
Dynamics-Augmented Decision Transformer
for Offline Dynamics Generalization

Changyeon Kim∗,1 Junsu Kim∗,1 Younggyo Seo1
Kimin Lee2 Honglak Lee3,4 Jinwoo Shin1

1KAIST 2Google Research 3University of Michigan 4LG AI Research

Abstract

Recent progress in offline reinforcement learning (RL) has shown that it is often
possible to train strong agents without potentially unsafe or impractical online
interaction. However, in real-world settings, agents may encounter unseen en-
vironments with different dynamics, and generalization ability is required. This
work presents Dynamics-Augmented Decision Transformer (DADT), a simple
yet efficient method to train generalizable agents from offline datasets; on top of
return-conditioned policy using the transformer architecture, we improve general-
ization capabilities by using representation learning based on next state prediction.
Our experimental results demonstrate that DADT outperforms prior state-of-the-
art methods for offline dynamics generalization. Intriguingly, DADT without
fine-tuning even outperforms fine-tuned baselines.

1 Introduction

Offline reinforcement learning (RL) provides a framework to train robotic agents from a logged
dataset without online interaction (Lange et al., 2012; Levine et al., 2020). The benefit of offline
RL enables us to utilize RL for complex robotics domains where environment interactions can be
expensive or dangerous (Dulac-Arnold et al., 2019). However, for practical applications, besides the
ability to learn without interaction, the ability to generalize to unseen environments with (slightly)
different dynamics is required. Unfortunately, it has been evidenced that offline RL often struggles to
generalize to unseen dynamics (Li et al., 2020; Lin et al., 2022).

Several approaches have been proposed recently to address dynamics generalization in offline RL,
including representation learning for dynamics inference (Li et al., 2020) and meta-learning (Lin
et al., 2022). Specifically, Li et al. (2020) trains a context encoder for efficient dynamics inference
on top of offline RL, and Lin et al. (2022) learns meta-dynamics model and meta-policy that adapt
to unseen dynamics in a few gradient steps. However, whether a simple gradient update or context
latent variable from near past experiences could capture subtle changes in differing dynamics is
questionable, which is essential for solving dynamics generalization problems.

Turning to vision and language domains, transformer-based models (Vaswani et al., 2017) have
exhibited impressive results in solving various generalization problems. As a representative example,
Brown et al. (2020), Rae et al. (2021), and Chowdhery et al. (2022) show that large language model
using transformer architecture can solve various types of unseen tasks such as translation, question
answering, even without any demonstration. Ramesh et al. (2021, 2022) demonstrate that transformer-
based models jointly trained with the text and image tokens can generate photorealistic images from
unseen short-length captions. Recently, Reed et al. (2022) show that transformers can be a generalist
agent that can solve a range of control tasks using inputs from different modalities with a single set
of weights.

*Equal Contribution. Correspondence to changyeon.kim@kaist.ac.kr.

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022



Train on	varying	
dynamics all	together Adapt to	

unseen dynamics

Walker Hopper HalfCheetah SlimHumanoid Ant

DADT

Figure 1: Illustration of Dynamics-Augmented Decision Transformer (DADT). During training,
DADT digests offline trajectories from varying dynamics without additional annotation (i.e., dynamics
id). We evaluate DADT on unseen test dynamics and DADT shows strong generalization performance.

Contribution. Inspired by the generalization ability of transformer-based models in vision (Ramesh
et al., 2022; Dosovitskiy et al., 2020) and language domains (Brown et al., 2020; Devlin et al., 2018),
we present DADT: Dynamics-Augmented Decision Transformer, a new transformer-based method
for offline dynamics generalization. Analogously to pre-training scheme in transformer-based models
in vision and language domains, we train DADT via a supervised learning paradigm with totally
aggregated sequences (i.e., trajectories) without distinction. Specifically, DADT aims to optimize the
objective to find the action that achieves desired return (Chen et al., 2021) while minimizing error
in next state prediction. We find that DADT can better generalize to unseen dynamics by explicitly
encouraging the model to learn dynamics information. For evaluation, we consider two scenarios
depending on different accessibility to trajectories from unseen dynamics: (1) zero-shot, where
demonstrations are not given, and (2) adaptation, where model is fine-tuned with small amount of
samples. We provide an overview of setup and architecture in Figure 1 and Figure 2, respectively.

We show that DADT outperforms prior state-of-the-art baselines for offline dynamics generalization
in both performance and time efficiency on various continuous control tasks based on MuJoCo
simulator (Todorov et al., 2012), which is widely used in the literature (Li et al., 2020; Lin et al.,
2022). Intriguingly, DADT without fine-tuning even outperforms fine-tuned baselines. Moreover,
reduced next state prediction error in unseen dynamics further supports our model’s capability for
dynamics generalization.

2 Related Work

2.1 Dynamics generalization and adaptation

Recent works handling dynamics generalization focus on encoding inductive bias using prior knowl-
edge (Zambaldi et al., 2018) or learning contextual latent encoder that captures local dynamics
(Lee et al., 2020; Seo et al., 2020). Apart from this, several meta-learning approaches to dynamics
generalization have been proposed for quickly adapting to new tasks (Gupta et al., 2018; Rakelly
et al., 2019; Zintgraf et al., 2019). Rakelly et al. (2019) introduced probabilistic context variable
accumulating past experiences for efficient exploration and fast task inference. Recently, Melo (2022)
uses transformer architecture for capturing contextual information instead of recurrent neural network
Duan et al. (2016) in online dynamics generalization. It differs from our work in that (i) we use
transformer architecture not only for capturing contextual information but also for optimizing policy
conditioned on desired return, and (ii) our model utilizes offline datasets.

Along with increasing attention toward offline RL (Levine et al., 2020) of which importance is
highlighted especially when environmental interaction is expensive or risky, dynamics generalization
and adaptation in the offline setting have been studied recently (Li et al., 2020; Lin et al., 2022;
Ball et al., 2021; Cang et al., 2021). They aim to learn a policy or dynamics model that can quickly

2



adapt to unseen dynamics along with mitigating value overestimation issues in offline RL (Fujimoto
et al., 2019). Specifically, FOCAL (Li et al., 2020) trains a deterministic context encoder for efficient
dynamics inference using contrastive loss and use it for behavior regularized policy learning (Wu
et al., 2019). MerPO (Lin et al., 2022) takes a gradient-based meta-learning approach for learning
meta-dynamics model and meta-policy that aim to adapt to unseen dynamics quickly; the meta-
dynamics model is used to generate synthetic rollouts to boost policy learning. Ball et al. (2021)
augment a learned dynamics model to improve the zero-shot generalization in model-based offline
RL.

