
Under review as a conference paper at ICLR 2023

CODE MEANS MORE THAN PLAIN LANGUAGE:
BRINGING SYNTAX STRUCTURE AWARENESS TO
ALGORITHMIC PROBLEM SOLUTION GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Program Synthesis (PS) is the task of building computer programs that sat-
isfy problem specifications. Large-scale pre-trained language models treat the
PS as a sequence prediction task, which has gained vivid popularity recently.
However, these methods heavily rely on the conventional Natural Language
Processing (NLP) tokenizers, which overlooks the rich structural/syntax infor-
mation in the code. In this work, we posit that the syntax structures help gen-
erate syntax error-free and algorithmically correct programs. If the program
syntax structures can be integrated into the tokenizer, the program represen-
tation space could be significantly simplified. To this end, we propose a new
end-to-end framework named Syntax Aware Transformer, coupled with our
novel syntax-aware tokenization design toolkit. More specifically, our tok-
enizer encodes and decodes the program by its syntax roles and contents, not
by what is superficially shown on the strings. The Syntax Aware Transformer
encompasses a novel sample-wise and token-wise attention mechanism, and
avails the benefits of training with the syntactically aligned samples from our
tokenization toolkit. Extensive evaluations show superior performance against
state-of-the-arts, which confirms that bringing syntax knowledge into the lan-
guage model can help better capture the data structure and simplify the search
space. All of our codes will be publicly available upon acceptance.

1 INTRODUCTION

The program has long dominated the modern industry. The modern scale language models have
demonstrated the prospectives to automatically analyze, annotate, translate, or synthesis a pro-
gram (Austin et al., 2021; Hendrycks et al., 2021; Chen et al., 2021; Clement et al., 2020; Wang
et al., 2021; Chen et al., 2018b; Bunel et al., 2018; Devlin et al., 2017; Gulwani et al., 2012; Fox
et al., 2018; Ganin et al., 2018). Among these learning tasks, the Program Synthesis (PS), also
widely called as programming by example (PBE), can be defined as the task of developing an
algorithm that meets a specification or a set of constraints.

The classical approaches to program synthesis date back to rule-based program synthesis which
use formal grammar to derive programs from well-defined specifications (Waldinger & Lee, 1969;
Manna & Waldinger, 1971; 1980). More recently, symbolic and neuro-symbolic techniques (Ba-
log et al., 2017; Odena & Sutton, 2019; Ellis et al., 2018; 2020; Devlin et al., 2017; Panchekha
et al., 2015) have been explored, but they have been widely applied to restricted domain-specific
languages (DSLs), which limits algorithm capability. Ulike DSLs, modern general-purpose lan-
guages such as Python require handling high-level control flows (eg. loops and branching) and
low-level operations, and have enormous search space where just a small perturbation of the pro-

1

Under review as a conference paper at ICLR 2023

def is (x : str) �� bool :

" " "

Returns True if given string is

palindrome else Falsea , .

" " "

↵

split string into list of char

n = list (x)

reverse input

= list ()reverse reversed (n)

↵

if n �� :

return True

else

return True

Existing Natural Language based Tokenizers Syntax Aware TokenizerPython Code Input

- Function Signatures

- Variables

- Operators and Callables

- Returns

- Conditionals

- Generic Textual Token

is_palindrome x

n list x

reverse_n list reversed n

if reverse_n��n

True

else

False

is_palindrome x

n list x

reverse_n list reversed n

if reverse_n��n

True

else

False

_ palindrome

n_

reverse n_

Figure 1: Tokenizers’ behavior illustration: given a python code snippet (left), a natural language-
based tokenizer (middle) outputs different token patterns than the proposed syntax aware tok-
enizer (right). The natural language tokenizer will encode a few patterns not related to algorith-
mic performance, such as comments and doc-strings. The spaces and variable names are also
encoded with redundancy, e.g., one python indent could be encoded into four space tokens, and
the variable names could sometimes be broken into multiple sub-words. The syntax-aware tok-
enizer automatically removes the comments and doc-strings, and recognizes the variable names
according to their syntax roles, as well as a few other features. Two layers on the right means
syntax subtokens and content subtokens, respectively.

gram often leads to a complete change of the output. To maneuver through this enormous search
space induced by high-level languages like Python, another series of work frames program syn-
thesis as a sequence prediction problem (Kanade et al., 2020; Feng et al., 2020; Clement et al.,
2020; Svyatkovskiy et al., 2020; Wang et al., 2021) leveraging large-scale models such as trans-
formers. Despite their great successes, these models usually leverage general purpose tokenizers,
and heavily rely on conventional natural language processing (NLP) pretraining techniques on
source code by merely regarding them as a sequence of tokens. These tokenizers are built on
plain texts and are overlooking the rich structural/syntax information in code, which are very
crucial for generating well-structured, syntactically correct, and executable programs.

This paper argues an under-explored theme: can we elegantly embed syntax structural knowledge
into the program synthesis paradigm with the hope of reducing the search space, regularizing
representation structure, and facilitating learning? Our question originates from one straightfor-
ward observation: programming languages have rigid syntax requirements in order to pass the
compilers/interpreters and execute; while on the other hand, natural languages do not have such
harsh requirements. However, previous language models indistinguishably tokenize the program
data as structureless plain texts, using natural language tokenizers. We hence posit that, if syntac-
tical knowledge could be more tightly baked into the learning procedure, the resultant model has
a potential to off-load from understanding and predicting both syntax and content, to focusing
solely on the content.

