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Abstract001

Large language models (LLMs) are known to002
perpetuate stereotypes and exhibit biases. Vari-003
ous strategies have been proposed to mitigate004
these biases, but most work studies biases as005
a black-box problem without considering how006
concepts are represented within the model. We007
adapt techniques from representation engineer-008
ing to study how the concept of “gender” is009
represented within LLMs. We introduce a new010
method that extracts concept representations011
via probability weighting without labeled data012
and efficiently selects a steering vector for mea-013
suring and manipulating the model’s represen-014
tation. We develop a projection-based method015
that enables precise steering of model predic-016
tions and demonstrate its effectiveness in miti-017
gating gender bias in LLMs.1018

1 Introduction019

Large language models (LLMs) are optimized for020

making generalizations about the world based on021

their training data. These systems risk amplify-022

ing biases and inequities present in their training023

data, potentially perpetuating harmful stereotypes024

and resulting in discriminatory outcomes. To ad-025

dress these concerns, various mitigation strategies026

have been proposed, including techniques based on027

prompt engineering (Ganguli et al., 2023; Kaneko028

et al., 2024), fine-tuning (Chintam et al., 2023;029

Ranaldi et al., 2024), modified decoding (Lu et al.,030

2021; Liu et al., 2021), and detection (Inan et al.,031

2023; Fan et al., 2024).032

While much research has explored gender bias033

in LLMs through a black-box approach, less atten-034

tion has been paid to how these biases arise from035

the model’s internal workings. Recent work on036

representation engineering provides insights into037

varied abstract features within the internal repre-038

sentations of LLMs (Zou et al., 2023), such as sen-039

1Our code is available at: https://anonymous.4open.
science/r/gender-bias-steering-E8BD

Baseline
“she”: 0.5
“he”: 0.2

“they”: 0.3

The dietitian recommended to the client daily portions 
of vegetables because __ felt this was beneficial.

Figure 1: Steering “gender” concept in QWEN-1.8B,
evaluated on an example from Winogenerated fill-in-
the-blank task. Baseline shows the original probabilities
with no steering applied.

timent (Tigges et al., 2023), spatiotemporal infor- 040

mation (Gurnee and Tegmark, 2024), and true/false 041

statements (Marks and Tegmark, 2024). Several 042

studies have also demonstrated promising results 043

in effectively controlling model behaviors by mod- 044

ifying their feature representations (Turner et al., 045

2023; Rimsky et al., 2024; Arditi et al., 2024). 046

In this work, we leverage activation steering 047

(also known as activation engineering), to study 048

how the concept of gender is encoded in the internal 049

representations of LLMs affects their predictions 050

and how we can manipulate internal representations 051

to mitigate biases at inference time. 052

Contributions. We propose a novel method that 053

extracts linear representations from LLMs for steer- 054

ing model predictions associated with a given con- 055

cept (Section 3). While existing methods for com- 056

puting steering vectors rely on labeled data, we 057

compute them using probability weighting without 058

explicit data annotations. In addition, we intro- 059

duce metrics to efficiently select a steering vector 060

without exhaustive searches as was required by 061

most previous methods. We show that steering 062

vectors produced by our method exhibit a higher 063
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correlation with gender bias in model outputs than064

the prevailing difference-in-means method (Sec-065

tion 3.4). We then present an approach for apply-066

ing steering vectors to provide precise control over067

the internal representation (Section 4). We demon-068

strate the effectiveness of our steering vectors and069

method for applying them in reducing gender bias070

on the in-distribution task (Section 4.2) and its po-071

tential to generalize to other application tasks (Sec-072

tion 4.3). Finally, we explore the generalization073

of our method for controlling bias associated with074

other protected attributes (Section 5).075

2 Background076

This section provides background on gender bias077

and activation steering for LLMs.078

2.1 Gender Bias079

The concept of gender is contested and multi-080

faceted, encompassing a person’s self-identity and081

expression, the perceptions held by others, and082

the social expectations imposed upon them (Devin-083

ney et al., 2022). We adopt Ackerman (2019)’s084

definition of conceptual gender—the gender ex-085

pressed, inferred, and used by a model to clas-086

sify a referent through explicit (e.g., pronouns)087

or implicit associations (e.g., stereotypes). While088

some gender notions are multi-dimensional, we089

consider a simple setting where gender may be090

encoded in a one-dimensional subspace. We as-091

sume this subspace captures both explicit and im-092

plicit aspects that shape the model’s understanding093

of “gender”, such as explicit gender definitional094

terms and implicit gender traits or behaviors. Our095

work is grounded in gender schema theory (Bem,096

1981), which describes the cognitive process of097

“gendering”—dividing entities into masculine and098

feminine categories—and its subsequent impact on099

individuals’ behaviors. We define gender bias as100

the prediction difference arising from conceptual101

differences in model representations of femininity102

and masculinity. This bias may or may not lead103

to undesirable outcomes (e.g., negative stereotypes104

and discrimination) depending on the context.105

2.2 Activation Steering106

Activation steering is an inference-time interven-107

tion that steers model outputs by deliberately per-108

turbing the model’s activations (Turner et al., 2023).109

These activations (or residual stream activations)110

refer to the intermediate outputs aggregated from111

the preceding layers (Elhage et al., 2021). Model112

activations may be modified by applying steering 113

vectors, which can be computed by different meth- 114

ods (Tigges et al., 2023) including logistic regres- 115

sion, principal component analysis, and difference- 116

in-means (Marks and Tegmark, 2024) which is cur- 117

rently the most widely used method. 118

Consider a decoder-only transformer model, 119

trained with a set of token vocabulary V . The 120

model makes predictions by mapping each input 121

x = (x1, x2, ..., xt), xi ∈ V , to an output prob- 122

ability distribution y ∈ R|V|. Given two sets of 123

prompts, difference-in-means computes a candi- 124

date vector for each layer l ∈ L as the difference 125

in activation means: 126

u(l) =
1

|DA|
∑
x∈DA

h(l)
xi

− 1

|DB|
∑
x∈DB

h(l)
xi

127

where h
(l)
xi denotes the activation of input x at to- 128

ken position i and model layer l. The prompts in 129

DA and DB are usually constructed with inputs re- 130

flecting two contrasting concepts. The vector u(l) 131

captures the internal representation difference be- 132

tween concepts A and B that may elicit changes 133

in model outputs. While some work considers the 134

last n tokens, we follow most studies by comput- 135

ing vectors with only the activations at the final 136

position. 137

Based on the candidate vectors of a size |L|, 138

previous work often performs a brute-force search 139

across layers to select the one with the optimal inter- 140

vention performance (Arditi et al., 2024). During 141

inference, the steering vector can be applied using 142

activation addition (Rimsky et al., 2024), which 143

intervenes in the forward pass of an input as: 144

h(l)
x = h(l)

