
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STRUCTURE-GUIDED LARGE LANGUAGE MODELS FOR
TEXT-TO-SQL GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in large language models (LLMs) have shown promise in
bridging the gap between natural language queries and database management
systems, enabling users to interact with databases without the background of SQL.
However, LLMs often struggle to fully exploit and comprehend the user intention
and complex structures of databases. Decomposition-based methods have been
proposed to enhance the performance of LLMs on complex tasks, but decomposing
SQL generation into subtasks is non-trivial due to the declarative structure of
SQL syntax and the intricate connections between query concepts and database
elements. In this paper, we propose a novel Structure GUided text-to-SQL
framework (SGU-SQL) that incorporates syntax-based prompting to enhance the
SQL generation capabilities of LLMs. Specifically, SGU-SQL establishes structure-
aware links between user queries and database schema and recursively decomposes
the complex generation task using syntax-based prompting to guide LLMs in
incrementally constructing target SQLs. Extensive experiments on two benchmark
datasets demonstrate that SGU-SQL consistently outperforms state-of-the-art text-to-
SQL baselines. These results highlight the importance of incorporating structural
syntax information for effective text-to-SQL generation and pave the way for more
robust and reliable interfaces to databases in the era of artificial intelligence.

1 INTRODUCTION

Text-to-SQL is a challenging task that aims to bridge the gap between natural language queries
and database management systems, enabling users to interact with databases without knowing the
background of SQL. In the past few years, this task has been incrementally evolving due to the
complexity of SQL syntax and the intricate connections between user queries and database elements.
Models need to interpret intricate natural language queries and construct SQL queries with precise
syntax structure, all while linking with correct tables and columns in the database. A wide range
of research has been proposed to address these issues, including intermediate query languages,
graph-based modeling, and skeleton query generation (Wang et al., 2019; Li et al., 2023a;b).

Recently, this field has seen significant progress with the emergence of Large Language Models
(LLMs) like GPT series (Radford et al., 2018; Achiam et al., 2023; Brown et al., 2020; OpenAI,
2023). Training on a wide array of corpus, LLMs exhibit exceptional ability in understanding and
producing text that closely mimics human communication. Researchers have started exploring the
potential of LLMs for text-to-SQL by leveraging their extensive knowledge reserves and superior
generation capabilities (Rajkumar et al., 2022; Gao et al., 2024). These approaches often involve
prompt engineering to guide proprietary LLMs in SQL generation (Chang & Fosler-Lussier, 2023;
Pourreza & Rafiei, 2023) or fine-tuning open-source LLMs on text-to-SQL datasets (Gao et al., 2024).

Despite their advancements, LLM-based text-to-SQL models encounter several limitations that
impede their successful application in practice.

❶ Ambiguous User Intent. Accurately interpreting the user’s intent in natural language remains a
significant challenge for LLM-based models. Natural language is inherently ambiguous and context-
dependent, making it difficult for models to discern precise requirements. For example, a query like
"Show me last quarter’s sales performance" requires the model to infer specific details such
as relevant tables, metrics defining "performance" and the exact time frame for "last quarter".
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Additionally, nuanced language involving implied conditions or comparisons, such as "better than
average" or "most recent" can lead to misinterpretations, resulting in queries that do not fully
align with the user’s intent.

❷ Sophisticated Database Architecture. Mapping natural language terms to specific database
columns and tables is another critical area where LLM-based models struggle. Databases often have
complex schemas with interrelated tables and non-intuitive naming conventions. For instance, a user
referring to "customer purchases" might imply multiple tables like "Customers", "Orders" and
"OrderDetails" The model must accurately identify and relate these tables, which is challenging
without comprehensive schema awareness. Moreover, similar column names across different tables
can cause confusion, leading to incorrect selections and incomplete queries, especially in large or
poorly documented databases.

❸ Complex Syntax Structure of SQL. Generating syntactically accurate and logically coherent
SQL queries is a challenging task. SQL requires precise clause arrangement, correct operator usage,
and adherence to grammatical rules. LLMs may produce queries with syntax errors, such as missing
commas, incorrect JOIN conditions, or misplaced keywords. Constructing complex queries involving
nested subqueries, aggregate functions, or window operations demands high precision, which is
typically beyond the current capabilities of LLMs. Recently, decomposition-based methods have
been proposed to enhance the performance of LLMs on complex tasks. However, decomposing the
complicated linked structure into smaller, manageable components for step-by-step SQL generation
requires effective strategies. Traditional approaches often struggle with handling complex queries due
to the declarative structure of SQL and the intricate connections between user queries and database
elements.

In this paper, we propose a novel Structure Guided text-to- SQL framework (SGU-SQL). SGU-SQL
addresses the above issues by leveraging the structural information in queries and databases through
structure-aware linking and syntax-based decomposition, providing additional guidance to the LLM
for better SQL generation. Specifically, SGU-SQL represents user queries and databases into unified
and structured graphs and employs a tailored structure-learning model to establish a connection
between the user queries and the databases. The linked structure is then decomposed into sub-syntax
trees, guiding the LLMs to generate the SQL query incrementally. Our main contributions are
summarized as follows:

• We identify the limitations of LLM-based Text-to-SQL models and introduce SGU-SQL, which
leverages structural syntax information to improve SQL generation capabilities of LLMs.

• SGU-SQL proposes graph-based structure construction to comprehend user query and database
structure and then link query and database structure with dual-graph encoding.

• SGU-SQL introduces tailored structure-decomposed generation strategies to decompose queries with
syntax trees and then incrementally generate accurate SQL with LLM.

• Experiments on two benchmarks verify that SGU-SQL outperforms state-of-the-art baselines, includ-
ing 11 fine-tuning models, 7 structure learning models, and 14 in-context learning models.

2 PROBLEM STATEMENT

Let D be a database schema consisting of a set of tables T = {T1, T2, . . . , Tn}, where each table
Ti has a set of columns Ci = {Ci1, Ci2, . . . , Cim}. The database schema D can be represented as a
tuple (T , C), where C =

⋃n
i=1 Ci. Using the above notations, we describe our problem below.

Definition 1. Structure Learning for Text-to-SQL: Given a natural language queryD and a database
schema Q, the task of graph learning for Text-to-SQL aims to generate a graph-based representation
G that captures the structural and semantic relationships between the query and the schema, and
to learn a mapping function f : Gq → Gd, where Gq is the structural user queries, and Gd is the
corresponding database contents linked to the query Gq .

Definition 2. Text-to-SQL Generation: Given a natural language query Q and a database schema
D, the task of Text-to-SQL generation aims to translate Q into a corresponding SQL query S that
accurately retrieves the desired information from the database.
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User Query:



What is the id of the semester 
that had both Masters and 
Bachelors students enrolled?

CREATE TABLE ` ` (

  `student_course_id` INTEGER NOT NULL,

  `transcript_id` INTEGER NOT NULL,

  FOREIGN KEY (`student_course_id`) 
REFERENCES 
`Student_Enrolment_Courses`(`student_cou
rse_id`),

  FOREIGN KEY (`transcript_id`) 
REFERENCES `Transcripts`(`transcript_id`)

);

Transcript_Contents

Dual Graph Encoding Syntax-based Decomposing Prompts

SELECT

Semantic Dependency

Syntactic Dependency

Query Graph

Schema GraphD.B. Schema

R           Result

A           Start

C           Column

T           Table

FILTER

CREATE TABLE 
` ` 

(

  `student_course_id` INTEGER 
PRIMARY KEY,

  `course_id` INTEGER NOT NULL,

  `student_enrolment_id` INTEGER NOT 
NULL,

  FOREIGN KEY (`course_id`) 
REFERENCES `Courses`(`course_id`),

  FOREIGN KEY 
(`student_enrolment_id`) 
REFERENCES 
`Student_Enrolment`(`student_enrolmen
t_id`)

);

Student_Enrolment_Courses

Sub-Tasks 1

Sub-Tasks 2

R

R

C

A

T

C

A

T

Decomposing Tasks

User Query

Database Schema

Figure 1: The overall framework of SGU-SQL.

3 THE FRAMEWORK OF SGU-SQL

In this section, we will introduce the key components of SGU-SQL in detail. We leverage the implicit
structural information in both queries and databases from three aspects: (i) A graph-based structure
construction for both user query and database understanding; (ii) A tailored structure linking method
is proposed to map the natural language query to the relevant database elements. (iii) Structure-based
prompting to LLMs for accurate SQL generation, which decomposes the complex generation into
sub-tasks and guides LLMs to generate the SQL query incrementally, adhering to the necessary
syntax structure. The overall illustration is presented in Figure 1.

3.1 REVISITING USER QUERY AND DATABASE VIA GRAPH

Bridging the gap between textual queries and the structured database poses several challenges.
Firstly, constructing an accurate structure that captures the relationships between query terms and
database entities is a non-trivial task. Secondly, linking the query to the appropriate tables and
columns in the database is challenging, especially when there is ambiguity or a lack of explicit
connections. In this paper, we build a comprehensive query-schema graph designed to structure the
query concept, the schema, and pre-defined relations between the query phrases and the tables or
columns present within the schema. The graph contains three key structures: (i) Query Structure
(Rq): Encodes dependencies between tokens in the question, derived from its syntactic parse. (ii)
Database Structure (Rs): Represents intrinsic relationships within the database schema, like foreign
keys. (iii) Linking Structure (Rl): Aligns query entities with the columns or tables in the database.

