance s, the goal of 163

PredictionAttributor is to extract salient 164

input representations with respect to the prediction 165

p from model M. Gradient-based methods have 166

been effectively used to compute the saliency of 167

the input features for the given prediction, such 168

as pure Gradient (Simonyan et al., 2014), Input x 169

Gradient (Shrikumar et al., 2017) and Integrated 170

Gradients (IG) (Sundararajan et al., 2017b). In 171
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this work, we use IG as our gradient-based method172

as it is a well-established method from literature.173

However, LACOAT is agnostic to the choice of the174

attribution method, and any other method that175

identifies salient input representations can be used176

while keeping the rest of the pipeline unchanged.177

Formally, we first use IG to get attribution scores178

for every token in the input s, and then select the179

top tokens that make up 50% of the total attribution180

mass (similar to top-P sampling).181

2.3 ConceptMapper182

At test time, given an input sentence183

PredictionAttributor provides the salient184

input representations. ConceptMapper maps185

each salient representation to a latent concept186

Ci of the training latent space. These latent187

concepts highlight a particular facet of the salient188

representations that is being used by the model and189

serve as an explanation of the prediction.190

ConceptMapper uses a logistic regression clas-191

sifier that maps a representation −→z wi to one of the192

K latent concepts. The model is trained using the193

representations of words from D that are used by194

ConceptDiscoverer as input features and the con-195

cept index (cluster id) as their label. Hence, for196

a concept Ci and a word wj ∈ Ci, a training in-197

stance of the classifier is the input x = −→z wj and198

the output is y = i.199

2.4 PlausiFyer200

Interpreting latent concepts can be challenging due201

to the need for diverse knowledge, including lin-202

guistic, task-specific, worldly, and geographical203

expertise (as seen in Figure 1). PlausiFyer offers204

a user-friendly summary and explanation of the205

latent concept and its relationship to the input in-206

stance using a Large Language Model (LLM). Our207

intuition of natural language explanation is similar208

to Singh et al. (2023), however, we relied on latent209

concepts compared to most activated ngrams and210

the generation of synthetic data. Given an input211

sentence and the latent concept, we ask an LLM212

to explain the relationship between them. Due to213

space limitation, we present the prompts used for214

sequence labeling and classification tasks in App A.215

3 Experimental Setup216

Data We use Parts-of-Speech (POS) Tagging,217

Toxicity classification (Toxicity), Sentiment Clas-218

sification (Sentiment) and Natural Language Infer-219

ence (NLI) tasks for our experiments. POS is a220

sequence labeling task while the other tasks are se- 221

quence classification tasks. We use the Penn Tree- 222

Bank dataset (Marcus et al., 1993) for POS, Jigsaw 223

Toxicity dataset (cjadams, 2017) for toxicity, the 224

ERASER Movie Reviews dataset (Pang and Lee, 225

2004) for Sentiment and the MNLI dataset (Wang 226

et al., 2019) for the NLI tasks. Appendix B pro- 227

vides the information about each dataset. 228

Models We fine-tune 12-layered pre-trained 229

models; BERT-base-cased (Devlin et al., 2019), 230

RoBERTa-base (Liu et al., 2019) and XLM- 231

Roberta (Conneau et al., 2020) using the training 232

datasets of the tasks considered. For Llama2-2- 233

7b-chat-hf (Touvron et al., 2023), we use the base 234

model without finetuning with zero-shot prompting 235

for each task. We use transformers (Wolf et al., 236

2020) with the default settings and hyperparame- 237

ters. Task-wise performance of the models is pro- 238

vided in App. Tables 5, 6, 13, and 17. 239

Module-specific hyperparameters When ex- 240

tracting the activation and/or attribution of a word, 241

we average the respective value over the word’s sub- 242

word units. We optimize the number of clusters K 243

for each dataset as suggested by Dalvi et al. (2022). 244

We use K = 600 (POS, Toxicity) and K = 400 245

(Sentiment, MNLI) for ConceptDiscoverer. 246

Since the number of words in D can be very 247

high, and the clustering algorithm is limited by the 248

number of representations it can efficiently cluster, 249

we filter out words with frequencies less than 5 250

and randomly select 20 contextual occurrences of 251

every word with the assumption that a word may 252

have a maximum of 20 facets. These settings are in 253

line with Dalvi et al. (2022). In the case of [CLS] 254

tokens, we keep all of the instances. 255

We use a zero-vector as the baseline vector in 256

PredictionAttributor’s IG, using 500 approx- 257

imation steps. For ConceptMapper, we use the 258

cross-entropy loss with L2 regularization and train 259

the classifier with ‘lbfgs’ solver and 100 maximum 260

iterations. To optimize the classifier and to evaluate 261

its performance, we split the dataset D into train 262

(90%) and test (10%). ConceptMapper used in the 263

LACOAT pipeline is trained using the full dataset D. 264

Finally, for PlausiFyer, we use ChatGPT with a 265

temperature of 0 and a top_p value of 0.95. 266

4 Evaluation 267

We perform a qualitative evaluation, a human eval- 268

uation and a module-level evaluation of LACOAT to 269
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Figure 2: Sentiment task: Latent concepts of the most attributed words in Layers 0, 6 and 12

measure its correctness and efficacy. We find con-270

sistent results across all tasks and models. Due to271

space limitation, we mainly present the results of272

POS and Sentiment using the BERT and RoBERTa273

models in the main paper. The full set of results274

are presented in Apps. H, I, J.275

4.1 Qualitative Evaluation276

In this section, we qualitatively evaluate the useful-277

ness of the latent concept-based explanation and278

the generated human-friendly explanation.279

4.1.1 Evolution of Concepts280

LACOAT generates the explanation for each layer281

with respect to a prediction. The layer-wise expla-282

nation shows the evolution of concepts in making283

the prediction. Figure 2 shows layers 0, 6 and 12’s284

latent concept of the most attributed input token285

for RoBERTa fine-tuned on the sentiment task (see286

App. Fig 5 for other examples). We found that287

the initial layer latent concepts do not always align288

with the sentiment of the input instance and may289

represent a general language concept. For instance,290

Figure 2(a) shows the concept of comparative and291

superlative adjectives of both positive and nega-292

tive sentiments and is not limited to representing293

the negative sentiment of the most attributed word.294

In the middle layers, the latent concepts evolved295

into concepts that align better with the sentiment296

of the input sentence. For instance, the latent con-297

cept of Figure 2(b) shows a mix of adjectives and298

adverbs of negative sentiment, i.e. aligned with299

the sentiment of the input sentence. In the sen-300

timent task, the most attributed word in the last301

layer is [CLS] which resulted in latent concepts302

consisting of [CLS] representations of the most303

related sentences to the input. In such cases, we304

randomly pick five [CLS] instances from the latent305

concept and show their corresponding sentences306

in the figure (see Figure 2(c)). We found that the307

last layer’s latent concepts are best aligned with308

the input instance and its prediction and are the309

most informative explanation of the prediction. In 310

the rest of the paper, we focus our analysis on the 311

explanations generated using the last layer only 312

and perform a human evaluation to evaluate their 313

efficacy and correctness. 314

4.1.2 Analyzing Last Layer Explanations 315

Figure 3 presents various examples of LACOAT for 316

both POS tagging and Sentiment tasks using BERT. 317

The sentence is the input sentence, prediction is the 318

output of the model and true label is the gold label. 319

The explanation is the final output of LACOAT. Clus- 320

ter X is the latent concept aligned with the most 321

salient word representation at the 12th layer and X 322

is the cluster ID. For sentiment, we randomly pick 323

five [CLS] instances from the latent concept and 324

show their corresponding sentences in the figure. 325

Correct prediction with correct gold label Fig- 326

ures 3a and 3c present a case of correct predic- 327

tion with latent-concept explanation and human- 328

friendly explanation. The former are harder to 329

interpret especially in the case of sentence-level 330

latent concepts as in Figure 3a compared to latent 331

concepts consisting of words (Figure 3c). However, 332

in both cases, PlausiFyer highlights additional 333

information about the relation between the latent 334

concept and the input sentence. For example, it 335

captures that the adverbs in Figure 3c have com- 336

mon semantics of showing degree or frequency. 337

Similarly, it highlights that the reason of positive 338

sentiment in 3a is due to praising different aspects 339

of a film and its actors and actresses. 340

Wrong prediction with correct gold label Fig- 341

ures 3b and 3d show rather interesting scenarios 342

where the predicted label is wrong. In Figure 3b, 343

the input sentence has a negative sentiment but the 344

model predicted it as positive. The instances of 345

latent concepts show sentences with mixed senti- 346

ments such as “manages to charm” and “epitome 347

of twist endings” is positive, and “never quite lives 348

up to its promise” is negative. This provides the 349
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(a) Sentiment: A positive labeled test instance
correctly predicted by the model.