2.2 RL via sequence modelling

Motivated by remarkable success in large-scale language modeling (Devlin et al., 2018; Brown et al.,
2020), it has been proposed to extend such success into RL domain by formulating RL as a sequence
modeling problem (Chen et al., 2021; Janner et al., 2021). These works build on the reinforcement
learning as supervised learning paradigm (Schmidhuber, 2019; Srivastava et al., 2019; Emmons et al.,
2021) that focuses on predictive modeling of sequence of states, actions, and reward-based returns.
Specifically, Chen et al. (2021) proposed Decision Transformer (DT), which is trained to generate
the optimal actions given desired return and history of states and actions. Instead of conditioning
desired return, Trajectory Transformer (TT) (Janner et al., 2021) is trained to predict not only actions,
but also entire elements of trajectories such as states and rewards and finds optimal actions by using
planning (e.g., beam search) in deployment time. Recently, Lee et al. (2022) have demonstrated that
DT can play multiple Atari games with a single set of weights and can be efficiently fine-tuned for
solving unseen games.

Though DT and TT have shown promising results in solving various control tasks, their ability to
generalize to unseen dynamics has not investigated yet. In this paper, we demonstrate that DT trained
on aggregated trajectories collected from different dynamics can generalize to unseen dynamics, and
introducing an auxiliary next state prediction loss can further improve the performance.

3 Preliminaries

3.1 Problem statement

We consider the standard RL framework where an agent interacts with its environment in discrete
time. Formally, we formulate our problem as a Markov decision process (MDP; Sutton & Barto
(2018)), which is defined as a tuple (S,A, p, r, γ, ρ0). Here, S is the state space, A is the action space,
p(s′|s, a) is the transition dynamics, r(s, a) is the reward function, ρ0 is the initial state distribution,
and γ ∈ [0, 1] is the discount factor. A trajectory is made up of a sequence of states, actions, and
rewards: τ = (s0, a0, r0, s1, a1, r1, . . . , sT , aT , rT ), where T is the (pre-defined) horizon. The return
of a trajectory, R(τ) =

∑T
t=0 γ

trt, is the sum of discounted future rewards. The goal of RL is to find
a policy that maximizes the expected return E[R(τ)]. In our work, we focus on offline RL setting
where we only have access to some fixed dataset consisting of trajectory rollouts of arbitrary policies
instead of obtaining data via environment interaction.

In order to address the problem of generalization, we further consider the distribution of MDPs, where
the transition dynamics pc(s′|s, a) varies according to a context c. For example, transition dynamics
can vary across different terrains for a walking robot due to different amounts of friction. We aim to
learn a single policy π that maximizes the expected return robustly to such dynamics changes. To be
specific, given trajectories from training dynamics with contexts sampled from ptrain(c), we aim at
learning a policy π that can maximize expected return for test dynamics with unseen (but related)
contexts sampled from ptest(c).

3.2 Transformer

Transformer (Vaswani et al., 2017) is an architecture to efficiently model sequential data by using
stacked self-attention module with residual connection. Each self-attention module takes n embed-
dings {xi}ni=1 and outputs another n embeddings {zi}ni=1 with the same dimensions. Each token xi

is projected to a key ki, query qi, and value vi using linear transformation. Then, the output zi is
computed by weighting values vj by the normalized inner product between the query qi and other

3



causal	transformer

	𝐑#
t-1 s t-1 a t-1 t s t a t

s
t-1

a
t-1

s
t

a
t

linear	 decoder

emb.	+	pos.	enc.

	𝐑#

Figure 2: An overview of DADT architecture. Along with action prediction, we also predict next
state for each timestep to boost dynamics generalization. DADT consumes trajectories from varying
dynamics without any distinction, which is analogous manner in training language model; language
tasks are aggregated without any task annotation in training. States st, actions at, and return-to-go
R̂t are fed into modality-specific linear embeddings and a positional timestep embedding is added.

keys kj :

zi =

n∑
j=1

softmax({⟨qi, kj′⟩nj′=1})j · vj . (1)

The self-attention modules work by performing the inner product between the current embedding xi

with the query matrix Q to give qi and with the key matrix K to give the key ki. The model takes the
inner product between the key and query for j ∈ [1, n], yielding n logits, over which the model takes
the softmax and yields a probability distribution. The final result is then a convex combination of the
value vectors vi, with the weights dictated by the probability distribution. More concisely, the i-th
component of the output zi is given by

zi =

n∑
j=1

softmax({⟨qi, kj′⟩nj′=1})j · vj . (2)

4 DADT: Dynamics-Augmented Decision Transformer

Following Chen et al. (2021), we consider the problem of offline reinforcement learning as a sequence
modeling problem; we model the probability of the next sequence token τi conditioned on all tokens
prior to it: Pθ(τi|τ<i). The sequences we consider have the form:

τ =
(
R̂0, s0, a0, R̂1, s1, a1, . . . , R̂T , sT , aT

)
, (3)

where T denotes the max timestep, and R̂t is the return-to-go, which is the sum of return for the rest
of the sequence.

Architecture. we largely follow the architecture from Chen et al. (2021) and then append next
state prediction head, which will be explained below. Specifically, our transformer takes the last
K timesteps as an input; namely, 3K tokens consisting of return-to-go, state, and action are fed.
Raw inputs are projected into the embedding dimension by a linear layer for each modality followed
by layer normalization (Ba et al., 2016). Additionally, we learn positional embedding per timestep
and add it to each token; one timestep corresponds to three tokens. The tokens are then processed
by a causal transformer, followed by action prediction head; future action tokens are predicted via
autoregressive modeling along with masking future tokens in an input sequence. Analogously to the
action prediction head, we stack a linear decoder for next state prediction on top of the transformer.
We provide an illustration of our architecture in Figure 2.