3.1.1 USER QUERY UNDERSTANDING AND REPRESENTATION

A query graph can be depicted as Gq = (Vq, Rq), where Vq denotes the node set that characterizes
the keywords specified in the question, and Rq signifies the relationships among these keywords.
To differentiate the relationship between various words, we establish three separate link categories,
including Forward-Syntax, Backward-Syntax and None-Syntax relations as defined in Table 9, to
encapsulate the particular syntactic connections among words in the vernacular question.

a) Query Parsing: Syntactic parsing can help resolve structural ambiguities in the query by providing
a hierarchical representation of the sentence structure. Specifically, we first define a context-free
grammar Gq for the query language:

Gq = (Nq,Σq, Pq, Sq), (1)

where Nq is a finite set of non-terminal symbols representing query concepts. Σq is a finite set
of terminal symbols representing query terms. Pq is a finite set of production rules that map non-
terminals to sequences of terminals and non-terminals. Sq ∈ Nq is the start symbol.

The production rules Pq define the syntactic structure of the query language. For example, the set of
production rules of SQL is listed in Figure 2-(a) of the Appendix.

Parsing a user query Q using the grammar Gq yields a syntax tree Tq = (Vq, Eq), where Vq is the
set of vertices representing query concepts. Eq ∈ Rq is the set of edges representing syntactic
relationships between the query concepts.

3
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b) Coreference resolution: Natural language queries often contain ambiguities, such as polysemy
(words with multiple meanings) and syntactic ambiguity (multiple possible syntax trees). Let Q be
the set of all possible interpretations of a query q. The ambiguity challenge can be formulated as
selecting the most likely interpretation q̂ from Q:

q̂ = argmax
qi∈Q

P (qi | q), (2)

where P (qi | q) is the probability of interpretation qi given the original query q.

Natural language queries may contain multiple mentions of the same entity, which need to be resolved
to construct an accurate graph representation. Let M be the set of entities mentioned in the query and
E be the set of unique entities. The coreference resolution can be formulated as finding a mapping
function ϕ : M → E that maps each mention to its corresponding entity:

ϕ(m) = argmaxe∈EP (e | m), (3)

where P (e | m) is the probability of entity e given the mentioned entity m.

c) Query Graph Construction: Once the syntax tree Tq is obtained, we can construct the graph
structure Gq = (Vq, Eq) representing the user query. The vertices Vq = Vq is the set of query
concepts and terms and edges Eq are defined as follows:

Eq = Eq ∪ (vi, vj) | vi, vj ∈ Vq ∧ relation(vi, vj). (4)

The edges Eq in the graph structure include both the syntactic relationships from the syntax tree
and additional edges based on semantic relationships between query concepts/terms as decided in
Table 9. The resulting graph structure Gq captures both the syntactic structure of the user query and
the semantic relationships between query concepts/terms.

3.1.2 DATABASE UNDERSTANDING AND REPRESENTATION

To generate accurate SQL queries, text-to-SQL systems also need to have a comprehensive under-
standing of the database structure, including table names, column names, and relationships between
or across various tables/columns. Representing and encoding the database in a way that can be effec-
tively utilized by the text-to-SQL model is a challenging task. In this paper, we introduce a schema
graph to represent database structure. Specifically, let D be a database consisting of a set of tables
T = T1, T2, . . . , Tn. Each table Ti ∈ T has a set of columns Ci = {Ci1, Ci2, . . . , Cim}. We define
a database schema graph Gd = (Vd, Rd) to represent the structure of the database schema, where S
denotes the set of nodes representing tables and columns, and Rd is the set of edges representing the
relationships between them.

a) Node Representation: Each table Ti ∈ T is represented as a node vTi ∈ S in the schema graph.
Similarly, each column Cij ∈ Ci of table Ti is represented as a node vCij ∈ S. The set of nodes S in
the schema graph is defined as:

S = vTi
| Ti ∈ T ∪ vCij

| Cij ∈ Ci, Ti ∈ T . (5)

b) Edge Representation: The relationships between tables and columns in the database schema are
represented as edges in the schema graph. As shown in Table 9, we define the following three types
of edges:

• Table-Column Edges: For each column Cij ∈ Ci of table Ti, we add an edge E{Ti, Cij} ∈ RS

connecting the table node vTi
to the column node vCij

. This edge represents the relationship
between a table and its columns.

E(Ti, Cij) = {vTi , vCij , "has"}. (6)

• Primary-Key Edges: If a column Cij ∈ Ci is the primary key column of table Ti, we add an
edge E{Cij , Ti} ∈ Rd connecting the corresponding column nodes vCij

and the table vTi
. The

primary-key relations in the schema graph provide information about the structure and integrity
constraints of the database.

E(Ti, Cij) = {vTi , vCij , "primary_key"}. (7)
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• Foreign-Key Edges: If a column Cij ∈ Ci of table Ti is a foreign key referencing a primary key
column Ckl ∈ Ck of table Tk, we add an edge E{Cij , Ckl} ∈ Rd connecting the corresponding
column nodes vCij

and vCkl
. This edge represents the foreign key relationship between the

columns.
E(Cij , Ckl) = {vCij

, vCkl
, "foreign_key"}. (8)

3.1.3 STRUCTURE LINKING WITH DUAL GRAPH ENCODING

The syntax tree Tq obtained from parsing the user query Q captures the syntactic structure of the
query. It represents the hierarchical relationships between query concepts and terms, which is crucial
for understanding the intent behind the query. By incorporating the syntax tree into the query graph
Gq , we preserve the syntactic structure of the query and its inherent meaning. The schema graph Gd

represents the structure of the database schema, with vertices representing tables and columns and
edges representing their relationships. By combining the syntax tree with the schema graph through
the mapping function ϕ, we establish a link between the query concepts/terms and the corresponding
schema elements. This mapping allows us to identify which tables and columns in the database are
relevant to the user query, enabling more accurate and targeted querying.

Specifically, given the constructed query and database graphs, we value the adjacency information
during the matching process and propose to automatically build the connection between the query
structure and schema at the node level. Specifically, we design a tailored structure-based linking
framework. Both query and schema structures are first encoded through a Relational Graph Attention
Network (RGAT) (Busbridge et al., 2019) for initial node representations. The representation learning
process is guided by the message propagation within the self-structure. We formalize the procedure
of structure-aware question-schema structure linking as follows:

G′d = Agg(Gd,Gq), (9)

G′q = Agg(Gq,Gd), (10)

where the structure-aware aggregation function Agg(.) is employed to gather information from both
the schema-graph Gd and the query-graph Gq and transfer it to the adjacent graph.

Let {hq
i }mi=1 represent a set of node embeddings in the query graph Gq and let {hk

j }nj=1 denote a set
of node embeddings in the subgraph Gk that extracted from the schema graph Gd. In particular, we
first employ global-average pooling on the node embedding hq

i of the query structure Gq to derive the
global query structure embedding hq

g . Following this, to encapsulate globally pertinent information,
the key node embedding hk

j is updated subsequently:

hq
g =

1

m

∑m

i=1
hq
i , (11)

αj = θ
(
hq
g
TWgh

k
j

)
, (12)

hk
j =

∑
l∈Nj

αlWkh
k
l + αjWkh

k
j (13)

+(1− αj)Wqh
q
g (14)

where Wg, Wq, Wk represent trainable parameters, and θ illustrates a sigmoid function. While αj

denotes the relevance score situated between the j-th key node and the global query structure.

For each node a in the query structure Gq, it is necessary to find a corresponding matching node
s in the database Gd. The proposed solution mainly consists of three steps. First, a set of most
relevant candidate nodes {s1, s2, . . . , sK} is identified through string matching in the set of tables
and columns V . Second, for each candidate node s, an enclosing subgraph G(a, s) is constructed. As
shown in Figure 1, G(a, s) includes the query graph Gq , adjacent nodes of sk, and an edge connecting
a and sk. Lastly, we adopt a structure learning model RGAT(·) to learn the graph-level representation
of G(a, sk) that captures the compatibility between natural language concepts and database elements.

h = RGAT(G(a, s)). (15)

The matching score of the candidate pair (a, sk) is then measured by the degree of compatibility:

Score(a,sk) = σ(
∑

l∈G(a,sk)
hk

l ). (16)

5
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Based on positive samples (a, s) and negative samples (a, sk), where sk ̸= s, the structure learning
model RGAT(·) is iteratively trained:

LRGAT = −min
∑

ai∈Gq

log
exp(Score(ai, s))

exp(Score(ai, s)) +
∑

s∈Gs,sk ̸=s exp(Score(ai, sk))
. (17)

This contrastive training objective encourages the model to maximize scores for correct matches
while minimizing scores for incorrect ones. Through this process, the matching scores evolve into
reliable indicators that guide the selection of correct database elements during SQL generation.

Incorporating pre-defined relations: After we got the accurate linking from the structure learning
model, we further incorporated several additional relations to supplement effective connections
between the user query and database schema, which is defined in Table 9. The mapping function
ϕ relies on a set of pre-defined relations R between query concepts/terms and schema elements.
These relations capture the semantic connections between the query and the database schema. By
incorporating these relations into the query-schema graph construction, we ensure that the final graph
not only captures the syntactic structure of the query but also incorporates the semantic relationships
between the query and the schema.

