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Lifelong Learning of Video Diffusion Models From a Single Video Stream

Anonymous Authors1

Abstract
This work demonstrates that training autoregres-
sive video diffusion models from a single, con-
tinuous video stream is not only possible but can
also be as effective as standard offline training
approaches given the same number of gradient
steps. Our demonstration further reveals that this
main result can be achieved using experience re-
play that only retains a subset of the preceding
video stream. We also contribute three new single
video generative modeling datasets suitable for
evaluating lifelong video model learning: Life-
long Bouncing Balls, Lifelong 3D Maze, and Life-
long PLAICraft. Each dataset contains over a
million consecutive frames from an environment
of increasing complexity.1

1. Introduction
There are a plethora of names – lifelong learning, continual
learning, streaming inference – given to a central desider-
atum of artificial intelligence (AI) systems: the ability to
learn from a single continuous autocorrelated stream of data.
However named, our community has long sought models
and algorithms that learn in a fundamentally human way;
from birth to death, learning as we live.

Modern AI systems do not learn in this manner but instead
rely on a effective compromise: stochastic gradient descent
from data streams made up of independently and identically
distributed (i.i.d.) samples. Language models (Touvron
et al., 2023; Mukherjee et al., 2023), world models (Hafner
et al., 2020; 2021), and video models (Harvey et al., 2022;
Ho et al., 2022; Bar-Tal et al., 2024) are trained on ran-
dom batches of short temporally correlated segments, an
approach that preserves short-range autocorrelations while
approximating i.i.d.-ness through permutations. While ef-
fective, this approximately i.i.d. learning paradigm does not

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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on Machine Learning (ICML). Do not distribute.

1Code and datasets will be released on acceptance.

offer a satisfying mechanism for updating models when
new data arrive. Existing model updating techniques that
are often used in practice—training from a checkpoint on
the union of old and new data (Ash & Adams, 2020), fine-
tuning on just the new data (Xu et al., 2023), or training
completely anew from scratch (Ren et al., 2021) – do not
operate in the training regime from which humans learn and
suffer from problems such as high computation cost and
forgetting (Verwimp et al., 2024).

Alternatively, SGD on autocorrelated data streams is con-
sidered by some to be a viable candidate for human-like
lifelong learning (Lillicrap et al., 2020). While there is
a raft of work indicating that gradient-based learning on
autocorrelated data is possible (Duchi et al., 2012; Johans-
son et al., 2010; Ram et al., 2009), folk wisdom maintains
that this learning setup is hard, impractical, and prone to
failure, especially for deep networks. Evidence of these
beliefs can be found throughout the literature. The opti-
mization community has developed numerous mechanisms
for alleviating the effects of data stream temporal depen-
dencies (Kowshik et al., 2021; Godichon-Baggioni et al.,
2023; Chang & Shahrampour, 2022), suggesting the exis-
tence of problems with learning from autocorrelated data
streams. Additionally, the Bayesian learning community has
proposed numerous continual learning approaches through
posterior updating (Bartlett & Wood, 2011; Broderick et al.,
2013; Naesseth et al., 2019; Beronov et al., 2021), though
these theoretically sound approaches lack practical scaled re-
sults. These bodies of work suggest a strong desire to avoid
non-i.i.d. learning, making it reasonable to assume that life-
long learning of video models from a single autocorrelated
video stream might be difficult if not impossible.

The primary contribution of this paper is simple yet pro-
found. We provide an empirical proof-of-concept that
diffusion-based video models can be learned in a lifelong
manner from a single autocorrelated video stream while
obtaining similar performance to standard (offline) i.i.d.
training. We demonstrate successful lifelong learning even
on highly nonstationary partially-observable 3D domains,
despite (to the best of our knowledge) being the first demon-
stration of non-i.i.d. training of video diffusion models.
Remarkably, successful lifelong learning does not require
a complex setup. We find that a minimal set of established
continual learning techniques, such as experience replay
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(a) Lifelong Bouncing Balls frames subsampled from 5 second long videos.
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(b) Lifelong 3D Maze frames subsampled from 2.5 second long videos.
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(c) Lifelong PLAICraft frames subsampled from 3 second long videos.

Figure 1. Ground truth video frames (1st row of each subfigure), offline learned models’ generated videos (2nd and 3rd rows), and lifelong
learned models’ generated video frames (4th and 5th rows) for our datasets. The left two columns highlighted in red show the frame
conditioned upon the model. Videos generated by lifelong learned models trained with experience replay are diverse, visually plausible,
and indistinguishable from those of offline learned models in quality.

with limited memory, is sufficient to make lifelong- and
i.i.d.-trained models qualitatively indistinguishable given
the same numbers of gradient steps and batch size.

As a secondary contribution, we introduce three novel life-
long learning video datasets with varying levels of tempo-
ral correlation, data repetitiveness, rare events, and non-

stationarity. Even under an academic computational bud-
get, we observe stable learning and reliable short-range
extrapolations on all three benchmarks. As video modeling
is a component of world modeling, our findings have the
potential to open up new life-like approaches to learning,
planning, and control in embodied AI agents.
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Lifelong Learning of Video Diffusion Models From a Single Video Stream

2. Background
Video Diffusion Models Video Diffusion Models
(VDMs) are a class of generative models capable of syn-
thesizing high-quality, temporally consistent videos (Voleti
et al., 2022; Ho et al., 2022; Harvey et al., 2022; Höppe
et al., 2022; Green et al., 2024; Blattmann et al., 2023b;a;
Brooks et al., 2024). Rooted in the principles of denois-
ing diffusion, video diffusion models progressively refine
random noise into coherent video frames across a series of
iterative denoising steps. Extending image diffusion mod-
els to videos requires capturing temporal dependencies be-
tween frames while preserving single-frame quality. These
requirements present unique challenges, including the com-
putational overhead of processing a large number of frames
as well as developing architectures that can capture both
spatial and temporal coherence efficiently. To handle long-
duration videos, models learn the conditional probability
of new frames given previously generated frames and then
generate videos in an auto-regressive manner (Harvey et al.,
2022; Deng et al., 2024).