(b) Sentiment: A negatively labeled test instance that is
incorrectly predicted as positive.

(c) POS: An adverb with semantics showing degree and
intensity of an action

(d) POS: An incorrect prediction that can be de-
tected from the latent concept

Figure 3: A few examples of LACOAT explanations for BERT using POS and Sentiment tasks

domain expert an evidence of a possible wrong350

prediction. The PlausiFyer’s explanation is even351

more helpful as it clearly states that “there is no352

clear ... relation between these sentences ...". Sim-353

ilarly, in the case of POS (Figures 3d) while the354

prediction is Noun, the majority of words in the355

latent concepts are plural Nouns, giving evidence356

of a possibly wrong prediction. In addition, the357

explanation did not capture any morphological re-358

lationship between the concept and the input word.359

To study how the explanation would change if it360

is a correct prediction, we employ TextAttack (Mor-361

ris et al., 2020) to create an adversarial example362

of the sentence in Figure 3b that flips its predic-363

tion. The new sentence replaces “laughing” with364

“kidding” which has a similar meaning but flipped365

the prediction to a correct prediction. Figure 6 in366

the App. shows the full explanation of the aug-367

mented sentence. With the correct prediction, the368

latent concept changed and the explanation clearly369

expresses a negative sentiment “... all express neg-370

ative opinions and criticisms ..." compared to the371

explanation of the wrongly predicted sentence.372

Cross model analysis LACOAT provides an op- 373

portunity to compare various models in terms of 374

how they learned and structured the knowledge 375

of a task. Figure 4 compares XLMR (top) and 376

RoBERTa (bottom) for identical inputs. Both mod- 377

els predicted the correct label. However, their latent 378

concept based explanation is substantially different. 379

XLMR’s explanation shows a large and diverse con- 380

cept where many words are related to finance and 381

economics. RoBERTa’s latent concept is rather a 382

small focused concept where the majority of tokens 383

are units of measurement. It is worth noting that 384

both models are fine-tuned on identical data. 385

4.2 Human Evaluation 386

We perform two human evaluations; one aimed at 387

evaluating the usefulness of LACOAT’s explanation 388

in understanding a prediction (LACOAT Effective- 389

ness) and the other compares LACOAT with other 390

explanation methods. 391

LACOAT Effectiveness We conduct a human eval- 392

uation using four annotators across 50 test samples. 393

Specifically, given an explanation (e.g. Figure 3), 394

all annotators are asked to answer five questions 395
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Figure 4: Comparing explanation of XLMR (top) and
RoBERTa (bottom)

(Q1-Q5) that aimed at evaluating the usefulness396

of LACOAT.2 Specifically, Q1 evaluates whether397

LACOAT attributes the correct concept to a given398

prediction, while Q2 and Q3 measure the efficacy399

of LACOAT’s output in helping a user understand400

the prediction. Q4 and Q5 evaluates the output401

of PlausiFyer. They specifically separate out the402

cases where the explanation was accurate but irrel-403

evant to the task at hand.404

Table 1 shows the consolidated labels by picking405

the majority label in case of Yes/No questions and406

averaging the annotations in case of the rest. The407

evaluation shows that the latent concept itself was408

not only relevant to the task at hand, but also helped409

the user understand the model’s prediction. The410

results for the helpfulness of the explanation text411

were mixed, with the majority of the annotations412

stating that it did not help or hinder their process.413

However upon inspection, we see that the explana-414

tion was mostly helpful in all the cases where the415

model made the correct prediction, and not helpful416

when the prediction was incorrect. Qualitatively417

analyzing the explanation text for incorrect predic-418

tion shows that PlausiFyer mostly outputs “There419

is no relationship between the sentences and the420

concepts”, which was deemed as hindering by most421

of the annotators. While such an explanation may422

serve as an indicator of a potential problem in the423

2We provide the evaluation questions in App. F.

Top
Labels

Correct
Samples

Incorrect
Samples

All Samples

Annotation Fleiss κ

Q1 Yes/No 28 / 0 20 / 2 48 / 2 0.35
Q2 Helps/Neutral/Hinders 27 / 1 / 0 17 / 5 / 0 44 / 6 / 0 0.41
Q3 Helps/Neutral/Hinders 16 / 10 / 2 1 / 19 / 2 17 / 29 / 4 0.61
Q4 Yes/No 17 / 11 5 / 17 22 / 28 0.47
Q5 Yes/No 17 / 11 6 / 16 23 / 27 0.80

Bottom A1 A2 A3 A4 Consolidated Average Cohen’s κ

LACOAT ↑ 85% 72% 77% 87% 89% 0.37

Table 1: Top: Consolidated label distribution for Q1-
Q5. Fleiss’ κ scores are computed by averaging each
annotator with the consolidated annotation. The con-
solidated labels and agreement scores are shown for all
the samples, as well as partitioned into those where the
model prediction was correct/incorrect. Bottom: Per-
centage of samples where LACOAT is ranked similar or
better than other methods. A∗ represents the average
preference of LACOAT per annotator.

prediction, improving the prompt may result in a 424

response that is indicative of the issue with the pre- 425

diction. We leave this exploration for the future. 426

Table 1 also shows the agreement between the an- 427

notators using Fleiss’ Kappa. Since not all samples 428

were annotated by all annotators, we compute the 429

average Fleiss’ kappa of each annotator with the 430

consolidated annotation. The agreement ranges 431

from Fair to Substantial across the five questions. 432

Comparison with other Methods Despite a 433

number of explanation methods proposed in the 434

literature, it is hard to draw a comparison between 435

them due to the difference in granularity of expla- 436

nation, type of explanation and the methodology 437

used. We design a human evaluation, asking evalu- 438

ators to give a score between 1 to 3 to each of three 439

explanations generated by IG, LACOAT and Cock- 440

atiel (Jourdan et al., 2023). The annotation setup 441

allows to rank multiple methods with the same use- 442

fulness rating. A total of 400 annotations were 443

collected using four evaluators where each test in- 444

stance is evaluated by all annotators. We provide 445

the details of the evaluation setup and the results 446

in App. F. The second part of Table 1 shows the 447

percentage of samples for which each of the annota- 448

tors ranked LACOAT to be the same or better than 449

both IG and Cockatiel. The consolidated ranking is 450

computed by averaging the ranks across users. The 451

average Cohen’s κ indicates Fair agreement be- 452

tween each annotator and the consolidated ranking. 453

The results show that LACOAT explanation is more 454

useful in understanding the prediction compared to 455

other methods. 456
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POS Sentiment
Layers BERT RoBERTa BERT RoBERTa

9 92.38 86.97 31.94 99.59
10 92.79 89.64 99.57 99.69
11 93.39 89.95 99.71 99.48
12 93.95 90.04 99.25 99.27

Table 2: Accuracy of PredictionAttributor in map-
ping a representation to the correct latent concept.