Training with next state prediction. Along with the action prediction proposed by Chen et al.
(2021), we train our DADT using next state prediction as an auxiliary training task to boost dynamics
generalization. First, given a dataset of offline trajectories from varying dynamics, we sample mini-
batches of sequence length K from the dataset. Note that we do not include any dynamics-id in
input sequences; this can be considered as a more practical setting because annotating such ids would
require additional labeling costs in practice. For the total loss, we add action prediction loss and

4



Table 1: Normalized average return on test dynamics with episode length 200 across 5 runs. We
mark the scores within one standard deviation from the highest average score to be bold. For FOCAL
(Li et al., 2020), we only report the zero-shot performance because it is designed to be fully-offline
without adaptation to unseen dynamics (see Section 5.1 for details).

Environment Evaluation FOCAL (Li et al., 2020) MerPO (Lin et al., 2022) DADT (Ours)

Walker Zero-shot 52.44 ± 17.31 40.67 ± 6.66 61.12 ± 4.99

Adaptation - 48.11 ± 6.95 64.65 ± 4.42

Hopper Zero-shot 41.56 ± 12.44 53.21 ± 1.89 74.69 ± 4.22

Adaptation - 57.38 ± 6.24 83.11 ± 3.28

HalfCheetah Zero-shot 10.60 ± 4.10 8.06 ± 1.09 16.29 ± 1.95

Adaptation - 14.36 ± 3.27 23.48 ± 3.39

SlimHumanoid Zero-shot 20.45 ± 1.60 33.73 ± 1.41 42.03 ± 1.68

Adaptation - 32.51 ± 1.52 39.58 ± 1.79

Ant Zero-shot 18.73 ± 1.28 31.34 ± 0.80 35.87 ± 1.62

Adaptation - 37.08 ± 0.79 54.85 ± 1.81

auxiliary next state prediction loss, multiplied by balancing coefficient λ. This next state prediction
loss enriches the training signal, which can help capture subtle changes across varying dynamics.

While our next state prediction loss has a connection with that of Trajectory Transformer (Janner
et al., 2021) in that both of them predict next state given past transitions, we remark that DADT does
not use discretization, which might be a negative factor in dynamics generalization. Specifically,
approximating a set of values from different dynamics using the exact discrete quantities could hurt
capturing subtle changes in distinguishing the difference between dynamics.

Evaluation. When we encounter unseen dynamics, we evaluate both zero-shot generalization and few-
shot adaptation ability of DADT. For zero-shot, we do not update our DADT for the new dynamics
assuming that trajectories from the new environments are unavailable. For few-shot adaptation, we
fine-tune DADT in a supervised manner given a fixed number of samples from the new environments,
which is the same as in the training phase. For deployment, we specify the desired performance by
conditioning return-to-go R̂0 along with the starting state s0. Then, we generate action for the current
state (in a deterministic manner). After feeding the generated action, we decrement the target return
by the achieved reward and repeat until episode termination.

5 Experiments

5.1 Setups

Environments. We demonstrate the effectiveness of our model in various simulated robotic control
environments (i.e., Walker, Hopper, HalfCheeatah, SlimHumanoid, Ant) based on the OpenAI Gym
(Brockman et al., 2016). In each environment, we consider 20 training dynamics and 5 test dynamics
with a different set of dynamics parameters (mass, inertia, damping, friction) following setups of Finn
et al. (2017) and Rakelly et al. (2019). Note that test dynamics have different dynamics parameters
from training dynamics. We provide detailed descriptions of our environments in Appendix A.

Offline data collection. We follow the same procedure for offline data collection in Li et al. (2020).
Specifically, we train policies using soft actor-critic (Haarnoja et al., 2018) for every single dynamics
and collect trajectories every 50K timesteps. Collected trajectories have diverse qualities; trajectories
from early timestep are likely to have lower average return, while later ones have higher return. For
collecting each trajectory, we set the max horizon T as 200 following Li et al. (2020) and Lin et al.
(2022). We provide detailed statistics of collected offline datasets in Appendix B.

Implementation details. We largely follow the implementation details of the original Decision
Transformer (Chen et al., 2021). Specifically, we train DADT for 1M steps using AdamW optimizer
(Loshchilov & Hutter, 2017) with a learning rate of 3× 10−5 containing linear warmup steps of 10K,
weight decay of 10−4, gradient clip of 1.0, and batch size of 64. For fine-tuning DADT on unseen

5



Table 2: Normalized average return on test dynamics with episode length 200 in zero-shot scenario
across 5 runs. We mark the scores within one standard deviation from the highest average score to be
bold. Transformer-BC trains transformer using behavior cloning without return-to-go conditioning.

Walker Hopper HalfCheetah SlimHumanoid Ant

Transformer-BC 46.50 ± 7.66 62.63 ± 7.25 16.31 ± 2.87 38.87 ± 3.94 34.37 ± 0.48

DT (Chen et al., 2021) 59.81 ± 6.30 71.49 ± 4.66 20.86 ± 2.30 39.93 ± 3.62 32.04 ± 2.28

DADT (Ours) 61.12 ± 4.99 74.69 ± 4.22 16.29 ± 1.95 42.03 ± 1.68 35.87 ± 1.62

dynamics, we train DADT with a learning rate of 10−5, weight decay of 10−2, and batch size of 32.
We provide further implementation details in Appendix C.

Evaluation protocol. We train DADT and baselines with 5 independent runs and evaluate them
across 5 (unseen) test dynamics. To assess performance in the test dynamics, we measure returns
of 10 rollouts whose max timestep is 200. Then, to facilitate comparison across different envi-
ronments, we normalize returns for each dynamics to the range between 0 to 100, by computing
Normalized_return = 100 × return−random_return

expert_return−random_return following setups in Chen et al. (2021)
and Fu et al. (2020). For random_return and expert_return, we use minimum/maximum return
of collected trajectories, respectively, which are collected periodically while training a soft actor-critic
(Haarnoja et al., 2018) for each test dynamics. Finally, we average out 5 (runs) ×5 (test dynamics)
×10 (rollouts) number of returns to measure performance. For DADT and baselines, we measure the
test performance periodically during training and report the best return.