Lifelong Learning The goal of lifelong or continual
learning is enabling models to continuously learn from
new data with minimal forgetting of what was learned be-
fore (De Lange et al., 2022; Wang et al., 2024; van de Ven
et al., 2024; Yoo & Wood, 2022). Approaches for lifelong
learning include using regularization to penalize changes
to parts of the network that encode previously learned in-
formation (Kirkpatrick et al., 2017; Zenke et al., 2017; Li
& Hoiem, 2017), improving the plasticity or the stability
of the optimization algorithm (Dohare et al., 2024; Hess
et al., 2023; Yoo et al., 2024), and enforcing the encoding of
different tasks in minimally overlapping or orthogonal parts
of the model (Rusu et al., 2016; Serra et al., 2018; Zeng
et al., 2019). Another popular approach is replay, whereby
the model revisits samples representative of past data along
with the current training data (Robins, 1995). Such replayed
samples can be obtained from generative models (Shin et al.,
2017), but often they are sampled from a memory buffer
containing past training data, an approach referred to as ex-
perience replay (Chaudhry et al., 2019; Rolnick et al., 2019;
Buzzega et al., 2020; Arani et al., 2022).

Most work on neural network lifelong learning has focused
on the highly simplified problem setting where a classifi-
cation model is trained on a sequence of non-overlapping
tasks, with each task seen only once. Often the model can
train on each new task until convergence (referred to as the
offline setting), although some works only allow a single
pass over the data of each task (the online setting) (Aljundi
et al., 2019; Chen et al., 2020). Beyond classification, life-
long learning research has explored the continual training
of generative models, including generative adversarial net-
works, variational auto-encoders and diffusion models for

image generation (Zhai et al., 2019; Lesort et al., 2019;
Egorov et al., 2021; Smith et al., 2024). However, as far
as we are aware, no work thus far has explored lifelong
learning of video diffusion models. The lifelong learning
community has also shown interest in moving beyond learn-
ing in a strictly task-based manner. To create data streams
with more complex temporal correlations, blurry task bound-
aries (Bang et al., 2022; Moon et al., 2023) and repetition
of previously seen concepts (Hemati et al., 2024) have been
used. Benchmarks for lifelong learning have also been
constructed based on data from autonomous driving (Ver-
wimp et al., 2023), using image datasets collected through
time (Bornschein et al., 2023) and by concatenating thou-
sands of short videos (Carreira et al., 2024).

3. Datasets
Exploring the possibility of learning video models in a life-
long fashion requires (1) long continuous video streams and
(2) varying levels of complexity to gauge challenges and lim-
itations. As discussed in Section 2, existing video datasets
usually consist of many short videos that may or may not
be temporally related. To that end, we introduce new video
datasets constructed from single video streams without se-
mantic discontinuities. The three datasets – Lifelong Bounc-
ing Balls, Lifelong 3D Maze, and Lifelong PLAICraft video
datasets – vary in terms of complexity, stochasticity, tempo-
ral correlation, and degree of non-stationarity.

3.1. Lifelong Bouncing Balls

We introduce two versions of the Lifelong Bouncing Balls
dataset: Version O for “original” and C for “changing”.

Lifelong Bouncing Balls (O) contains 1 million 32x32 RGB
video frames for training (∼28 hours long at 10FPS) and an-
other 1 million video frames for evaluation. The video con-
tains two colored balls that deterministically bounce around
in a 2D environment, colliding with boundaries and each
other. Upon collision, each ball changes velocity accord-
ing to the conservation of momentum and cycles through
a repeating color sequence of “red”→“yellow”→“red”→
“green”. Since the balls’ states are fully observable and their
transition dynamics are deterministic, the future frames can
be perfectly predicted. Solving Lifelong Bouncing Balls
(O) requires learning the 2D environment’s deterministic
dynamics and retaining the balls’ color transition histories
from a correlated and repetitive video stream.

Lifelong Bouncing Balls (C) introduces non-stationarity on
top of Lifelong Bouncing Balls (O). While the balls’ motion
matches that of (O), the blue channel values of all ball colors
increase over time at a constant rate (red, yellow, and green
ball colors respectively become fuchsia, white, and aqua by
the end of the video). The evaluation set contains frames
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Lifelong Learning of Video Diffusion Models From a Single Video Stream

Figure 2. Video diffusion model lifelong learning on a single video stream with K=4. At training step t, the model conditions on the
frames in the first half of its context window (red) and learns to denoise the frames in the second half of its context window (blue). At
training step t+ 1, the model’s context window shifts by one video frame, and the same procedure repeats indefinitely.

with balls of all previously observed colors. Solving Life-
long Bouncing Balls (C) requires learning the deterministic
ball dynamics and color transitions from a correlated video
stream where some details are unrepeated.

3.2. Lifelong 3D Maze

The Lifelong 3D Maze dataset contains 1 million 64x64
RGB video frames for training (∼14 hours long at 20FPS)
and 100,000 video frames for evaluation. The video is a
first-person view of an agent that navigates a randomly gen-
erated 3D maze. Whenever the agent solves a maze, the
walls of the solved maze come down and the walls of an
unseen maze rise, at which point the agent attempts to solve
the new maze. The mazes contain various sparsely appear-
ing objects, including polyhedral gray rocks that flip the
agent upside down upon being touched. Since the maze
states are partially observable and their transition dynamics
are stochastic, the future frames cannot be perfectly pre-
dicted given the past frames. Solving Lifelong 3D Maze
requires learning the first-person sensory inputs associated
with navigating a stochastically generated 3D environment
and modeling infrequent events from a largely repetitive
and correlated video stream.