4.3 Module Specific Evaluation457

The correctness of LACOAT depends on the perfor-458

mance of each module it comprised off. The ideal459

way to evaluate the efficacy of these modules is460

to consider gold annotations. However, they are461

not available for any module. To mitigate this lim-462

itation, we design various constrained scenarios463

where certain assumptions can be made about the464

representations of the model. For example, the465

POS model optimizes POS tags so it is highly prob-466

able that the last layer representations form latent467

concepts that are a good representation of POS tags468

as suggested by various previous works (Kovaleva469

et al., 2019; Durrani et al., 2022). One can as-470

sume that for ConceptDiscoverer, the last layer471

latent concepts will form groupings of words based472

on specific tags and for PredictionAttributor,473

the input word at the position of the predicted tag474

should reside in a latent concept that is dominated475

by the words with the same tag. In the following,476

we evaluate the correctness of these assumptions.477

Latent Concept Annotation For the sake of478

evaluation, we annotated the latent concepts auto-479

matically using the class labels of each task. Given480

a latent concept, we annotate it with a certain class481

if more than 90% of the words in the latent con-482

cept belong to that class. In the case of POS, the483

latent concepts will be labeled with one of the 44484

tags. For sentiment, the class labels, Positive and485

Negative, are at sentence level. We tag a latent486

concept as Positive/Negative if 90% of its tokens487

([CLS] or words) belong to sentences labeled as488

Positive/Negative in the training data. The latent489

concepts that do not fulfill the criteria of 90% for490

any class are annotated as Mixed.491

4.3.1 ConceptDiscoverer492

ConceptDiscoverer identifies latent concepts by493

clustering the representation. We question whether494

the discovered latent concepts are a true reflection495

of the properties that a representation possesses.496

Using ConceptDiscoverer, we form latent con-497

cepts of the last layer and automatically annotate498

them as described above. We found 87%, 83% and499

Layers 0 2 5 10 12

POS Top 1 100 100 99.03 92.67 84.19
Top 2 100 100 99.75 97.89 94.15
Top 5 100 100 99.94 99.68 99.05

Sentiment Top 1 100 100 97.19 83.09 68.24
Top 2 100 100 99.63 92.67 83.24
Top 5 100 100 99.94 97.75 94.24

Table 3: BERT: Accuracy of ConceptMapper in map-
ping a representation to the correct latent concept. See
Table 10, 11 in the Appendix for results on all layers.

86% of the latent concepts of BERT, RoBERTa and 500

XLMR that perfectly map to a POS tag respectively. 501

We further analyzed other concepts where 90% of 502

the words did not belong to a single tag. We found 503

them to be of compositional nature i.e. a concept 504

consisting of related semantics like a mix of ad- 505

jectives and proper nouns about countries such as 506

Swedish and Sweden (App. Figure 9). For senti- 507

ment, we found 78%, 95%, and 94% of the latent 508

concepts of BERT, RoBERTa, and XLMR to con- 509

sist of either Positive or Negative sentences. The 510

high number of class-based clusters of RoBERTa 511

and XLMR show that at the 12th layer, the majority 512

of their latent space is separated based on these two 513

classes (see Table 7 for detailed results). 514

4.3.2 PredictionAttributor 515

We question whether the salient input repre- 516

sentation correctly represents the latent space 517

of the output. This specifically evaluates 518

PredictionAttributor. We calculate the num- 519

ber of times the representation of the most salient 520

word/[CLS] token maps to the latent concept of 521

the identical label as that of the prediction. We 522

expect a high alignment at the top layers for 523

PredictionAttributor to be correct. We do not 524

include ConceptMapper when evaluating this and 525

conduct the experiment using the training data 526

only where we already know the alignment of a 527

salient representation and the latent concept. Ta- 528

ble 2 shows the results across the last four layers 529

(See App. Tables 8, 9 for full results). For POS, 530

we observed a successful match of above 90% for 531

all models. We observed the mismatched cases and 532

found them to be also of a compositional nature i.e. 533

latent concepts comprised of semantically related 534

words (see App. Figure 9 for examples). 535

For sentiment, more than 99% of the time, the 536

last layer’s salient representation maps to the pre- 537

dicted class label, confirming the correctness of 538

PredictionAttributor. The performance drop 539

for the lower layer is due to the absence of class- 540
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based latent concepts in the lower layers i.e. con-541