Baselines. To evaluate the performance of our method, we consider the following state-of-the-art
methods for offline dynamics generalization:

• FOCAL (Li et al., 2020): an offline model-free actor-critic meta-RL method with (i) a determin-
istic context encoder for efficient task inference and (ii) behavior regularization (Wu et al., 2019)
to mitigate bootstrapping errors from offline dataset. We only evaluate FOCAL in a zero-shot
setup because FOCAL is designed to be fully offline without adaptation to unseen dynamics.
In particular, context encoder in FOCAL is trained with distance metric loss (Sohn, 2016) that
pushes away samples from other dynamics in the embedding space. This makes it non-trivial
to fine-tune the model using samples from a single unseen dynamics. A comparison with this
method shows that DADT could capture the context of different dynamics without contrastive
learning.

• MerPO (Lin et al., 2022): an offline model-based meta-RL method in which proximal meta-
learning (Zhou et al., 2019) is used for training both task-specific dynamics model and task-
specific actor-critic networks. We report evaluation results (i) using meta-policy and meta-
dynamics model without adaptation (zero-shot) and (ii) using task-specific policy and dynamics
model after adaptation to unseen dynamics (adaptation). A comparison with this method shows
that simple supervised learning scheme with transformer-based model could perform comparably
or better than complex meta-learning approaches (Finn et al., 2017; Stadie et al., 2018; Rothfuss
et al., 2018; Mitchell et al., 2021).

5.2 How does DADT perform compared to prior state-of-the-art methods?

We compare DADT to the prior state-of-the-art methods in two scenarios: zero-shot and adaptation.
As shown in Table 1, DADT surpasses the prior arts across all the environments and evaluation
scenarios. We also find that DADT without any adaptation outperforms adapted MerPO in 4 out of 5
environments, which further highlights the dynamics generalization capability of DADT. We also
emphasize that DADT does not use any dynamics annotation in training, while other baselines are
trained with trajectories annotated with dynamics-id.

5.3 How does DADT perform compared to DT and BC?

To investigate the effect of the proposed auxiliary next state prediction for improving dynamics
generalization, we compare DADT with DT in Table 2 in a zero-shot setup, where the same network
architecture and hyperparameters are used for both DADT and DT. We find that DADT outperforms

6



Table 3: Aggregated prediction error of DT+ and DADT on test dynamics across 5 runs. We mark
the scores with one standard deviation from the lowest prediction error to be bold. DT+ is a variant
of DT, which is trained using only action prediction loss, and then the additional linear layer for state
prediction is stacked and trained on top of the (frozen) trained DT.

Walker Hopper HalfCheetah SlimHumanoid Ant

DT+ 0.2314 ± 0.0050 0.3346 ± 0.0115 0.8001 ± 0.0157 0.4766 ± 0.0113 0.6160 ± 0.0522

DADT (Ours) 0.0105 ± 0.0003 0.0180 ± 0.0004 0.0368 ± 0.0051 0.0230 ± 0.0004 0.0094 ± 0.0005

DT, demonstrating the effectiveness of the proposed prediction loss. Moreover, we also compare DT
and DADT with Transformer-BC, which does not condition on return-to-go and is trained in a manner
of behavior cloning (BC). We find that both DT and DADT significantly outperform Transformer-BC.
These results exhibit that return-to-go conditioned training is more capable of processing offline
dataset, which contains suboptimal behaviors, more effectively than BC in dynamics generalization.

5.4 Jointly optimizing state and action prediction boosts dynamics generalization

To further investigate whether including the proposed auxiliary state prediction loss is helpful for
dynamics generalization, we compare our method and alternative training scheme, which also learns
state prediction but in a different manner, with respect to next state prediction error in unseen
dynamics. In this context, we design DT+, a variant of DT; it is trained using only action prediction
loss (as the original DT does), and then the additional linear layer for state prediction is stacked and
trained on top of the (frozen) trained transformer. Namely, a comparison between our DADT and
DT+ could support how jointly optimizing state prediction loss can help transformer’s capabilities of
dynamics generalization. As shown in Table 3, DADT exhibits far lower next state prediction error
across the environments even if DT+ uses the same amount of data and same objective function. This
result further supports that learning next state prediction in joint with action conditioned on desired
return is effective in dynamics generalization.

5.5 How is DADT compute-efficient?

FOCAL MerPO DADT (Ours)0

5

10

15

20

25

Th
ro

ug
hp

ut
 (g

ra
d 

/ s
ec

)

4.94 3.45

23.46

Figure 3: Throughput of DADT and
baselines on Ant environment.

Figure 3 shows the training throughput of DADT and base-
lines on Ant environment. The throughput is measured
as the number of updated gradient steps per second on
a single GeForce RTX 2080 Ti GPU and an Intel Xeon
CPU E5-2630 @ 2.80GHz. We find that DADT requires
about 6x less time than other baselines. This is because
FOCAL has quadratic time complexity in distance metric
learning, and MerPO trains separated networks for dynam-
ics model and policy in order, while DADT jointly trains
both return-conditioned policy and dynamics information
in linear time complexity with single transformer.

5.6 Importance of transformer architecture in next state prediction

Walker Hopper HalfCheetah SlimHumanoid Ant
10

2

10
1

10
0

10
1

Av
er

ag
e 

Pr
ed

ic
tio

n 
Er

ro
r

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

MLP LSTM CaDM DADT (Ours)

Figure 4: Average next state prediction error
on unseen dynamics across 5 runs of DADT
and baseline architectures. Y-axis is repre-
sented on the log-scale.

To further investigate the source of capabilities for
dynamics generalization of DADT, we compare
next state prediction error of DADT and alterna-
tive architectures. For the comparison, we consider
three types of architectures: Multi-Layer Perceptron
(MLP), LSTM (Hochreiter & Schmidhuber, 1997),
and Context-aware Dynamics Model (CaDM) (Lee
et al., 2020), which extracts context from history of
state-action pairs to predict next state. We remark
that MLP only consumes the current state without
considering past transitions, while LSTM and CaDM
watch a fixed number of past transitions along with
recurrent model and ensemble of MLPs, respectively.