3.3. Lifelong PLAICraft

The Lifelong PLAICraft dataset contains 1.85 million
1280x768 RGB video frames for training (∼54 hours long
at 10FPS) and 500,000 video frames for evaluation. To
make training computationally feasible, we encode these
video frames using the Stable Diffusion perceptual encoder
(Rombach et al., 2022) to a shape of 4x160x96. The train-
ing video is a first-person view of an anonymous player
with an in-game ID of “Alex” engaged in the PLAICraft
project’s multiplayer Minecraft survival world (He, 2024).
The evaluation video is a first-person view of another anony-
mous player with an in-game ID of “Kyrie” who explores

the same Minecraft world. The videos capture multiple
continuous play sessions spanning several months within
this shared multiplayer survival world, showcasing various
biomes in all three world dimensions, mining, crafting ac-
tivities, construction, mob fighting, and player-to-player
interactions. The Minecraft world contains aspects that re-
peat (ex. day-night cycle, players visiting their homes) and
do not repeat (ex. felled trees, player chat logs). Solving
Lifelong PLAICraft requires learning a highly nonstation-
ary environment that changes in multiple timescales from
a single correlated video stream.

4. Model and Training Regime
Model We use a U-Net video diffusion model with spa-
tiotemporal attention introduced by Harvey et al. (2022),
which individually processes the video frames using resid-
ual blocks and captures their temporal dependencies using
attention layers. The video diffusion model’s U-Net op-
erates on K video frames at a time, where K = 10 for
Lifelong Bouncing Balls and K = 20 for the other two
datasets. The first K/2 video frames are model inputs and
the next K/2 video frames are prediction targets.

During training, given the first K/2 uncorrupted video
frames and the second K/2 video frames corrupted with
Gaussian noise, the model regresses the values of the Gaus-
sian noise (Ho et al., 2020). Specifically, let x be a size K
window of consecutive video frames, and Fθ be the U-Net.
The denoising loss function is defined as

ℓ(θ,x) = Eϵ,s

∥∥ϵ− Fθ(x
obs,xlat

s , s)
∥∥2 , (1)

where ϵ ∼ N (0, I) is a unit normal random vector, s ∼
U(1, S) is the diffusion noising timestep. The superscripts
obs and lat respectively represent the input and predicted
part of x i.e., the first and second K/2 frames. The subscript
s denotes that the video frames are corrupted to the s-th
diffusion timestep using ϵ as noise (Ho et al., 2020).
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Lifelong Learning of Video Diffusion Models From a Single Video Stream

Train Stream Test Stream

Method FVD Loss minADE ColorKL FVD Loss minADE ColorKL

Offline Learning 4.5 ±0.1 6.3e-5 ±1e-6 1.74 ±0.03 0.006 ±0.001 4.7 ±0.2 6.2e-5 ±2e-6 1.71 ±0.06 0.006 ±0.001

Lifelong Learning 4.9 ±0.2 6.3e-5 ±2e-6 1.82 ±0.03 0.005 ±0.0 4.7 ±0.2 6.2e-5 ±3e-6 1.81 ±0.03 0.005 ±0.0

Table 1. Lifelong Bouncing Balls (O) performance metrics computed across two training and three sampling seeds.

Train Stream Test Stream

Method FVD Loss minADE ColorKL FVD Loss minADE ColorKL

Offline Learning 5.8 ±0.3 6.5e-5 ±1e-6 2.04 ±0.09 0.007 ±0.002 5.9 ±0.2 6.5e-5 ±1e-6 2.14 ±0.1 0.007 ±0.001

Lifelong Learning 5.0 ±0.1 7.4e-5 ±1e-6 2.03 ±0.0 0.005 ±0.001 5.7 ±0.2 7.5e-5 ±1e-6 2.06 ±0.0 0.005 ±0.0

Table 2. Lifelong Bouncing Balls (C) performance metrics computed across two training and three sampling seeds.

During sampling, given the first K/2 clean video frames and
the second K/2 video frames filled with Gaussian noise, the
model iteratively “denoises” the second K/2 frames to pro-
duce a plausible continuation of the first K/2 frames. This
is achieved using Karras et al. (2022)’s stochastic sampler.

For the rest of this section, we represent the entire video
stream as X and the window of K video frames starting
from the ith frame as X i:i+K . In addition, the expectation
in Equation (1) is approximated with a single-sample Monte
Carlo estimate.

Baseline: Offline (i.i.d.) Learning As a baseline repre-
sentative of standard video models, we train models in an
Offline Learning regime. The t-th training step loss is

Loffline
t (θ,X ) = ℓ(θ,X i:i+K), (2)

where i is a uniformly sampled video frame index. The
resulting training data resembles i.i.d. segments of K video
frames, even though all frames originate from a single au-
tocorrelated stream. When using batch size N > 1 (as is
common), this i.i.d. sampling is repeated N times.

Lifelong Learning While the Offline Learning regime
randomly permutes the data during training, the Lifelong
Learning regime presents data to the model in order. This
setup reflects the desiderata outlined in Section 1, where the
model learns from a real-time data stream. The t-th training
step loss is

Llifelong
t (θ,X ) = ℓ(θ,X t:t+K), (3)

i.e., the model receives a sliding window of frames from the
single video X . When using batch size N > 1, we fill the
batch with N − 1 copies of the current video Xt:t+K . This
is equivalent to estimating Equation (1) with a larger Monte
Carlo budget using multiple samples of ϵ and s, resulting in
a reduced-variance estimate of the denoising loss.

Figure 3. Sample comparison for Lifelong Bouncing Balls (C)
where ball colors have changed from red/yellow/green. The top,
middle, and bottom rows depict videos from the ground truth data,
offline learned model, and lifelong learned model respectively.