To this end, we propose ASTer, an integrated syntax aware tokenization design toolkit, together
with a novel transformer model that fits on the syntax knowledge encoded tokens. As illustrated
in Fig. 1, with the syntax structure knowledge baked in, the encoded sequence becomes shorter,
and has its complex syntax structure simplified in a structured way. This eases the task of learn-
ing and optimization of the transformer. Regarding the transformer model, in addition to the
token-wise attention mechanism, we propose a sample-wise attention mechanism in the encoder
to learn attention weights across samples of the training instances, and generate unified vector
representations regardless of sample numbers. Our technical contributions can be summarized
as:

2

Under review as a conference paper at ICLR 2023

• We present a tokenization toolkit for program data that deeply integrates the syntax
structure knowledge into the language modeling for program synthesis, instead of treat-
ing the program as a structure-less string. With the proposed tokenizer, the program data
is encoded into much shorter sequences, and yet with smaller vocabulary sizes, which
greatly reduce search space and facilitate learning.

• We propose a new transformer architecture, which can handle varying sample numbers
as well as varying sample sequence lengths simultaneously. Combined with our tok-
enization toolkit, the ASTer is able to be trained on syntactically aligned data.

• To fully activate the expressiveness of ASTer’s syntactically aligned representation, we
propose a principled data augmentation approach that handles diverse distribution of
algorithmic data, and enables training with non-static data. Extensive experiments show
that ASTer reaches state-of-the-art purely with program I/O and without natural language
description of the task.

2 RELATED WORKS

Synthesizing programs from description and IO pairs is a widely well received benchmark (Chen
et al., 2018b; Bunel et al., 2018; Devlin et al., 2017; Gulwani et al., 2012; Fox et al., 2018;
Ganin et al., 2018), yet is challenging due to an indefinite search space. Recently there has
been a huge surge in exploiting neural networks for program synthesis with extension to general-
purpose programming languages like Python. For example, Devlin et al. (2017) uses an encoder-
decoder style neural network formulating synthesis process as a sequence generation problem,
to significantly outperform non-neural program synthesis approaches on FlashFill task. With the
advent of large-scale pre-trained language models (LMs), (Austin et al., 2021; Hendrycks et al.,
2021; Chen et al., 2021; Clement et al., 2020; Wang et al., 2021) use transformers (Vaswani et al.,
2017) to receive input sequence as problem specification in natural language and generate the
sequence of code as output capitalizing the contextual representations learned from massive data
of codes and natural languages.

Examples include the CodeT5 (Wang et al., 2021), which is built on T5 architecture, leverag-
ing the code semantics conveyed from the developer-assigned identifiers and incorporates the
special characteristics of programming languages such as token types. It prominently focuses
around understanding tasks such as code defect detection, translation, and clone detection. Ope-
nAI Codex Chen et al. (2021) uses GPT-3 architecture, evaluating its synthesis performance on a
new benchmark of simple programming problems. CodeBERT Feng et al. (2020) which is a bi-
modal pre-trained for natural language and programming language like Python, Java, JavaScript,
etc. captures the semantic connection between natural language and programming language.

More recent programming synthesis works such as APPS (Hendrycks et al., 2021) and Alpha-
Code (Li et al., 2022) have shown promising program generation results over interview/contest
difficulty level questions. Yet they still adopt vanilla transformer models and natural language
based tokenizers, which overlook the strict syntax of the programs. More related works on pro-
gramming synthesis are discussed in our Appendix A.1.

3 THE SYNTAX AWARE TOKENIZATION ALGORITHM

We systematically discuss the motivations, benefits, and approaches to build syntax structure
knowledge into the program tokenizer. We take Python3 as the target programming language to be
generated: when it comes to the syntax, we by default are discussing Python3 syntax henceforth.

3

Under review as a conference paper at ICLR 2023

3.1 REVISITING THE NATURAL LANGUAGE TOKENIZERS AND THE MOTIVATION FOR
SYNTAX AWARE TOKENIZER

Language models like BERT, GPT, etc. have recently shown staggering transferability for pro-
gramming language related tasks such as code synthesis, retrieval, translation, classification, com-
pletion, and program repair, and program synthesis, etc. (Li et al., 2022; Wang et al., 2021;
Hendrycks et al., 2021; Chen et al., 2018a; Austin et al., 2021; Clement et al., 2020). Almost all
of these benchmarks leverage the natural language tokenizers to encode and decode programs.
These tokenizers treat the syntax-rich code snippets as naive strings of plain texts. Though such
treatments have become standard and popular in practice nowadays, we note several key gaps
between a program sequence and a plain text sequence.

Existing gaps. First, there are lots of user-defined names in the program, such as
‘def calculate the index of the peak value()’. The natural language tokenizer
might break the function name into multiple sub-words, making the sequence longer. Or, the
tokenizer might include the entire string ‘calculate the index of the peak value’
as one token into its vocabulary, making its vocabulary size gigantic. Both treatments will lead
to extra training difficulty. Similar cases also include the class names, local variable names, and
function argument (function input variable) names. We note that the curse of user defined names
is simply caused by human programmers, not by the PS task itself. If we change these names to
follow another pre-defined pattern, it does not affect the algorithmic meaning and the execution
results, and can largely simplify the representation.

Second, there are some patterns in the program data that do not contain algorithmic meanings
but will affect the string length. Examples include the doc-strings, comments, non-indent spaces
(cnt=1 vs. cnt = 1), empty lines, etc. These patterns ubiquitously exist in the training set,
and can vary sample by sample. They make the dataset noisy and disturb the language model
from learning the truly important algorithmic patterns. The natural language tokenizers are not
designed to handle these patterns, and will faithfully transit these noises to the language model.

Last but not least, the natural language and the programming language have drastically different
tolerance in the string permutation: for natural language, slightly modifying the wording choice
and order, minor spell errors and so on, will not affect the meaning of the sentence. In pro-
gramming languages, these are not the case: any neighborhood sentence re-order, small spelling
change, adding or dropping sentences will lead to significantly different algorithms and the exe-
cution results, or simply result in syntax error, name error, runtime error, etc. In summary, the
natural language tokenizer tends to overlook some critical aspects, while magnifying other
“non-important” patterns (in the algorithmic execution sense).