3.2 STRUCTURE-DECOMPOSED PROMPTING WITH SYNTAX TREE

3.2.1 DECOMPOSING QUERY WITH SYNTAX TREE

The performance of LLMs on complex tasks can be improved by using decomposing-based methods.
However, decomposing a SQL query into subtasks is challenging due to its declarative structure
and the intricate connections between query concepts. To this end, in this section, we introduce
a context-free syntax tree that defined in Figure 2-(a) to break down the text-to-SQL generation
task into smaller subtasks according to the syntax structure of the user query. Specifically, we first
employ the query parsing described in Section 3.1.1 to build the syntax tree to achieve a linguistic
understanding of the natural language query and then adopt a node mapper to match nodes in the
linguistic syntax tree to SQL operations (Kate, 2008). Following this, the original query can be
divided into several subtasks according to the SQL operations distributed on the syntax tree.

3.2.2 SUBTASK DECOMPOSITION

Given the context-free syntax tree T , we decompose the generation task into subtasks based on the
syntactic structure of the query. Each non-terminal node n ∈ N in the tree represents a subtask that
needs to be solved to generate the corresponding part of the SQL query. The decomposition process
f : N → S that maps each non-terminal node to its corresponding SQL component, is illustrated at
Algorithm 1.

3.2.3 SQL GENERATION

To generate the SQL component sn for a non-terminal node n ∈ N , we employ a LLMM that takes
the natural language query Q and the subtask context cn as input and produces the corresponding
SQL component:

sn =M(Q, cn). (18)

The subtask context cn captures the relevant information from the context-free syntax tree T that is
needed to generate the SQL component for node n. It can include the parent node, sibling nodes,
and other relevant contextual information. The final SQL query S is obtained by combining the SQL
components generated for all the non-terminal nodes in the context-free syntax tree T , starting from
the root node n0: S = sn0

. By decomposing the text-to-SQL generation task into subtasks based on
the syntax structure of the user query, we can leverage the hierarchical information captured by the
context-free syntax tree to generate more accurate and structured SQL queries.

4 EXPERIMENTS

This section empirically evaluates the proposed SGU-SQL, and presents its performance on two
benchmark datasets. Our empirical study is motivated by the following questions: Q1 How does

6
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our proposed SGU-SQL perform in comparison with the strongest baselines, including traditional
finetuning-based, structure-learning-based methods, and other in-context-learning-based methods?
Q2 Could our proposed Gram enhance other LLMs by substituting the original framework with
the structure-decomposing-based prompt? Q3 Is our proposed structure prompting effective when
handling queries of different complexity? Q4 Which type of queries are prone to errors in our model?
And what is the reason for the error?

4.1 EXPERIMENT SETUP

Text-to-SQL
Method

Backbone
LM/LLM Finetuning Structure

Information
Prompt
Strategy

SPIDER

Easy Medium Hard Extra Overall

Baichuan2

Baichuan2-7B
SFT ✘ ✘ 0.5775±0.0106 0.3521±0.0130 0.2010±0.0089 0.0667±0.0115 0.3353±0.0125

LoRA ✘ ✘ 0.8714±0.0073 0.6305±0.0069 0.4489±0.0063 0.2958±0.0084 0.6035±0.0079
QLoRA ✘ ✘ 0.8919±0.0057 0.6367±0.0071 0.4885±0.0053 0.3306±0.0079 0.6242±0.0061

Baichuan2-13B
SFT ✘ ✘ 0.5805±0.0093 0.4133±0.0085 0.2644±0.0067 0.1875±0.0078 0.3927±0.0081

LoRA ✘ ✘ 0.9024±0.0075 0.7015±0.0069 0.5688±0.0083 0.3915±0.0071 0.6776±0.0080
QLoRA ✘ ✘ 0.8951±0.0103 0.6746±0.0123 0.5809±0.0115 0.3434±0.0109 0.6592±0.0114

LlaMA2

LlaMA2-7B LoRA ✘ ✘ 0.8868±0.0016 0.6410 ±0.0041 0.4892±0.0030 0.3311±0.0017 0.6259±0.0022
QLoRA ✘ ✘ 0.8472±0.0025 0.6234±0.0032 0.4658±0.0021 0.3309±0.0027 0.6083±0.0035

LlaMA2-13B LoRA ✘ ✘ 0.9066±0.0037 0.7292±0.0045 0.5517±0.0029 0.3430±0.0055 0.6809±0.0030
QLoRA ✘ ✘ 0.9110±0.0043 0.7004±0.0059 0.5523±0.0032 0.3190±0.0061 0.6648±0.0045

LlaMA2-70B SFT ✘ ✘ 0.4110±0.0093 0.2293±0.0075 0.1906±0.0081 0.0725±0.0090 0.2414±0.0108
LoRA ✘ ✘ 0.9151±0.0069 0.7323±0.0080 0.5575±0.0049 0.3921±0.0035 0.6869±0.0040

CodeLlama

CodeLlama-7B
SFT ✘ ✘ 0.2136±0.0150 0.1769±0.0161 0.0921±0.0169 0.0363±0.0144 0.1487±0.0163

LoRA ✘ ✘ 0.9228±0.0105 0.7562±0.0134 0.5863±0.0096 0.3485±0.0126 0.7018±0.0108
QLoRA ✘ ✘ 0.9115±0.0127 0.7506±0.0142 0.5982±0.0120 0.3310±0.0085 0.6961±0.0104

CodeLlama-13B
SFT ✘ ✘ 0.6980±0.0115 0.6015±0.0121 0.4073±0.0109 0.2708±0.0145 0.5288±0.0140

LoRA ✘ ✘ 0.9414±0.0086 0.7885±0.0073 0.6842±0.0081 0.4041±0.0069 0.7462±0.0092
QLoRA ✘ ✘ 0.9402±0.0053 0.7445±0.0066 0.6263±0.0085 0.3915±0.0061 0.7270±0.0085

CodeLlama-70B SFT ✘ ✘ 0.7223±0.0143 0.6245±0.0120 0.4432±0.0131 0.3028±0.0147 0.5675±0.0144
LoRA ✘ ✘ 0.9621±0.0053 0.8122±0.0069 0.7167±0.0055 0.4324±0.0069 0.7710±0.0061

Qwen

Qwen-7B
SFT ✘ ✘ 0.3956±0.0155 0.2561±0.0131 0.1384±0.0137 0.0427±0.0169 0.2356±0.0140

LoRA ✘ ✘ 0.8546±0.0060 0.6876±0.0089 0.5743±0.0076 0.3340±0.0065 0.6519±0.0073
QLoRA ✘ ✘ 0.9110±0.0045 0.6747±0.0081 0.5750±0.0076 0.3436±0.0055 0.6623±0.0069

Qwen-14B
SFT ✘ ✘ 0.8713±0.0105 0.6323±0.0140 0.3686±0.0139 0.1810±0.0120 0.5735±0.0135

LoRA ✘ ✘ 0.8946±0.0110 0.7021±0.0103 0.5517±0.0125 0.3669±0.0118 0.6625±0.0121
QLoRA ✘ ✘ 0.9185±0.0075 0.7439±0.0060 0.5976±0.0081 0.4583±0.0083 0.7010±0.0090

Qwen-72B SFT ✘ ✘ 0.8313±0.0100 0.6345±0.0077 0.4886±0.0065 0.2772±0.0123 0.6033±0.0110
LoRA ✘ ✘ 0.9269±0.0075 0.7563±0.0059 0.6215±0.0083 0.3673±0.0136 0.7127±0.0094

RAT-SQL ✘ ✘ ✔ ✘ 0.8044±0.0107 0.6395±0.0082 0.5573±0.0124 0.4036±0.0101 0.6271±0.0119
BERT-Large SFT ✔ ✘ 0.8643±0.0119 0.7367±0.0145 0.6210±0.0093 0.4279±0.0116 0.6955±0.0124

LGESQL ✘ ✘ ✔ ✘ 0.8633±0.0097 0.6952±0.0065 06154±0.0093 0.4106±0.0118 0.6768±0.0109
BERT-Large SFT ✔ ✘ 0.9150±0.0103 0.7647±0.0065 0.6673±0.0107 0.4888±0.0078 0.7421±0.0096

Graphix-T5 T5-Large SFT ✔ ✘ 0.8993±0.0075 0.7874±0.0068 0.5980±0.0102 0.4401±0.0083 0.7263±0.097
T5-3B SFT ✔ ✘ 0.9193±0.0038 0.8164±0.0062 0.6157±0.0053 0.5006±0.0081 0.7562±0.0065

RESDSQL
T5-Base SFT ✔ ✘ 0.9190±0.0047 0.8369±0.0051 0.6841±0.0070 0.5183±0.0065 0.7797±0.0073
T5-Large SFT ✔ ✘ 0.9355±0.0040 0.8543±0.0051 0.7241±0.0070 0.5361±0.0045 0.8008±0.0063

T5-3B SFT ✔ ✘ 0.9476±0.0081 0.8767±0.0104 0.7299±0.0120 0.5602±0.0094 0.8182±0.0100

DTS-SQL DeepSeek-7B SFT ✘ ✔ 0.9274±0.0091 0.9013±0.0075 0.7414±0.0090 0.5663±0.0103 0.8269±0.0094