This Lifelong Learning setup is compatible with numerous
techniques proposed by the continual learning community.
As a demonstration, we augment the online stream with a
replay buffer (Chaudhry et al., 2019) that retains a buffer
M of past video subsequences chosen through reservoir
sampling (Vitter, 1985), where the buffer size is chosen to
be a small fraction of the total data stream size. With a batch
size of N , the new t-th training step loss is

Llifelong
t (θ,X ) =

1

N

(
ℓ(θ,X t:t+K) +

N−1∑
i=1

ℓ(θ,Mi)

)
, (4)

where Mi is a randomly chosen video from the buffer. One
can optionally prioritize the learning of the latest video
by adjusting the ratio between the number of replay sam-
ples Mi and copies of X t:t+k in Equation (4)’s minibatch.
Lastly, we emphasize that replay is a simple technique that
could be replaced with any other continual learning method.

5. Experiments
This section qualitatively and quantitatively compares of-
fline learned and lifelong learned video diffusion models.
The learning algorithms use the same batch size and number
of gradient steps, equalizing the amount of computation and
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Lifelong Learning of Video Diffusion Models From a Single Video Stream

Train Stream Test Stream

Method FVD KVD Loss FVD KVD Loss

Offline Learning 32.2 ±1.1 9.2 ±0.8 0.0055 ±0.0 29.4 ±0.7 6.4 ±0.4 0.0056 ±0.0

Lifelong Learning 40.2 ±0.5 15.2 ±0.6 0.0061 ±0.0001 31.7 ±0.7 6.3 ±0.4 0.0057 ±0.0

Table 3. Lifelong 3D Maze performance metrics computed across two training and three sampling seeds.

Figure 4. Sample comparison for Lifelong 3D Maze’s rising walls
rare event. The top, middle, and bottom rows depict videos from
the ground truth test stream data, offline learned model, and life-
long learned model respectively.

runtime memory. We refer the readers to Appendix B for
additional experiment details.

5.1. Lifelong Bouncing Balls.

As discussed in Section 3, the Bouncing Balls dataset fea-
tures repetitive and deterministic dynamics, with stationary
(Lifelong Bouncing Balls (O)) and non-stationary (Lifelong
Bouncing Balls (C)) color transitions.

Setup The models for Lifelong Bouncing Balls (O) and
Lifelong Bouncing Balls (C) respectively have 8 and 74 mil-
lion parameters. The models are trained with a batch size
of 2 and are evaluated using 45 frames that they autoregres-
sively generate conditioned on 5 ground truth frames. Life-
long Learning retains 5 percent of the stream’s frames in the
replay buffer. We measure the sampled videos’ perceptual
and temporal coherence using FVD (Unterthiner et al., 2019)
and report the loss to measure learning progress. We also
measure the models’ understanding of the ball movement
using minADE (Rasouli, 2020) and of the color transition
using our ColorKL metric (Appendix A), extracting the ball
positions and colors from the frames using 2D convolutions.

Result Qualitative results appear in Figure 1a and Fig-
ure 3. For Lifelong Bouncing Balls (O), Offline Learning
and Lifelong Learning produce models that generate visu-
ally compelling ball colors and trajectories, correctly han-
dling different ball-to-ball and ball-to-wall collisions. While
no model perfectly recovers the deterministic ground truth
trajectories, the videos generated by offline and lifelong

learned models are not perceptibly different in quality.2

Because the model’s context size K = 10 is too small to
always condition on two past ball bounces, the models do
not perfectly capture the color transition from red to yel-
low and green. However, the color transition from yellow
to red and green to red are captured well, and the models
probabilistically transition from red to yellow or green –
the best possible modeling choice given the limited context
size. Perhaps surprisingly, we observe the same behaviors
for Lifelong Bouncing Balls (C). Despite the non-stationary
color changes, both learning algorithms generate realistic
ball trajectories and colors, regardless of whether we test on
frames from the beginning or the end of the video stream.3

The quantitative results in Table 1 and Table 2 mirror the
qualitative results. Offline Learning and Lifelong Learning
perform similarly on both the stationary Lifelong Bouncing
Balls (O) and non-stationary Lifelong Bouncing Balls (C)
datasets. Overall, the presence of temporal correlation and
the degree of non-repetitiveness does not pose a significant
learning challenge to Lifelong Learning when the video
stream is relatively simple.

5.2. Lifelong 3D Maze.

The Lifelong 3D Maze dataset—a first-person video stream
from a partially observable navigation environment—is a
step up in complexity from Lifelong Bouncing Balls. The
frames in the video stream are renderings of a 3D space,
whereas in Lifelong Bouncing Balls frames consist of 2D
objects against a black background. Moreover, as discussed
in Section 3, the 3D Maze data stream features randomly
generated surroundings as well as rare events.

Setup The diffusion models trained in this section have
78 million parameters. The models are trained with a batch
size of 4, of which two elements are the current timestep
video frame subsequence, and are evaluated using 40 frames
generated from conditioning on 10 ground truth frames.
Lifelong Learning retains 5 percent of the video stream’s
frames in the replay buffer. We measure perceptual and
temporal coherence using FVD and KVD (Bińkowski et al.,
2021) using the I3D network (Carreira & Zisserman, 2017).
We also report the model loss to measure learning progress.

2Lifelong Bouncing Balls (O) model samples are viewable here.
3Lifelong Bouncing Balls (C) model samples are viewable here.
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Lifelong Learning of Video Diffusion Models From a Single Video Stream

Train Stream Test Stream

Method FVD KVD Loss FVD KVD Loss

Offline Learning 112.6 ±1.1 10.4 ±0.3 0.0330 165.3 ±0.5 12.5 ±0.0 0.0397
Lifelong Learning 108.1 ±0.8 8.7 ±0.3 0.0335 167.0 ±1.1 13.1 ±0.2 0.0411

Table 4. Lifelong PLAICraft performance metrics computed across one training and three sampling seeds.