Motivated by these aforementioned gaps, in this work, we design the program data syntax-aware
tokenizer in lieu of the natural language-based ones. With syntax structure knowledge, the pro-
posed tokenizer is able to identify and focus on the patterns truly tied to algorithmic meaning.
For the non-algorithmic meaning-related patterns (user-defined variable name, doc-strings, com-
ments, non-indent spaces, empty lines, etc.), it will degenerate these cases into the same token
sequence representation. In the above long function name example, the proposed tokenizer will
always tokenize it into one single word, e.g., the ‘function name 4’, which is one of the
variable name holder token from a pre-defined name pool.

The benefits of syntax aware tokenization. We see several potential benefits of this syntax-
aware tokenization, as it reduces the program search space, regularizes the input space struc-
ture, and facilitates learning. First, thanks to the degenerated variable names, the vocabulary
size could be largely reduced. For example, if there are two variables called student num
and student nums within one program, the tokenier might tokenize them into two distinct
word user defined var 7 and user defined var 8 drawn from the name pool instead

4

Under review as a conference paper at ICLR 2023

Instance K
Instance K-1

Instance 2
Instance 1

Batch Size

AST
Based

Tokenizer

INPUT OUTPUT
[0, [2, 3, -1]]. [1, 2]
[2, [4, 2, -2, -4]]. [3, 1]
[-1, [-1, 1]]. [1, 1]

Sample 1

Input
Arguments

Output
Variables

Constant
int

Constant
list

Constant
int

Constant
int

Sample 2, Group
and

Traversal

[2, []]. [0, 0]

0 2 3 -1 1 2

2 2 -2 -4 3 1

-1 -1 1 1 1

2 0 0

4

Syntax Alignment Padding
I/O Data (e.g., list of integers,

strings, etc.)

Syntax-aware tokenization: parse syntax
tree, node grouping, and pre-order traversal

Syntax and content subtokens,
padded and aligned to syntax role

Figure 3: The syntax aware tokenization for the I/O data. Same as programs, the I/O data is
also parsed into the syntax tree before tokenized. The syntax awareness also enables syntax role
alignment-based padding, instead of naive tail padding or front padding.

of [student, , num] and [student, , nums], which have common prefixes, and
could take extra attention budgets.

On the other hand, due to the doc-string and comment removal, and the automatic detection
of syntax entity without breaking any entity into multiple sub-words, the token sequence could
be shortened too. In this way, the output program search space could be reduced dramatically.
Besides the output program search space simplification, syntax awareness can also regularize the
input space during padding. Since the input to the model is the program I/O data with strict
syntax structure, when we pad across samples with different sequence length, the tokenizer is
able to maximally align the syntax role, as shown in Fig. 3, unlike natural language tokenizers
that pad indistinguishably to the end or front across samples. Next we discuss the details of the
tokenization algorithm.

3.2 THE SYNTAX AWARE TOKENIZATION ALGORITHM Assign(1
 targets=[Name(2
 id='reverse_n', 3
 ctx=Store())], 4
 value=Call(5
 func=Name(6
 id='list', 7
 ctx=Load()), 8
 args=[Call(9
 func=Name(10
 id='reversed', 11
 ctx=Load()), 12
 args=[Name(13
 id='n', 14
 ctx=Load())], 15
 keywords=[])], 16
 keywords=[]), 17
 type_comment=None) 18

Figure 2: A sub part
of the AST parsed
syntax tree, from the
sentence reverse n =
list(reversed(n))
in the is-palindrome ex-
ample. The full tree is in
Fig. 9 of Appendix (106
lines in total).

To capture the syntax structure of the programming language, we re-
sort to the abstract syntax tree (AST), a python built-in package. An
example subtree is shown in Fig. 2.

Given the parsed tree from AST, our goals are as follows: (1) de-
sign an encoding algorithm to serialize this tree representation into
token sequences, which preserve full information of the original tree;
and (2) design the paired decoding algorithm to convert a given to-
ken sequence back to the original code. In fact, when we view this
tree as a string, it contains two parts, the content part, such as the
reverse n, list, reversed, n; and the syntax part which is
“everything else”. Therefore, we design the sequence structure as the
interleaved syntax subtokens and content subtokens, with the syntax
subtokens gluing the content subtokens. It is easy to observe that the
relationship always satisfies: number of syntax subtokens
= number of content subtokens + 1. A complete illus-
tration of syntax subtokens and content subtokens are shown in Ta-
ble 4, where this relationship can be more clearly visualized.

Given the syntax subtoken and content subtoken design, the decoding
algorithm is obvious: first interleave the syntax and content subto-
kens, then glue them together, and finally unparse back to code using
the AST built-in package. However, the encoding algorithm is non-
trivial nor out-of-the-box due to several reasons.

First, the syntax tree is lengthy (already 106 lines for this sim-
ple is-palindrome program), mainly due to the nested syntax subtree structures. Therefore,

5

Under review as a conference paper at ICLR 2023

Input/Output
Data

Instances
(Batch)

Maximum
Number of

Tokens

Maximum
Number of
Samples

AST
Based

Tokenizer

Sample
Embedder

Problem Description
Encoder

Batch

Natural Language Description

Transformer
Encoder and

Decoder

Tokenized Program

Given an integer n and a list of
numbers, find how many elements are
greater than n.

Given an integer n and a list of
numbers, find how many elements are
greater than n.

Given an integer n and a
list of numbers, find how
many elements are greater
than n.

Figure 4: Overall Model Architecture of ASTer, which consists of the sample embedder, the
problem description embedder, the traditional transformer encoder and decoder. The description
encoder is set as optional.

1 2 1
2 3

8 9 6 9 8

1
0
1

: Padding

input: 121 output: True
input: 23 output: False
input: 89698 output: True
. . .