x + cu(l) (1) 145

where c is the steering coefficient, which can be 146

either positive or negative. This intervention is usu- 147

ally applied at the same layer from which the vector 148

is extracted and across all input token positions. 149

3 Finding a Steering Vector 150

Our goal is to derive a steering vector that captures 151

how the concept of gender is encoded in a model’s 152

representation and that allows us to manipulate the 153

internal representation’s gender signal in a con- 154

trolled way. In this section, we introduce a method 155

for extracting candidate vectors (Section 3.1) and 156

an efficient approach for selecting the steering vec- 157

tor (Section 3.2). Section 4 discusses how we apply 158

that steering vector at inference time. 159
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3.1 Extracting Candidate Vectors160

Let A and B denote two contrasting concepts (e.g.,161

femaleness and maleness) each of which can be162

identified by an associated set of tokens. We mea-163

sure the extent of A and B presented in a model164

for an input prompt x ∈ D based on its prediction165

output. We define the disparity score between the166

two concepts for an input x as:167

sx = Px(A)− Px(B)168

where Px(A) is the probability of predicting con-169

cept A in the last token position output of x, ag-170

gregated over tokens for A. The disparity score171

indicates how likely an input would trigger the172

model to predict one concept over another in the173

next token prediction.174

Let f denote a function that maps each prompt175

x ∈ D to a partition as follows:176

f(x) =


DA if sx > δ

DB if sx < −δ

Do otherwise (|sx| ≤ δ)

177

where δ is a score threshold that determines which178

concept the input is more likely associated with.179

Partition Do represents neutral prompts that do not180

strongly relate to either concept.181

In contrast to difference-in-means, which com-182

putes the activation mean difference between DA183

and DB , we incorporate neutral prompts with prob-184

ability weighting to filter out signals unrelated to185

the target concepts. This allows the vector to cap-186

ture a better representation of A and B.187

Suppose the average activation of neutral inputs188

Do is h̄(l)
o . For each layer l ∈ L, a candidate vector189

is computed as the weighted mean activation differ-190

ence with respect to the neutral representations:191

v(l) = v̂
(l)
A − v̂

(l)
B (2)192

where v
(l)
A =

∑
x∈DA

sx(h
(l)
x − h̄

(l)
o )∑

x∈DA
sx

(3)193

We denote h
(l)
x as the activation of input x in the194

last token position at layer l. The original input195

activations are position vectors measured from the196

origin of the latent space. However, this origin may197

differ from where the actual neutral position lies.198

To resolve this, we first offset each input activation199

h
(l)
x by the average neutral activations h̄

(l)
o . We200

then compute the aggregated vector representations201

for each concept by weighting the adjusted input 202

activations by their corresponding disparity scores. 203

The resulting candidate vector, v(l), is simply the 204

unit vector difference between A and B. 205

3.2 Selecting a Steering Vector 206

We assume that the ideal vector would reflect the 207

desired concept signal in both its direction and mag- 208

nitude. It should be able to distinguish the concept 209

that is more relevant to an input and to what extent. 210

Under this assumption, we can evaluate the vectors 211

similarly to a linear classifier. We compute a score 212

using the projection measured on the candidate vec- 213

tor to classify each input. Given a separate set of 214

prompts, D′, drawn from the same distribution as 215

D. We assess the linear separability of each candi- 216

date vector v ∈ {v(l)}l∈L by the root mean square 217

error (RMSE) as: 218

RMSEv =

√
1

|D′|
∑
x∈D′

Isign(compvx ̸= sx) s2x 219

where compvx is the scalar projection of latent 220

state activations h(l)
x on vector v given input x. The 221

indicator function Isign(·) returns 0 if the scalar 222

projection and disparity score of an input have the 223

same sign, and 1 if they have different signs. A 224

vector v perfectly differentiates the concepts in 225

direction when RMSEv = 0. 226

To evaluate how well a candidate vector captures 227

the desired property, we compute the Pearson corre- 228

lation between the scalar projection compvx and 229

the disparity score sx for each x ∈ D′. We select 230

the final steering vector at the layer with the lowest 231

RMSE score, excluding the 5% of the layers that 232

are closest to the output (Arditi et al., 2024). 233

3.3 Experimental Setup 234

We test whether our method can find a steering vec- 235

tor that represents the concept of gender encoded 236

in a model and is more effective than the prevail- 237

ing method, difference-in-means (MD), in captur- 238

ing this concept. We assume that gender is repre- 239

sented linearly along the dimension of feminine– 240

masculine concepts, where we consider femaleness 241

as concept A and maleness as B in our setup. 242

Dataset. The gendered language dataset consists 243

of sentences generated by ChatGPT with gender- 244

coded lexicons (Soundararajan et al., 2023), includ- 245

ing adjectives that reflect stereotypical traits or char- 246

acteristics of a certain gender (Gaucher et al., 2011; 247

Cryan et al., 2020). Each sentence is labeled with 248
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Figure 2: Candidate vector performance across model layers. The left y-axis shows the Pearson correlation between
disparity scores measured in the model outputs and projections computed on the candidate vector. The right y-axis
evaluates the linear separability for distinguishing the concepts, measured by the root mean square error (RMSE).