Result Qualitative results appear in Figure 1b and Fig-
ure 4. Both Offline Learning and Lifelong Learning models
generate coherent maze trajectories, successfully modeling
sparsely occurring event sequences such as camera inver-
sion and the rising of the maze walls.4 Both models make
the occasional mistake, such as deforming polyhedral gray
rock during camera inversion, though neither model makes
mistakes more frequently than the other.

Quantitative results appear in Table 3. We find that the
Offline and Lifelong Learning performance metrics are gen-
erally similar, and that the similarity is more pronounced
for the test stream than the train stream. We show in Table 8
that Lifelong Learning’s train stream quantitative metrics
become nearly identical to Offline Learning’s quantitative
metrics when we increase the replay buffer size to 20 per-
cent of the data stream. This is because of a subtle per-
ceptual change in the maze texture that occurs within the
train stream (see Appendix C), which induces a mild for-
getting for the lifelong learned model that disappears with
increased replay buffer size. Nevertheless, we see on both
qualitative and quantitative fronts that lifelong learned mod-
els can capture information on rare events when learning
from correlated video frames from a stochastically gener-
ated environment, despite heavy data imbalance between
rare events and regular maze traversal frames.

5.3. Lifelong PLAICraft.

The Lifelong PLAICraft dataset is the most challenging of
the three datasets. Like Lifelong 3D Maze, it is a continual
video stream from a partially observable environment. How-
ever, the world is more complex with dynamics resulting
from interactions between multiple agents.

Setup The diffusion models trained in this section have 80
million parameters. Lifelong Learning retains 20 percent of
the video stream’s frames in the replay buffer. The models
are trained with a batch size of 8, of which two elements
are the current timestep video frame subsequence, and are
evaluated using 10 frames that they generate conditioned on
10 ground truth frames. We measure the sampled videos’
perceptual and temporal coherence using FVD and KVD,
and report the model loss to measure learning progress.

4Lifelong 3D Maze model samples are viewable here.

Figure 5. Sample comparison for Lifelong PLAICraft’s carrot har-
vesting sequence. The top, middle, and bottom rows depict videos
from the ground truth test stream data, offline learned model, and
lifelong learned model respectively.

Result See Figure 1c and Figure 5 for qualitative results.
Both Offline Learning and Lifelong Learning models cap-
ture perceptual details about Minecraft video frames despite
having only 80 million parameters and 50 hours of game-
play data to work with. Objects present in every gameplay
frame (player name, item bar, and the equipped item) are
consistently included in all Offline and Lifelong genera-
tions.5 Both learning paradigms are less successful on this
dataset at capturing temporal correlations between frames.
We hypothesize that a larger model size and careful hyper-
parameter tuning achievable on commercial-scale compute
will bring the sample quality closer to that of the Lifelong
Bouncing Balls and Lifelong 3D Mazes models. Neverthe-
less, the generated video frames from Offline and Lifelong
models are not perceptually distinguishable in quality.

Quantitative results appear in Table 4. On both training
and test streams, Offline Learning and Lifelong Learning
perform similarly. To summarize, we find that Lifelong
Learning can perform comparably to Offline Learning with
minimal hyperparameter tuning, even on data streams as
life-like and complex as Lifelong PLAICraft.

5.4. Discussion

The reported metrics for Offline and Lifelong Learning
across all datasets are remarkably similar. To further sub-
stantiate this observation, Table 10 in Appendix E presents

5Lifelong PLAICraft model samples are viewable here.
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two-sided T-test results assessing whether the test stream
performance differences between the two learning algo-
rithms are statistically significant. Our analysis reveals that
the performance of lifelong-learned video diffusion mod-
els is not significantly different from that of offline-learned
models. Specifically, for the majority of dataset and metric
pairs, the two-sided T-tests fail to reject the null hypothesis,
suggesting no strong evidence of a meaningful difference.

Given the closeness in performance of replay-based lifelong
learning to i.i.d. video diffusion model learning, it is natural
to ask whether this result is sensitive to free parameters in ex-
perience replay—the most significant of which is the replay
buffer size. We investigate experience replay’s sensitivity to
the replay buffer size in Appendix D. We find that storing
5 to 20 percent of video stream frames is often sufficient
and that unlimited replay buffer size does not lead to signifi-
cantly stronger results for our diverse group of datasets. We
also find that not having a replay buffer impedes model per-
formance and that this behavior is more pronounced when
the training stream is nonstationary. These results suggest
that experience replay with a modest buffer size is a strong
and simple baseline when lifelong learning video diffusion
models in memory-constrained settings.

Lastly, to further emphasize the challenging nature of our
datasets, we plot the change in the video diffusion mod-
els’ test stream quantitative metrics during training for all
datasets in Appendix F. Both Offline and Lifelong Learned
models continue to improve in performance for every metric
as training progresses, indicating that the generative mod-
eling tasks cannot easily be mastered after the diffusion
models train on a moderate number of video frames.

6. Related Work
Our work is closely related to continual generative modeling
(Nguyen et al., 2018; Ramapuram et al., 2020; Masip et al.,
2024; Smith et al., 2024; Zając et al., 2023; Campo et al.,
2020; Chen et al., 2022), in particular to methods that focus
on diffusion models and video generative models. Prior
work on lifelong learning of diffusion models (Masip et al.,
2024; Smith et al., 2024; Zając et al., 2023) focuses on
image modeling under the task-based continual learning
setup where data grouped into disjoint tasks arrives in large
batches. In contrast, our work focuses on lifelong learning
of video diffusion models capable of capturing temporal
correlations in video frames by learning from a single video
stream. Prior work on lifelong learning of video generative
models (Campo et al., 2020; Chen et al., 2022) continually
learns VAE-based models that can generate future frames
again in the task-based continual learning setup. Unlike
our setup, these methods assume the presence of rigid task
boundaries and the ability to train to convergence on large
data batches. In contrast, our lifelong learning datasets do

not have notions of tasks, and our models only have access
to data as they appear in the stream.