Model Inputs are I/O data

Instance

Sa
mp
le

I/O Data Dimension Model Outputs are porgram data

Symbolic Program
 Dimension

ASTer

Figure 5: The input and output of the entire workflow: both the I/O data and the program are
parsed, and the I/O data are further padded with syntax roles aligned.

a grouping trick must be developed to maximally compress the syntax component. Sec-
ond, we have to treat this tree as a python object, not as a string; otherwise it will be
difficult to separate the content subtokens and syntax subtokens (since they are all strings).
What’s more, when we replace the user-defined names from pool, we should avoid built-in
names, imported names, and all names that are tied to it. For example, in result = [];
...; print(result, file = dump path), the name print and file should not
be replaced otherwise the functionality will change / be lost, on the other hand, the names
result and dump path are defined by the programmer, hence should be changed from name
pool. As another example, in import numpy as np; x = np.random.randint(n,
size=4), the names numpy, np, random, randint, size are tied to import sen-
tence, hence should not be replaced, while x, n should be replaced; in comparison, in
my generator.random.randint(n, my size=4), the name my generator is a pre-
viously user-defined class name, so all of my generator, random, randint, my size
should be replaced. Give a tree like in Fig. 2, we cannot judge whether a name should be re-
placed or not simply by looking at the name itself, because all names appear as strings. Instead,
we should leverage the syntax object structures to properly handle these challenges. To this end,
we develop an algorithm named Group-On-First-Leaf-Child-Met (Goflec), shown in Table. 1.

Another issue when building the tokenizer is that it is difficult to predict the tokens. This is
straightforward to observe from Fig. 2: the syntax subtokens follow highly non-standard distri-
butions (check Table. 4 for a more clear illustration), and the content subtokens can include a
broad variety of imported names and import-tied names. To address this, we do a sweep across
all samples in the training set prior to model training, update the vocabulary with all syntax and
content subtokens encountered and set the vocabulary as fixed since then.

6

Under review as a conference paper at ICLR 2023

4 TRAINING THE SYNTAX AWARE TRANSFORMER

In this work, we aim to explore and demonstrate: if the tokenizer is designed properly, even with
only the I/O data without the natural language problem description, the model can learn to make
correct predictions. To achieve this goal, the model design should also be carefully designed, and
paired with the tokenization algorithm. Next we discuss the model architecture part of ASTer.

4.1 THE MODEL ARCHITECTURE

Unlike traditional NLP, the PS task require mapping a two-dimensional sequence into one di-
mensional sequence (the I/O data has both sample dimension and token dimension). We acco-
modate this with a new transformer architecture that carefully encodes such informations. The
input/output is shown Figure 5, and the overall model architecture is shown in Fig.4, which con-
sists of four components.

Sample Embedder: The sample embedder is provided with I/O data that consist Ninst instances.
Each instance is represented as a matrix Wn ∈ RNsample×Ntoken×E , where Ntoken denotes the
maximum number of tokens, Nsample is the maximum number of samples within the Ninst, and
E represents the token encoding dimension.

As illustrated in Figure 7, the content and syntax subtokens are added with two positional em-
beddings. The tokenizer pads the empty token dimension and the sample dimension to the max-
imum of the corresponding in each batch. This ensures the same syntax role tokens are aligned
across samples. Through first element pooling, the output of the sample embedder is reduced to
Ntoken ×Ninst × E dimension.

Description Embedder: Each instance in the I/O data corresponds to a problem description. We
utilized and fine-tuned two existing pretrained language models to encode them, and output four
distillation tokens: first element, last element, minimum, and maximum pooling. We make this
submodule is optional since access to the problem description could be limited.

Token Encoder, Program Decoder And Loss: After concatenating the problem description and
sample embedder outputs, it then follows traditional transformer encoder and decoder layers. At
the output, we ask the model to predict a interleaved syntax and content subtokens.

4.2 THE DATA AUGMENTATION

To avoid the model from overfitting the training data, and to help to learn the underlying algorith-
mic patterns of I/O to program transitions, we employ a principled way of generating new data
each time. The general principle is to carefully generate I/O data following mixed distributions,
then execute the program to get the output. We discuss this in more details at Appendix A.3.

5 EXPERIMENTS

5.1 DATASETS AND TOKENIZATION RESULTS

Our training instances come from the training set of two benchmark datasets: the code contests
(Li et al., 2022) and APPS (Hendrycks et al., 2021). The code-contests comprises of data scraped
from Codeforces with existing data from Description2Code (Caballero et al., 2016). The APPS
includes code and I/O data from Codewars, AtCoder, Kattis, and Codeforces. Our test set follows
the same setting as the APPS test set, where every instance is tagged with a difficulty level of
“introductory”, “interview” and “competition”.

We first sweep across these two datasets to collect vocabulary, yielding 10048 instances in total.
Here the instance refers to one problem with one natural language task description, multiple I/O
data pairs and multiple code solutions. We refer to this new dataset as STTD (Syntax Tokenization

7

Under review as a conference paper at ICLR 2023

Transferred Dataset). We use the APPS test set part for testing and the rest as our training set. The
number of samples per instance statistics of the STTD are in the first two columns of Table. 1.

After the sweep, we tokenize the program data in APPS and contests, and collected the sequence
length in the first two columns of Table. 1. We found that the proposed syntax-aware tokenizer
encodes the program into shorter sequence, compared with the BERT tokenizer, for example,
in the APPS dataset, the average sequence length is 78.404 syntax subtokens + 77.404 content
subtokens, whereas BERT tokenizer on average generates 176.312 tokens. Note that the syntax
subtoken number is always content subtoken number plus one (see section 3.2), and a language
model could enjoy this almost half-length sequence, just by using two projection heads for the
transformer decoder last hidden layer (one for syntax subtoken, the other for content subtoken).
Though we still use one output projector and train ASTer with doubled sequence length, the
sequence length (i.e., 156.808 for APPS) is still smaller than that of BERT tokenizer 176.312.