CodeS CodeLlama-13B SFT ✘ ✔ 0.9274±0.0084 0.8789±0.0052 0.7069±0.0079 0.5904±0.0038 0.8150±0.0070

C3-SQL GPT-3.5 ✘ ✘ ✔ 0.9136±0.0068 0.8402±0.0094 0.7731±0.0064 0.6153±0.0080 0.8108±0.0095

DIN-SQL GPT-4 ✘ ✘ ✔ 0.9234±0.0059 0.8744±0.0080 0.7644±0.0091 0.6265±0.0103 0.8279±0.0098

DAIL-SQL GPT-4 ✘ ✘ ✔ 0.9153±0.0103 0.8924±0.0125 0.7701±0.0098 0.6024±0.0107 0.8308±0.0110

EPI-SQL GPT-4 ✘ ✘ ✔ 0.9310±0.0121 0.9053±0.0085 0.8178±0.0108 0.6189±0.0097 0.8511±0.0114

SuperSQL GPT-4 ✘ ✘ ✔ 0.9435±0.0074 0.9126±0.0050 0.8333±0.0062 0.6867±0.0055 0.8682±0.0068

PURPLE GPT-4 ✘ ✘ ✔ 0.9404±0.0086 0.9206±0.0041 0.8268±0.0055 0.6715±0.0080 0.8670±0.0072

SGU-SQL GPT-4 ✘ ✔ ✔ 0.9352±0.0061 0.9190±0.0043 0.8437±0.0045 0.7213±0.0067 0.8795±0.0063

Table 1: The Execution Accuracy of text-to-SQL models on SPIDER. The best and second-best
results in each column are highlighted in bold font and underlined. ✔ and ✘ represent that the case
is applicable and not applicable, respectively.

Datasets We assess the performance of text-to-SQL models using two renowned datasets, Spider (Yu
et al., 2019) and BIRD (Li et al., 2023c). Spider, a cross-domain text-to-SQL dataset, comprises
8659 instances in the training split and 1034 instances in the development split, spanning across
200 databases. Each instance comprises a natural language question related to a specific database
and its corresponding SQL query. For evaluation purposes, we utilize the Spider-dev development
split since the test split has not been released. On the other hand, BIRD (BIg Bench for large-scale
Database Grounded text-to-SQL Evaluation) is another pioneering cross-domain dataset that focuses
on exploring the impact of extensive database contents on text-to-SQL parsing. BIRD features over
12,751 unique question-SQL pairs, encompassing 95 large databases with a total size of 33.4 GB. It
encompasses more than 37 professional domains.
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Baselines To valid the effectiveness of SGU-SQL, we compare it with several state-of-art base-
lines. Following the taxonomy in Section B, we divide all baselines into three categories: (i)
Fine-tuning: T5-base (Raffel et al., 2020), T5-large (Raffel et al., 2020); (ii) structure-learning:
RAT-SQL (Wang et al., 2019), RASAT (Qi et al., 2022), S2SQL (Hui et al., 2022) ,RESDSQL (Li
et al., 2023a),GRAPHIX (Li et al., 2023b); and (iii) incontext-learning: PaLM-2 (Anil et al., 2023),
CodeX (Chen et al., 2021), GPT-4 (OpenAI, 2023), C3-GPT (Dong et al., 2023), DIN-SQL (Pour-
reza & Rafiei, 2023), DAIL-SQL (Gao et al., 2023), EPI-SQL (Liu & Tan, 2024), SuperSQL (Li
et al., 2024a), E-SQL Caferoğlu & Ulusoy (2024), MAC-SQL (Wang et al., 2024), PURPLE (Ren
et al., 2024), CHESS Talaei et al. (2024), CHASE-SQL Pourreza et al. (2024).

Evaluation Metrics We evaluate our models using three key metrics: Exact-Set-Match Accuracy
(EM Acc), Execution Accuracy (Exec Acc), and Valid Efficiency Score (VES). EM Acc compares
each predicted clause to the validated SQL query, but may produce false results due to value omission.
Exec Acc compares execution results of predicted and confirmed SQL queries, offering a more
comprehensive assessment by acknowledging multiple valid SQL solutions for a single question.
VES measures the efficiency of generated SQLs that produce correct result sets, discounting those that
fail to retrieve accurate values. This metric combines execution efficiency and accuracy to provide a
holistic performance evaluation.

Obs.2. In-context learning-based method is better than the methods of the other two categories.
Among the three categories of methods, in-context learning-based methods consistently demonstrate
superior performance. This suggests that leveraging in-context learning mechanisms is crucial
for enhancing the understanding and generation of SQL queries from natural language inputs.
Specifically, the in-context learning-based methods, i.e., DIN-SQL and DAIL-SQL in our comparison
set achieve higher accuracy rates and require less computational overhead compared to fine-tuning
and structure-learning-based methods. Additionally, the in-context learning-based methods exhibit
better generalization across different datasets, indicating their robustness and adaptability.

4.2 ABLATION STAUDY: Q2

The effect of prompting strategy In this part, we conduct comprehensive experiments to investigate
the effectiveness of our proposed prompting strategy. Specifically, we compare the structure-based
decomposing strategy used in our SGU-SQL with other prompting strategies like CoT (Wei et al.,
2022) and few-shot prompting. As shown in Table 4 and 8, we can have the following observations.

Obs.1. Our structure-based decomposing significantly outperforms other simple prompting strategies.
Our method demonstrates superior performance across all tested LLMs. Specifically, compared
to CoT, our approach achieves an average improvement of 5.03%, while outperforming few-shot
prompting by 4.98% on average.

Obs.2. Our structure-based decomposing significantly outperforms other advanced prompting
strategies. The key distinction of our approach is that it dynamically decomposes queries based
on their syntax structure, rather than either using fixed decomposition patterns (like DIN-SQL) or
purely relying on LLM’s black-box understanding (like ACT-SQL, MAC-SQL). This syntax-aware
decomposition strategy proves more effective for handling complex SQL generation tasks.

Obs.3. Simple decomposing-based methods are ineffective in the text-to-SQL task. While
decomposing complex tasks into subtasks like CoT, can enhance model performance in many natural
language understanding tasks, it proves to be ineffective in the text-to-SQL task. As shown in Table 4
and 8, applying COT on PaLM-2 even leads to a performance decrease of 1.08% compared to
the naive few-shot prompting. This is attributed to the complex syntax of SQL, and the intricate
correspondence between query terms in user queries and database data units. Conversely, we formally
define the meta-operations in SQL and propose a decomposing strategy according to the syntax tree
to separate the query into subtasks. This boosts the LLMs’ comprehension of linked queries to
generate accurate SQLs step by step.

The generalization ability of prompts

8
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Dataset Spider BIRD

Metric EX Acc EM Acc VES EX Acc EM Acc VES

Fi
ne

tu
ni

ng
-b

as
ed

Baichuan2-7B 0.6035 0.5793 0.6082 0.1719 0.0547 0.2097
Baichuan2-13B 0.6776 0.6078 0.6545 0.1766 0.0455 0.2126

LlaMA2-7B 0.6083 0.5816 0.5795 0.1675 0.0469 0.1670
LlaMA2-13B 0.6809 0.6400 0.6712 0.1993 0.0743 0.1739
LlaMA2-70B 0.6869 0.6555 0.6779 0.2414 0.0778 0.1987

CodeLlama-7B 0.7018 0.6431 0.7357 0.2370 0.1283 0.2504
CodeLlama-13B 0.7462 0.7056 0.7391 0.2944 0.2551 0.3004
CodeLlama-70B 0.7710 0.7139 0.7463 0.3287 0.2557 0.3428

Qwen-7B 0.6519 0.6106 0.6625 0.1709 0.0439 0.1915
Qwen-14B 0.6625 0.6238 0.6757 0.2286 0.0645 0.2396
Qwen-72B 0.7127 0.6812 0.7082 0.2392 0.0894 0.2488

St
ru

ct
ur

e
L

ea
rn

in
g RAT-SQL 0.6955 0.6597 0.6734 0.2639 0.2431 0.2431

BRIDGE 0.6928 0.7053 0.6893 0.2459 0.2068 0.2574
LGESQL 0.7421 0.7251 0.7067 0.2837 0.2493 0.2889
S2SQL 0.7643 0.7385 0.7539 0.2960 0.2649 0.3143

RESDSQL 0.8182 0.7580 0.8226 0.3312 0.3174 0.3286
Graphix-T5 0.7562 0.7463 0.7643 0.2984 0.2538 0.3062
METASQL 0.7695 0.7288 0.7498 0.3180 0.3011 0.3225

In
-C

on
te

xt
L

ea
rn

in
g

GPT-3.5 0.7394 0.5327 0.7457 0.3562 0.3041 0.3415
GPT-4 0.7665 0.5892 0.7390 0.4633 0.4255 0.4794

PaLM-2 0.6985 0.4438 0.7148 0.2735 0.2543 0.3061
CodeX 0.7167 0.4905 0.7011 0.3438 0.3019 0.3496

C3-GPT 0.8108 0.7036 0.8009 0.5020 0.4143 0.5077
DIN-SQL 0.8279 0.7187 0.8173 0.5072 0.4398 0.5879

DAIL-SQL 0.8308 0.7443 0.8317 0.5434 0.4581 0.5576
DTS-SQL 0.8269 0.7260 0.8163 0.5581 0.4825 0.6038

CodeS 0.8150 0.7069 0.8092 0.5714 0.4893 0.6120
SuperSQL 0.8682 0.7589 0.8410 0.5860 0.4745 0.6067
MAC-SQL 0.8635 0.7545 0.8541 0.5759 0.4906 0.5872
SGU-SQL 0.8795 0.7826 0.8652 0.6180 0.5144 0.6393

Table 2: The Execution Accuracy and Exact Match Accuracy of text-to-SQL models on SPIDER and
BIRD. The best and second-best results in each column are highlighted in bold font and underlined.
NaN denotes that the result is not available.