Our work is also related to online learning of sequence pro-
cessing models (Zucchet et al., 2023; Carreira et al., 2024;
Bornschein et al., 2024; Liu et al., 2024). Notably, Carreira
et al. (2024) learns predictive video models from the con-
catenation of loosely related videos. In contrast, our work
learns generative video models from a single autocorrelated
stream. Liu et al. (2024) learns a linear regression-based
world model in an online fashion, an approach that we note
is not amenable to high-dimensional videos.

Lastly, work has, like us, introduced video datasets for con-
tinual learning. Villa et al. (2022); Tang et al. (2024)’s
datasets contain many short videos that can be learned un-
der a task-based continual learning setup. Carreira et al.
(2024)’s datasets construct one very long data stream by
concatenating multiple short-to-medium length videos, but
their data are not publicly available. Singh et al. (2016)’s
dataset, while not originally developed for continual learn-
ing, contains a series of short-to-medium-length videos of
the real world that were collected via Google Glass. We
note that their dataset has semantic discontinuities, whereas
our datasets come from single, continuous video streams.

7. Conclusion
This paper explores lifelong learning of diffusion models
from video streams, which has never been investigated to
the best of our knowledge. We establish the feasibility of
learning video diffusion models from a single autocorrelated
video stream in a lifelong fashion. Our lifelong learning
approach is simple and uses no specialty techniques beyond
a minimal replay buffer. To promote further research into
this area, we introduce three datasets that test how differ-
ent video stream characteristics affect model and lifelong
learning algorithm performance.

The ability to effectively train video diffusion models from
a continuous data stream holds significant promise, partic-
ularly for world model learning (Alonso et al., 2024; Du
et al., 2024; Huang et al., 2023; Escontrela et al., 2024) and
compute-efficient foundation model adaptation (Smith et al.,
2024). Our findings suggest that learning generative models
from strongly correlated data streams may not be as difficult
as previously assumed, at least for certain data streams and
model classes, echoing results from Bornschein et al. (2024)
and Carreira et al. (2024) on discriminative model lifelong
learning. We expect sample quality to improve significantly
with the scale of data and compute, more advanced model ar-
chitectures, optimization techniques, and continual learning
algorithms.
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Impact Statement
This work is relevant to the development of embodied AI
agents that can adapt to their environments in real time
through lifelong video world model updates. This in prin-
ciple can greatly enhance the flexibility of the embodied
AI agents compared to those that are purely offline trained,
which in turn will impact how people perceive and interact
with them.
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A. The ColorKL Metric
The ColorKL metric measures how faithful a model-generated video’s color transition statistics are to the ground truth color
transition statistics at the dataset level. It is defined as

1

|C|
∑

cold∈C
DKL (p∗(cnew|cold) ∥ pmodel(cnew|cold)) (5)

where DKL is the KL divergence, C = {red, yellow, green} is the set of possible ball colors, p∗(cnew|cold) is the ground
truth probability for a ball to switch colors from cold to cnew, and pmodel is the empirical probability of color transitions
from cold to cnew in the model-generated video dataset. We note that if the model’s context window is long enough to
always capture two past ball bounces for all balls, the ball colors can be deterministically predicted. If the model’s context is
not long enough, as is the case in our experiments, the ground truth transition probabilities p∗ state that the balls always
transition from yellow to red and green to red but have a 50/50 chance of transitioning from red to yellow or green.

B. Additional Experiment Details
The minimum average displacement error (minADE) metric is computed by selecting the trajectory with the lowest average
displacement error from 3 sampled trajectories for each evaluation video subsequence. The ColorKL metric is computed
by tallying the transition statistics from 3 sampled trajectories for each evaluation video subsequence and computing the
KL divergence of this empirical distribution with the ground truth transition statistics. The loss metric is calculated by
uniformly sampling 10 noise levels for all evaluation set samples per model checkpoint, computing the diffusion MSE loss,
and averaging the results.

As computing all metrics on the entirety of the video streams is prohibitively expensive, we select 1,000 video subsequences
from the evaluation stream and calculate the metrics on those video frames for all reported metrics. All training and sampling
seeds compute the metrics on the same set of video subsequences. For datasets without significant changes in video frame
details throughout the video stream (Lifelong Bouncing Balls (O), Lifelong 3D Maze), we select the first 1,000 video
subsequences from the evaluation video stream. For datasets with significant changes in video frame details throughout the
video stream (Lifelong Bouncing Balls (C), Lifelong PLAICraft), we evenly select 1,000 video subsequences across the
entire evaluation video stream with equal spacing.

C. Additional Dataset Curation Details
The train and test set of Lifelong Bouncing Balls is generated by randomly sampling the two balls’ initial positions and
velocities and deterministically updating them to satisfy the conservation of momentum.

The Lifelong 3D Maze dataset was created by concatenating two 10-hour-long Lifelong 3D Maze YouTube videos (Dprotp,
2018; Screensavers, 2020) at the point where a maze from the first video is solved and the maze from the second video
begins, as the maze screensaver teleports the agent to a newly generated maze on the completion of the previous maze.
This concatenation ensures that there is no sudden switch in the environment dynamics (a slight perceptual switch exists as
shown in Figure 6).

The Lifelong PLAICraft dataset was constructed by concatenating multiple consecutive gameplay session recordings from
the same player of the PLAICraft server (He, 2024). All game settings, such as viewing distance, shader configurations, and
recording parameters (e.g., resolution and aspect ratio), were consistent across sessions. The dataset includes recordings of
two players, Alex and Kyrie, who played in the same survival world alongside hundreds of other players. In their initial
gameplay sessions, their starting locations were randomly assigned but could later be altered through travel or teleportation.
As in a typical Minecraft survival world, the environment had no boundaries; landscapes were procedurally generated
and remained unchanged once created. Player states, including inventories and spawn locations, were preserved between
consecutive sessions.