7



As shown in Figure 2, we observe that DADT shows a far low prediction error overall. This result
demonstrates that the generalization ability of DADT comes from the high state prediction ability of
transformer architecture.

FOCAL MerPO DADT (Ours)
0

50

100

150

200

250

300
N

or
m

al
iz

ed
 A

ve
ra

ge
 R

et
ur

n

198.69

167.01

230.00

123.89
143.38

162.31

(a) Zero-shot

MerPO DADT (Ours)
0

50

100

150

200

250

300

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
et

ur
n

189.94

265.67

169.80

266.89

(b) Adaptation

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

100% 30%

Figure 5: Normalized average return on test dynamics of baseline models and DADT trained with
different subset of data. We sort trajectories contained in offline dataset with increasing order of
episode returns, and X% denotes how much we use the dataset starting from the trajectory of the
lowest return. Namely, in the setting of 30%, models are much likely to be trained using sub-optimal
offline dataset in training than the setting of 100%.

5.7 How does DADT perform in low data-quality regime compared to baselines?

To investigate how DADT performs in a low data-quality regime, we compare DADT and baselines
with a subset of offline dataset , which is consisted of suboptimal trajectories. Specifically, we build
a new offline dataset by selecting trajectories of which the average return is in the bottom 30% of
the original offline dataset; note that the dataset for adaptation is not re-built. As shown in Figure 5,
DADT shows the best performance both in zero-shot and adaptation in the low data-quality regime.

5.8 How does balancing coefficient affect performance?
Table 4: Aggregated evaluation result
of DADT with varying balancing coeffi-
cient λ.

λ Average return

0.01 45.56 ± 19.58

0.05 46.17 ± 20.74

0.1 45.97 ± 20.93

0.5 45.62 ± 19.83

1.0 44.10 ± 19.55

Finally, we investigate how the the balancing coefficient λ,
which determines how state prediction loss occupies total
loss, affects the performance of DADT. Figure 4 shows the
overall performance in unseen dynamics by aggregating
the average return across all environments with different λ.
One can observe that the difference in performance by λ is
not significant. This result indicates that our performance
of DADT is robust to the choice of hyperparameter λ.

6 Conclusion

In this work, we proposed Dynamics-Augmented Decision
Transformer (DADT), a simple yet effective transformer-based model for offline dynamics generaliza-
tion with auxiliary state prediction loss. We have shown that our model outperforms state-of-the-art
algorithms in various control tasks. Remarkably, DADT without additional adaptation surpasses
fine-tuned baselines in unseen dynamics. We believe that DADT will guide new interesting directions
in offline dynamics generalization.

Limitation. While our work shows impressive results in offline dynamics generalization with various
continuous control tasks, we have considered the limited context of varying dynamics (i.e., mass,
friction, and inertia). However, in the real world, agents often encounter a more diverse and difficult
situation of dynamics generalization rather than varying dynamics coefficient, i.e., navigating various
shapes of mazes. Therefore, it would be an interesting future direction to extend our work into a
more complex setting with more practical experimental setups like autonomous driving (i.e., CARLA
(Dosovitskiy et al., 2017)). Extending our work into setups where reward function also changes along
with varying dynamics would be an interesting future step.

8



References
Ba, Jimmy Lei, Kiros, Jamie Ryan, and Hinton, Geoffrey E. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

Ball, Philip J, Lu, Cong, Parker-Holder, Jack, and Roberts, Stephen. Augmented world models
facilitate zero-shot dynamics generalization from a single offline environment. In International
Conference on Machine Learning, pp. 619–629. PMLR, 2021.

Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig, Schneider, Jonas, Schulman, John, Tang, Jie,
and Zaremba, Wojciech. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Brown, Tom, Mann, Benjamin, Ryder, Nick, Subbiah, Melanie, Kaplan, Jared D, Dhariwal, Prafulla,
Neelakantan, Arvind, Shyam, Pranav, Sastry, Girish, Askell, Amanda, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Cang, Catherine, Rajeswaran, Aravind, Abbeel, Pieter, and Laskin, Michael. Behavioral priors
and dynamics models: Improving performance and domain transfer in offline rl. arXiv preprint
arXiv:2106.09119, 2021.

Chen, Lili, Lu, Kevin, Rajeswaran, Aravind, Lee, Kimin, Grover, Aditya, Laskin, Misha, Abbeel,
Pieter, Srinivas, Aravind, and Mordatch, Igor. Decision transformer: Reinforcement learning via
sequence modeling. Advances in neural information processing systems, 34, 2021.

Chowdhery, Aakanksha, Narang, Sharan, Devlin, Jacob, Bosma, Maarten, Mishra, Gaurav, Roberts,
Adam, Barham, Paul, Chung, Hyung Won, Sutton, Charles, Gehrmann, Sebastian, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, and Toutanova, Kristina. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Dosovitskiy, Alexey, Ros, German, Codevilla, Felipe, Lopez, Antonio, and Koltun, Vladlen. Carla:
An open urban driving simulator. In Conference on robot learning, pp. 1–16. PMLR, 2017.

Dosovitskiy, Alexey, Beyer, Lucas, Kolesnikov, Alexander, Weissenborn, Dirk, Zhai, Xiaohua,
Unterthiner, Thomas, Dehghani, Mostafa, Minderer, Matthias, Heigold, Georg, Gelly, Sylvain,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Duan, Yan, Schulman, John, Chen, Xi, Bartlett, Peter L, Sutskever, Ilya, and Abbeel, Pieter. Rl 2:
Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

Dulac-Arnold, Gabriel, Mankowitz, Daniel, and Hester, Todd. Challenges of real-world reinforcement
learning. arXiv preprint arXiv:1904.12901, 2019.

Emmons, Scott, Eysenbach, Benjamin, Kostrikov, Ilya, and Levine, Sergey. Rvs: What is essential
for offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Finn, Chelsea, Abbeel, Pieter, and Levine, Sergey. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Fu, Justin, Kumar, Aviral, Nachum, Ofir, Tucker, George, and Levine, Sergey. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, Scott, Meger, David, and Precup, Doina. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Gupta, Abhishek, Mendonca, Russell, Liu, YuXuan, Abbeel, Pieter, and Levine, Sergey. Meta-
reinforcement learning of structured exploration strategies. Advances in neural information
processing systems, 31, 2018.