To further verify the generalization ability of our proposed prompting strategy, in this part, we
conduct comprehensive experiments to investigate whether SGU-SQL could enhance other LLMs by
substituting their original framework with the decomposing-based prompts. Specifically, we replace
GPT-4 used in SGU-SQL with other representative generative LLMs, including PaLM-2 (Anil et al.,
2023), CodeX (Chen et al., 2021), ChatGPT and GPT-4 (OpenAI, 2023) as alternatives. Specifically,
we used the model ‘chat-bison-001’ provided by GoogleAI as the implementation of PaLM-2, and
‘ChatGPT-turbo’ and ‘gpt-4’ as the implementations of ChatGPT and GPT-4, respectively. The
text-to-SQL task is conducted under the few-shot setting with the query from the development set of
Spider as input. As shown in Figure 3, we have the following observations.

Obs.1. The performances of the original LLMs improved significantly by integrating the prompt
learned from our SGU-SQL. Specifically, PaLM-2 improved by 4%, CodeX by 3%, ChatGPT by
5%, and GPT-4 by almost 11%. The substantial performance gains indicate the robustness and
generalization ability of our proposed prompting strategy. Furthermore, the consistent improvements
across different LLMs highlight the versatility and applicability of our approach in enhancing the
capabilities of existing language models.

Obs.2. LLMs with stronger reasoning abilities exhibit greater improvement. We observe that LLMs
with stronger reasoning abilities benefit more from integrating the prompts learned from SGU-SQL.
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Specifically, GPT-4, which is known for its advanced reasoning capabilities, shows a more substantial
performance improvement compared to PaLM-2, CodeX, and ChatGPT. This suggests that our
prompting strategy is particularly effective in enhancing the performance of LLMs that require more
complex reasoning tasks.

4.3 MODEL ANALYSIS

Difficulty analysis Q3: In this part, we first analyze the performance of our proposed method on
queries with different levels of difficulty. Our analysis focused on evaluating the performance of
our proposed method across queries of varying difficulty levels. Table 1 provides a comparative
assessment of our method against state-of-the-art (SOTA) prompting methods on the Spider develop-
ment set. Our findings reveal that our method consistently outperforms competing methods across
all difficulty levels. Notably, we observe the most substantial improvements in the extra hard and
hard classes, where other prompting models struggle. Additionally, our method also shows a slight
improvement in the easy class, which suggests that our method is robust and effective across queries
of different difficulty levels, highlighting its potential for practical applications in natural language
understanding and query generation tasks.

Error analysis Q4: We checked the errors in the generated SQL answers and classified them into six
categories, as shown in Figure 4 following the classification by (Pourreza & Rafiei, 2023). We discuss
the failure cases of our model in comparison with baseline models and then discuss the reasons for
the typical failure of LLMs in Text-to-SQL tasks. Compared to the baseline model, we achieved
a reduction of approximately 33.5% in errors and made progress in the schema-linking and join
statement components where traditional models often falter. In this section, we will first discuss
the failure cases of our model in comparison with baseline models, and then discuss the reasons for
the typical failure for LLMs in text-sql tasks. We checked the errors in the generated SQL answers
and classified them into six categories, as shown in Figure 4 followed by the major classification by
(Pourreza & Rafiei, 2023). Compared to the baseline model, we achieved a reduction of approximately
33.5% in errors and made progress in the schema-linking and join statement components where
traditional models often falter. Errors in the schema-linking segment decreased by around 38%,
primarily attributed to the utilization of Precise Query Matching, wherein graph neural networks were
employed to learn and match the database schema. This underscores the efficacy of Structure Linking.
In the sections prone to errors, such as Group-by and Join, our errors decreased by 35%, indicating
that our syntax tree decomposing enables the model to more accurately utilize corresponding SQL
Meta-operations to achieve the intention queries, thus further enhancing the accuracy in identifying
the targeted tables or columns for manipulation.

5 CONCLUSION

Recent advancements in large language models (LLMs) have shown promise in improving the
accuracy of text-to-SQL generation. However, existing models typically input queries and database
schemas into LLMs to perform semantic-structure matching and generate structured SQL, while often
overlook the structural information inherent in user queries and databases, which could significantly
enhance the generation of accurate SQL queries. This oversight can result in the production of
inaccurate or inexecutable SQL queries. To fully exploit the structure, we propose the structure-to-
SQL framework (SGU-SQL), which leverages the inherent structure information to improve the SQL
generation of LLMs. Specifically, SGU-SQL links user queries and databases in a structure-enhanced
manner. It then decomposes complicated linked structures with syntax trees to guide the LLM
to generate the SQL step by step. Extensive experiments on two benchmarks demonstrate that
SGU-SQL consistently outperforms state-of-the-art SQL generation baselines. These results highlight
the importance of explicitly incorporating structural information for effective text-to-SQL generation.

ETHICS AND REPRODUCIBILITY STATEMENTS

Our research adheres to high ethical standards and all experiments were conducted using publicly
available datasets, which are clearly cited in the paper. The code for our models and experiments will
be made available in a public GitHub repository upon acceptance of the paper. This repository will
provide detailed instructions, including environment setup, and scripts to reproduce our experiments.
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A PRELIMINARIES

A.1 STRUCTURE LEARNING FOR TEXT-TO-SQL

Definition 1. Structure Learning for Text-to-SQL: Given a natural language queryD and a database
schema Q, the task of graph learning for Text-to-SQL aims to generate a graph-based representation
G that captures the structural and semantic relationships between the query and the schema, and
to learn a mapping function f : Gq → Gd, where Gq is the structural user queries, and Gd is the
corresponding database contents linked to the query Gq .

Let G = (V, E) denote the graph representation, where V is the set of nodes and E is the set of edges.
The nodes v ∈ V represent the entities and components in the query and schema, such as tables,
columns, and query tokens. The edges e ∈ E represent the relationships and dependencies between
the nodes. The graph learning task involves two main components, including graph construction and
graph representation learning.

A.1.1 GRAPH CONSTRUCTION

The first step is to construct the graph G from the query Q and schema D. This involves extracting
relevant entities and relationships from the input and organizing them into a graph structure. The
graph construction process can be formally defined as:

G = Construct(Q,D), (19)
where Construct(·) is a method that maps the query and schema to the graph representation.
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A.1.2 GRAPH REPRESENTATION LEARNING

Once the graph is constructed, the next step is to learn meaningful representations of the nodes
and edges in the graph. This is typically achieved using Graph Neural Networks (GNNs), which
propagate information across the graph structure to capture the structural and semantic relationships.
The representation learning process can be formally defined as:

h(l+1)
v = GNN(h(l)

v , {h(l)
u : u ∈ N (v)}), (20)

where h
(l)
v is the representation of node v at layer l, N (v) is the set of neighboring nodes of v, and

GNN(·) is the graph neural network function that updates the node representations based on their
neighbors. The learned graph representations are then used to generate the corresponding SQL query
S by applying a decoding function f to the graph:

S = f(G). (21)

The objective of graph learning for Text-to-SQL is to optimize the parameters of the graph construction
and representation learning components, as well as the decoding function, to generate accurate and
executable SQL queries from natural language queries and database schemas.

A.2 TEXT-TO-SQL GENERATION WITH LLMS

We now formally define the problem of text-to-SQL generation. Let D be a database schema
consisting of a set of tables T = {T1, T2, . . . , Tn}, where each table Ti has a set of columns
Ci = {Ci1, Ci2, . . . , Cim}. The database schema D can be represented as a tuple (T , C), where
C =

⋃n
i=1 Ci is the set of all columns across all tables.

Given a natural language query Q and a database schema D, the task of Text-to-SQL generation aims
to translate Q into a corresponding SQL query S that accurately retrieves the desired information
from the database. LetM be the LLM that maps the natural language query Q and the database
schema D to the target SQL query S, the main objective can be formulated as follows:

M : (Q,D, θ)→ S. (22)

The objective of LLM-based text-to-SQL generation is to learn the optimal parameters or prompts
θ∗ that minimize the difference between the generated SQL queryM(Q,D, θ) and the ground truth
SQL query S:

θ∗ = argmin
θ
L(M(Q,D, θ), S), (23)

where L is a loss function that measures the discrepancy between generated and ground truth SQLs.

B RELATED WORK

Text-to-SQL has witnessed significant evolution over the past few years. Early researchers focused on
well-designed rules, which were later superseded by deep learning-based techniques. More recently,
the integration of pre-trained language models (PLMs) and large language models (LLMs) has further
advanced state-of-the-art text-to-SQL generation. This section traces the developmental trajectory of
Text-to-SQL methods, highlighting the key milestones and innovations that have shaped the field.