cepts that comprised more than 90% of the tokens542

belonging to sentences of one of the classes.543

4.3.3 ConceptMapper544

We evaluate the correctness of ConceptMapper in545

mapping a test representation to the training data546

latent concepts. ConceptMapper trains using rep-547

resentations and their cluster IDs as labels. We548

randomly split this training data into 90% train and549

10% test where the test data serves as the gold anno-550

tation of latent concepts. We train ConceptMapper551

using the train instances and measure the accu-552

racy of the test instances. Table 3 summarizes553

the results of BERT (See App. Tables 10, 11 for554

all results). Observing Top-1 accuracy, the perfor-555

mance of ConceptMapper starts high (100%) for556

lower layers and drops to 84.19 and 68.24% for the557

last layer. We found that the latent space becomes558

dense on the last layer. This is in line with Etha-559

yarajh (2019) who showed that the representations560

of higher layers are highly anisotropic. This causes561

concepts to be close in the space. If true, the correct562

label should be among the top predictions of the563

mapper. We empirically tested it by considering564

the top two and top five predictions of the map-565

per, achieving a performance of up to 99.05% and566

94.24% for POS and Sentiment respectively.567

4.4 Faithfulness Evaluation568

Zhao and Aletras (2023a) proposed masking parts569

of input token representations to evaluate faithful-570

ness. We adapted their methodology to the latent571

concept faithfulness evaluation. We consider a572

salient latent concept highlighted by LACOAT to be573

faithful to the prediction if the ablation of that latent574

concept causes a change in prediction performance.575

We define ablation of a latent concept as remov-576

ing the information of that latent concept from the577

prediction vector i.e. [CLS] . We calculate the vec-578

tor of a latent concept by averaging the training579

representations that belong to the latent concept.580

At inference time, we subtract the latent concept581

vector from the [CLS] representation of layer 12582

and perform the prediction. We report the accuracy583

of the model and the percentage of predictions al-584

tered (see Table 12 in App.). Moreover, we report585

the manipulation of [CLS] using random vectors.586

The results show a substantial change in all met-587

rics when the latent concept is ablated compared588

to random, confirming the faithfulness of the latent589

concept based explanation.590

5 Related work 591

The explainability methods can be approached by 592

local explanations and global explanations target- 593

ing post-hoc analysis or introducing interpretability 594

in the architecture (Madsen et al., 2023; Sundarara- 595

jan et al., 2017a; Denil et al., 2014; Selvaraju et al., 596

2020; Kapishnikov et al., 2021; Zhao and Aletras, 597

2023b; Kim et al., 2018; Ghorbani et al., 2019; 598

Jourdan et al., 2023; Zhao et al., 2023; Ribeiro 599

et al., 2016; Rajagopal et al., 2021). Lyu et al. 600

(2023) provides a survey of explainability meth- 601

ods in NLP. LACOAT is a local explanation method 602

providing post-hoc explanations given an input in- 603

stance. One of the common ways for local explana- 604

tions is to interpret the model prediction based on 605

the input features. However, such an explanation 606

lacks contextual verbosity and it could not interpret 607

the multifaceted roles of the input features. 608

Previous work attempted to explain and interpret 609

NLP models using human-defined concepts (Kim 610

et al., 2018; Abraham et al., 2022) and concepts 611

extracted from hidden representations (Zhao et al., 612

2023; Ghorbani et al., 2019; Rajani et al., 2020; 613

Geva et al., 2022). Zhao et al. (2023); Kim et al. 614

(2018) worked on the global explanation based on 615

a surrogate model. We provide local explanations 616

and we ensure the faithfulness of latent concepts by 617

extracting them directly from the hidden represen- 618

tation without any supervised training. Rajani et al. 619

(2020) used k-nearest neighbors of the training data 620

to identify erroneous correlations and misclassified 621

instances. Dalvi et al. (2022) analyzed latent con- 622

cepts in their ability to represent linguistic knowl- 623

edge. Our ConceptDiscoverer module is moti- 624

vated by them. However, we propose a method to 625

explain a model’s prediction using latent concepts. 626

6 Conclusion 627

We presented LACOAT that provides a faithful and 628

human-friendly explanation of a model’s prediction. 629

The qualitative evaluation and human evaluation 630

showed that LACOAT explanations are insightful in 631

explaining a correct prediction, in highlighting a 632

wrong prediction and in comparing the explana- 633

tions of models. The reliance on training data la- 634

tent space enables interpreting how knowledge is 635

structured in the network. Similarly, it enables the 636

study of the evolution of predictions across lay- 637

ers. LACOAT promises human-in-the-loop in the 638

decision-making process and is a step towards trust 639

in AI. 640
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7 Limitations641

A few limitations of LACOAT are: 1) while hier-642

archical clustering is better than nearest neighbor643

in discovering latent concepts as established by644

Dalvi et al. (2022), it has computational limitations645

and it can not be easily extended to a corpus of646

say 1M tokens. However, the assumptions that are647

taken in the experimental setup e.g. considering648

the maximum 20 occurrences of a word (supported649

by Dalvi et al. (2022)) work well in practice in650

terms of limiting the number of tokens and cover-651

ing all facets of a majority of the words. Moreover,652

the majority of the real-world tasks have limited653

task-specific data and LACOAT can effectively be654

applied in such cases. 2) For tasks requiring rea-655

soning over multiple sentences, we observe that656

sometimes the LACOAT explanation’s are not clearly657

indicative of the reason of a prediction which might658

be based on some syntactic and semantic similar-659

ity between multiple input sentences. A possible660

solution to this is to consider hierarchical relation-661

ship between latent concepts in contrast to consid-662

ering a flat structure among latent concepts. The663

underlying setup of ConceptDiscoverer supports664

this. However, comparing hierarchical structures665

requires further investigation beyond the scope of666

current work which provides a strong evidence to-667

wards faithful and human friendly explanations us-668

ing training data latent space.669
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A Task-specific Prompts used with907

PlausiFyer908

We use the following prompt for the sequence clas-909

sification task:910

Do you find any common semantic, structural, lexi-911
cal and topical relation between these sentences912
with the main sentence? Give a more specific and913
concise summary about the most prominent relation914
among these sentences.915

916
main sentence: {sentence}917
{sentences}918
No talk, just go.919

and the following prompt for the sequence labeling 920
task: 921

Do you find any common semantic, structural, lexi- 922
cal and topical relation between the word highlig- 923
hted in the sentence (enclosed in [[ ]]) and the 924
following list of words? Give a more specific and 925
concise summary about the most prominent relation 926
among these words. 927

928
Sentence: {sentence} 929
List of words: {words} 930
Answer concisely and to the point. 931

We did not provide the prediction or the gold 932

label to LLM to avoid biasing the explanation. 933

B Datasets 934

Task Train Dev Tags

Sentiment 13878 856 2
POS 36557 1802 48
Toxicity 9000 800 2
MNLI 9000 1200 3

Table 4: The data statistics of each dataset used in the
evaluation experiments and the number of tags to be
predicted. POS (Marcus et al., 1993), Jigsaw Toxic-
ity dataset (cjadams, 2017), the ERASER Sentiment
dataset (Pang and Lee, 2004; Zaidan and Eisner, 2008)
and the MNLI dataset (Wang et al., 2019)

C Finetuning Performance 935

We tuned several transformers BERT-base-cased, 936

RoBERTa and XLM-RoBERTa. We used standard 937

splits for training, development and test data that 938

we used to carry out our analysis. The splits to 939

preprocess the data are available through git repos- 940

itory3. See Table 5 and Table 6 for statistics and 941

classifier accuracy. We present the results of Toxic- 942

ity and MNLI in Appendix H and I. 943

Task Train Dev Test Tags BERT RoBERTa XLM-R

POS 36557 1802 1963 48 96.81 96.70 96.75

Table 5: The fine-tuned performance of models, data
statistics (number of sentences) on training, develop-
ment, and test sets used in the finetuning, and the num-
ber of tags to be predicted for the POS tagging task.
Model: BERT, RoBERTa, XLM-R

3https://github.com/nelson-liu/
contextual-repr-analysis
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Task Train Dev Test Tags BERT RoBERTa XLM-R

Sentiment 13878 1516 2726 2 94.53 96.31 93.80

Table 6: The fine-tuned performance of models, data
statistics (number of sentences) on training, develop-
ment, and test sets used in the finetuning, and the num-
ber of tags to be predicted for the sentiment classifica-
tion task. Model: BERT, RoBERTa, XLM-R

D Qualitative Evaluation - More944

Examples945

D.1 Example for the Evolution of Concepts946

Figure 5 presents the other example of latent con-947

cepts of the salient words in layers 0, 6, and 12.948

Similarly to the example shown in Figure 2, the949

latent concept of this example shows that the dif-950

ferent forms of the verb “sit” are not aligned with951

its usage in the input instance. The concept in the952

middle layer aligns better with the sentiment of the953

input sentence (Figure 5(b)). Most words of layer954

6’s latent concept match the sentiment of the input955

sentence. We also randomly pick five [CLS] in-956

stances from the latent concept and show their cor-957

responding sentences in the figure (see Figure 5(c)).958

The concept of the last layer is best aligned with959

the input sentence.960

D.2 Adversarial Example of the Sentence in961

Figure 3b962

The augmented sentence has a similar meaning963

word “kidding” instead of “laughing” (See Fig-964

ure 6). The predicted label of the sentence becomes965

Positive, which is matched to the gold label. The966

latent concept of the “kidding” is more aligned with967

the sentence than the original one.968

D.3 Correct Predicted Label with Incorrect969

Gold Label970

The automatic labeling of latent concepts based971

on the model’s class provides an opportunity to972

analyze the wrong predictions of the model with973

respect to the concept labels. We specifically ob-974

serve the wrong predictions of test instances. We975

discovered that many of the wrong prediction cases976

were not caused by misclassification of the models977

but were due to the fact that the gold label was an-978

notated incorrectly. Figure 7 shows an example in979

which the main sentence and the explanation sen-980

tence share the same sentiment. We can see that the981

sentence provides critiques of the different aspects982

of the film. But the gold label of this sentence is983

positive. We think the gold label for this sentence 984

is incorrect. 985

D.4 Incorrect Prediction in POS tagging Task 986

Figure 8 presents an incorrect prediction in the 987

POS tagging task. The prediction is aligned with 988

a mixed concept that consists of nouns and adjec- 989

tives. According to the latent concept explanation, 990

we know that the model may not learn to distin- 991

guish the “noun” and “adjective”, which causes the 992

incorrect prediction. 993

E Module Specific Evaluation 994

E.1 ConceptDiscoverer - Compositional 995

Concept Examples 996

We found that the concepts are not always formed 997

aligning to the output class. Some concepts are 998

formed by combining words from different classes. 999

For example in Figure 9a, the concept is composed 1000

of nouns (specifically countries) and adjectives that 1001

modify these country nouns. Similarly, Figure 9b 1002

describes a concept composed of different forms of 1003

verbs. 1004

E.2 ConceptDiscoverer - Number of Clusters 1005

For Each Polarity in the Sentiment 1006

Classification Task 1007

Table 7 provides the number of clusters for each po- 1008

larity in the sentiment classification task. It shows 1009

that the majority of latent concepts are class-based 1010

clusters at the last layer for the BERT, RoBERTa, 1011

and XLMR models. 1012

E.3 ConceptMapper - Accuracy of 1013

ConceptMapper for the Sentiment 1014

Classification and POS Tagging task 1015

We validate ConceptMapper by measuring the ac- 1016

curacy of the test instances for both the sentiment 1017

classification and POS tagging tasks based on the 1018

BERT, RoBERTa, and XLMR models. The top 1, 1019

2, and 5 accuracy of ConceptMapper in mapping a 1020

representation to the correct latent concept for each 1021

layer is shown in Table 10 and Table 11. For all 1022

models, the performance of the top-5 is above 99% 1023

for the POS tagging task and above 90% for the 1024

sentiment classification task. 1025
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Figure 5: Sentiment task: Examples of the latent concepts of the most attributed words in layers 0, 6 and 12

Sentiment
BERT RoBERTa XLM-R

Layer Neg Pos Mix Neg Pos Mix Neg Pos Mix
Layer 0 49 1 350 45 0 355 55 0 345
Layer 1 53 1 346 50 0 350 58 0 342
Layer 2 51 1 348 49 0 351 62 0 338
Layer 3 53 0 347 60 0 340 62 0 338
Layer 4 57 0 343 52 0 348 69 0 331
Layer 5 56 0 344 51 0 349 68 0 332
Layer 6 57 0 343 45 1 354 59 1 340
Layer 7 51 0 349 56 2 342 68 0 332
Layer 8 49 0 351 116 25 259 71 0 329
Layer 9 66 4 330 226 126 48 82 7 311
Layer 10 125 31 244 235 140 25 257 92 51
Layer 11 174 49 177 258 120 22 256 110 34
Layer 12 230 81 89 254 126 20 105 270 25

Table 7: Number of clusters for each polarity: “Neg” for negative Label, “Pos” for positive, and “Mix” for mix label.
The total number of clusters is 400.