Players’ locations and states were generally consistent across most consecutive gameplay sessions. In other words, if a
player exited the game at a particular location and state in one session, they would typically resume from the same point
in the next session. However, some aspects, such as the player’s viewing angle or environment, may be slightly different
from reasons such as other players having built structures around the location the player logged off from or other technical
reasons related to gameplay recording.
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(a) Example frame from video 1. (b) Example frame from video 1.

(c) Example frame from video 2. (d) Example frame from video 2.

Figure 6. Example video frames from first and second 10-hour-long YouTube videos used to construct Lifelong 3D Maze. While the
frames are nearly identical, there are very subtle perceptual differences arising from how the uploaders recorded the two videos.

Kyrie’s first gameplay session began later than Alex’s, and there was some overlap in the locations they visited. Alex
generally explored more areas and contributed extensively to building structures, whereas Kyrie primarily played in a village
that Alex and other players had previously developed.

D. Additional Quantitative Results
This section presents the train and test video stream performances of offline training (Offline Learning), lifelong learning
using experience replay with limited buffer size (Experience Replay)6, lifelong learning using experience replay with
unlimited buffer size (Full Replay), and lifelong learning without the use of a replay buffer (No Replay) on all datasets.

D.1. Lifelong Bouncing Balls

Train Stream Test Stream

Method FVD Loss minADE ColorKL FVD Loss minADE ColorKL

Offline Learning 4.5 ±0.1 6.3e-5 ±1e-6 1.74 ±0.03 0.006 ±0.001 4.7 ±0.2 6.2e-5 ±2e-6 1.71 ±0.06 0.006 ±0.001

No Replay 4.7 ±0.1 6.7e-5 ±1e-6 1.91 ±0.01 0.006 ±0.0 5.0 ±0.2 6.7e-5 ±1e-6 1.84 ±0.03 0.005 ±0.0

Experience Replay 4.9 ±0.2 6.3e-5 ±2e-6 1.82 ±0.03 0.005 ±0.0 4.7 ±0.2 6.2e-5 ±3e-6 1.81 ±0.03 0.005 ±0.0

Full Replay 4.7 ±0.1 6.3e-5 ±1e-6 1.80 ±0.01 0.004 ±0.001 4.6 ±0.1 6.2e-5 ±0.0 1.76 ±0.02 0.003 ±0.001

Table 5. Lifelong Bouncing Balls (O) performance metrics. The left and right columns respectively denote training and test video stream
results computed across two training and three sampling random seeds.

For Lifelong Bouncing Balls (O), all learning algorithms attain largely indistinguishable results. However, for Lifelong
Bouncing Balls (C), No Replay performs significantly worse on all metrics than the rest as it suffered from catastrophic
forgetting of ball colors observed earlier in the training stream as shown in Figure 8b. This suggests that when lifelong
learning on video streams that contain non-repeating details, mechanisms that preserve past knowledge are necessary
regardless of how simple the video streams might be.

D.2. Lifelong 3D Maze

Table 7 shows how the similarity between offline training and memory-constrained experience replay methods is more
pronounced on the test stream than the train stream. This is in part due to the way the Lifelong 3D Maze dataset is constructed.

6This configuration is referred to as Lifelong Learning in the main text’s Section 5.
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Lifelong Learning of Video Diffusion Models From a Single Video Stream

Train Stream Test Stream

Method FVD Loss minADE ColorKL FVD Loss minADE ColorKL

Offline Learning 5.8 ±0.3 6.5e-5 ±1e-6 2.04 ±0.09 0.007 ±0.002 5.9 ±0.2 6.5e-5 ±1e-6 2.14 ±0.1 0.007 ±0.001

No Replay 357.4 ±1.8 2.2e-2 ±1e-3 2.61 ±0.08 0.021 ±0.002 343.6 ±1.2 2.3e-2 ±1e-3 2.73 ±0.11 0.022 ±0.0

Experience Replay 5.0 ±0.1 7.4e-5 ±1e-6 2.03 ±0.00 0.005 ±0.001 5.7 ±0.2 7.5e-5 ±1e-6 2.06 ±0.0 0.005 ±0.0

Full Replay 5.0 ±0.1 8.0e-5 ±1e-6 2.08 ±0.03 0.005 ±0.001 5.6 ±0.2 7.9e-5 ±2e-6 2.12 ±0.0 0.006 ±0.001

Table 6. Lifelong Bouncing Balls (C) performance metrics. The left and right columns respectively denote training and test video stream
results computed across two training and three sampling random seeds.

Train Stream Test Stream

Method FVD KVD Loss FVD KVD Loss

Offline Learning 32.2 ±1.1 9.2 ±0.8 0.0055 ±0.0 29.4 ±0.7 6.4 ±0.4 0.0056 ±0.0001

No Replay 130.1 ±1.0 84.6 ±1.1 0.0085 ±0.0002 37.0 ±0.9 8.9 ±0.7 0.0059 ±0.0

Experience Replay 40.2 ±0.5 15.2 ±0.6 0.0061 ±0.0001 31.7 ±0.7 6.3 ±0.4 0.0057 ±0.0

Full Replay 35.6 ±0.8 12.4 ±0.7 0.0058 ±0.0001 34.8 ±0.3 9.2 ±0.2 0.0058 ±0.0001

Table 7. Lifelong 3D Maze performance metrics. Results are computed across two training and three sampling random seeds.

Train Stream Test Stream

Replay Buffer Size FVD KVD Loss FVD KVD Loss

0 130.1 ±1.0 84.6 ±1.1 0.0085 ±0.0002 37.0 ±0.9 8.9 ±0.7 0.0059 ±0.0

10,000 80.9 ±0.2 42.3 ±0.2 0.0086 ±0.0 39.6 ±0.9 11.0 ±0.7 0.0060 ±0.0

50,000 40.2 ±0.5 15.2 ±0.6 0.0061 ±0.0001 31.7 ±0.7 6.3 ±0.4 0.0057 ±0.0

200,000 32.9 ±0.8 10.3 ±1.1 0.0057 ±0.0 32.6 ±0.6 8.2 ±0.2 0.0057 ±0.0

1,000,000 35.6 ±0.8 12.4 ±0.7 0.0058 ±0.0001 34.8 ±0.3 9.2 ±0.2 0.0058 ±0.0001

Table 8. Lifelong 3D Maze performance metrics for experience replay with varying replay buffer sizes.