B.1 TRADITIONAL TEXT-TO-SQL METHODS

Text-to-SQL has witnessed significant advancements in recent years. Early research heavily relied on
well-designed rules and templates (Li & Jagadish, 2014; Mahmud et al., 2015; Yu et al., 2021), which
were suitable for simple database scenarios. However, the increasing complexity of database structure
and the high labor costs associated with rule-based methods have made such approaches impractical.
The advent of deep neural networks, such as sequence-to-sequence models and encoder-decoder
structures like LSTMs (Hochreiter & Schmidhuber, 1997) and Transformers (Vaswani et al., 2017),
has revolutionized the field of text-to-SQL (Guo et al., 2019; Choi et al., 2021). They automatically
learn a mapping from user queries to corresponding SQL queries. Typically, RYANSQL (Choi
et al., 2021) introduced intermediate representations and sketch-based slot filling to handle complex
questions and improve cross-domain generalization. More recently, pre-trained language models
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Algorithm 1 Syntax-based Subtask Decomposition for Text-to-SQL Generation
Require: Context-free syntax tree T , non-terminal nodes N , production rules R, mapping function

f : N → S
Ensure: SQL query S

1: function GENERATESQL(T , N,R, f )
2: S ← ∅ ▷ Initialize the SQL query
3: n0 ← root node of T
4: TRAVERSETREE(n0, S)
5: return S
6: end function
7: function TRAVERSETREE(n, S)
8: if n ∈ N then ▷ Check if n is a non-terminal node
9: sn ← f(n) ▷ Generate SQL component for node n

10: S ← S ∪ sn ▷ Add SQL component to the query
11: r ← production rule that expands n
12: for each child node c of n do
13: TRAVERSETREE(c, S) ▷ Recursive traversal of child nodes
14: end for
15: COMBINESQL(n, r, S) ▷ Combine SQL components based on production rule
16: end if
17: end function
18: function COMBINESQL(n, r, S)
19: sn ← SQL component corresponding to node n
20: sc1 , sc2 , . . . , sck ← SQL components of child nodes of n
21: scombined ← Combine(sc1 , sc2 , . . . , sck ) based on production rule r
22: S ← S \ sn ∪ scombined ▷ Update the SQL query
23: end function

(PLMs) with strong semantic parsing capabilities have become the new paradigm of text-to-SQL
systems. The initial adoption of PLMs in Text-to-SQL primarily focused on fine-tuning off-the-shelf
models, such as BERT (Devlin et al., 2019) and RoBERTa, on standard text-to-SQL datasets (Yu
et al., 2018; Zhong et al., 2017). Incremental research on PLM-based optimization, such as table
content encoding (Guo et al., 2019; Yin et al., 2020; Dou et al., 2022). and schema information
incorporation (Li et al., 2023a), has further advanced this field.

B.2 LLM-BASED TEXT-TO-SQL MODELS

Large language models (LLMs), such as GPT series (Radford et al., 2018; Brown et al., 2020; Achiam
et al., 2023), have gained significant attention in recent years due to their capability to generate
coherent and fluent text. Researchers have started exploring the potential of LLMs for text-to-SQL
by leveraging their extensive knowledge reserves and superior generation capabilities (Rajkumar
et al., 2022; Gao et al., 2024). These approaches often involve fine-tuning the open-source LLMs
on text-to-SQL datasets (Anil et al., 2023; Hong et al., 2024) or prompt engineering to guide the
closed-source LLMs in SQL generation (Chang & Fosler-Lussier, 2023; Pourreza & Rafiei, 2023;
Gao et al., 2024).

B.2.1 FINE-TUNING LLMS FOR TEXT-TO-SQL

Recently, the emergence of large language models (LLMs) has markedly altered the landscape for
text-to-SQL tasks. LLMs, with their capacity for understanding and generating human-like text,
present a robust solution for text-to-SQL applications (Liu et al., 2023). The development of LLMs
typically encompasses pre-training followed by fine-tuning. Research has concentrated on fine-tuning
with domain-specific data and optimization techniques to enhance base models for coding tasks,
including text-to-SQL. This process enables models to master programming language syntax and
database schema intricacies (Raffel et al., 2020; Roziere et al., 2023). Through training on tailored
datasets of annotated SQL queries, LLMs acquire the syntax and structure necessary for generating
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Figure 2: The example of syntax tree. Subfigure (a) denotes the context-free grammar rule of
SQL. While subfigures (b) and (c) demonstrate two examples of the constructed syntax tree used in
SGU-SQL.

compliant SQL code (Trummer, 2022; Sun et al., 2023). Furthermore, PICARD (Scholak et al.,
2021) introduced a decoding mechanism for LLMs that ensures the generation of valid sequences
by discarding inadmissible tokens at each step, employing incremental parsing to guarantee the
validity of SQL queries produced by autoregressive language models. More recently, data-augmented
fine-tuning techniques have emerged as a promising approach to improve text-to-SQL generation
models. By focusing on enhancing the quality and diversity of the training data during supervised
fine-tuning, these methods enable models to better capture the complexities of translating natural
language queries into SQL statements. For example, Symbol-LLM (Xu et al., 2024) proposes a two-
stage approach, consisting of an injection stage and an infusion stage, for data-augmented instruction
tuning. This method effectively incorporates additional data to improve the LLM’s ability to follow
instructions. Similarly, CodeS (Li et al., 2024b) leverages ChatGPT to generate bi-directional
training data, augmenting the model’s training dataset and enhancing its code generation capabilities.
Additionally, StructLM (Zhuang et al., 2024) introduces a training paradigm that involves multiple
structured knowledge tasks, aiming to improve the model’s overall performance across a wide range
of applications. These approaches demonstrate the potential of data augmentation and multi-task
learning in boosting the performance of LLMs.

B.2.2 IN-CONTEXT LEARNING FOR TEXT-TO-SQL

In-context learning enhances LLM performance by providing detailed task instruction, background
knowledge, and contextual examples during inference, thereby improving performance for specific
tasks. This approach has seen innovative applications in text-to-SQL, with strategies aimed at
optimizing prompt contents and formats based on user queries and database structures. Typically,
C3-SQL (Dong et al., 2023) designed a zero-shot prompting framework for ChatGPT with clear
prompting for effective input format and tailored hints for calibration and consistency checking
during the query generation. KATE (Liu et al., 2021) first investigated the impact of few-shot
examples on GPT-3’s performance. (Nan et al., 2023) further conducted a systematic investigation
into different demonstration selection methods and optimal instruction formats for prompting LLMs
in the text-to-SQL task, whereas DESEM (Guo et al., 2023) developed a domain-specific vocabulary
masking technique, called similarity assessment, highlighting the relevance of SQL-specific terms.
DIN-SQL (Pourreza & Rafiei, 2023) introduced a decomposed framework, categorizing user queries
by complexity and breaking down the generation task into sub-problems and feeding the solutions
of those sub-problems into LLMs to improve the generation performance of complex SQL queries.
DAIL-SQL (Gao et al., 2024) further enhanced the performance by incorporating suitable formatting
of the database schema and selecting examples based on skeleton similarities. Some recent work
improves the in-context learning framework by incorporating execution feedback through second-
round prompting for regeneration. For example, MRC-EXEC (Shi et al., 2022) introduced a natural
language to code translation framework with execution, which executes each sampled SQL query
and selects the example with the minimal execution result–based Bayes risk (Müller & Sennrich,
2021). LEVER (Ni et al., 2023) proposed an approach to verify NL2Code with execution, utilizing a
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generation and execution module to collect sampled SQL set and their execution results, respectively,
then using a learned verifier to output the probability of the correctness. Similarly, the SELF-
DEBUGGING (Chen et al., 2024) framework is presented to teach LLMs to debug their predicted
SQL via few-shot demonstrations. The model can refine its mistakes by investigating the execution
results and explaining the generated SQL in natural language without human intervention.

B.3 STRUCTURE LEARNING FOR TEXT-TO-SQL

Figure 3: Ablation Study of
SGU-SQL - EX Acc on SPIDER.

Structure learning-based models, particularly those utilizing
Graph Neural Networks (GNNs), have emerged as a powerful
approach to modeling the complex relationships between user
queries and database schemas in text-to-SQL generation. By
organizing information into graph structures and leveraging
GNNs to learn rich structural representations, these methods
enhance the semantic understanding and generalization ability
of text-to-SQL models. Specifically, RATSQL (Wang et al.,
2019) employs a graph-based structure to delineate relation-
ships within database schemas and queries, treating the schema
as a graph of tables and columns connected by relational edges.
LGESQL (Cao et al., 2021) introduced an edge-centric graph

model derived from conventional node-centric graphs, to capture diverse structural topologies.
S2SQL (Hui et al., 2022), integrates syntactic dependency information into a question-schema inter-
action graph, focusing on primary relationships to mitigate overfitting while emphasizing essential
graph structures. Graphix-T5 (Li et al., 2023b) explored the integration of GNN layers into the large
language model T5 (Raffel et al., 2020), aiming to leverage both semantic and structural information
from PLMs and GNNs, respectively. RESDSQL (Li et al., 2023a) designed a ranking-enhanced
encoder to rank and filter the schema items for skeleton-aware schema linking and the skeleton
parsing.

C ABLATION STUDY

In this section, we have conducted detailed experiments to validate the effectiveness of each compo-
nent in SGU-SQL.