the gender described and whether it is consistent249

with or contradictory to the gender stereotypes. As250

most sentences contain gender-definitional terms,251

we replace them with their neutral terms for half of252

the dataset. These sentences can help test the sensi-253

tivity of vectors to more neutral inputs that may or254

may not encode gender information. We split the255

dataset into a training set for vector extraction and256

a validation set for evaluating the vectors.257

Models. We conduct the experiments with sev-258

eral popular open-source chat models (QWEN-259

1.8B and 7B, LLAMA-2-13B) and instruc-260

tion models (LLAMA-3.1-8B, GRANITE-3.1-261

8B, MINISTRAL-8B, MISTRAL-NEMO-12B, and262

OLMO-2-7B). Appendix G provides information263

about the references and model cards.264

Our prompts ask the model to respond with the265

gender indicated in the given sentence, followed266

by a sentence from the dataset. Since some mod-267

els do not directly respond with a gender-related268

token, we add an output prefix to guide the model269

to produce more relevant outputs in the next token270

prediction. For each gender concept, we randomly271

sample 800 prompts that satisfy the requirements272

of Equation 2 for extracting the candidate vectors.273

The number of neutral prompts varies by model,274

but we subsample them if the size is larger than ei-275

ther the set of gendered prompts. We set the default276

score threshold δ to 0.05, but compare results using277

different δ values in Appendix E.2. Appendix A278

provides more details, including the gender tokens279

used for computing the disparity scores.280

3.4 Results281

We evaluate the quality of candidate vectors ex-282

tracted using our proposed weighted mean differ-283

ence method (WMD) with the prior difference-in-284

means (MD) approach. Figure 2 shows the can-285

didate vector performance on the validation set286

across all model layers, measured by RMSE and287

the projection correlation. Across all eight models 288

we tested, both methods show a higher correlation 289

between the vector projections and disparity scores 290

and a lower RMSE score as the layer number in- 291

creases. This suggests that the gender representa- 292

tions are generalized in later model layers. This 293

aligns with previous findings that high-level con- 294

cepts tend to emerge in middle to later layers (Zou 295

et al., 2023; Rimsky et al., 2024). Results for other 296

models are provided in Appendix B.1. 297

The best candidate vectors identified by WMD 298

show a strong correlation with the disparity scores 299

in model outputs and a high linear separability be- 300

tween the concepts of femaleness and maleness. 301

We find that WMD maintains a consistently higher 302

correlation than MD across six of the models, while 303

showing a similar correlation for the other two mod- 304

els. The two methods show the largest performance 305

gap for QWEN-7B, where the projection correla- 306

tion of WMD is around 0.28% higher than the op- 307

timal layer of MD (Table 1). While both methods 308

can identify layers with a low RMSE ≈ 0, the 309

scores for WMD remain consistently lower than 310

MD at layers with the highest correlation. 311

Figure 3 (first and third columns) compares the 312

disparity scores and scalar projections measured 313

for each input prompt with the steering vector se- 314

lected at the optimal layer. Ideally, the projections 315

should align closely with the green dashed line in 316

the figure, reflecting a positive correlation with the 317

disparity scores measured in model outputs. Our 318

proposed method WMD yields a better correla- 319

tion with the disparity scores, where inputs with a 320

higher disparity show a larger projection value, as 321

measured by the selected steering vector. It also 322

reflects the degree of disparities more equally in 323

both female and male directions. While MD does 324

capture the gender representations to some extent, 325

it poorly reflects with inputs more associated with 326

the maleness concept where sx < 0, as shown 327
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Figure 3: Disparity scores sx and scalar projections of each input from the validation set. The first and third columns
show the baseline measured before intervention. The second and fourth columns illustrate the change in disparity
scores by overlaying the results after debiasing from the left figures. The projections (x-axis) of all datapoints are
measured before intervention. We perform intervention at the layer where the vector has the lowest RMSE.

in Figure 3b for QWEN-7B model. For some of328

these inputs, the projections on the steering vector329

indicate a higher degree of female signal. This im-330

balance in generalization may impact their steering331

performance, which we demonstrate in the next332

section.333

4 Applying Steering Vectors334

Previous works mostly consider contexts in which335

the model only needs to be steered in a particular336

direction or assume that the target directions are337

known in advance. However, in contexts such as338

bias mitigation, we need to apply steering based339

on the type of input, which may be unknown at340

deployment. We describe our method for applying341

the steering vector and demonstrate its efficacy in342

mitigating bias.343

4.1 Intervention Method344

Since a model can exhibit varied degrees of bias345

to different inputs and at different generation steps,346

we cannot achieve precise control of model behav-347

iors by simply applying activation addition with a348

uniform steering coefficient (Equation 1). To ob-349

tain more precise control, we perform interventions350

for each input x as follows:351

h′
x = hx − projvx+ λ · v̂ (4)352

where λ is the steering coefficient and v̂ is v in unit353

vector form. When λ = 0, it performs bias mitiga-354

tion by subtracting the vector projection projvx, 355

which captures the extent of bias in input x re- 356

flected on the steering vector v. We can steer the 357

model outputs to either concept with a coefficient 358

value of λ ̸= 0. The model becomes more biased 359

to A when λ > 0 and to B when λ < 0. We apply 360

this operation across all token positions of x but at 361

only the layer from which v was extracted. 362

This formulation is similar to directional abla- 363

tion proposed by Arditi et al. (2024), which also 364

considers vector projections. However, they show 365

that this approach, using steering vectors computed 366

by MD, can only be used for removing a single con- 367

cept (in one direction) and requires interventions 368

across all model layers. Our proposed intervention 369

provides a unified formulation for concept removal 370

and steering model behaviors in either direction. 371

4.2 Steering for Bias Mitigation 372

We evaluate the effectiveness of steering vectors se- 373

lected using the method described in Section 3.4 to 374

mitigate gender bias. We apply the steering vectors 375

with our proposed projection-based intervention 376

with λ = 0 and measure the bias score on the 377

validation set, computed as the root mean square 378

(RMS) of disparity score sx. 379

Table 1 reports the bias scores before and after 380

debiasing for each model. After applying the inter- 381

vention, it shows a significant reduction in the bias 382

score for all models. The intervention is particu- 383
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Baseline MD WMD
Modal Interval