In addition to the sequence length, the frequency of the syntax subtokens are shown in Figure 6.
Note that the y-value of the right half of tokens is one, and the majority y-value is small. This
means that only a tiny portion of tokens are truly frequent, and the model will be able to predict
the majority of syntactically correct programs, so long as it has learned how to use this small
subset of tokens on the left side.

STTD APPS (Hendrycks et al., 2021) Contests (Li et al., 2022)
Num. Samples Per Instance Encoded Seq. Length Per Sample Encoded Seq. Length Per Sample

I/O Program ASTer BERT Raw String ASTer BERT Raw String

Mean 73.683 140.065 78.404 176.312 416.419 73.338 176.509 432.566
Median 82.0 25.0 57.0 124.0 278.0 56.0 124.0 289.0
Std. 43.480 450.478 272.911 261.470 618.100 82.547 292.139 780.052
Count 10048 10048 81339 81339 81339 1337655 1337655 1337655

Table 1: The STTD dataset statistics (per-instance, left two columns) and the tokenization se-
quence length statistics (per-sample, right six columns). The syntax-aware tokenizer sequence
length is calculated by the number of syntax subtokens.

5.2 MODELS AND HYPERPARAMETERS

1 1e6 207370
Vocab Tokens

100

101

102

103

104

105

Fr
eq

ue
nc

y
(lo

g)

Figure 6: The count distribution of the
syntax subtokens encountered (higher
value means more frequent tokens).

We train two versions of Syntax Aware Transformer:
The ASTerI/O+BERT, which has access to both the tex-
tual description of the question as well its corresponding
I/O data, and ASTerI/O, which only have access to the
I/O data. For the first one, we employ the BERT (Devlin
et al., 2018) to process descriptions and fixed its param-
eters during the first 5 × 104 training instances. The
rest part of the model as well as the entire ASTerI/O is
trained from scratch. Both models have four sample em-
bedder layers, four transformer embedder layers, eight
transformer decoder layers, the hidden dimensions of sample embedder and encoder are both
1024, and the decoder hidden dimension is 768. At inference, we set the beam search width to be
5. We follow the same evaluation as in APPS and Alphacode on the APPS test set. The results
are shown in Table. 2.

As seen in Table. 2, ASTerI/O reaches the state-of-the-art performance, with much fewer sam-
pling numbers from the transformer (5 beams as opposed to 50000 in Alphacode). In addition,
the ASTerI/O+BERT model performs worse than ASTerI/O. This is possibly due to overfitting the

8

Under review as a conference paper at ICLR 2023

Filtered From(k) Attempts (n) Introductory Interview Competition
n@k syntax pass n@k syntax pass n@k syntax pass

GPT-3 few shot N/A 1 0.20% 31.0% 0.03% 42.0% 0.00% 40.0%
GPT-Neo 2.7B N/A 1 3.90% 87.9% 0.57% 87.9% 0.00% 85.0%
GPT-Neo 2.7B N/A 5 5.50% 97.4% 0.80% 96.0% 0.00% 95.4%

AlphaCode 1B 50000 5 20.36% N/A 9.66% N/A 7.75% N/A

ASTerI/O+BERT (16 samples) 5 1 6.5% 100% 0.75% 98.5% 0.00% 96.7%
ASTerI/O (16 samples) 5 1 26.8% 100% 12.58% 98.8% 8.30% 97.5%
ASTerI/O (4 samples) 5 1 17.6% 100% 8.80% 98.6% 0.50% 97.0%

Table 2: The results of APPS Hendrycks et al. (2021), AlphaCode Li et al. (2022) and the
proposed syntax tokenizer model on the APPS test set.

training data and the decoder over-rely on the natural language part, instead of the I/O data part,
to make its predictions. This is because our training set is relatively small, and when we do the
I/O data augmentation, the language description of the problem remains fixed while the I/O data
keeps mutating. On the other hand, it also demonstrates that simply using the I/O data suffices
for ASTer to infer the algorithm logic behind it.

With regard to the syntax pass (syntax error free) rate, both ASTerI/O+BERT and ASTerI/O stay
competitive, and this number almost did not drop when the samples provided for inference is
dropped from 16 to 4, while only the accuracy significantly drops. It seems that for the ASTer,
making the predictions syntactically correct has been decoupled from making the answer algo-
rithmatically correct, and whenever the input samples is not enough to infer an algorithmically
correct program, the ASTer’s decoder layers tends to blindly predict a random program, with cor-
rect syntax. We hypothesize this is due to the tokenizer has greatly simplified the search space,
making the syntax error-free an easier job for the decoder.

6 CONCLUSION, LIMITATIONS AND DISCUSSIONS

This work proposed ASTer: a novel syntax-aware tokenization toolkit, together with a transformer
architecture that suits the syntax-based tokens. The tokenization algorithm encodes the program
using syntax tree parsing, followed by a leaf node grouping technique. The resulting syntax based
tokens filter out and degenerate every information that is not related to algorithmic meaning.
Experimental results have shown that ASTer has achieved state-of-the-art results with smaller
model sizes and fewer sampling numbers, thanks to the degenerated algorithmic search space.

This work offers a brand new possibility to encode the program data, which analyze and parse
not by partitioning what is superficially shown in the code strings. We have focused on the
tokenization toolkit implementation for the python language, but we see the algorithm is general
to all programming languages, and may immediately boost previous language models (Kanade
et al., 2020; Feng et al., 2020; Clement et al., 2020; Svyatkovskiy et al., 2020; Wang et al., 2021).