POS

Layer BERT RoBERTa XLM-R

Layer 0 13.76 11.13 11.97
Layer 1 12.75 13.58 11.91
Layer 2 15.51 15.60 12.99
Layer 3 17.61 17.25 22.88
Layer 4 23.81 20.30 32.08
Layer 5 37.03 23.28 48.44
Layer 6 64.83 32.52 67.94
Layer 7 77.90 48.61 80.11
Layer 8 86.96 73.88 85.83
Layer 9 88.98 82.56 89.30
Layer 10 89.99 83.24 89.94
Layer 11 90.68 84.61 90.19
Layer 12 92.16 85.67 90.18

Table 8: Saliency-based method (95%): accuracy of
PredictionAttributor in mapping a representation
to the correct latent concept in the POS tagging task.
Model: BERT-base-cased, RoBERT-base, XLM-R

Sentiment

Layer BERT RoBERTa XLM-R

Layer 0 6.40 12.08 7.46
Layer 1 7.12 12.46 5.57
Layer 2 7.66 17.29 6.36
Layer 3 7.13 22.00 8.03
Layer 4 12.18 20.08 9.71
Layer 5 13.24 24.25 8.88
Layer 6 11.18 17.26 8.75
Layer 7 12.80 39.87 14.05
Layer 8 4.06 92.84 15.75
Layer 9 31.94 99.59 32.63
Layer 10 99.57 99.69 92.06
Layer 11 99.71 99.48 94.97
Layer 12 99.25 99.27 99.08

Table 9: Saliency-based method: accuracy of
PredictionAttributor in mapping a representation
to the correct latent concept in the sentiment classifica-
tion task. The reason of very low values for the lower
layers is mainly due to the absence of class-based latent
concepts in the lower layers i.e. concepts that comprised
more than 90% of the tokens belonging to sentences of
one of the classes.
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Figure 6: An augmented example for the test instance
in Figures 3b: The augmented sentence replaced the
“laughing” with “kidding” which has a similar meaning.
The label of the augmented sentence becomes positive,
which is matched with the gold label. The new predicted
latent concept is more closely aligned with the main
sentence. The model may not learn the implicit meaning
of the “laughing stock” in the sentence.

Figure 7: A correct prediction but incorrect gold label:
The test instance emphasizes the movie’s shortcomings
and uses the word "especially" to highlight the flaws.
The explanation is rather long but it correctly highlights
that the sentences are about “critiques or opinions"

Figure 8: An incorrect prediction (noun vs adjective)
based on a latent concept made up of a mixture of nouns
and adjectives: the “deputy” in this case is an adjective.
The prediction aligns with a mixed cluster that contains
both nouns and adjectives and the model may not learn
to distinguish the “noun” and “adjective” in this case.
The latent concept explanation is useful for the user to
know that the model has used a mixed latent space for
the prediction. The Explanation is rather wrong since it
mentions that all these words are nouns.

(a) (b)

Figure 9: Compositional concepts: (a) A cluster rep-
resenting countries (NNP) and their adjectives (JJ), (b)
Different form of verbs (Gerunds, Present and Past par-
ticiples).
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POS

BERT RoBERTa XLM-R

Layer Top-1 Top-2 Top-5 Top-1 Top-2 Top-5 Top-1 Top-2 Top-5

Layer 0 100 100 100 99.91 99.95 99.98 99.99 100 100
Layer 1 100 100 100 99.92 99.94 99.98 100 100 100
Layer 2 100 100 100 99.76 99.92 99.98 99.72 99.98 100
Layer 3 99.85 99.98 100 99.38 99.85 99.98 98.25 99.60 99.98
Layer 4 99.72 99.92 99.97 98.67 99.58 99.87 97.72 99.60 99.98
Layer 5 99.03 99.75 99.94 97.69 99.15 99.73 97.05 99.23 99.91
Layer 6 97.76 99.34 99.83 96.52 98.71 99.59 95.8 98.95 99.76
Layer 7 96.51 98.91 99.68 94.72 98.11 99.57 93.92 98.31 99.80
Layer 8 95.27 98.52 99.79 92.56 97.55 99.52 94.20 98.52 99.80
Layer 9 94.54 98.25 99.70 92.24 97.48 99.55 92.79 97.82 99.73
Layer 10 92.67 97.89 99.68 91.61 97.19 99.55 92.03 97.66 99.60
Layer 11 90.86 97.34 99.64 90.72 96.77 99.58 90.40 97.28 99.67
Layer 12 84.19 94.15 99.05 86.88 95.13 99.15 85.07 94.57 99.08

Table 10: Top 1, 2, and 5 accuracy of ConceptMapper in mapping a representation to the correct latent concept
for the POS tagging task. The top-5 performance reaches above 99% for all models demonstrating that the correct
latent concept is among the top probable latent concepts of ConceptMapper.

Sentiment

BERT RoBERTa XLM-R

Layer Top-1 Top-2 Top-5 Top-1 Top-2 Top-5 Top-1 Top-2 Top-5

0 100 100 100 99.95 100 100 100 100 100
1 100 100 100 99.86 99.98 100 100 100 100
2 100 100 100 99.89 99.98 100 99.9 100 100
3 98.80 100 100 99.44 99.83 99.96 99.57 99.99 100
4 97.84 99.85 99.99 99.28 99.73 99.91 99.4 99.96 100
5 97.19 99.63 99.94 98.4 99.5 99.84 99.12 99.84 99.96
6 96.44 99.30 99.89 97.35 99.15 99.82 98.9 99.84 99.96
7 94.86 98.97 99.90 96.13 98.74 99.63 98.22 99.62 99.9
8 93.26 97.99 99.67 87.42 95.14 98.43 98.13 99.48 99.84
9 90.42 96.97 99.20 75.38 88.14 96.07 96.37 98.77 99.66
10 83.09 92.67 97.75 65.84 81.13 93.46 89.12 95.2 98.61
11 76.84 88.02 96.01 65.91 81.36 93.43 70.99 84.31 94.18
12 68.24 83.24 94.24 70.83 84.54 95.67 55.3 75.08 91.74

Table 11: Top 1, 2, and 5 accuracy of ConceptMapper in mapping a representation to the correct latent concept for
the sentiment classification task. The top-5 performance reaches above 90% for all models demonstrating that the
correct latent concept is among the top probable latent concepts of ConceptMapper.
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F Human Evaluation1026