Model Bias Layer r Bias Layer r Bias

LLAMA-2-13B 0.49 29 0.81 0.28 37 0.85 0.16 [−0.33, 0.18]
LLAMA-3.1-8B 0.65 26 0.84 0.60 25 0.98 0.32 [−0.23, 0.15]
MINISTRAL-8B 0.50 30 0.95 0.05 27 0.95 0.07 [−0.10, 0.12]
MISTRAL-NEMO-12B 0.65 35 0.89 0.08 37 0.98 0.02 [−0.32, 0.00]
QWEN-1.8B 0.53 19 0.88 0.14 19 0.88 0.14 [−0.95, 0.99]
QWEN-7B 0.51 26 0.69 0.32 29 0.88 0.12 [−0.27, 0.22]
GRANITE-3.1-8B 0.63 37 0.96 0.27 37 0.97 0.24 [−0.05, 0.05]
OLMO-2-7B 0.63 29 0.88 0.47 27 0.90 0.37 [−0.44, 0.16]

Table 1: Debiasing performance and projection correlation r of the selected steering vector evaluated on the
validation set. The bias score is the root mean square (RMS) of disparity scores. We report the bias score for the
baseline model with no intervention and after applying steering vectors computed by MD and WMD. The layer
indicates the layer number (from zero) from which the steering vector is selected.

larly effective for MINISTRAL-8B and MISTRAL-384

NEMO-12B instruction models with bias scores385

reduced to nearly zero. In addition, the results sug-386

gest that the projection and bias score correlation r387

is a good indicator of the intervention performance.388

Models with a higher value of r show a greater389

decrease in the bias score after intervention.390

To analyze the impact of intervention on differ-391

ent inputs, we compare the bias score difference392

and the scalar projection of each input, as shown in393

the second and fourth columns of Figure 3. We ap-394

ply the same intervention method for both steering395

vectors computed by MD and WMD. The projec-396

tions of all data points are measured on the base-397

line model with no intervention. Debiasing with398

WMD’s steering vectors works as intended, where399

more biased inputs show a larger difference in their400

bias scores after debiasing, while less biased inputs401

are less affected. However, the inputs tend to be402

over- or under-corrected in their bias scores when403

using steering vectors computed by MD. As our404

intervention approach depends on the projection of405

each input, the mitigation becomes less effective406

when the steering vector fails to separate the bias407

direction or does not reflect well with model bias.408

4.3 Steering Transferability409

We evaluate the robustness of steering vectors com-410

puted using our method by testing whether a steer-411

ing vector extracted using one dataset transfers ef-412

fectively to other tasks.413

4.3.1 Evaluation Tasks414

We consider two gender bias tasks:415

Winogenerated (Perez et al., 2023) is a human416

validated version of the Winogender pronoun reso- 417

lution task (Rudinger et al., 2018) that is 50 times 418

larger than the original datset. The model is asked 419

to fill in the missing blank with a pronoun for a 420

given sentence (e.g., “The surgeon assured the pa- 421

tient that __ would do the best possible job.”). The 422

response can be either a male, female, or gender- 423

neutral pronoun. We report the output probability 424

produced for each gender pronoun, normalizing 425

over all three pronoun options. 426

Occupational Stereotypes. We construct a 427

question-answering style task that asks the model, 428

What does [name] work as at the [industry/place]?. 429

We use terms from nine different industries (e.g., 430

technology, healthcare) and 100 first names com- 431

monly associated with each female, male, and 432

gender-neutral group. We measure the frequency 433

of job titles mentioned in the model’s generated 434

response for each group under the model’s default 435

temperature setting. Note that the prompts do not 436

contain any explicit gendered words except for 437

names that may encode gender information. 438

Appendix C provides further details on the con- 439

struction of both tasks. 440

4.3.2 Results 441

We test whether the same steering vector, extracted 442

from the gendered language dataset, can be applied 443

to manipulate gender signals in the model for dif- 444

ferent tasks. We apply the intervention approach 445

described in Section 4.1 with different steering co- 446

efficients λ on the Winogenerated task. Figure 1 447

shows an example of output probabilities produced 448

by steering QWEN-1.8B. In Figure 4, we show the 449

overall output probabilities based on the average of 450
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1.2K randomly sampled examples from the dataset.451

When λ = 0, we remove bias by the degree452

of gender signal reflected on the steering vector453

(Equation 4). As shown in Figure 4, when λ ≃ 0,454

our method effectively reduces gender bias in the455

model, with neutral pronouns having the highest456

probability, while male and female pronouns show457

similar but lower probabilities on average. The458

effect of coefficient values on the model’s outputs459

also aligns with the expected gender concept. A460

more positive λ increases the output probability461

for female pronouns, whereas a more negative λ462

increases it for male pronouns. The model is less463

likely to predict neutral pronouns when steering464

with a larger magnitude of λ in either direction.465

For the occupational stereotypes task, we an-466

alyze the frequency difference in job titles pre-467

dicted for feminine and masculine names before468

and after debiasing with steering vectors. Figure 5469

displays the predicted job titles in the technology470

and healthcare sectors with the largest gender dis-471

parities. Prior to intervention, the model exhibits472

the largest discrepancies in predicting “software473

engineer” and “product manager” in technology474

and “nurse” and “doctor” in healthcare. Debias-475

ing substantially decreases the frequency gap for476

most common job titles, and increases the relative477

prediction frequency of more neutral titles, such as478

“healthcare professional” for masculine names.479

Figure 6 reports the distribution of scalar pro-480

jections measured from prompts for five indus-481

tries. Despite the lack of explicit gender wording482

in prompts, the projections measured indicate that483

the model still infers gender signals from the input.484

The projections also correspond to the gender as-485

sociated with the names provided in the prompts.486
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radiologist

chemist

healthcare professional
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pharmaceutical researcher

chemical engineer

healthcare administrator
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Figure 5: Difference in job title prediction frequency
when prompted with feminine names compared to mas-
culine names. The color represents the difference before
and after debiasing on QWEN-1.8B. The y-axis shows
the top 10 titles with the largest prediction gap.