Despite the fact that ASTer has achieved state-of-the-art performance using much less sampling
numbers compared with Alphacode, and has a smaller model size, we notice that the performance
come with the cost of sacrificing readability. This is because all the comments and doc-strings
are removed by the tokenizer, and hence the model is unable to predict them. On the other hand,
the variable names are now simply name holders (visualized in Fig. 8), unlike other models that
could predict i, j, n, cnt to represent an integer, nums to represent an one dimensional array
of numbers, etc. We see two ways to address naming blindness and poor readability deficiency.
One way is to disable the name replacement step in the ASTer tokenizer, and train the model with
the actual and diverse name tokens. This will bring back the algorithmic irrelevance, and make
the vocabulary larger, which could possibly downgrade the model performance. Also, this way
does not add back the comments and doc-strings, if they are desired. The second mitigation is
to concatenate ASTer with another transformer encoder-only model. This model specializes to
predict masked variable names and doc-strings given the algorithm skeleton, which is given by
the ASTer output. We leave this as our future work.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

M Balog, AL Gaunt, M Brockschmidt, S Nowozin, and D Tarlow. Deepcoder: Learning to write
programs. In International Conference on Learning Representations (ICLR 2017). OpenRe-
view. net, 2017.

Rastislav Bodı́k and Armando Solar-Lezama. Program synthesis by sketching. 2008.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Lever-
aging grammar and reinforcement learning for neural program synthesis. arXiv preprint
arXiv:1805.04276, 2018.

Ethan Caballero, . OpenAI, and Ilya Sutskever. Description2Code Dataset, 8 2016. URL https:
//github.com/ethancaballero/description2code.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In
International Conference on Learning Representations, 2018a.

Xinyun Chen, Chang Liu, and Dawn Xiaodong Song. Towards synthesizing complex programs
from input-output examples. arXiv: Learning, 2018b.

Xinyun Chen, Dawn Song, and Yuandong Tian. Latent execution for neural program synthesis.
Advances in Neural Information Processing Systems, 2021.

Colin B. Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and Neel Sundaresan.
Pymt5: Multi-mode translation of natural language and python code with transformers. ArXiv,
abs/2010.03150, 2020.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed,
and Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In International
conference on machine learning, pp. 990–998. PMLR, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-Lezama, and Joshua B. Tenen-
baum. Learning libraries of subroutines for neurally-guided bayesian program induction. In
NeurIPS, 2018.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Luc Cary, Lucas Morales,
Luke Hewitt, Armando Solar-Lezama, and Joshua B. Tenenbaum. Dreamcoder: Growing
generalizable, interpretable knowledge with wake-sleep bayesian program learning. ArXiv,
abs/2006.08381, 2020.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,
Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and
natural languages. arXiv preprint arXiv:2002.08155, 2020.

Roy Fox, Richard Shin, Sanjay Krishnan, Ken Goldberg, Dawn Song, and Ion Stoica.
Parametrized hierarchical procedures for neural programming. In International Conference
on Learning Representations, 2018. URL https://openreview.net/forum?id=
rJl63fZRb.

10

https://github.com/ethancaballero/description2code
https://github.com/ethancaballero/description2code
https://openreview.net/forum?id=rJl63fZRb
https://openreview.net/forum?id=rJl63fZRb

Under review as a conference paper at ICLR 2023

Yaroslav Ganin, Tejas D. Kulkarni, Igor Babuschkin, S. M. Ali Eslami, and Oriol Vinyals. Syn-
thesizing programs for images using reinforced adversarial learning. ArXiv, abs/1804.01118,
2018.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In
POPL ’11, 2011.

Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data manipulation using
examples. volume 55, pp. 97–105, January 2012. Invited to CACM Research Highlights.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge
competence with apps. arXiv preprint arXiv:2105.09938, 2021.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning and evaluating
contextual embedding of source code. In ICML, 2020.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with alphacode. arXiv preprint arXiv:2203.07814, 2022.

Zohar Manna and Richard J. Waldinger. Toward automatic program synthesis. Commun. ACM,
14:151–165, 1971.

Zohar Manna and Richard J. Waldinger. A deductive approach to program synthesis. In TOPL,
1980.

Augustus Odena and Charles Sutton. Learning to represent programs with property signatures.
In International Conference on Learning Representations, 2019.

Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. Automatically
improving accuracy for floating point expressions. Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2015.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and
Pushmeet Kohli. Neuro-symbolic program synthesis. arXiv preprint arXiv:1611.01855, 2016.

Oleksandr Polozov and Sumit Gulwani. Flashmeta: a framework for inductive program synthe-
sis. Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2015.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic program optimization. Communica-
tions of the ACM, 59:114–122, 01 2016. doi: 10.1145/2863701.

Rishabh Singh and Armando Solar-Lezama. Synthesizing data structure manipulations from sto-
ryboards. In ESEC/FSE ’11, 2011.

Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodı́k, and Kemal Ebcioglu. Programming
by sketching for bit-streaming programs. In PLDI ’05, 2005.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. Intellicode compose:
code generation using transformer. Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
2020.

11

Under review as a conference paper at ICLR 2023

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Richard J. Waldinger and Richard C. T. Lee. Prow: A step toward automatic program writing. In
IJCAI, 1969.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and generation. ArXiv,
abs/2109.00859, 2021.

12

Under review as a conference paper at ICLR 2023

A APPENDIX

We present a few supplementary results in the following sections. They are aimed to provide
more insights into our related works, tokenization and model.

A.1 CONTINUED RELATED WORKS ON DOMAIN SPECIFIC LANGUAGE AND PROGRAM
SYNTHESIS

Program synthesis tasks can be traced long back to advent of early machine learning research,
where (Waldinger & Lee, 1969) used theorem prover to syntesize LISP programs based on the
formal specification of input-output relations. Recently, it has again received enormous attention
on the back of development of methods for learning programs spanning across multiple domains
such as synthesizing data structure manipulations (Singh & Solar-Lezama, 2011), string program-
ming (Gulwani, 2011; Gulwani et al., 2012), low-level bit manipulation (Solar-Lezama et al.,
2005), etc. Predominantly, the recent approaches for program synthesis operate in a carefully
engineered Domain-Specific Language (DSLs) rather of unrestrained Turing-complete languages
due to enlarge the search space and complicated synthesis (Polozov & Gulwani, 2015; Balog
et al., 2017; Odena & Sutton, 2019; Ellis et al., 2018; 2020; Devlin et al., 2017; Panchekha et al.,
2015). Unlike full-featured programming languages (eg. Python, Java, C++. etc.), DSLs are
programming languages which constrain the search over programs with strong prior knowledge
in the form of a restricted set of programming primitives tuned to the needs of the domain. For
instance, one might invalidate the usage of control flows or loops (eg. if-else,while, etc.),
and restrict only limited primitive operations like concatenation.

