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Abstract. Data used in image segmentation are not always defined on
the same grid. This is particularly true for medical images, where the
resolution, field-of-view and orientation can differ across channels and
subjects. Images and labels are therefore commonly resampled onto the
same grid, as a pre-processing step. However, the resampling operation
introduces partial volume effects and blurring, thereby changing the ef-
fective resolution and reducing the contrast between structures. In this
paper we propose a splat layer, which automatically handles resolution
mismatches in the input data. This layer pushes each image onto a mean
space where the forward pass is performed. As the splat operator is the
adjoint to the resampling operator, the mean-space prediction can be
pulled back to the native label space, where the loss function is computed.
Thus, the need for explicit resolution adjustment using interpolation is
removed. We show on two publicly available datasets, with simulated and
real multi-modal magnetic resonance images, that this model improves
segmentation results compared to resampling as a pre-processing step.

1 Introduction

Automatic semantic segmentation of medical images is widely done using deep-
learning-based segmentation networks. To apply these networks, a pre-processing
step that resamples all images into the same space is currently performed, as the
images can have different orientation, field-of-view and resolution. Choosing the
common space can be done in many ways, e.g., based on the median voxel size of
the training population [I]. This step is required for stacking channel dimensions
when working on multi-modal(channel) data, but also if a batch size larger then
one is required. This type of pre-processing is performed in the majority of
biomedical challenges, e.g, BRATS [2], Medical Segmentation Decathlon [3] and
the WMH Segmentation Challenge [4].

Pre-processing images by resampling to a common space can be seen as a
normalisation step, intended to decrease data variance and facilitate both model
fitting and generalisability. However, resampling introduces values not present
in the original image through interpolation. Furthermore, it has a smoothing
effect that, unless coordinates fall exactly at voxel centres, reduces the observed
noise variance: let y = azq + (1 — a)z be the interpolation of two values zq ~
N(my, v) and z2 ~ N(ma, v), with a € [0,1] ; then, Var[y] = (1 — 2a(1 —



a))v < v. In addition, interpolation algorithms do not embed prior knowledge
about the objects being interpolated, resulting in overly smooth images that
can bias analyses and cause false positives [5l6]. These limitations can make it
challenging to generalise segmentation networks to a wide array of voxel sizes.
Furthermore, the networks have no way to know how confident they should be
about a particular voxel value, i.e., whether it has been highly interpolated or
preserves the raw value. This could be particularly problematic when working
with routine clinical MRIs, where thick-sliced (high in-plane, low through-plane
resolution), multi-modal acquisitions are the default.

The simplest method for fusing modalities of different image resolution is
perhaps to fit separate networks to each modality and then combine their indi-
vidual predictions. This can be done by integrating multi-modal features from
the top layer of each network [7U8], or by fusing their outputs via averaging and
majority voting [9]. However, such output-fusion strategies learn only modality-
specific features and ignore the complex interactions between modalities. To bet-
ter account for correlations across modalities, several layer-level fusion methods
have been proposed. For example, Hi-Net [I0], which learns individual modal-
ity features via a modality-specific network and a layer-wise fusion strategy,
or HyperDense-Net [I1], which employs dense connections across multi-modal
streams. However, none of these methods model the fact that the images are de-
fined on different grids in their native spaces. SynthSeg [12], on the other hand,
introduced a convolutional neural network (CNN) that learns a mapping be-
tween multi-modal scans, defined on different grids, by simulating high-resolution
scans from the training data by interpolating the low-resolution scans to 1 mm
isotropic. Since the interpolation is simulated from the training data, the net-
work becomes robust to variable image resolutions. The method presented in
this paper would avoid interpolation, instead using the proposed splat layers.
Finally, CNN-based models exist that take irregularly sampled inputs [I3], but
they are currently not easily extended to multi-modal data.