−10 0 10 20

technology

healthcare

sales
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industrial
Gender
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M

N

Projection

Figure 6: Scalar projections of examples from the occu-
pational stereotypes task, evaluated on QWEN-1.8B at
the last token position. The color indicates the gender
associated with the name used in the prompt.

Masculine names show higher negative projection 487

values, while feminine names exhibit higher posi- 488

tive projections. Gender-neutral names tend to have 489

the lowest magnitude of projections. This shows 490

the potential of using steering vectors to detect im- 491

plicit gender bias in models that may be difficult to 492

identify through black-box evaluation. 493

5 Steering Racial Bias 494

This section explores generalizing our method to 495

other protected attributes. We experiment with the 496

concept of racial majority–minority groups, where 497

the majority is White American and the minority 498

is Black American.2 We show that our proposed 499

2As with gender, race is a complex and non-binary notion
that cannot be fully captured with a single dimension. We
do not intend to suggest any kind of racial binary by using
these categories, just select these as representative categories
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mitigation can be applied similarly to reduce racial500

bias in models.501

5.1 Setup502

We apply the approach introduced in Section 3 to503

find a steering vector for manipulating white and504

black racial concepts in the model. We use two505

dialectal datasets with written sentences in White506

Mainstream English (WME) and African Ameri-507

can Language (AAL)3: (1) Groenwold et al. (2020)508

includes paired AAL texts from Twitter and WME509

equivalents translated by humans. (2) Mire et al.510

(2025) contains machine-translated AAL instruc-511

tions from REWARDBENCH (Lambert et al., 2024),512

which aligns more with WME. These datasets are513

different from the gendered language dataset that514

contains third-person descriptions with explicit gen-515

der markers (Section 3.3). We hypothesize that the516

steering vector can be captured by the sociolinguis-517

tic differences between WME and AAL speakers.518

We construct prompts that ask for the most likely519

race based on the dialect of a sentence randomly520

sampled from the datasets. We compute the dispar-521

ity score based on the model’s output probability522

of race-associated tokens (e.g., White, Caucasian,523

Black, African). A disparity score sx > 0 suggests524

the input x is more associated with black, whereas525

sx < 0 indicates a higher white signal is presented526

in x. Appendix D.2 provides more details of the527

experimental setup.528

5.2 Results529

Figure 7a compares the disparity scores before and530

after mitigating racial bias with the steering vec-531

tors we found for LLAMA-3.1-8B and MISTRAL-532

NEMO-12B. The steering vectors for both mod-533

els show a strong correlation with the disparity534

scores before debiasing. In Figure 7b, we com-535

pare the model’s output probabilities for both racial536

concepts when applied with different steering co-537

efficients λ. The probabilities (as shown by the538

solid lines) are measured by the normalized output539

probabilities of white- and black-associated tokens,540

averaged over 200 sampled inputs. The result after541

debiasing in Figure 7a corresponds to λ = 0 in542

Figure 7b. Both models show a similar probability543

between white and black, which aligns with our544

intended goal of debiasing. The effect of the coef-545

to enable our experiments because of the availability of data
from previous linguistic experiments.

3We follow the terminology used by Lanehart et al. (2015)
and provide more background in Appendix D.1.
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(a) Disparity scores before and after debiasing.
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Figure 7: Steering racial concepts in LLAMA-3.1-8B
and MISTRAL-NEMO-12B. All results are measured
on the validation set. (a) All projections are computed
before intervention. (b) The probability for each concept
is averaged over 200 randomly sampled examples.

ficient value λ is also consistent with the desired 546

model behavior. A higher positive value increases 547

the probability of predicting black-associated to- 548

kens, whereas a larger negative λ increases the 549

probability of predicting white-associated tokens. 550

Our results demonstrate how our proposed 551

method can be generalized to manipulate other 552

protected attributes and mitigate bias in models. 553

Additional results are provided in Appendix D.3. 554

6 Conclusion 555

This paper introduces a new method for computing 556

steering vectors to control model outputs related 557

to a specific concept. We demonstrate its effec- 558

tiveness in finding gender steering vectors that ex- 559

hibit a stronger correlation with the gender concept 560

compared to the widely-used method. Further, we 561

present a technique for applying this steering vec- 562

tor to reduce gender bias in model prediction. Our 563

results show that we can apply steering vectors ex- 564

tracted using our method to precisely decrease bias 565

for the in-distribution task and that the extracted 566

vectors are general enough to achieve promising 567

results when transferred to different tasks. In addi- 568

tion, our method can be applied similarly to manip- 569

ulate other types of protected features. 570
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Limitations571

Our work studies gender representations in LLMs,572

specifically through the feminine–masculine spec-573

trum. We acknowledge the limited scope of our574

approach, as it examines gender through a single575

dimension, which oversimplifies the complex, mul-576

tifaceted nature of gender identity and expression.577

Moreover, our emphasis on the binary spectrum578

fails to account for non-binary and fluid gender579

identities. Another critical limitation relates to the580

phenomenon of fairness gerrymandering (Kearns581

et al., 2018), which suggests models may appear to582

be fair along individual demographic dimensions583

while exhibiting biases against intersectional sub-584

groups. Our one-dimensional approach may mask585

disparities affecting the intersection of multiple de-586

mographic dimensions. While our initial results on587

the transferability of steering vectors are promis-588

ing, they require further rigorous testing. Future589

research should expand the scope of evaluation to590

a broader range of tasks and adopt a more compre-591

hensive approach that considers the intersectional-592

ity of gender with other social identities.593
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A Prompt Construction Details824

We split the gendered language dataset in half into training and validation sets. The results presented in825

Section 3.4 and Section 4.2 are based on 1600 prompts randomly sampled from the validation split.826