Numerous searching approaches such as constraint-based (Bodı́k & Solar-Lezama, 2008), enu-
merative, and stochastic algorithms has been proposed for DSLs supporting different specifi-
cations and domains. A successful example of using stochastic local search to find assembly
programs having same sementics as an input program is STOKE super-optimization (Schkufza
et al., 2016). Despite some noticeable success, these techniques require ample research efforts
and engineering to come up with diligently-designed heuristics for efficient search and they also
suffer from limited applicability and can only generate programs of small size and restricted
types (Parisotto et al., 2016; Balog et al., 2017; Bunel et al., 2018).

A.2 FURTHER DETAILS OF THE TOKENIZATION ALGORITHM

The proposed syntax based tokenizer encdoder algorithm, the Group-On-First-Leaf-Child-Met
(Goflec), is displayed in Algorithm 1. This algorithm is able to maximally compress token se-
quence length, detect all imported names and names that tied to imported names, and remove
doc-strings (in comparison, the comments are already removed by the AST package).

A.3 INPUT DATA GENERATION APPROACH

The algorithmic solutions space, given an instance with a set of I/O data samples is combinato-
rially large – there exist numerous solutions to the same problem. If the samples are not well
distributed, or in other words do not depict a closed-form representation of the underlying causal
logic, the possibility of over-fitting is tremendously high. A model synthesising code solely
based on I/O data is severely limited by the quality of that data.

13

Under review as a conference paper at ICLR 2023

Algorithm 1 The Group-On-First-Leaf-Child-Met (Goflec) Algorithm
Require: Input abstract syntax tree
Ensure: Output syntax subtokens and content subtokens sequence

1: Initialization;
2: while Pre-order traversal not terminated do
3: Get next node;
4: if New node is leaf node then
5: Pack all syntax subtokens seen sofar into one syntax subtoken
6: Pair the syntax subtoken with content subtoken
7: Output to final tokenized sequence and end while loop;
8: else if Loop to the end of a complete sentence then
9: Do grammar analyze to this sentence

10: if This sentence is a doc-string then
11: Remove the current sentence
12: end if
13: for All the variable names in this sentence do
14: if Variable name is linked to any imported name then
15: Do not replace the name;
16: else
17: Replace it from name pool;
18: end if
19: end for
20: end if
21: end while

To help alleviate this issue, we carefully engineer an augmentation pipeline for the generation of
more I/O data samples to reduce variance. Our overall pipeline consists of ➊ structured guessing
of input data candidates, ➋ generating their corresponding outputs by passing inputs to the re-
spective ground truth code, and ➌ filtering out I/O data samples which do not contribute towards
uniformly spanning the output space. The last step is henceforth termed – distribution control.
We explore each of these steps briefly.

1. Guessing of input data candidates: As a true closed form interpretation hard to achieve
(as the length of such a set would be arbitrarily large spanning the complete input data
space), we guess numerous candidate ones which can best represent it. This task is
grows challenging very quickly. Firstly, the format of input data is different for every
single problem in the dataset. There are variations in datatypes (list, int, float, str, bool),
or can be arranged in very specific multi-dimensional nested formats of assorted lengths.
Secondly, the range of values each of these elements can take, and the distribution they
seem to follow is also to be strategically inferred – we also observe correlated distri-

Type Definition Example
Build in python vocabs About 600 common python’s built-in functions and keywords ” name ”, ” package ”, ...
Digit Int representation of single digit number 0,1,2,3,4,5,6,7,8,9
ASCII Character encoding ’a’, ’!’, ’=’, ’0’, ’[SPACE]’,...
Common float Float that appears most common while training 0.1, 0.0001, 0.5, 0.574, ...
Wild token Other tokens collected while training ’numpy’, 12.231, 90000.0, ...

Table 3: Types of content token

14

Under review as a conference paper at ICLR 2023

butions which do not fit under i.i.d. Gaussian nor i.i.d. uniform. Thirdly, few samples
have inputs which are dependent on one another. For instance there exist “master” in-
puts which control the shape of the succeeding inputs. Lastly, all such patterns are to be
deduced just a few given inputs. We have carefully developed a systematic and rigor-
ous input data generation approach capable of recognizing all such patterns in a highly
controlled manner. We discuss this in detail in our Appendix.

2. Generating corresponding output data: With our freshly generated input samples, we
now proceed to generating their corresponding outputs. This is simply done by running
the ground truth solution against these inputs and saving resultant outputs. As we gen-
erate a large amount of input data points, to achieve speed-up we parallelize this step
across multiple CPUs through multiprocessing.

3. Distribution control: Distribution control is essentially present to discard newly gen-
erated I/O data samples which add little to no value to the existing representation being
built up by older I/O data.

These steps are repeated till the desired quota of I/O data is reached. At the end of I/O data
augmentation we have a vastly superior set of samples in terms of their collective presence.

A.4 SAMPLE EMBEDDER

The sample embedder takes in the tokenized I/O data and transforms it into an embedding using
a transformer encoder. Each subtoken and and their positional embeddings are added to form
the sample tokens. The sample tokens are encoded using the proposed sample embedder and the
ouputs are element-wise pooled to create the final embedded representation. Figure 7 provides an
illustrative representation of the same.