Haarnoja, Tuomas, Zhou, Aurick, Abbeel, Pieter, and Levine, Sergey. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

9



Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Janner, Michael, Li, Qiyang, and Levine, Sergey. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34, 2021.

Lange, Sascha, Gabel, Thomas, and Riedmiller, Martin. Batch reinforcement learning. In Reinforce-
ment learning, pp. 45–73. Springer, 2012.

Lee, Kimin, Seo, Younggyo, Lee, Seunghyun, Lee, Honglak, and Shin, Jinwoo. Context-aware
dynamics model for generalization in model-based reinforcement learning. In International
Conference on Machine Learning, pp. 5757–5766. PMLR, 2020.

Lee, Kuang-Huei, Nachum, Ofir, Yang, Mengjiao, Lee, Lisa, Freeman, Daniel, Xu, Winnie, Guadar-
rama, Sergio, Fischer, Ian, Jang, Eric, Michalewski, Henryk, et al. Multi-game decision transform-
ers. arXiv preprint arXiv:2205.15241, 2022.

Levine, Sergey, Kumar, Aviral, Tucker, George, and Fu, Justin. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Li, Lanqing, Yang, Rui, and Luo, Dijun. Focal: Efficient fully-offline meta-reinforcement learning
via distance metric learning and behavior regularization. arXiv preprint arXiv:2010.01112, 2020.

Lin, Sen, Wan, Jialin, Xu, Tengyu, Liang, Yingbin, and Zhang, Junshan. Model-based offline
meta-reinforcement learning with regularization. In International Conference on Learning Repre-
sentations, 2022. URL https://openreview.net/forum?id=EBn0uInJZWh.

Loshchilov, Ilya and Hutter, Frank. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Melo, Luckeciano C. Transformers are meta-reinforcement learners. arXiv preprint arXiv:2206.06614,
2022.

Mitchell, Eric, Rafailov, Rafael, Peng, Xue Bin, Levine, Sergey, and Finn, Chelsea. Offline meta-
reinforcement learning with advantage weighting. In International Conference on Machine
Learning, pp. 7780–7791. PMLR, 2021.

Rae, Jack W, Borgeaud, Sebastian, Cai, Trevor, Millican, Katie, Hoffmann, Jordan, Song, Francis,
Aslanides, John, Henderson, Sarah, Ring, Roman, Young, Susannah, et al. Scaling language
models: Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446,
2021.

Rakelly, Kate, Zhou, Aurick, Finn, Chelsea, Levine, Sergey, and Quillen, Deirdre. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Ramesh, Aditya, Pavlov, Mikhail, Goh, Gabriel, Gray, Scott, Voss, Chelsea, Radford, Alec, Chen,
Mark, and Sutskever, Ilya. Zero-shot text-to-image generation. arXiv preprint arXiv:2102.12092,
2021.

Ramesh, Aditya, Dhariwal, Prafulla, Nichol, Alex, Chu, Casey, and Chen, Mark. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Reed, Scott, Zolna, Konrad, Parisotto, Emilio, Colmenarejo, Sergio Gomez, Novikov, Alexander,
Barth-Maron, Gabriel, Gimenez, Mai, Sulsky, Yury, Kay, Jackie, Springenberg, Jost Tobias, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Rothfuss, Jonas, Lee, Dennis, Clavera, Ignasi, Asfour, Tamim, and Abbeel, Pieter. Promp: Proximal
meta-policy search. arXiv preprint arXiv:1810.06784, 2018.

Schmidhuber, Juergen. Reinforcement learning upside down: Don’t predict rewards–just map them
to actions. arXiv preprint arXiv:1912.02875, 2019.

10

https://openreview.net/forum?id=EBn0uInJZWh


Seo, Younggyo, Lee, Kimin, Clavera Gilaberte, Ignasi, Kurutach, Thanard, Shin, Jinwoo, and Abbeel,
Pieter. Trajectory-wise multiple choice learning for dynamics generalization in reinforcement
learning. Advances in Neural Information Processing Systems, 33:12968–12979, 2020.

Sohn, Kihyuk. Improved deep metric learning with multi-class n-pair loss objective. Advances in
neural information processing systems, 29, 2016.

Srivastava, Rupesh Kumar, Shyam, Pranav, Mutz, Filipe, Jaśkowski, Wojciech, and Schmidhuber, Jür-
gen. Training agents using upside-down reinforcement learning. arXiv preprint arXiv:1912.02877,
2019.

Stadie, Bradly C, Yang, Ge, Houthooft, Rein, Chen, Xi, Duan, Yan, Wu, Yuhuai, Abbeel, Pieter,
and Sutskever, Ilya. Some considerations on learning to explore via meta-reinforcement learning.
arXiv preprint arXiv:1803.01118, 2018.

Sutton, Richard S and Barto, Andrew G. Reinforcement learning: An introduction. MIT Press, 2018.

Todorov, Emanuel, Erez, Tom, and Tassa, Yuval. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion, Gomez, Aidan N,
Kaiser, Łukasz, and Polosukhin, Illia. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, Tingwu, Bao, Xuchan, Clavera, Ignasi, Hoang, Jerrick, Wen, Yeming, Langlois, Eric, Zhang,
Shunshi, Zhang, Guodong, Abbeel, Pieter, and Ba, Jimmy. Benchmarking model-based reinforce-
ment learning. arXiv preprint arXiv:1907.02057, 2019.

Wu, Yifan, Tucker, George, and Nachum, Ofir. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Zambaldi, Vinicius, Raposo, David, Santoro, Adam, Bapst, Victor, Li, Yujia, Babuschkin, Igor, Tuyls,
Karl, Reichert, David, Lillicrap, Timothy, Lockhart, Edward, et al. Deep reinforcement learning
with relational inductive biases. In International conference on learning representations, 2018.

Zhou, Pan, Yuan, Xiaotong, Xu, Huan, Yan, Shuicheng, and Feng, Jiashi. Efficient meta learning via
minibatch proximal update. Advances in Neural Information Processing Systems, 32, 2019.