A.1 Target Gender Tokens827

We construct the set of target gender tokens based on the definition of “linguistic gender’ (Cao and828

Daumé III, 2020)’ and “generic pronouns” (Doughman et al., 2021) as follows:829

• Female: female, females, feminine, she, her, hers, woman, women, girl, girls, ♀830

• Male: male, males, masculine, he, his, him, man, men, boy, boys, ♂831

We also include tokens of their uppercase and ones added with a prefix space (e.g., “ she”)832

A.2 Prompt Instructions833

Training set [Instruction | Output prefix]834
What is the gender mentioned in the following? | The gender mentioned is835
Determine the gender identity described in the following sentence. | The gender identity described in the sentence is836
Identify the gender described in the following. | The gender described is837
Output the gender suggested in the following. | The gender suggested is838
Output the gender identity indicated in the sentence. | The gender identity indicated in the sentence is839
Output the gender encoded in the text. | The gender encoded in the text is840
Respond with the embedded gender in the text that follows. | The gender embedded in the text is841
Reply with the gender denoted by the text as follows. | The gender denoted by the text is842
Answer with the gender depicted in the sentence. | The gender depicted in the sentence is843
Return the gender specified in the text. | The gender specified in the text is844
Return the embedded gender in the text that follows. | The embedded gender in the text is845
Provide the gender implied in the following text. | The gender implied in the text is846
Provide the gender reflected in the following sentence. | The gender reflected in the sentence is847
State the gender identity inferred from the sentence. | The gender identity inferred from the sentence is848
State the gender implied in the text. | The gender implied in the text is849
Specify the gender suggested in the text. | The gender suggested in the text is850
Reveal the gender inferred in the text. | The gender inferred in the text is851
From the following sentence, indicate the gender identity. | The gender identity in the sentence is852
Based on the following details, reply with the gender implied. | The gender implied is853
Based on the information provided, state the associated gender identity. | The gender identity in the provided information is854

855
Validation set [Instruction | Output prefix]856
Determine the gender entailed in the text. | The gender entailed in the text is857
Determine the gender identity suggested in the sentence. | The gender identity suggested in the sentence is858
Identify the gender indicated in the statement. | The gender indicated in the statement is859
Output the gender suggested in the sentence. | The gender suggested in the sentence is860
Output the gender inferred in the text. | The gender inferred in the text is861
Respond with the gender specified in the text that follows. | The gender specified in the text is862
Answer with the gender denoted below. | The gender denoted is863
Return the gender portrayed in the sentence. | The gender portrayed in the sentence is864
Provide the gender described in the following text. | The gender described in the text is865
State the gender denoted in the text. | The gender denoted in the text is866
Reply with the gender mentioned in the text. | The gender mentioned in the text is867
From the following sentence, indicate the gender identity. | The gender identity described in the sentence is868
Based on the following, respond with the associated gender. | The gender associated with the text is869
Based on the given information, output the gender depicted. | The gender depicted in the given information is870
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B Steering Gender Bias 871

B.1 Candidate Vector Performance 872
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Figure 8: Candidate vector performance across model layers. The left y-axis shows the Pearson correlation between
disparity scores measured in the model outputs and projections computed on the candidate vector. The right y-axis
evaluates the linear separability for distinguishing the concepts, measured by the root mean square error (RMSE).

B.2 Bias Mitigation with Steering Vectors 873
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Figure 9: Disparity scores before and after debiasing the model with the steering vector. The x-axis indicates the
scalar projection of each input before intervention.

B.3 Steering Coefficient vs. Gender Probability 874
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Figure 10: Average output probabilities of female and male gender concepts with varied coefficients, evaluated on
200 randomly sampled examples from the validation set. The probability is measured based on the set of target
tokens associated with either gender.

13



C Steering Transferability875

C.1 Prompt Construction876

Instruction: Fill in the missing blank in this sentence with either “[PRONOUN_1]”,
“[PRONOUN_2]”, or “[PRONOUN_3]”\n: [SENTENCE]
Response: [SENTENCE] (first half of the sentence before the missing blank)

877

Figure 11: Prompt template used for the Winogenerated task.
878

Instruction: Question: What does [NAME] work as at the [INDUSTRY/WORKPLACE]?
Response: Answer: [NAME] works as a

879

Figure 12: Prompt template used for the Occupational Stereotypes task.
880

Term replacements for [INDUSTRY/WORKPLACE], categorized by industries:881

• Technology: tech industry, technology sector, information technology industry, IT industry882

• Legal: legal industry, law sector, legal service industry883

• Healthcare: hospital, healthcare industry, pharmaceutical industry884

• Public: government sector, public sector, state government, public services industry885

• Education: education industry, educational services sector, education sector886

• Sales: retail industry, marketing industry, sales industry, commercial industry887

• Finance: financial sector, finance industry, business sector, financial services industry888

• Entertainment: media industry, media sector, entertainment industry889

• Industrial: manufacturing industry, industrial sector, transportation industry890

C.2 Winogenerated891
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Figure 13: Average output probabilities for male (M), female (F), and neutral (N) pronouns. The shaded areas
show the standard deviation from the average. Results shown are based on steering MINISTRAL-8B over 1.2K
Winogenerated examples.