F.1 LACOAT Effectiveness1027

We conduct a human evaluation using four anno-1028

tators across 100 test samples. Specifically, given1029

an explanation (e.g. Figure 3), three annotators are1030

asked to answer the following five questions:1031

1. Regardless of the prediction, can you see any1032

relation between the original input and the con-1033

cept used by the model? (Yes/No)1034

2. Given the prediction, does the latent concept1035

help you understand why the model made that1036

prediction? (Helps/Neutral/Hinders)1037

3. Given the prediction, does the explanation help1038

you understand why the model made that pre-1039

diction? (Helps/Neutral/Hinders)1040

4. Does the explanation accurately describe the1041

latent concept? (Yes/No)1042

5. Is the explanation relevant to the task at hand?1043

(Yes/No)1044

F.2 Comparison with other Methods1045

For comparison with other methods, we ask four1046

annotators to rank 100 samples where they see the1047

original input, gold label, predicted label, and ex-1048

planations by three methods: LACOAT, IG and1049

COCKATIEL. LACOAT explanations are shown1050

across three layers (layer 0, 6 and 12), while IG ex-1051

planations are shown for layer 0 and COCKATIEL1052

for layer 12. The annotators are asked to rank each1053

method from 1 to 3 in terms of usefulness in un-1054

derstanding the reason for the prediction where 11055

implies the method was very useful while 3 implies1056

it was not useful. The annotation allows for the1057

annotator to rank multiple methods with the same1058

usefulness rating, e.g. for a particular sample, both1059

LACOAT and COCKATIEL can have the rank 1.1060

This setting is intentional since the output of ex-1061

planation methods is not directly comparable to1062

each other due to the difference in their design and1063

the targeted form and granularity of explanation.1064

Table 1 presents the results. The results suggested1065

that LACOAT is preferred or equally preferred by all1066

annotators. The average Cohen’s κ further shows a1067

"fair agreement" between annotators and the con-1068

solidated ranking where consolidated ranking is the1069

average rank across users.1070

G Faithfulness Evaluation1071

We ablated the most salient latent concept for a1072

prediction by subtracting its average representation1073

Faithfulness Metrics

Dataset Setting Accuracy % Label Flip

Sentiment
Original 96.31 -
LACOAT 55.91 43.98
Random 96.09 0.14

Toxicity
Original 91.55 -
LACOAT 51.78 46.44
Random 91.93 0.13

MNLI
Original 87.69 -
LACOAT 82.08 8.83
Random 88.12 0.55

Table 12: Faithfulness evaluation using the RoBERTa
model. Original is the performance of the model without
any manipulation, LACOAT is the performance of the
model after subtracting the most salient latent concept
vector from the [CLS] vector and Random is the average
performance of the model across five random vectors
when subtracted from the [CLS] vector

from the [CLS] representation of layer 12. Ran- 1074

dom represents the subtraction of a random vector. 1075

We report the average results of five random vec- 1076

tors. Accuracy represents the performance of the 1077

model on the test set. Prediction change represents 1078

the percentage of predictions that altered after ma- 1079

nipulation. The results show that manipulating 1080

the [CLS] token representation using the LACOAT 1081

vector leads to significant drops in performance 1082

and changes in predictions across all datasets. In 1083

contrast, random vector manipulations have a min- 1084

imal impact on the model’s performance and pre- 1085

dictions. These results suggest that the LACOAT 1086

vector plays a crucial role in the model’s decision- 1087

making process. Comparing the results of different 1088

datasets, MNLI showed a relatively smaller drop 1089

in accuracy when manipulating using the salient 1090

latent concept vector. We suspect that this is due to 1091

the nature of the MNLI task that requires reason- 1092

ing over multiple sentences and whose information 1093

may be present in multiple latent concepts. Nev- 1094

ertheless, the difference in results from original 1095

accuracy and random vector confirms our hypothe- 1096

sis of the faithfulness of latent concepts. 1097

H Toxicity Classification Task 1098

H.1 Experimental Setup 1099

We use the Jigsaw Toxicity dataset for the tox- 1100

icity classification task (Toxicity). This dataset 1101

comprises Wikipedia comments labeled by human 1102

annotators to identify instances of toxic behavior. 1103

We retain only the "toxic" feature as the label for 1104
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each instance, thereby classifying each instance as1105

toxic or non-toxic. The dataset has more than1106

159k, 63k, and 89k instances for train, dev, and1107

test. We randomly select 9k, 800, and 800 splits for1108

train, dev, and test respectively. We use K = 6001109

for ConceptDiscoverer and have the same setting1110

for the rest of the module-specific hyperparameters.1111

We also used standard splits to tune transformers1112

BERT-base-cased, RoBERTa, and XLM-RoBERTa.1113

The fine-tuned performance of each model is pre-1114

sented in Table 13.1115

Task Train Dev Test Tags BERT RoBERTa XLM-R

Toxicity 159570 63977 89185 2 91.53 91.55 91.53

Table 13: The fine-tuned performance of models, data
statistics (number of sentences) on training, develop-
ment, and test sets used in the finetuning, and the num-
ber of tags to be predicted for the toxicity classification
task. Model: BERT, RoBERTa, XLM-R

H.2 Qualitative Evaluation1116

H.2.1 Correct prediction with correct gold1117

label1118

Figure 10 and Figure 11 present the correct1119

prediction case for a toxic and a non-toxic la-1120

beled instance. In the toxic label instance,1121

PlausiFyerdiscovers that the words in latent con-1122

cept have common semantics of negative behaviors1123

and highlights the reason for toxic label due to1124

harsh language. For the non-toxic labeled instance,1125

PlausiFyerfinds that the relation between the sen-1126

tence and the list of words in the latent concept is1127

about the governance theme and user management1128

in online community platforms.1129

H.2.2 Wrong prediction with correct gold1130

label1131

Figure 12 shows a non-toxic labeled instance that1132

is incorrectly predicted as toxic. The sentence con-1133

tains non-toxic content and has cultural/religious1134

terms expressing positive emotion. However,1135

the model predicts this sentence with a toxic la-1136

bel. The latent concept provides helpful evidence1137

that it contains many toxic words such as “ASS-1138

HOLE”, “idiot”, “bitch”, and “Niggers”. Also, the1139

PlausiFyerprovides additional information that1140

both the sentence and the latent concept contain1141

the context of religion and culture. We hypothesize1142

that the model captures the correlations between1143

the toxic content or label and the religion/culture1144

concept in the training. Thus, the model has a bias1145

in the prediction with the religion/culture-related 1146

content to the toxic label. 1147

H.3 Module Specific Evaluation 1148

H.3.1 ConceptDiscoverer 1149

We also form latent concepts of each layer using 1150

ConceptDiscoverer and annotate them with the 1151

procedure mentioned in 4.3. In the toxicity clas- 1152

sification task, we discovered that 88%, 99%, and 1153

96% of the latent concepts of BERT, RoBERTa, 1154

and XLMR were made up of either toxic major- 1155

ity or non-toxic majority sentences (see Table 14). 1156

Similar to the sentiment, we noticed that the 12th 1157

layer has a higher number of class-based clusters 1158

of Roberta and XLMR. 1159

H.3.2 PredictionAttributor 1160

For toxicity, we found over 98% accuracy in map- 1161

ping the salient representation to the correct latent 1162

concept for the last layer (see Tables 16). This high 1163

accuracy indicates that PredictionAttributor 1164

performs effectively and accurately in the toxic- 1165

ity task. 1166

H.3.3 ConceptMapper 1167

Table 15 presents the performance of 1168

ConceptMapper for toxicity. The accuracy 1169

of the first layer is high (around 100%) and 1170

drops as the layer increases for all models. In 1171

the last layer, the accuracy of the top prediction 1172

arrives at 67.01%, 81.43%, and 64.19% for BERT, 1173

RoBERTa, and XLMR. We also consider the 1174

top two and top five predictions of the mapper. 1175

The performances of the top two and the top five 1176

predictions are more than 81% and 93% for these 1177

three models. Especially, the mapper based on 1178

the RoBERTa model has the best performance, 1179

achieving 81.43%, 93.72%, and 98.21% for the top 1180

one, two, and five predictions respectively. 1181
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Toxicity
BERT RoBERTa XLM-R

Layer non-toxic toxic Mix non-toxic toxic Mix non-toxic toxic Mix
Layer 0 15 30 555 22 15 563 19 16 565
Layer 1 13 27 560 17 20 563 16 16 568
Layer 2 11 33 556 18 24 558 16 20 564
Layer 3 16 35 549 17 28 555 16 21 563
Layer 4 18 36 546 20 29 551 15 24 561
Layer 5 12 41 547 28 33 539 14 22 564
Layer 6 15 48 537 37 42 521 23 24 553
Layer 7 18 49 533 324 131 145 114 53 433
Layer 8 23 49 528 332 186 82 267 74 259
Layer 9 43 52 505 373 158 69 334 134 132
Layer 10 116 73 411 425 137 38 328 154 118
Layer 11 298 110 192 449 130 21 423 139 38
Layer 12 374 155 71 502 92 6 449 129 22

Table 14: Number of clusters for each polarity. The total number of clusters is 600.