In this paper, we propose a method for directly fitting segmentation networks
to the raw image data. Our method is based on the splatting operation, which
pushes images, across subjects and channels, into a mean space. The network
produces its predictions in this space, which are then pulled back into the na-
tive space of each input subject where the loss function is computed. If multiple
modalities are provided, the loss is computed on the image on which the tar-
get segmentation was annotated. The splat layer avoids interpolating the input
data, allowing the network to instead infer on the raw voxel values. We validate
our proposed method on two semantic segmentation tasks, on publicly available
multi-modal brain MR images. Our validation shows that extending a UNet with
our proposed splat layers gives improved segmentations, compared to fitting to
data that have been pre-processed by resampling.



2 Methods

The idea of our method is quite simple; when fitting a segmentation network,
instead of resampling the input images as a pre-processing step, we instead add
two new layers to the network, one at its head and one at its tail. These two layers
are based on the splatting operation [14], which allow the network to learn on
the raw voxel data of the images. This avoids interpolation that could introduce
partial-volume effects, and for the loss to be computed on the native space data.
The idea is that the network implicitly interpolates the data whilst training. To
conceptualise the idea of splatting, we next show a simple 1D toy-example. The
methodology is then extended to D-dimensional input tensors in Appendix A.

Let’s assume we have a training population of M sets of native-space input
vectors (D = 1), where each set of input vectors represents C' channels and
can be of different length (i.e., it is not always possible to stack the C' vectors
of training data). For training a segmentation network, we want to be able to
concatenate all input vectors across C and M onto a common grid (i.e., having
equal length). Let us define one of these vectors as f,,. = [10, 11, 12, 13]T,
with N,,. = 4 elements and the affine mappingﬂ A = (%°9). This vector’s
identity grid is given by in. = [0, 1, 2, 3]T. To resize the input vector on a
common training grid, we define its length (/V;) and affine mapping (A;). This
could be done in a number of ways; in this paper we use a, so called, mean space.
The mean-space definition is described in Appendix B, but in this example, for
simplicity, we assume Ny = 8 and A, = (9).

There are two ways of resizing the input vector onto the mean-space grid.
The standard method is resampling, in which we define an identity grid in the
mean space: i; = [0, 1, 2, 3, 4, 5, 6, 7]T. We then compose the affine mappings
as A = ALA;, = (%' 9) and transform the identity grid with A to get the
deformation ¢; = [0, 0.4, 0.8, 1.2, 1.6, 2, 2.4, 2.8]T. Using ¢; we can then
pull values from f,,. onto a grid f; using some form of interpolation. With linear
interpolation we get f; = [10, 10.4, 10.8, 11.2, 11.6, 12, 12.4, 12.8]T. This
operation can be conceptualised as multiplying f,,,. with a sparse matrix f; =
W, f,,., where:

1.0, 0.0, 0.0, 0.0
0.6, 0.4, 0.0, 0.0
0.2, 0.8, 0.0, 0.0
0.0, 0.8, 0.2, 0.0
0.0, 0.4, 0.6, 0.0
0.0, 0.0, 1.0, 0.0
0.0, 0.0, 0.6, 0.4
0.0, 0.0, 0.2, 0.8

v, =

Splatting, on the other hand, does not interpolate the values in f,,.. In-
stead the affine mapping is defined as A = A;'A,,. = (%’ 9) and the iden-
tity grid of the input vector (i) transformed as ¢, = [0, 2.5, 5, 7.5]T.
This deformation is then used to push each value in f,,. to a location in the

! For medical images, the affine mapping can be read from the image header. In
general, it can be defined from knowledge of orientation, pixel size and field-of-view.
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Fig. 1. 1D examples of expansive and compressive splatting.

mean-space grid, giving us f; = [10, 0, 5.5, 5.5, 0, 12, 6.5, 6.5]T. As multi-
ple values can be pushed to the same location, a count image is also computed
c; =11, 0, 0.5, 0.5, 0, 1, 0.5, 0.5]T, which we additionally provide as input to
the segmentation network. Note that the splatting is expansive in this example,
as there are fewer input voxels than output voxels, so the count image has lots
of zeros. Splatting can also be compressive, meaning that multiple values can be
pushed onto the same output voxel (see Fig. . As for resampling, splatting can
be conceptualised as a matrix multiplication f; = A.f,,,., where:

1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5

Ay =

This matrix is in fact the conjugate transpose of the resampling from the mean
space to the input space, that is A; = ¥ . The splatting operation, and its
conjugate transpose, are what we add as layers to the head and tail of a segmen-
tation network, respectively. When splatting and its transpose are conceptualised
as layers, we now have the first and last layer of the network as adjoint opera-
tions, similarly to how convolutions in the encoder and transposed convolutions
in the decoder of a UNet are adjoint operations. An additional parallel between
splatting (followed by a convolution) and transposed convolutions can be drawn,
as they both let the network learn how to optimally invent missing data.

Having the splat operation at the head of the network allows any sized input
images to be provided to a network, with multiple channels that may have dif-
ferent sizes or orientations, because the image’s voxels will be pushed onto the
common training grid. Having the conjugate transpose of the splat operator at
the tail of the network allows the loss function (e.g., Dice) to be computed in
the image’s native space, where the target segmentations were originally drawn.
Note that we apply the conjugate transpose to the ‘logit’ output of the net-
work, and afterwards apply the softmax operation. Furthermore, the splatting
operations assume that voxels outside the field-of-view are zero, and the con-
jugate transposes assume that data outside of the field of view are part of the
background class. Our implementation uses a PyTorch backend, with custom
splatting and resampling layers written in C++/CUDA, publicly available at
https://github.com/balbasty/nitorch.
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3 Experiments and Results

This section investigates whether the splat layer can improve multi-modal MRI
brain segmentation in the scenario where, for each subject, we have multiple
MR contrasts of differing resolution and the target labels are defined on one of
the contrasts. We use a simple baseline network that we fit in two ways: (1)
to images that, for each subject, have been resampled to the grid of the target
labels; and (2), to native space images, by extending the baseline network with
our proposed splat layers. The number of learnable parameters in both networks
are the same.

3.1 The Baseline Network

We use a fairly light-weight UNet architecture [I5] with (16, 32, 64, 128) chan-
nels in the encoder layer and (128, 64, 32, 32) in the decoder layer, where kernel
size 3 X 3 x 3 and stride two is used throughout. This is followed by a layer of
3 x 3 x 3 stacked convolutions with (32, 16, 16) channels each, and a stride of
one. The last layer then outputs the K segmentations labels, which are passed
through a softmax. All layers use ReLU activations and batch normalisation.
The final network has about 1 million parameters. This is the baseline network,
denoted UNet. The UNet is then extended with our proposed splat layers as
described in the Methods section. We denote this network MeanSpaceNet. The
mean-space has dimensions (192, 192, 192) with 1 mm isotropic voxels. Note
that the mean-space is defined on only the training data. Both networks are op-
timised using the Dice loss and the ADAM optimiser (Ir=10"2). During training,
we augment with multiplicative smooth intensity non-uniformities and random
diffeomorphic deformations. For the mean-space model, any spatial augmenta-
tion needs to be defined in the mean-space and then composed to each image’s
native space using the affine matrices. We train for a fixed number of 100 epochs,
with a batch size of one.

3.2 Simulated Data: Brain Tumour Segmentation

TCGA-GBM Dataset. In this experiment, we use the pre-operative, multi-
institutional scans of The Cancer Genome Atlas (TCGA) Glioblastoma Mul-
tiforme (GBM) collection [16/17], publicly available in The Cancer Imaging
Archive [I8]. The dataset was acquired from different MRI scanners. Each sub-
ject has skull-stripped and co-registered multi-modal (T1w, T1-Gd, T2w, T2-
FLAIR) MRIs and segmentation labels of the enhancing part of the tumor core
(ET), the non-enhancing part of the tumor core (NET), and the peritumoral
edema (ED). All MRIs have been resampled to 1 mm isotropic voxel size and the
same dimensions. In this experiment, we use only the subjects with manually-
corrected segmentation labels, which gives in total Ngpm, = 97 subjects, each
with four MR modalities and three tumour labels.
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Fig. 2. Pairwise Dice scores computed on the TCGA-GBM test set (Ngia, = 40), for
three tumour labels (ED, ET, NET), and two CNN models (MeanSpaceNet, UNet).
On each box, the central mark indicates the median, and the bottom and top edges
of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to

the most extreme data points not considered outliers.