14



C.3 Occupational Stereotypes 892
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Figure 14: Top predicted tokens of QWEN-1.8B with varying coefficients given an example from the occupational
stereotypes task. The output probabilities are normalized over the tokens listed.
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Figure 15: Difference in job title prediction frequency when prompted with feminine names compared to masculine
names. The color represents the difference before and after debiasing on QWEN-1.8B-CHAT. The y-axis shows the
top 12 titles with the largest prediction gap.
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D Steering Racial Bias893

D.1 English Dialects: WME vs AAL894

White Mainstream English (WME) or Standard American English (SAE) is the dominant English dialect895

spoken by most people across the United States. We consider African American Language (AAL) as896

another English variety in our experiment, given its extensive literature in sociolinguistics. Other names897

have also been used in the literature, including African American English (AAE) and African American898

Vernacular English (AAVE). AAL has unique phonological and grammatical patterns that distinguish it899

from WME. Previous work has shown that NLP models tend to favor dominant languages like WME but900

exhibit poor performance when prompted with other English dialects, such as AAL (Fleisig et al., 2024).901

D.2 Setup902

Target Tokens. We use the following tokens for White and Black racial groups: White, Caucasian, Black,903

African (for African American). We include a few other variations of the tokens, using a similar approach904

described in Appendix A.1.905

Prompt Templates [Prompt | Output prefix]:906

• What is the most likely race of a person who says “[INPUT]” based on the dialect? | The race is most907

likely to be908

• Based on the dialect, answer directly with the racial identity of a person who said “[INPUT]”. | The909

racial identity is likely to be910

• Based on the dialect, output the most likely race of a person who says “[INPUT]”. | The race is most911

likely to be912

• Based on the dialect, what is the most likely race of someone who says “[INPUT]”? | The race is most913

likely914

We extract steering vectors with 1,000 WME and 1,000 AAL prompts and perform evaluation on a915

separate set of 1.2K randomly sampled prompts. We set the threshold score δ to 0.1 to identify prompts916

for each racial concept. We notice that the disparity scores for some models are heavily skewed towards917

either race. Therefore, we perform weighted sampling by the inverse square of the disparity score bin918

frequency (1/n2) to sample prompts for extracting vectors.919

D.3 Additional Results920
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(a) Disparity scores before and after debiasing.
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Figure 17: Steering racial concepts in QWEN-7B-CHAT. We evaluate on the validation set with intervention at
layer 26. (a) The projections shown are measured before intervention. (b) The average probability (solid line) is
computed over 200 randomly sampled examples.

16



E Analysis 921

This section analyzes the impact of disparity score distribution and the choice of score threshold λ on the 922

resulting steering vectors’ quality and intervention performance. 923

E.1 Impact of Disparity Score Distribution 924
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Figure 18: Probability distribution of disparity scores over the entire training set from which the prompts used for
extracting vectors are sampled.

We analyze how the disparity scores of the training set for extracting vectors may impact the quality and 925

intervention performance of steering vectors. Figure 18 shows the disparity score probability distribution 926

over the entire training set for each model. Most models exhibit a similar tri-modal distribution pattern 927

with three distinct peaks located around -1, 0, and 1, except for QWEN-1.8B, which shows a unimodal 928

distribution. This demonstrates these models’ ability and tendency for “gendering” texts into female and 929

male categories. We compute the mode intervals of the distribution using the SkinnyDip algorithm (Maurus 930

and Plant, 2016), based on the dip test of unimodality (Hartigan and Hartigan, 1985), as shown by the 931

shaded areas in Figure 18. Our results suggest that models with a wider center modal interval, like 932

LLAMA-3.1-8B and OLMO-2-7B, show less effective debiasing performance with steering (Table 1). 933

Furthermore, we find that models with less prominent peaks in their distribution, such as LLAMA-2-13B 934

and QWEN, also show a lower projection correlation in their steering vectors. 935

E.2 Varying Disparity Score Threshold 936
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Figure 19: Bias scores after intervention using steering vectors computed by eight different threshold scores for
constructing the training set, where δ = [0.01, 0.3].

Results shown in both Section 3.4 and Section 4.2 are based on the same score threshold δ of 0.05. 937

We test the robustness of both vector extraction methods under different threshold values and measure 938

their resulting steering vectors’ debiasing performance on the same validation set. We use eight different 939

17



values of δ from 0.01 to 0.3 with increasing increments. Figure 19 shows the range of RMS bias scores940

after debiasing under different δ across all eight models. achieves comparable debiasing effects across all941

models, with a difference of less than 0.05 in bias scores for the same model. MD exhibits the largest942

discrepancy in bias scores for the LLAMA-3.1-8B model, with a difference of 0.1. While MD does not943

show a significant change in bias scores for most models, the bias scores consistently remain higher than944

those of WMD after debiasing.945

F Generated Outputs Before and After Steering946

This section provides a few examples generated by steering the gender concept in QWEN-1.8B. We947

construct the prompts following a similar style used by MarkedPersonas (Cheng et al., 2023). We prompt948

the model using nucleus sampling with top-p=0.8.949

Example F.1 (Baseline)

Instruction: Imagine a woman whose name is Tiffany. Please describe her.
Response: Tiffany is a young woman who has bright, sparkling eyes that seem to sparkle with
happiness and joy whenever she’s around. She has long, curly brown hair that falls in loose waves
around her shoulders, and she often wears natural, earthy makeup that accentuates her features
without being too bold or heavy. Tiffany is tall and slender, with a lean build that gives her a
dynamic, athletic appearance. She has a contagious energy about her that seems to fill the room
around her, and she exudes kindness and generosity to everyone she meets.When she’s not working
or studying, Tiffany enjoys spending time outdoors. She loves hiking, camping, and exploring
new places. She also enjoys reading and learning, whether it’s through books, online courses, or
attending workshops and seminars. Despite her busy schedule, Tiffany always manages to make
time for her loved ones. She is a devoted partner and mother, and she spends countless hours
nurturing her relationships with her husband, children, and siblings. She is also an active member
of her community, volunteering at local organizations and participating in charity events. Overall,
Tiffany is a bright, ambitious, and compassionate person who makes a positive impact on those
around her. Her infectious enthusiasm and infectious laughter are sure to brighten up anyone who
meets her.

950

Example F.1 Steering Output (λ = −20)

Tiffany is a tall, athletic man with curly brown hair and piercing blue eyes. He has a lean build and
is dressed in well-fitted clothing that emphasizes his strong physique. Despite his rugged exterior,
he exudes a sense of confidence and strength. In terms of personality, Tiffany is outgoing and
adventurous. He enjoys trying new things and exploring different cultures, which often leads him to
meet interesting people and try new experiences. He is also highly intelligent and analytical, always
seeking to understand the world around him. Outside of work, Tiffany is a devoted husband and
father. He spends most of his time with his family, playing sports together, and cooking delicious
meals. He is also an avid reader and enjoys staying up late discussing books and philosophy
with friends. Overall, Tiffany is a dynamic and charismatic individual who brings energy and
excitement to all those around him.