Toxicity

BERT RoBERTa XLM-R

Layer Top-1 Top-2 Top-5 Top-1 Top-2 Top-5 Top-1 Top-2 Top-5

0 100 100 100 99.96 99.99 100 100 100 100
1 100 100 100 99.92 100 100 100 100 100
2 99.99 100 100 99.94 100 100 99.75 100 100
3 99.07 99.88 100 99.34 99.80 99.92 99.46 99.95 100
4 98.49 99.78 99.99 96.87 98.96 99.78 98.81 99.83 100
5 98.25 99.72 99.94 93.10 97.63 99.26 97.72 99.42 99.89
6 97.22 99.51 99.88 87.72 95.05 98.50 94.83 98.45 99.61
7 95.00 98.57 99.68 73.50 87.21 95.70 86.96 95.37 98.72
8 91.87 97.41 99.18 67.62 83.09 94.38 79.62 91.37 97.62
9 85.66 93.80 98.01 66.75 82.80 94.38 73.73 88.57 96.76
10 76.22 87.90 95.89 64.87 81.37 93.07 66.10 82.36 93.39
11 70.53 84.31 94.31 77.91 91.09 98.10 68.30 84.49 95.28
12 67.01 81.71 93.65 81.43 93.72 98.21 64.19 81.96 94.26

Table 15: Top 1, 2, and 5 accuracy of ConceptMapper in mapping a representation to the correct latent concept for
the toxicity classification task. The top-5 performance reaches above 90% for all models demonstrating that the
correct latent concept is among the top probable latent concepts of ConceptMapper.
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Toxicity

Layer BERT RoBERTa XLM-R

Layer 0 10.54 13.45 6.57
Layer 1 8.98 19.14 8.45
Layer 2 10.92 19.92 10.56
Layer 3 49.90 22.95 13.90
Layer 4 50.07 34.30 15.12
Layer 5 11.30 31.50 23.89
Layer 6 66.21 35.42 34.47
Layer 7 67.11 91.84 59.38
Layer 8 63.74 97.84 77.43
Layer 9 84.41 98.79 94.44
Layer 10 94.92 99.30 97.52
Layer 11 94.73 99.49 97.39
Layer 12 98.93 99.72 99.61

Table 16: Saliency-based method: accuracy of
PredictionAttributor in mapping a representation
to the correct latent concept in the toxicity classification
task. The reason of very low values for the lower layers
is mainly due to the absence of class-based latent con-
cepts in the lower layers i.e. concepts that comprised
more than 90% of the tokens belonging to sentences of
one of the classes.

Figure 10: RoBERTa: A toxic labeled test instance
correctly predicted by the model.

I NLI Task1182

I.1 Experimental Setup1183

We use the MNLI dataset for the NLI task. This1184

task classifies each sentence pair into three classes:1185

entailment, contradiction, and neutral. The1186

MNLI dataset contains 393k, 19.65k, and 19.65k1187

splits for train, dev, and test. We randomly select 9k1188

and 1.2k for train and dev splits. We use K = 4001189

for ConceptDiscoverer and set the same numbers1190

for the other hyperparameters.1191

Like the other task, we used standard splits to1192

tune transformers BERT-base-cased, RoBERTa,1193

Figure 11: RoBERTa: A non-toxic labeled test instance
correctly predicted by the model.

Figure 12: RoBERTa: A non-toxic labeled instance that
is incorrectly predicted as toxic.

and XLM-RoBERTa. The fine-tuned performance 1194

of each model is presented in Table 17. 1195

Task Train Dev Test Tags BERT RoBERTa XLM-R

MNLI 393000 19650 19650 3 84.00 87.69 84.54

Table 17: The fine-tuned performance of models, data
statistics (number of sentences) on training, develop-
ment, and test sets used in the finetunings, and the num-
ber of tags to be predicted for the MNLI task. Model:
BERT, RoBERTa, XLM-R

I.2 Qualitative Evaluation 1196

Figure 13 shows a correct prediction instance with 1197

a “contradiction” label. PlausiFyer detects that 1198

all premise-hypothesis pairs are “semantic incon- 1199

gruity”, which means that the premise sentence 1200

does not have a matched logic with the hypothe- 1201

sis sentence. This indicates that the model learns 1202

the knowledge of the “contradiction" label in the 1203

training. 1204
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Figure 13: MNLI: A contradiction labeled instance that
is correctly predicted.

However, due to the complexity of the task, it1205

is difficult for humans to understand or find the1206

relationship between the latent concept and the pre-1207

diction of the input sentence. Especially, if we have1208

the word cloud as the latent concept-based explana-1209

tion, it may not be helpful for humans to interpret1210

the model prediction. PlausiFyer simplifies the1211

interpretation in such cases.1212

I.3 Module Specific Evaluation1213

I.3.1 ConceptDiscoverer1214

In the MNLI task, we found more “mixed” latent1215

concepts than class-based latent concepts related1216

to other tasks. There are 0%, 82%, and 58% dis-1217

covered label dominant latent concepts by BERT,1218

RoBERTa, and XLMR (see Table 19). We spec-1219

ulate that tasks that involve multiple sentences as1220

input are more complex and abstract, thereby it is1221

difficult to have clear distinct concepts. This ob-1222

servation also varies depending on the model. For1223

instance, we did not detect any class-based latent1224

concepts of the BERT model. However, we achieve1225

good performance in discovering the latent concept1226

when using the RoBERTa model.1227

I.3.2 PredictionAttributor1228

We found that both RoBERTa and XLMR mod-1229

els have over 90% accuracy for the salient rep-1230

resentation mapping for the last layer (see Ta-1231

bles 18). To some extent, this accuracy indicates1232

that PredictionAttributor have good perfor-1233

mance in the MNLI task based on the RoBERTa1234

and XLMR model. Unlike other tasks, we have1235

MNLI

Layer BERT RoBERTa XLM-R

Layer 0 0.027 0.41 0.56
Layer 1 0.083 0.67 0.43
Layer 2 0.04 0 0.23
Layer 3 0 0.05 0.35
Layer 4 0.10 0 0.08
Layer 5 0.10 0 0.12
Layer 6 0.05 0 0.12
Layer 7 0 0 0.13
Layer 8 0 21.61 0
Layer 9 0 83.90 14.29
Layer 10 0 91.78 55.93
Layer 11 0 92.63 89.73
Layer 12 0 95.22 90.58

Table 18: Saliency-based method: accuracy of
PredictionAttributor in mapping a representation
to the correct latent concept in the MNLI task. The
reason of very low values for the lower layers is mainly
due to the absence of class-based latent concepts in the
lower layers i.e. concepts that comprised more than
90% of the tokens belonging to sentences of one of the
classes.

extremely low accuracy with the BERT model. We 1236

assume that the BERT model may not be able to 1237

capture the task knowledge due to the task com- 1238

plexity. 1239

I.3.3 ConceptMapper 1240

Similar to other tasks, the performance of 1241

ConceptMapper has very high accuracy (around 1242

100%) at the first layer for all models. Then, the 1243

accuracy is decreased to 72.07%, 77.56%, and 1244

64.19% for the top prediction of BERT, RoBERTa, 1245

and XLMR. The accuracy of the top two and two 1246

five predictions are above 81% and 94%. The 1247

Roberta model still has the best performance than 1248

the others, which has 77.56%, 93.72%, and 98.21% 1249

accuracy for the top one, two, and five predictions 1250

(Table 20). 1251
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MNLI
BERT RoBERTa XLM-R

Layer 0 1 2 Mix 0 1 2 Mix 0 1 2 Mix
Layer 0 0 6 0 394 0 2 0 398 0 7 0 393
Layer 1 0 4 0 396 0 2 0 398 0 4 0 396
Layer 2 0 3 0 397 0 1 0 399 0 3 0 397
Layer 3 0 4 0 396 0 2 0 398 0 5 0 395
Layer 4 0 4 0 396 0 1 0 399 0 4 0 396
Layer 5 0 4 0 396 0 0 0 400 0 4 0 396
Layer 6 0 6 0 394 0 1 0 399 0 4 0 396
Layer 7 0 4 0 396 0 3 0 397 0 2 0 398
Layer 8 0 1 0 399 1 11 6 382 0 1 0 399
Layer 9 0 1 0 399 27 38 24 311 4 6 6 384
Layer 10 0 0 0 400 38 48 34 280 24 41 18 317
Layer 11 0 1 0 399 51 76 50 223 40 67 51 242
Layer 12 0 0 0 400 92 155 81 72 64 86 82 168

Table 19: Number of clusters for each polarity: ’0’ for entailment label, ’1’ for neutral label, and ’2’ for contradiction
label. The total number of clusters is 400.