A.5 MODEL OUTPUTS

We showcase in Figure 8 the example outputs of Syntax Aware Transformer and the superiority
enjoyed in terms of syntax and content over earlier work.

syn
2Content

Subtoken

Syntax
Subtoken

Positional
Embedding

Positional
EmbeddingSample_id = 1

Token_id = 0

Sample 1
Token 0

Prior to sample embedder: add up subtoken and positional embeddings

Sample 0 Sample 0 Sample K

Transformer Encoder

First
Element
Pooling

Sample Embedder

Figure 7: The architecture of sample embedder.

15

Under review as a conference paper at ICLR 2023

Sample Input Content Syntax

sample 1

Input 1

❑ ♢

❑ ♢
0 Module(body=[Expr(value=List(elts=[List(elts=[List(elts=[Constant(value=
2 kind=None),Constant(value=
3 kind=None),Constant(value=

Input 2

❑ ♢

❑ ♢
0 kind=None)],ctx=Load()),Constant(value=
∅ kind=None)],ctx=Load())],ctx=Load()))],type ignores=[])

sample 2

Input 1

0 Module(body=[Expr(value=List(elts=[List(elts=[List(elts=[Constant(value=
2 kind=None),Constant(value=
3 kind=None),Constant(value=
5 kind=None),Constant(value=
1 kind=None),Constant(value=

Input 2

❑ ♢

❑ ♢
2 kind=None)],ctx=Load()),Constant(value=
∅ kind=None)],ctx=Load())],ctx=Load()))],type ignores=[])

sample 3

Input 1

❑ ♢

4 Module(body=[Expr(value=List(elts=[List(elts=[List(elts=[Constant(value=
5 kind=None),Constant(value=
6 kind=None),Constant(value=
7 kind=None),Constant(value=

Input 2

5 kind=None)],ctx=Load()),Constant(value=
3 ⊕
2 ⊕
∅ kind=None)],ctx=Load())],ctx=Load()))],type ignores=[])’

Table 4: One instance with three exsamples of I/O data. io1 = [[[0,2,3],0], [12,
’abcd’]], io2 = [[[0,2,3,5,1], 2], [43, ’m’]], io3 = [[[4,5,6,7],
532], [9908, ’ss’]]. The ∅ and ⊕ are inter-sample padding.

Figure 8: The example outputs of APPS model (GPT-Neo 2.7B, left) and ASTer (middle and
right, with two different post-naming rules), over the same problem.

16

Under review as a conference paper at ICLR 2023

Module(1
 body=[2
 FunctionDef(3
 name='isPalindrome', 4
 args=arguments(5
 posonlyargs=[], 6
 args=[arg(7
 arg='x', 8
 annotation=Name(9
 id='int', 10
 ctx=Load()), 11
 type_comment=None)], 12
 vararg=None, 13
 kwonlyargs=[], 14
 kw_defaults=[], 15
 kwarg=None, 16
 defaults=[]), 17
 body=[18
 Assign(19
 targets=[Name(20
 id='n', 21
 ctx=Store())], 22
 value=Call(23
 func=Name(24
 id='list', 25
 ctx=Load()), 26
 args=[Call(27
 func=Name(28
 id='str', 29
 ctx=Load()), 30
 args=[Name(31
 id='x', 32
 ctx=Load())], 33
 keywords=[])], 34
 keywords=[]), 35
 type_comment=None), 36
 Assign(37
 targets=[Name(38
 id='reverse_n', 39
 ctx=Store())], 40
 value=Call(41
 func=Name(42
 id='list', 43
 ctx=Load()), 44
 args=[Call(45
 func=Name(46
 id='reversed', 47
 ctx=Load()), 48
 args=[Name(49
 id='n', 50
 ctx=Load())], 51
 keywords=[])], 52
 keywords=[]), 53

 type_comment=None), 54
 If(55
 test=Compare(56
 left=Name(57
 id='n', 58
 ctx=Load()), 59
 ops=[Eq()], 60
 comparators=[Name(61
 id='reverse_n', 62
 ctx=Load())]), 63
 body=[Return(value=Constant(64
 value=True, 65
 kind=None))], 66
 orelse=[Return(value=Constant(67
 value=False, 68
 kind=None))])], 69
 decorator_list=[], 70
 returns=Name(71
 id='bool', 72
 ctx=Load()), 73
 type_comment=None), 74
 Assign(75
 targets=[Name(76
 id='reverse_n', 77
 ctx=Store())], 78
 value=Subscript(79
 value=Constant(80
 value='121', 81
 kind=None), 82
 slice=Slice(83
 lower=None, 84
 upper=None, 85
 step=UnaryOp(86
 op=USub(), 87
 operand=Constant(88
 value=1, 89
 kind=None))), 90
 ctx=Load()), 91
 type_comment=None), 92
 Expr(value=Call(93
 func=Name(94
 id='print', 95
 ctx=Load()), 96
 args=[Call(97
 func=Name(98
 id='isPalindrome', 99
 ctx=Load()), 100
 args=[Name(101
 id='reverse_n', 102
 ctx=Load())], 103
 keywords=[])], 104
 keywords=[]))], 105
 type_ignores=[]) 106

Figure 9: Complete format of our AST tree, in the example of isPalindrome case.

17

	Introduction
	Related Works
	The Syntax Aware Tokenization Algorithm
	Revisiting The Natural Language Tokenizers And The Motivation For Syntax Aware Tokenizer
	The Syntax Aware Tokenization Algorithm

	Training The Syntax Aware Transformer
	The Model Architecture
	The data augmentation

	Experiments
	Datasets And Tokenization Results
	Models and Hyperparameters

	Conclusion, Limitations and Discussions
	Appendix
	Continued Related Works On Domain Specific Language and Program Synthesis
	Further details of the tokenization algorithm
	Input Data Generation Approach
	Sample Embedder
	Model Outputs