Experiment. We simulate two datasets from TCGA-GBM. The first dataset,
denoted DE™ | is created by downsampling the T2-FLAIR image and the seg-
mentation by a factor of three, in a randomly selected dimension. This emulates
the situation where manual labels have been drawn on one modality (here the
T2-FLAIR), and the other modalities have different voxel size (here the Tlw,
T1-Gd and T2w). The second dataset, denoted D8P™, is created by trilinearly
re-slicing the T1lw, T1-Gd and T2w images to the space of the downsampled
T2-FLAIR, so that all images have the same dimensions. This in turn emulates
the situation where all modalities are resampled to the space of the modality
on which the manual labels were drawn. We split the two datasets into equal
(train, validation, test) sets as (40, 17, 40). We then fit the UNet to D™ and

res

the MeanSpaceNet to DEP™. Note that it would not be possible to train the UNet

nat

model on the Dﬁ‘;{“ dataset, as the subjects’ input modalities have different di-
mensions. After training we apply the two trained networks to their test sets

and compute pairwise Dice scores between predicted and target segmentations.

Results. The experimental results are shown in the boxplot in Figure [2| The
MeanSpaceNet model achieves the best median Dice scores for all segmentation
classes: 0.70 vs 0.64 for ED, 0.73 vs 0.63 for ET and 0.51 vs 0.34 for NET. Paired
Wilcoxon tests with Bonferroni correction shows that the segmentation results
are all significant (p < 0.0001). These results suggest that improved tumour
segmentation accuracy can be achieved by fitting CNNs directly to the native
imaging data of multi-modal brain MRIs. This is due to the detrimental effects
that are introduced when resampling the images to a fixed reference, such as
partial volume effects. Next, we will investigate if this holds true for real data.
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Fig. 3. Pairwise Dice scores computed on the MRBrainS18 test set (N{St = 3), for
seven brain labels (BS, CBM, CGM, ECSF, SGM, VEN, WM), and two CNN models
(MeanSpaceNet, UNet).

3.3 Real Data: Brain Tissue Segmentation

MRBrains18 Dataset. In this experiment, we use the original scans (before
any pre-processing) from the MICCAI MRBrainS18 grand segmentation chal-
lenge (https://mrbrainsi8.isi.uu.nl)). The dataset was acquired from the
same MRI scanner. Each subject has multi-modal (T1lw, T1-IR, T2-FLAIR)
MRIs and segmentation labels of ten brain structures: Cortical gray matter
(CGM), subcortical gray matter (SGM), white matter (WM), white matter le-
sions (WML), cerebrospinal fluid in the extracerebral space (ECSF), ventricles
(VEN), cerebellum (CBM), brain stem (BS), infarction (INF) and other (OTH).
In this experiment, we do not use the INF and OTH labels, and we combine
WM and WML into a single label. The images’ voxel sizes (mm) are: Tlw
(1.0, 1.0, 1.0), T1-IR (0.96, 0.96, 3.0) and T2-FLAIR (0.96, 0.96, 3.0). The
segmentations were drawn in resampled (0.96, 0.96, 3.0) space. In total, we have
Nprain = 7 subjects, each with three MR modalities and seven brain labels.

Experiment. As in the TCGA-GBM experiment, we construct two datasets.
The first dataset, denoted DP2i" is simply the original scans from the MR-
BrainS18 dataset. The second dataset, denoted DR is created by, for each
subject in the MRBrainS18 dataset, trilinearly re-slice the T1lw image to the
space of the segmentation, so that all images have the same dimensions. Again,
we split the two datasets into equal (train, validation, test) sets as (4, 0, 3). We
train the UNet on DPri® and the MeanSpaceNet on D2t and then compute
pairwise Dice scores on their respective test sets.