MNLI

BERT RoBERTa XLM-R

Layer Top-1 Top-2 Top-5 Top-1 Top-2 Top-5 Top-1 Top-2 Top-5

0 100 100 100 99.97 100 100 100 100 100
1 100 100 100 99.91 99.99 100 100 100 100
2 100 100 100 99.92 99.99 100 99.75 100 100
3 99.25 100 100 99.70 99.92 99.96 99.46 99.95 100
4 99.22 99.97 99.98 99.15 99.65 99.88 98.81 99.83 100
5 99.04 99.95 99.99 97.07 96.98 99.26 97.72 99.42 99.89
6 97.07 99.45 99.90 91.91 95.05 98.50 94.83 98.45 99.61
7 96.81 99.35 99.85 96.99 87.21 95.70 86.96 95.37 98.72
8 94.15 98.18 99.55 94.75 83.09 94.38 79.62 91.37 97.62
9 90.08 96.52 98.90 91.52 82.80 94.38 73.73 88.57 96.76
10 81.31 90.97 97.20 84.79 81.37 93.07 66.10 82.36 93.39
11 79.05 89.62 96.51 81.79 91.09 98.10 68.30 84.49 95.28
12 72.07 89.27 99.45 77.56 93.72 98.21 64.19 81.96 94.26

Table 20: Top 1, 2, and 5 accuracy of ConceptMapper in mapping a representation to the correct latent concept for
the toxicity classification task. The top-5 performance reaches above 90% for all models demonstrating that the
correct latent concept is among the top probable latent concepts of ConceptMapper.
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Sentiment
Llama-2-7b-chat-hf

Layer Negative Positive Mix
Layer 0 27 372 1
Layer 4 18 12 370
Layer 8 21 21 358
Layer 12 73 47 279
Layer 16 154 90 155
Layer 20 163 102 134
Layer 24 173 108 118
Layer 28 159 106 134
Layer 32 164 103 132

Table 21: Number of clusters for each polarity. The
total number of clusters is 400.

J LLama21252

J.1 Experimental Setup1253

We also tried the Eraser Movie sentiment classifi-1254

cation and Jigsaw Toxicity classification tasks with1255

the Llama2 model. We applied the “Llama-2-7b-1256

chat-hf” version of the Llama2 model. We used the1257

last token of the input prompt as the [CLS] token.1258

We only used these [CLS] tokens as the latent con-1259

cept explanation. For ConceptDiscoverer, we set1260

K = 400 for the sentiment and set K = 200 for1261

the toxicity.1262

J.2 Sentiment Classification Task1263

J.2.1 ConceptDiscoverer1264

Compared to the BERT, RoBERTa, and XLMR1265

models (Table 7), the Llama2 model has fewer1266

class-based clusters at the last layer(See Table 21).1267

There are around 67% class-based clusters detected1268

at the last layer for the Llama2 model. The BERT,1269

RoBERTa, and XLMR models have 78%, 95%,1270

and 94% class-based clusters at the last layer.1271

J.2.2 PredictionAttributor1272

With the Llama2 model, the accuracy in mapping1273

the salient word representation to the correct la-1274

tent concept for the last layer is approximately1275

70% (See Table 22). Although this accuracy in-1276

dicates that the Llama2 model performs well, it is1277

notably lower than the accuracy achieved by the1278

PredictionAttributor model based on BERT,1279

RoBERTa, and XLMR models, which has signifi-1280

cantly high performance (Table 9).1281

J.2.3 ConceptMapper1282

We found that, like the performance of us-1283

ing the other three models, the performance of1284

ConceptMapper using the Llama2 model exhibits1285

a high Top-1 accuracy (97.55%) in the lower layers,1286

Sentiment

Layer Llama-2-7b-chat-hf

Layer 0 2.88
Layer 4 0.93
Layer 8 1.94
Layer 12 22.11
Layer 16 64.18
Layer 20 70.63
Layer 24 75.64
Layer 28 71.30
Layer 32 71.02

Table 22: Saliency-based method: accuracy of
PredictionAttributor in mapping a representation
to the correct latent concept in the sentiment classifica-
tion task using Llama2 model.

Sentiment

Llama-2-7b-chat-hf

Layer Top-1 Top-2 Top-5

0 97.55 97.55 97.55
4 19.90 31.36 47.08
8 49.46 68.06 86.37
12 60.85 77.43 92.36
16 61.86 80.97 95.03
20 64.02 80.61 94.23
24 63.95 82.26 94.23
28 65.83 81.25 94.52
32 66.47 82.84 94.88

Table 23: Top 1, 2, and 5 accuracy of ConceptMapper
in mapping a representation to the correct latent concept
for the sentiment classification task using the Llama2
model.

and decreases to 66.47% for the last layer(Table 26). 1287

Additionally, the top two and five predictions of the 1288

mapper achieve accuracies of 82.84% and 94.88%, 1289

respectively. The accuracy of ConceptMapper us- 1290

ing the Llama2 model is relatively lower compared 1291

to its accuracy using BERT, RoBERTa, and XLM- 1292

RoBERTa(Table 11). 1293

J.3 Toxicity Classification Task 1294

J.3.1 ConceptDiscoverer 1295

We found that 83% of the latent concepts of Llama2 1296

are the class label-based at the last layer(Table 24). 1297

The BERT, RoBERTa, and XLMR models have a 1298

relatively higher number of class label-based clus- 1299

ters(Table 14). 1300

J.3.2 PredictionAttributor 1301

The accuracy of the Llama2 model in our experi- 1302

ments is significantly lower compared to BERT, 1303

RoBERTa, and XLMR (Table 25). The perfor- 1304

mance of the other three models achieves accuracy 1305
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Toxicity
Llama-2-7b-chat-hf

Layer Non-toxic toxic Mix
Layer 0 84 108 1
Layer 4 35 13 150
Layer 8 27 5 168
Layer 12 43 22 135
Layer 16 61 21 117
Layer 20 62 25 113
Layer 24 69 25 106
Layer 28 67 26 107
Layer 32 69 21 109

Table 24: Number of clusters for each polarity. The
total number of clusters is 200.

Toxicity

Layer Llama-2-7b-chat-hf

Layer 0 2.26
Layer 4 7.20
Layer 8 6.59
Layer 12 32.10
Layer 16 42.91
Layer 20 45.83
Layer 24 46.93
Layer 28 46.43
Layer 32 44.28

Table 25: Saliency-based method: accuracy of
PredictionAttributor in mapping a representation
to the correct latent concept in the toxicity classification
task using Llama2 model.

values exceeding 90% (Table 16). The lower accu-1306

racy is due to several reasons. Llama2 is a genera-1307

tive model and it is hard to restrict its output to a sin-1308

gle class. While we optimized the prompt for this1309

purpose, we classified responses as label 0 (non-1310

toxic) only if they contained “non-toxic”, “NON-1311

TOXIC”, or “Non-toxic”. Similarly, we classified1312

responses as 1 (toxic) if they contained variations1313

of the term “toxic”. Moreover, many responses1314

of the model did not provide a classification re-1315

sult due to inappropriate or disrespectful content1316

of input instances that was blocked by the safety1317

filter. Consequently, there are many sentences were1318

skipped, which may account for the lower accuracy1319

of Llama2 compared to the other models.1320

J.3.3 ConceptMapper1321

The top-1 performance of ConceptMapper based1322

on the Llama2 model achieves 74.44% for the last1323

layer(Table 26). This performance is better than1324

the one based on the BERT and XLM-Roberta (Ta-1325

ble 15). RoBERTa still delivers the best perfor-1326

mance.1327

Toxicity

Llama-2-7b-chat-hf

Layer Top-1 Top-2 Top-5

0 96.97 96.97 97.09
4 42.38 62.00 83.86
8 67.83 85.20 97.20
12 70.40 89.24 98.21
16 73.09 87.44 98.77
20 74.22 90.25 98.99
24 71.19 88.68 98.88
28 72.65 90.13 98.76
32 74.44 91.82 99.10

Table 26: Top 1, 2, and 5 accuracy of ConceptMapper
in mapping a representation to the correct latent con-
cept for the toxicity classification task using the Llama2
model.
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