Zintgraf, Luisa, Shiarlis, Kyriacos, Igl, Maximilian, Schulze, Sebastian, Gal, Yarin, Hofmann, Katja,
and Whiteson, Shimon. Varibad: A very good method for bayes-adaptive deep rl via meta-learning.
arXiv preprint arXiv:1910.08348, 2019.

11



A Environment details

We use 5 simulated robotic control environments from OpenAI Gym (Brockman et al., 2016). We
largely follow the implementation details of the Gym 1 for resetting agent state and shaping reward
function of Walker, Hopper, HalfCheetah, and Ant. For SlimHumanoid, we change the environment
code of Humanoid in Gym, following the description in (Wang et al., 2019).

Walker. Walker is a two-dimensional two-legged figure with 7 rigid links, including a torso and
2 legs. The goal is to move forward as fast as possible while maintaining the standing height and
consuming as small control input as possible.

• Observation. Observation is a 17-dimensional vector that includes 1) root joint’s position, 2)
angular position and velocities.

• Action. a ∈ [−1.0, 1.0]6 represents torques applied at six joints connecting the six body parts.

• Reward. rt = ẋtorso,t − 0.001∥at∥2 where ẋtorso,t represents forward velocity of the torso. We
also add an alive bonus of 1 to the agents at every time-step.

Hopper. Hopper is a two-dimensional one-legged figure consisting of 4 rigid links, including a torso,
thigh, leg, and foot. The goal is to move forward as fast as possible while maintaining the standing
height and consuming as small control input as possible.

• Observation. Observation is a 11-dimensional vector that includes the angular position and
velocity of all the joints, except for the x position of the root joint.

• Action. a ∈ [−1.0, 1.0]3 represents torques applied at three joints connecting the four body parts.

• Reward. rt = ẋtorso,t − 0.001∥at∥2, where ẋtorso,t represents forward velocity of the torso. We
also add an alive bonus of 1 to the agents at every time-step.

HalfCheetah. HalfCheetah is a two-dimensional two-legged figure. It consists of 7 rigid links (1
for torso, 3 for forlimb„ 3 for hindlimb). It is connected by 6 joints, to which an actuator is attached
per each joint. The goal is to move forward as quickly as possible while minimizing the cost for
controlling agent as small as possible.

• Observation. Observation is given by a 17-dimensional vector that includes 1) root joint’s position
(except for the x-coordinate) and velocity, and 2) center of mass of the torso.

• Action. a ∈ [−1.0, 1.0]6 represents torques applied at six joints.

• Reward. rt = ẋtorso,t − 0.1∥at∥2, where ẋtorso,t represents forward velocity of the torso.

SlimHumanoid. Humanoid is a 3D robot for simulating a human. It has a pair of legs and arms
unlike other environments, which is consisted of 13 rigid links, 17 actuators. The goal is to move
forward as quickly as possible while minimizing the cost for controlling agent as small as possible.
SlimHumanoid Wang et al. (2019) is a variant of Humanoid with limited observation and ease of
use. Specifically, there are some changes in observation details (excluding the center of mass-based
quantities, external force, and actuator force) and reward function (no penalizing on external force).

• Observation. Observation is a 45-dimensional vector that includes angular position and velocities.

• Action. a ∈ [−0.4, 0.4]17 represents torques applied at seventeen joints.

• Reward. 5/4× ẋt− 0.1∥at∥22+5× bool(1.0 <= zt <= 2.0), where ẋtorso,t represents forward
velocity of the torso, and zt is the height of the torso. We also add an alive bonus of 5 to the
agents at every time-step.

1https://github.com/openai/gym

12

https://github.com/openai/gym


Ant. Ant is a 3D ant-like robot consisting of a torso with 4 legs, each of which is connected with
2 joints. There are 8 actuators consisting of 13 rigid links. The goal is to move forward as fast as
possible while maintaining the standing height and consuming as small control input as possible.

• Observation. Observation is a 27-dimensional vector that includes angular position and velociyu
of all 8 joints, except for the x and y positions of the root joints.

• Action. a ∈ [−1.0, 1.0]8 represents torques applied at eight joints connecting the two links of
each leg and torso.

• Reward. rt = ẋtorso,t − 0.5∥at∥22 − 0.5 × 0.001× + 1.0, where ẋtorso,t represents forward
velocity of the torso. We also add an alive bonus of 1 to the agents at every time-step.

13



B Offline dataset details

Dataset Collection. For each environment, we collect 20 train dynamics and 5 test dynamics by
changing the parameter of the agent, specifically body mass, body inertia, damping, and friction.
Parameters of each dynamics are randomly chosen by multiplying coefficient (1) 1.5r, r ∼ Uni(−3, 3)
for mass, inertia, friction and (2) 1.3r, r ∼ Uni(−3, 3) for damping with initial values.

We train policies using SAC Haarnoja et al. (2018) for every single dynamics. We skipped the first
50K steps for warm-up. For collecting datasets with diverse qualities, we collect 50 random rollouts
from trained policies every 50K timesteps. The total dataset size of each environment is from 1.3GB
(Hopper) to 1.7GB (Ant).

You can download the dataset we used for experiments in the link below2.

Normalization. Return statistics of the collected offline trajectories can be found in Table 5. We
used the minimum and maximum value among test dynamics of each environment for normalizing
the average return in evaluation.

Table 5: The return statistics of offline trajectories for test dynamics. We mark the minimum/maximum
scores of each environment used for normalization to be bold. We used scores marked to be bold for
normalizing average return.