The dataset is built by concatenating two 10-hour-long YouTube videos, and the test set only comprises unobserved frames
from the second video. While the videos are nearly identical, there are very subtle perceptual differences (refer to Figure 6).
Because the training stream contains frames from the first and second videos and the test stream contains frames from the
second video, lifelong learning methods with limited replay buffer sizes perform better on the test stream videos than on the
train stream videos as it overfits to the perceptual details of the second video. This is verified in Table 8, where increasing
the replay buffer size is shown to improve train stream metrics much more than the test stream metrics.

D.3. Lifelong PLAICraft

Train Stream Test Stream

Method FVD KVD Loss FVD KVD Loss

Offline Learning 112.6 ±1.1 10.4 ±0.3 0.0329 165.3 ±0.5 12.5 ±0.0 0.0397

No Replay 512.6 ±3.6 39.0 ±0.5 0.0513 608.1 ±9.5 58.7 ±1.2 0.0507
Experience Replay 108.1 ±0.8 8.7 ±0.3 0.0335 167.0 ±1.1 13.1 ±0.2 0.0411

Full Replay 112.9 ±1.1 10.2 ±0.5 0.0331 161.3 ±1.3 11.3 ±0.5 0.0407

Table 9. Lifelong PLAICraft performance metrics. Results are computed across one training and three sampling seeds.
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Lifelong Learning of Video Diffusion Models From a Single Video Stream

We observe that offline training and experience replay performances are indistinguishable, but No Replay performs
significantly worse. Figure 8d shows the final models’ performances on video frames at different training stream indices. To
further analyze model behaviors, we plot the fully trained models’ performance metrics on video frames from different parts
of the training stream. Interestingly, the relative performance difference between different training stream frame indices for
the lifelong learned models, even No Replay, mirrors that of the offline-learned model. This suggests that video stream
underfitting, not forgetting, is the primary challenge in effective learning of Lifelong PLAICraft as we can assume that the
offline-learned model does not suffer from forgetting.

E. Test Stream Statistical Significance Testing

Dataset FVD KVD Loss minADE ColorKL

Lifelong Bouncing Balls (O) 0.932 - 0.745 0.310 0.663
Lifelong Bouncing Balls (C) 0.456 - 0.000 0.563 0.101

Lifelong 3D Maze 0.039 0.896 0.020 - -
Lifelong PLAICraft 0.270 0.145 0.073 - -

Table 10. p-values from two-sided T-test where the null hypothesis that there is no difference between the test stream performance metrics
from Offline Learning and Lifelong Learning. Dataset and metric pairs where the null hypothesis is rejected with the significant level
α = 0.05 are underlined. Dataset and metric pairs where the null hypothesis is rejected with the significant level α = 0.02 are bolded.

Table 10 details two-sided T-test results that compare whether the quantitative performance differences between Offline
Learning and Lifelong Learning are statistically significant for all dataset and metric pairs. Adhering to the main experiment
setup, the Lifelong Bouncing Balls and Lifelong 3D Maze results were computed from samples generated from two training
and three sampling seeds, and the Lifelong PLAICraft results were computed from samples generated from one training and
three sampling seeds. We find that, for most cases, the two-sided T-tests fail to reject the null hypothesis that the performance
difference between the two learning algorithms is statistically insignificant.
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F. Training Time Performance Metrics
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(a) Lifelong Bouncing Balls (O) dataset.

1.0 2.5 5.0 7.5 9.0

×105

0

1

2

×102 FVD

1.0 2.5 5.0 7.5 9.0

×105

0

1

2

×10−2 Loss

1.0 2.5 5.0 7.5 9.0

×105

2

3

4

5

minADE

1.0 2.5 5.0 7.5 9.0

×105

2

4

6

×10−2 ColorKL

# of Training Iterations

(b) Lifelong Bouncing Balls (C) dataset.
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(c) Lifelong 3D Maze dataset.
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(d) Lifelong PLAICraft dataset.

Figure 7. Test stream performance metrics for model checkpoints at different training iterations. The plots show the improvement in
model quality as online training progresses. All models generally improve the longer they are trained.
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G. Train Stream Performance Breakdown

1.0 2.5 5.0 7.5 9.0

×105

4.0

4.5

5.0

FVD

1.0 2.5 5.0 7.5 9.0

×105

6.2

6.4

6.6

×10−5 Loss

1.0 2.5 5.0 7.5 9.0

×105

1.7

1.8

1.9

minADE

1.0 2.5 5.0 7.5 9.0

×105

4

6

×10−3 ColorKL

Train Stream Frame Index

No Replay Experience Replay Full Replay Offline Learning

(a) Lifelong Bouncing Balls (O) dataset.
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(b) Lifelong Bouncing Balls (C) dataset.

1 2 4 6 8 9

×105

0.5

1.0

1.5

2.0
×102 FVD

1 2 4 6 8 9

×105

0.0

0.5

1.0

1.5

×102 KVD

1 2 4 6 8 9

×105

6

8

×10−3 Loss

Train Stream Frame Index

(c) Lifelong 3D Maze dataset.
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(d) Lifelong PLAICraft dataset.

Figure 8. Fully trained models’ performance metrics on video frames from different parts of the training stream. The plots show whether
the final model performs better or worse on future frame prediction for frames earlier or later in the training stream. Each point of the
plots is calculated using 1,000 consecutive video frame subsequences that succeed the corresponding train stream frame index.
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