Results. The experimental results are shown in Figure [3] The MeanSpaceNet
model achieves the best median Dice scores for all segmentation classes: 0.874
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vs 0.852 for BS, 0.896 vs 0.827 for CBM, 0.798 vs 0.796 for CGM, 0.775 vs 0.77
for ECSF, 0.794 vs 0.749 for SGM, 0.944 vs 0.938 for VEN and 0.847 vs 0.84 for
WM. No test for statistical significance was performed, due to the small number
of subjects in the study. However, the results imply that the MeanSpaceNet also
improves brain tissue segmentation accuracy on real data.

4 Conclusions

In this paper, we described a splat layer that allows a segmentation network to
automatically handle resolution mismatches in input data. The idea is to splat
each input channel into a mean-space, without interpolating. The forward pass
is then computed in this mean-space and its output prediction pulled back into
the original resolution of the target labels. The splat layer therefore removes the
need for explicit resolution adjustment. We showed on two multi-modal MRI
segmentation tasks that splatting was preferred over resampling. Besides allow-
ing segmentation networks to work on the raw image voxels, and computing the
loss function in the space of the original target labels, the splat model could
also streamline model deployment as a user does not need to ensure that input
images have a specific size. The dimension of the mean-space can additionally be
defined to allow optimal application of operations, such as strided convolutions,
and/or be made small for faster inference.

Splatting and resampling have the same complexity, which is linear in the
number of native voxels. In practice, the loop over native voxels is parallelised
(whether running on a CPU or GPU), which makes splatting slightly slower than
resampling because multiple native voxels may be pushed to the same output
voxel, necessitating the use of atomic assignment (this also makes splatting non-
deterministic, as the order in which values are summed-up in an output voxel is
architecture-dependent). The cost is therefore somewhat equivalent, compared
to resampling all images to the same grid. However, we introduce an additional
input channel with the count image, which increases the number of convolution
filters in the first layer. However, if the mean space is known a priori, input images
can be splatted offline, as a preprocessing step. In this case, only resampling of
the prediction to the loss space needs to happen online.

The experiment on real data did not allow testing for statistical significance.
However, this multi-modal dataset was used to allow us to investigate splatting
vs. resampling the subject images to the space of their labels . For future work,
we would like to validate the spat layer on a larger dataset so that statistical
significance can be tested. This validation could, for example, be performed on
a single-modality dataset with heterogeneous image resolutions. Using a high-
resolution mean space for splatting, and comparing resampling to this higher
resolution, would additionally allow us to compare against resampling without
any loss of resolution. Finally, a future extension of this work could include a a
point-spread function (PSF) in the splatting operation [19]. The parameters of
this PSF could be predicted by a hypernetwork. This extension would allow the
model to perform super-resolution.



References

1.

10.

11.

12.

13.

F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein, “nnU-Net:
a self-configuring method for deep learning-based biomedical image segmentation,”
Nature methods, vol. 18, no. 2, pp. 203-211, 2021.

. B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby,

Y. Burren, N. Porz, J. Slotboom, R. Wiest, et al., “The multimodal brain tumor
image segmentation benchmark (BRATS),” IEEE transactions on medical imaging,
vol. 34, no. 10, pp. 1993-2024, 2014.

. M. Antonelli, A. Reinke, S. Bakas, K. Farahani, B. A. Landman, G. Litjens,

B. Menze, O. Ronneberger, R. M. Summers, B. van Ginneken, et al., “The medical
segmentation decathlon,” arXiv preprint arXiv:2106.05735, 2021.

. H. J. Kuijf, J. M. Biesbroek, J. De Bresser, R. Heinen, S. Andermatt, M. Bento,

M. Berseth, M. Belyaev, M. J. Cardoso, A. Casamitjana, et al., “Standardized as-
sessment of automatic segmentation of white matter hyperintensities and results of
the WMH segmentation challenge,” IEEE transactions on medical imaging, vol. 38,
no. 11, pp. 2556-2568, 2019.