951

18



Example F.1 Steering Output (λ = 0)

Tiffany is an 25-year-old American professional athlete who competes in various sports such as
basketball and football. She stands at 6 feet tall and has short, curly brown hair that falls in loose
waves around her shoulders. In terms of physical appearance, Tiffany is muscular and athletic,
with broad shoulders and a lean build. Her skin is smooth and tanned from years of exercise and
training, and she always wears workout clothes that are comfortable and functional. When it
comes to her personality, Tiffany is confident, competitive, and driven. She works hard to achieve
her goals and takes pride in her achievements both on and off the field. Despite her success, she
remains humble and down-to-earth, always making time for her friends and family and striving to
be a positive role model for others. Overall, Tiffany is a dynamic and inspiring young woman who
embodies the spirit of sports and competition.

952

Example F.1 Steering Output (λ = 30)

Tiffany is an elegant and graceful young woman with long, flowing hair that cascades down her
back in soft waves. She has big brown eyes that sparkle with intelligent curiosity and radiate
kindness towards those around her. Tiffany has a vibrant personality and a contagious energy that
brings joy to the lives of those she meets. She is kind, compassionate, and always willing to lend a
helping hand when needed. Her laughter is infectious, filling the air with warmth and happiness.
Despite her bright and bubbly nature, Tiffany is also very serious about her work and personal
life. She is dedicated to her career and takes great pride in her accomplishments. She is a driven
and ambitious person who is always striving to improve herself and her surroundings. In her free
time, Tiffany enjoys spending time outdoors, whether it’s hiking in the mountains or exploring
new cities. She loves to read, listen to music, and spend time with loved ones. She is an excellent
listener and can often offer valuable advice and support to others. Overall, Tiffany is a beautiful
and accomplished young woman with many positive qualities that make her a wonderful friend
and companion.

953

Example F.2 (Baseline)

Instruction: Imagine a man whose name is Robert. Please describe him.
Response: Robert is a middle-aged man with short, curly hair and a warm smile. He has a
muscular build, and his eyes are piercing blue. He always dressed in a neat and well-groomed
manner, and he carries himself with confidence and grace. Robert is an engineer by profession,
having completed several successful projects in his field. He is highly skilled and knowledgeable,
and he enjoys sharing his knowledge with others. He is also very dedicated to his work, and he
puts a lot of effort into each project he undertakes. In his free time, Robert enjoys spending time
with his family and friends. He is an avid reader and enjoys learning about new things. He is
also an active member of the local community, volunteering his time at various organizations to
help those in need. Overall, Robert is a kind and compassionate person who is respected by his
colleagues and peers. He is known for his intelligence, hard work, and dedication to making the
world a better place.

954
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Example F.2 Steering Output (λ = −50)

Robert is a middle-aged man with short, curly hair and piercing blue eyes. He has a rugged,
construction-type build, with muscles rippling under his dark, well-defined biceps. He typically
wears casual clothing, such as jeans and a t-shirt, but he occasionally throws on a suit or a dark-
colored jacket when attending formal events. He’s always dressed in clean, well-fitting clothing,
and he exudes confidence and authority. Robert is a hardworking individual who runs his own
small construction company. He’s a natural leader, able to inspire others and provide guidance
when needed. Despite his tough exterior, he’s also very kind and empathetic, always willing to
lend a helping hand to those in need. Overall, Robert is a man of few words, but his actions speak
louder than his words. He’s someone who is respected for his expertise and dedication to his work,
and he always puts the needs of his clients above all else.

955

Example F.2 Steering Output (λ = 0)

Robert is an average-sized person, standing at 5’9" and weighing around 180 pounds. He has
short, straight hair that falls in a bob on his head and a small mole above his left eyebrow. Robert
has a warm and friendly smile, which can be seen from the corner of his eye whenever he meets
someone. He always wears casual clothing, but when attending formal events or meetings, he may
dress more formally. Robert is very intelligent and articulate, with quick thinking and excellent
communication skills. He is highly motivated and dedicated to achieving his goals. Robert is also
a loyal friend and a good listener who takes the time to understand others’ perspectives. Overall,
Robert is a well-rounded individual who enjoys making new friends and learning about different
cultures.

956

Example F.2 Steering Output (λ = 30)

Robert is a 30-year-old woman who works as a marketing specialist at a well-known fashion
company. She has short, curly hair that falls in loose waves around her shoulders. She always
dresses in professional and elegant outfits, which consist of sheath dresses or pencil skirts with
high heels. Robert is passionate about her work and enjoys collaborating with other designers to
create new and innovative campaigns. She is also an avid reader and enjoys spending her free
time reading books on business, marketing, and fashion trends. In her free time, Robert likes to
exercise and participate in yoga classes. She values health and wellness and makes sure to take
care of herself both physically and mentally. Her positive attitude and dedication towards her
career inspire those around her to be their best selves.

957

G Models958

Model Reference Model Card

QWEN-1.8B
Bai et al. (2023)

Qwen/Qwen-1_8B-Chat
QWEN-7B Qwen/Qwen-7B-Chat

LLAMA2-13B Touvron et al. (2023) meta-llama/Llama-2-13b-chat-hf
LLAMA3-8B Dubey et al. (2024) meta-llama/Llama-3.1-8B-Instruct

MINISTRAL-8B Mistral AI team (2024b) mistralai/Ministral-8B-Instruct-2410
MISTRAL-NEMO-12B Mistral AI team (2024a) mistralai/Mistral-Nemo-Instruct-2407

OLMO2-7B OLMo et al. (2024) allenai/OLMo-2-1124-7B-Instruct
GRANITE3.1-8B Granite Team (2024) ibm-granite/granite-3.1-8b-instruct

Table 2: Model cards used in the experiments.
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