Walker

Dynamics 20 Dynamics 21 Dynamics 22 Dynamics 23 Dynamics 24

min -15.56 123.40 -17.73 -13.32 52.18
max 645.11 769.63 674.81 725.99 645.11
mean 519.47 548.16 496.15 514.39 519.47

Hopper

Dynamics 20 Dynamics 21 Dynamics 22 Dynamics 23 Dynamics 24

min 129.77 10.72 8.66 12.70 15.53
max 678.26 754.62 710.44 668.36 682.38
mean 537.53 605.03 555.52 542.72 615.87

HalfCheetah

Dynamics 20 Dynamics 21 Dynamics 22 Dynamics 23 Dynamics 24

min 149.69 69.57 168.52 31.33 71.92
max 1681.41 2032.87 1484.98 1419.93 2248.80
mean 1222.03 1412.65 1281.07 1003.75 1686.36

SlimHumanoid

Dynamics 20 Dynamics 21 Dynamics 22 Dynamics 23 Dynamics 24

min 148.34 147.26 128.95 106.63 102.19
max 975.08 1061.81 1107.90 1261.80 1217.33
mean 444.97 461.60 495.55 512.27 537.16

Ant

Dynamics 20 Dynamics 21 Dynamics 22 Dynamics 23 Dynamics 24

min -61.30 -29.38 -27.31 -60.95 -68.82
max 786.27 910.21 968.01 744.02 1354.02
mean 348.11 494.00 431.37 255.81 858.21

2https://drive.google.com/file/d/1vWoceRc8eFzCNdTUHe44w2Cgreeru9NV/view?usp=
sharing

14

https://drive.google.com/file/d/1vWoceRc8eFzCNdTUHe44w2Cgreeru9NV/view?usp=sharing
https://drive.google.com/file/d/1vWoceRc8eFzCNdTUHe44w2Cgreeru9NV/view?usp=sharing


C Implementation details

In this section, we will explain the implementation details and resources used for training and
evaluating DADT. Specifically, we train DADT for 1M steps using AdamW optimizer (Loshchilov &
Hutter, 2017) with a learning rate of 3× 10−5 containing linear warmup steps of 10K, weight decay
of 10−4, gradient clip of 1.0, and batch size of 64. For fine-tuning DADT on unseen dynamics, we
train DADT with a learning rate of 10−5, weight decay of 10−2, and batch size of 32. We include the
code of DADT in the supplementary material.

Evaluation Protocol To facilitate comparison across different environments, we normalize re-
turns for each dynamics to the range between 0 to 100, by computing Normalized_return =
100 × return−random_return

expert_return−random_return following setups in Chen et al. (2021) and Fu et al. (2020). For
random_return and expert_return, we use minimum/maximum return of collected trajectories,
respectively, which are collected periodically while training a soft actor-critic (Haarnoja et al., 2018)
for each test dynamics. Finally, we average out 5 (runs) ×5 (test dynamics) ×10 (rollouts) number
of returns to measure performance. For DADT and baselines, we measure the test performance
periodically during training and report the best return.

Hyperparamters. Hyperparameters for DADT are shown in Table 6. We choose target return-to-go,
referring to expert performance for each environment, which is set to a value equivalent to or slightly
above expert performance. We heuristically find that training (1) larger DADT and (2) DADT with
more gradient steps boost the model’s performance but use the current version for faster training and
evaluation.

Table 6: Hyperparameters of DADT.

Hyperparameter Value

Number of layers 3
Number of attention heads 1
Embedding dimension 128
Batch size 64
Context length K 20
Return-to-go conditioning 3000 for HalfCheetah

1000 for Walker, Hopper, SlimHumanoid, Ant
Dropout 0.1
Learning rate 3× 10−5

State prediction weight λ 0.05
Optimizer AdamW (Loshchilov & Hutter, 2017)
Optimizer Momentum β1 = 0.9, β2 = 0.99
Weight decay 10−4

Warm-up steps 10K

Resources. For training and evaluating our model, we use a single NVIDIA GeForce RTX 2080 Ti
GPU and 40 CPU cores (Intel(R) Xeon(R) CPU E5-2630 @ 2.80GHz), taking at most 8 hours for
training and less than 10 seconds for rollout 10 trajectories per evaluation. Compared to the original
DT (Chen et al., 2021), DADT shows no significant increase in training time.

15



D Comparison with Trajectory Transformer

While our next state prediction loss has a connection with that of Trajectory Transformer (Janner
et al., 2021) in that both of them predict next state given past transitions, we remark that DADT does
not use discretization, which might be a negative factor in dynamics generalization. Specifically,
approximating a set of values from different dynamics using the exact discrete quantities could hurt
capturing subtle changes in distinguishing the difference between dynamics.

As table 7 demonstrates, our DADT consistently outperforms TT. We think that the underperforming
of TT is caused by (1) reduced visible context due to per-dimension processing and (2) information
loss from discretization.

Table 7: Normalized average return on test dynamics with episode length 200 across 5 runs. We mark
the scores within one standard deviation from the highest average score to be bold.

Environment Evaluation FOCAL (Li et al., 2020) MerPO (Lin et al., 2022) TT (Janner et al., 2021) DADT (Ours)

Walker Zero-shot 52.44 ± 17.31 40.67 ± 6.66 45.76 ± 12.08 61.12 ± 4.99

Adaptation - 48.11 ± 6.95 32.74 ± 3.3 64.65 ± 4.42

Hopper Zero-shot 41.56 ± 12.44 53.21 ± 1.89 55.22 ± 6.42 74.69 ± 4.22

Adaptation - 57.38 ± 6.24 15.26 ± 6.26 83.11 ± 3.28

HalfCheetah Zero-shot 10.60 ± 4.10 8.06 ± 1.09 9.88 ± 1.80 16.29 ± 1.95

Adaptation - 14.36 ± 3.27 - 23.48 ± 3.39

SlimHumanoid Zero-shot 20.45 ± 1.60 33.73 ± 1.41 20.12 ± 1.07 42.03 ± 1.68

Adaptation - 32.41 ± 1.52 - 39.58 ± 1.79

Ant Zero-shot 18.73 ± 1.28 31.34 ± 0.80 14.79 ± 1.85 35.87 ± 1.62

Adaptation - 37.08 ± 0.79 - 54.85 ± 1.81

16


	Introduction
	Related Work
	Dynamics generalization and adaptation
	RL via sequence modelling

	Preliminaries
	Problem statement
	Transformer

	DADT: Dynamics-Augmented Decision Transformer
	Experiments
	Setups
	How does DADT perform compared to prior state-of-the-art methods?
	How does DADT perform compared to DT and BC?
	Jointly optimizing state and action prediction boosts dynamics generalization
	How is DADT compute-efficient?
	Importance of transformer architecture in next state prediction
	How does DADT perform in low data-quality regime compared to baselines?
	How does balancing coefficient affect performance?

	Conclusion
	Environment details
	Offline dataset details
	Implementation details
	Comparison with Trajectory Transformer