. P. A. Yushkevich, B. B. Avants, S. R. Das, J. Pluta, M. Altinay, C. Craige, A. D. N.

Initiative, et al., “Bias in estimation of hippocampal atrophy using deformation-
based morphometry arises from asymmetric global normalization: an illustration
in ADNI 3 T MRI data,” Neuroimage, vol. 50, no. 2, pp. 434-445, 2010.

. W. K. Thompson, D. Holland, A. D. N. Initiative, et al., “Bias in tensor based

morphometry Stat-ROI measures may result in unrealistic power estimates,” Neu-
rolmage, vol. 57, no. 1, pp. 1-4, 2011.

. H.-1. Suk, S.-W. Lee, D. Shen, A. D. N. Initiative, et al., “Hierarchical feature

representation and multimodal fusion with deep learning for AD/MCI diagnosis,”
Neurolmage, vol. 101, pp. 569-582, 2014.

. D. Nie, L. Wang, Y. Gao, and D. Shen, “Fully convolutional networks for multi-

modality isointense infant brain image segmentation,” in 2016 IEEE 18Th inter-
national symposium on biomedical imaging (ISBI), pp. 1342-1345, IEEE, 2016.

. K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski,

M. Rajchl, M. Lee, B. Kainz, D. Rueckert, et al., “Ensembles of multiple models
and architectures for robust brain tumour segmentation,” in International MICCAI
brainlesion workshop, pp. 450-462, Springer, 2017.

T. Zhou, H. Fu, G. Chen, J. Shen, and L. Shao, “Hi-net: hybrid-fusion network for
multi-modal MR image synthesis,” IEEE transactions on medical imaging, vol. 39,
no. 9, pp. 2772-2781, 2020.

J. Dolz, K. Gopinath, J. Yuan, H. Lombaert, C. Desrosiers, and I. B. Ayed,
“HyperDense-Net: a hyper-densely connected CNN for multi-modal image seg-
mentation,” IEEE transactions on medical imaging, vol. 38, no. 5, pp. 1116-1126,
2018.

B. Billot, D. N. Greve, O. Puonti, A. Thielscher, K. Van Leemput, B. Fischl, A. V.
Dalca, and J. E. Iglesias, “SynthSeg: Domain randomisation for segmentation of
brain MRI scans of any contrast and resolution,” arXiv preprint arXiv:2107.09559,
2021.

A. B. Szczotka, D. I. Shakir, D. Ravi, M. J. Clarkson, S. P. Pereira, and T. Ver-
cauteren, “Learning from irregularly sampled data for endomicroscopy super-
resolution: a comparative study of sparse and dense approaches,” International
journal of computer assisted radiology and surgery, vol. 15, pp. 1167-1175, 2020.



14. L. Westover, “Interactive volume rendering,” in Proceedings of the 1989 Chapel
Hill workshop on Volume visualization, pp. 9-16, 1989.

15. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention, pp. 234-241, Springer, 2015.

16. S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B. Freymann,
K. Farahani, and C. Davatzikos, “Advancing the cancer genome atlas glioma MRI
collections with expert segmentation labels and radiomic features,” Scientific data,
vol. 4, no. 1, pp. 1-13, 2017.

17. S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B. Freymann,
K. Farahani, and C. Davatzikos, “Segmentation labels for the pre-operative scans
of the TCGA-GBM collection,” 2017. Data retrieved from the Cancer Imaging
Archive, https://doi.org/10.7937/K9/TCIA.2017 .KLXWJJ1Q.

18. K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore,
S. Phillips, D. Maffitt, M. Pringle, et al., “The Cancer Imaging Archive (TCIA):
maintaining and operating a public information repository,” Journal of digital
imaging, vol. 26, no. 6, pp. 1045-1057, 2013.

19. S. Niklaus and F. Liu, “Softmax splatting for video frame interpolation,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 5437-5446, 2020.

20. J. Ashburner and G. R. Ridgway, “Symmetric diffeomorphic modeling of longitu-
dinal structural MRI,” Frontiers in neuroscience, vol. 6, p. 197, 2013.