C.1 THE EFFECT OF STRUCTURE LEARNING

As shown in Table 3, we have the following observations: (i) Removing the query graph representation
leads to significant performance drops (-3.45% on Spider-dev, -2.87% on BIRD-dev), demonstrating
that our proposed query graph is crucial for understanding the intent behind the query. (ii) The
ablation of the database graph results in performance decreases of -2.14% on Spider-dev and -3.54%
on BIRD-dev. The larger performance drop on BIRD (-3.54%) vs Spider (-2.14%) indicates that
graph-based database representation is particularly important for complex, realistic databases. (iii)
When removing structure-aware linking, we observe substantial performance degradation (-5.33% on
Spider-dev, -6.49% on BIRD-dev), representing the second-largest impact among all components.
The more significant drop on BIRD emphasizes that our linking mechanism is particularly crucial for
complex queries and databases, effectively bridging the semantic gap between natural language and
database components while maintaining structural integrity.

Variant Full Model w/o query graph w/o database graph w/o structure linking w/o decomposition
SPIDER-dev 87.95 84.50 (-3.45) 85.81 (-2.14) 82.62 (-5.33) 82.35 (-5.60)
BIRD-dev 61.80 58.93 (-2.87) 58.26 (-3.54) 55.31 (-6.49) 53.78 (-8.02)

Table 3: Ablation study on different components of SGU-SQL.
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C.2 THE EFFECT OF SYNTAX-BASED DECOMPOSITION

To verify the effectiveness of our syntax-based decomposition strategy, we conducted additional
experiments to compare our SGU-SQL with other advanced decomposition-based methods, including
DIN-SQL, ACT-SQL and MAC-SQL.

Text-to-SQL DIN-SQL ACT-SQL MAC-SQL SGU-SQL
SIPDER-dev 82.79 82.90 86.35 87.95

Table 4: Performance comparison between SGU-SQL and advanced decomposition methods.

As shown in Tables 3 and 4, (i) the ablation of our decomposition strategy leads to the most significant
performance decrease (-5.60% on Spider-dev, -8.02% on BIRD-dev). These results validate our
approach of breaking down complex queries into manageable components while preserving structural
relationships, especially beneficial for real-world applications involving complex dabase structure
and intricate query patterns. (ii) Our SGU-SQL achieves 87.95% execution accuracy on SPIDER-
dev, outperforming all these methods. The key distinction of our approach is that it dynamically
decomposes queries based on their syntax structure, rather than either using fixed decomposition
patterns (like DIN-SQL) or purely relying on LLM’s black-box understanding (like ACT-SQL, MAC-
SQL). This syntax-aware decomposition strategy proves more effective for handling complex SQL
generation tasks.

C.3 THE EFFECT OF BACKBONE LLMS

For a thorough evaluation of SGU-SQL’s performance, we conduct additional experiments on BIRD
dev with different LLMs as backbones. Specifically, we compared SGU-SQL against two categories
of methods: (i) Open-source models with available paper and codes: MAC-SQL, Super-SQL, E-SQL
and CHESS; and (ii) Undisclosed methods that have demonstrated strong performance: PURPLE,
Distillery and CHASE-SQL.

Backbone MAC-SQL PURPLE E-SQL CHESS Distillery CHASE-SQL SGU-SQL
GPT-4 59.59 60.71 58.95 61.37 - - 61.80
GPT-4o 65.05 68.12 65.58 68.31 67.21 - 69.28
Gemini-1.5 Pro - - - - - 73.14 -

Table 5: Performance comparison on BIRD dev with different LLMs as backbones.

As shown in Table 5, our SGU-SQL achieves competitive performance across different LLM back-
bones. Specifically, we have the following observations: Using GPT-4 as the backbone, SGU-SQL
achieves the best performance compared to other models using the same backbone. With GPT-4o,
SGU-SQL achieves 69.28% in terms of execution accuracy, outperforming several strong baselines:
PURPLE (68.12%), CHESS (68.31%), E-SQL (65.58%) and Distillery (67.21%). The only model
showing higher performance is CHASE-SQL (released in October 2024), which uses Gemini 1.5 Pro
as its backbone. Notably, CHASE-SQL incorporates a query fixer module that leverages database
execution feedback to guide LLMs to iteratively refine generated queries. In contrast, our model
generates SQL queries in a single pass without utilizing any execution feedback.

D MODEL ANALYSIS

D.1 PERFORMANCE ON MORE CHALLENGING DATASET

To further verify the effectiveness of our model, we conduct additional experiments on more challeng-
ing datasets, like Spider 2.0-Snow and Spider 2.0-Lite Lei et al. (2024). As shown in Table 6, while
the performances are relatively low across all models, SGU-SQL consistently demonstrates better
capability in handling complex SQL generation tasks in both single and multi-database scenarios.
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D.2 EFFICIENCY ANALYSIS

To assess our approach thoroughly, we conducted the efficiency analysis on the BIRD dataset, a
large-scale benchmark in text-to-SQL research with 12,751 unique question-SQL pairs across 95
databases (33.4 GB total). Given that the queries in this dataset are categorized into 3 difficulty levels:
simple, moderate, and challenging, we specifically tested our model on the challenging set of the
BIRD dataset and compared its performance with DIN-SQL and MAC-SQL.

As shown in Table 7, our model demonstrates superior performance while maintaining competitive
computational efficiency. Specifically, our model requires less time for both training and inference.
This superior efficiency can be attributed to our graph-based architecture. While baseline methods
avoid the overhead of graph construction, they heavily rely on prompt-based modules that require
multiple calls to LLMs like GPT-4. These API calls introduce substantial latency that accumulates
during both the training and inference phases. In contrast, our graph-based approach, despite its
initial graph construction overhead, achieves faster end-to-end processing by minimizing dependence
on time-consuming API calls.

D.3 DIFFICULTY ANALYSIS Q3

In this part, we first analyze the performance of our proposed method on queries with different
levels of difficulty. Our analysis focused on evaluating the performance of our proposed method
across queries of varying difficulty levels. Table 1 provides a comparative assessment of our method
against state-of-the-art (SOTA) prompting methods on the Spider development set. Our findings
reveal that our method consistently outperforms competing methods across all difficulty levels.
Notably, we observe the most substantial improvements in the extra hard and hard classes, where
other prompting models struggle. Additionally, our method also shows a slight improvement in the
easy class, which suggests that our method is robust and effective across queries of different difficulty
levels, highlighting its potential for practical applications in natural language understanding and
query generation tasks.

D.4 ERROR ANALYSIS Q4

Figure 4: Error Analysis of GPT-4 +
SGU-SQL and C3-GPT on the Dev Set:
A Comparison of 125 and 188 Failures.

We checked the errors in the generated SQL answers and
classified them into six categories, as shown in Figure 4
following the classification by (Pourreza & Rafiei, 2023).
We discuss the failure cases of our model in comparison
with baseline models and then discuss the reasons for
the typical failure of LLMs in Text-to-SQL tasks. Com-
pared to the baseline model, we achieved a reduction of
approximately 33.5% in errors and made progress in the
schema-linking and join statement components where tra-
ditional models often falter. In this section, we will first
discuss the failure cases of our model in comparison with
baseline models, and then discuss the reasons for the typ-
ical failure for LLMs in text-sql tasks. We checked the
errors in the generated SQL answers and classified them

into six categories, as shown in Figure 4 followed by the major classification by (Pourreza & Rafiei,
2023). Compared to the baseline model, we achieved a reduction of approximately 33.5% in errors
and made progress in the schema-linking and join statement components where traditional models
often falter. Errors in the schema-linking segment decreased by around 38%, primarily attributed to
the utilization of Precise Query Matching, wherein graph neural networks were employed to learn

Datasets DAIL-SQL+GPT-4o CHESS+GPT-4o SGU-SQL+GPT-4o
Spider 2.0-Snow 2.20 1.28 4.39
Spider 2.0-Lite 5.68 3.84 6.40

Table 6: Execution accuracy for baseline methods on Spider 2.0-Snow and Spider 2.0-Lite.
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and match the database schema. This underscores the efficacy of Structure Linking. In the sections
prone to errors, such as Group-by and Join, our errors decreased by 35%, indicating that our syntax
tree decomposing enables the model to more accurately utilize corresponding SQL Meta-operations
to achieve the intention queries, thus further enhancing the accuracy in identifying the targeted tables
or columns for manipulation.

To further analyze the reasons for errors in the baseline model, we conducted a comprehensive case
study by comparing the results of the baseline model with those of our model, as shown in Figure 5.

Subtask Decomposing LLMs often do not adequately break down the task into its essential steps
for reasoning. For example, in Case 1, the primary subtask of linking flight data to specific cities was
ignored. The question did not adequately break down the task into its essential components without
further guidance from LLMs. In Case 3, the query did not decompose the task into two separate
subtasks to identify semesters with Masters and Bachelors enrollments independently which also
leads to wrong returned answers.

Intention Understanding LLMs sometimes misunderstand the core intention of the question. In
Case 2, LLMs fail to identify the intention that the question is trying to find all countries where English
is spoken, regardless of its official status which leads to errors. It concentrated on the official language
status, which did not align with the broader objective of considering English-speaking countries in
general. In Case 1, the query was centered around airport codes (SourceAirport), misinterpreting the
intention to identify the busiest city, not just the airport. In Case 3, LLM misinterprets the intention
of finding how many likes Kyle has received. It erroneously assumes the task is to count how many
likes Kyle has given, not received.