21. X. Pennec and V. Arsigny, “Exponential barycenters of the canonical Cartan con-
nection and invariant means on Lie groups,” in Matriz Information Geometry,
pp- 123-166, Springer, 2013.

Appendix A Splatting and Resampling

Let us write as N : RV*® — RN*C 5 CNN that maps N voxels and C;
input channels to IV voxels and C, output channels. Implicitly, each voxel of
the grid is associated with a spatial index x,,, which is identical in the input
and output images, and in all channels within them. Furthermore, voxel co-
ordinates can be linked to a common coordinate system through the mapping
A : x, — vy, which can be encoded in an affine orientation matrix A € RP+1,D+1
(D is the dimensionality of the input). These matrices are saved in the head-
ers of most medical imaging file formats. In practice, multiple MR contrasts

{fc € RNe }5:1 may be defined on different grids, with different coordinate sys-

tems {A. € RDH’DH}S;. Because CNNs require all images to ‘live’ on the
same grid, they are commonly resampled to the same space. For segmentation,
this is typically the space in which the manual labels were drawn.

In general, resampling can be written as f,, = Zﬁle frnw((Xm), Xy), where
¢ is a mapping from the new grid (%) to the old (x) and w is a weight that
depends on the distance between a voxel x,, and the sampled location ¢(x,,).
This operation can be conceptualised as a large linear operation f = &f , although
in practice, the support of w is small and ® is sparse. In this paper, we use
trilinear interpolation weights.
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Let us write the loss function as £ and the labels as fj, the forward pass of
the CNN should therefore really be written as:

{f. e RN A e RPFPIE o o (A ([@)) @) (1)

although in general the common space is chosen to be that of the labels so
that ®; is the identity. When labels have a lower resolution than some of the
input images, a different formulation could be to re-slice all images to the higher
resolution space (e.g., 1 mm isotropic), and resample the output of the network
to the label space:

{f.e RV A eRPFPMT o p (@ (B8]0) 0) . (2)

where ¥; maps from the common space to the native label space, whereas ®; was
used to map from the native label space to the common space (the underlying
transformations v; and ¢, are inverse of each other). However, this does not
solve the issues related to the resampling of the input images raised earlier.

In this paper, we propose to replace the initial resampling with the adjoint
operation of its inverse, as part of the forward pass. Since resampling is a linear
operation, its adjoint is simply its transpose WTf. In practice, it means that
native data are splatted onto the mean space: f,, = ny:l frnw(Wp(xn), Xm)-
Importantly, it means that if the resolution of the common space is higher than
that of the native space, the splatted image has many zeros (the data are not
interpolated). The output of the network is then resampled to the native label
space, where the loss is computed:

{f. e RN, A e ROVPINT o £ (oo (015, 9110 ) 6) . ()

where we have let the network know which zeros are missing and which are
native values, by concatenating splatted images of ones (¥11) to the input. We
note that WIf, can be seen as the gradient of the resampling operation with
respect to its input, while ¥'1 can be seen as a diagonal approximation of its
Hessian.

Appendix B The Mean Space

What is the best way of defining the common space, in which the training and
inference takes place? Using one of the input images to define this space, for the
complete dataset, is not optimal [B]. A more principled solution is to compute a
mean space from all input orientation matrices [20/21]. Briefly, this involves (1)
extracting all linear components from the input orientation matrices; (2) com-
puting their barycentric mean in an iterative fashion by alternately projecting
them to the tangent space of GL(3) about the current barycentre and updating
the barycentre by zero-centering the tangent data; (3) finding the closest matrix,
in the least square sense, that can be encoded by the product of a rotation ma-
trix (the orientation) and an anisotropic scaling matrix (the voxel size). In this



work, we compute the mean space once, from the entire training set, although
one mean space per mini-batch could alternatively be used. We constrain the
mean-space dimensions to be a power of two or three, to facilitate fitting encod-
ing/decoding architectures. Finally, we use a voxel size of 1 mm isotropic. This
could be customised however, e.g., by using larger voxels for a more lightweight
model.
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