Data Schema Linking Since LLMs get data schema information with plain text as inputs, it
might be challenging to reason the right linking strategy to solve the problem correctly. It needs to
understand the referenced tables and columns in the question which are often being mentioned in
an inexplicitly way, then matching with the database schema. In contrast, our tailored GNN model
can handle this situation well. In Case 1, the initial query failed to incorporate the airport’s table,
which was essential for linking airport codes to their respective cities. In Case 3, the query did not
effectively link degree program types (Masters, Bachelors) to semesters in databases in a way that
would allow for the inclusive identification of valid semesters. There was also a misalignment in
linking: student_id from the Likes table was incorrectly associated with the id in Highschooler
table. It should link liked_id from Likes to id in Highschooler to align with the task’s objective.

E FUTURE WORK

Discussing potential extensions is crucial for the research community. Following your suggestion, we
have identified several promising future research directions from the following there perspectives.

E.1 TECHNICAL EXTENSIONS

E.1.1 STRUCTURE-AWARE FEW-SHOT EXAMPLE SELECTION

While our framework emphasizes the significance of the decomposition strategy, we recognize that the
performance of LLM-based text-to-SQL can be further enhanced through tailored few-shot example
selection. Current approaches to few-shot example selection primarily rely on keyword matching

Text-to-SQL Backbone LLM Training Time Inference Time Performance
DIN-SQL + GPT-4 4.69 h 0.39 h 36.7%
MAC-SQL + GPT-4 4.98 h 0.36 h 39.3%
SGU-SQL + GPT-4 3.47 h 0.22 h 42.1%

Table 7: Efficiency analysis on the ’Challenging’ set of BIRD.
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NL Query: What is the code of airport that has the highest number of flights?

Prompts from
Baseline Model

/* Given the following database schema: */
CREATE TABLE ’flights’ (

Airline INTEGER,
FlightNo INTEGER,
SourceAirport TEXT,
DestAirport TEXT,
PRIMARY KEY(Airline, FlightNo),
FOREIGN KEY (SourceAirport) REFERENCES airports(AirportCode),
FOREIGN KEY (DestAirport) REFERENCES airports(AirportCode));

/* Answer the following: What is the code of airport*/;
that has the highest number of flights? */;
Let’s think step by step.

Results from
Baseline Model’s
Prompt

SELECT SourceAirport, COUNT(*) AS NumberOfFlights
FROM flights GROUP BY SourceAirport
ORDER BY NumberOfFlights DESC LIMIT 1;

Gold SQL

SELECT T1.AirportCode
FROM AIRPORTS AS T1
JOIN FLIGHTS AS T2 ON T1.AirportCode = T2.DestAirport

OR T1.AirportCode = T2.SourceAirport
GROUP BY T1.AirportCode
ORDER BY count(*) DESC LIMIT 1;

(a) Case 1: Airports Database Question

NL Query: How many people live in countries that do not speak English?

Prompts from
Baseline Model

/* Given the following database schema: */
CREATE TABLE countrylanguage (

CountryCode char(3) NOT NULL DEFAULT ”,
Language char(30) NOT NULL DEFAULT ”,
IsOfficial text NOT NULL DEFAULT ’F’,
Percentage float(4,1) NOT NULL DEFAULT ’0.0’,
CONSTRAINT countryLanguage_ibfk_1)
FOREIGN KEY (CountryCode) REFERENCES country (Code));

/* Answer the following: What is the code of airport
that has the highest number of flights? */
Let’s think step by step.

Results from
Baseline Model’s
Prompt

SELECT SUM(c.Population) FROM country c
WHERE c.Code NOT IN (

SELECT cl.CountryCode FROM countrylanguage cl
WHERE cl.Language = ’English’ AND
cl.IsOfficial = ’T’ );

Gold SQL

SELECT sum(Population) FROM country
WHERE Name NOT IN (

SELECT T1.Name FROM country AS T1
JOIN countrylanguage AS T2
ON T1.Code = T2.CountryCode
WHERE T2.Language = "English" );

(b) Case 2: Languages Database Question

NL Query: Return the number of likes that the high schooler named Kyle has.

Prompts from
Baseline Model

/* Given the following database schema: */
CREATE TABLE Likes(
student_id int,
liked_id int,
primary key (student_id, liked_id),

foreign key (liked_id) references Highschooler(ID))
FOREIGN KEY (CountryCode) REFERENCES country (Code))

/* Answer the following: Return the number of likes that
the high schooler named Kyle has. */
Let’s think step by step.

Results from
Baseline Model’s
Prompt

SELECT count(*)
FROM Likes JOIN Highschooler

ON Likes.liked_id = Highschooler.ID
WHERE Highschooler.name = ’Kyle’);

Gold SQL
SELECT count(*) FROM Likes

ROM country AS T1 JOIN Highschooler AS T2
N T1.student_id = T2.id WHERE T2.name = "Kyle";

(c) Case 3: Social Network Database Question

Figure 5: NL query from Spider and the corresponding results from different prompting approaches
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and semantic similarity between user queries. These surface-level matching approaches often fail to
identify the most effective examples because they consider only query semantics while ignoring the
underlying SQL structural complexity.

One promising solution is to incorporate syntax structure information into the few-shot example
selection process. This structure-aware approach would consider both semantic relevance and
SQL structural patterns, enabling better matching of complex query requirements with appropriate
examples.

E.2 EXPLORING MORE CHALLENGING SCENARIOS

E.2.1 TEMPLATE-BASED SYNTHETIC DATA GENERATION FOR TEXT-TO-SQL TRAINING

Adapting a text-to-SQL model to a new database, like a company’s proprietary database, requires
developers to manually create extensive training data. This process requires: (i) Writing natural
language questions about the database. (ii) Creating the corresponding correct SQL queries. (iii)
Validating the accuracy of both questions and SQL queries. This manual data collection process is
not only time-consuming but also requires expertise in both SQL and the specific database domain,
making it a significant bottleneck for the practical deployment of text-to-SQL systems.

Generating synthetic training data based on a template-based approach. This method aims to
eliminate the need for manual data collection by systematically generating training examples using
predefined syntax templates and database schema information. The generation process operates
in three coordinated stages: template selection based on database schema, schema integration by
populating templates with actual table and column names, and natural language query generation.

E.2.2 INTERACTION WITH DYNAMIC DATABASE

While current text-to-SQL methods, including our model, primarily focus on static databases, real-
world databases are inherently dynamic. To develop a truly comprehensive database management
system, it is essential to extend the Text-to-SQL framework to support full CRUD operations—Create,
Read, Update, and Delete—enabling seamless and complete interaction with databases.

E.3 BROADER APPLICATIONS

The structure-guided approach could be extended to other domains requiring structured output
generation.

Prompting strategy PaLM-2 CodeX ChatGPT GPT-4
+ Few-shot Prompting 0.6985 0.7167 0.7394 0.7665
+ CoT Prompting 0.6873 0.7198 0.7552 0.7834
+ SGU-SQL 0.7395 0.7418 0.7846 0.8795

Table 8: Ablation Study: Performance comparison of different prompting strategies on the develop-
ment set of Spider.

Structure Source Node x Target Node y Relation Type Description

Query Structure

Question Concept Question Concept Forward-Syntax y is the target word of x under syntax dependency.
Question Concept Question Concept Backward-Syntax y is the source word of x under syntax dependency.
Question Concept Question Concept PartOf x is a part or component of y under semantic parsing.
Question Concept Question Concept Synonym x is a synonym or equivalent to y under semantic parsing.

Database Structure
Column Column Foreign-Key y is the foreign key of x.
Table Column Has The column y belongs to the table x.
Table Column Primary-Key The column y is the primary key of the table x.

Linking Structure

Question Concept Table None-Linking No linking between x and y.
Question Concept Table Partial-Linking x is part of y, but the entire question does not contain y.
Question Concept Table Exact-Linking x and y are matched based on our Structure Linking model.
Question Concept Column None-Linking No linking between x and y.
Question Concept Column Partial-Linking x is part of y, but the entire question does not contain y.
Question Concept Column Exact-Linking x and y are matched based on our Structure Linking model.
Question Concept Column Value-Linking x is part of the candidate cell values of column y.

Table 9: The relations used in three structures in SGU-SQL. All relations above are asymmetric.
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E.3.1 TEXT-TO-CYPHER (OTHER PROGRAMMING LANGUAGES)

Text-to-SQL converts natural language queries into SQL queries to interact with relational databases,
while text-to-Cypher translates natural language into Cypher queries for graph database operations.
Considering that data in graph databases is stored as nodes (entities) and edges (relationships) in the
format of graphs, our SGU-SQL could be seamlessly applied on Text-to-Cypher.

E.3.2 API PLANNING

API planning aims to generate a sequence of API calls to accomplish a given goal or user request.
Each API is essentially a function with input parameters and return values. Each function can be
treated as a table, where input parameters and return values are equivalent to columns in the table.
Based on the data flow, we can build a graph to describe the dependencies between different APIs,
transforming the API planning task into a problem similar to Text-to-SQL, as the dependency graph
is analogous to the schema graph in text-to-SQL.
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