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Abstract. The disclosure of Artificial Intelligence to everyone is sig-
nificantly pushing the need for resource — especially energy — efficient
Machine Learning models. While it is well-established that Artificial In-
telligence can enable and support sustainability in different application
domains, its own sustainability is a critical concern and an open challenge
for research and industry. The need for more accurate Machine Learning
models clashes with the fact that a linear gain in accuracy requires expo-
nentially larger resources: a more complex model, more training data and
experiments, and consequently more computational resources, entailing
a higher energy consumption. This paper proposes an energy efficient
hyperparameter optimization algorithm — namely e2HPO — integrating
into a unique schema recent advances on both cost-aware and multiple in-
formation source Bayesian optimization. Experiments on three common
Machine Learning algorithms whose core hyperparameters have been op-
timized on five different classification datasets empirically prove the ben-
efits of the proposed algorithm. On the other hand, it turned out that
some Machine Learning algorithms exhibit an intrinsic energy efficiency
and this could lead e?HPO — and similar approaches — to underperform
with respect to more naive approaches.

Keywords: GreenAutoML - Hyperparameter optimization - Bayesian
Optimization.

1 Introduction

1.1 Rationale and motivation

In the last decade, Machine Learning (ML) and Deep Learning (DL) enabled
the development of successful Artificial Narrow Intelligence (ANI) solutions in
many domains. More recently, the advent of Generative Pre-trained Transform-
ers (GPTs) has led to the escalating widespread and popularity of Generative
AT (GenAl) for text and image generation. The disclosure of GenAl to everyone
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implies a large use of these tools in everyday life, but with a limited awareness
about their carbon footprint. This is surprising, given that the environmental
crisis is one of the open challenges of this century. For example, asking GPT3
for 10-50 responses is equivalent to consuming a 500ml bottle of water [I4] to
cool the servers, with global AI demand projected to account up to 6.6 billion
cubic meters of water withdrawal in 2027, that is more than the total annual
water withdrawal of 4 — 6 Denmark or half of the United Kingdom [I4]. Despite
the efforts to reduce the AI's water consumption per request, the total water
consumption is expected to rise further as a result of the growing demand for
AT services and the increasing scale of Al applications [20].

ChatGPT is estimated to consume, daily, more than half a million kilowatt-
hours of electricity to handle approximately 200 million requests. Thus, Chat-
GPT’s energy usage is more than 17°000 times that of an average household. As
reported by Business Insider, by 2027 the entire Al sector is estimated to con-
sume 85 to 134 terawatthours annually, equivalent to 0.50% of global electricity
consumption. In its environmental report, released in July 2024, Google declares
that its carbon emissions rose by 48% largely due to Al and data centers.

The environmental impact of an Al model depends not only on its use, but
also development, training, and validation. As reported in [§] and [22], training
a Large Language Model (LLM) by also optimizing its hyperparameters leads
to 300’000 kg of COs emissions, equivalent to 125 round-trip flights between
New York and Beijing. Focusing on improving AI model’s accuracy without
considering energy efliciency is usually (and negatively) referred as Red Al [§]:
as a matter of fact, to obtain a linear gain in accuracy, an exponentially larger
model is required, with consequent need for more training data, experiments,
and computational resources, and, therefore, a worse carbon footprint.

As recently stated in [24], “while AI for sustainability is quite commonly
known, sustainability of Al has long been less of a concern”. Fortunately, re-
searchers are directing their attention at making AI more respectful of environ-
mental sustainability. In 2020, [I9] coined the term Green AI (in opposition to
Red Al) which “refers to AI research that yields novel results while taking into
account the computational cost, encouraging reduction in resources spent”. We
are recently observing a paradigm shift especially in the ML community: [26]
provides a review of existent Green Al literature and reports that 76% of the
papers have been just published starting from 2020.

Moreover, the crucial importance of energy /resource efficiency in Al is strongly
confirmed by most of the today news around DeepSeek — at the time of writing
— with global investors dumping tech stocks as they are worried that the emerg-
ing low-cost Chinese AI models would threaten the dominance of Al leaders
like Nvidia, evaporating $593 billion of the chipmaker’s market value, a record
one-day loss for any company on Wall Streetﬂ

This paper proposes a new energy efficient algorithm for Hyperparameter
Optimization (HPO) of ML algorithms, namely e?HPO.

1 https://www.reuters.com/technology/chinas-deepseek-sets-off-ai-market-rout-2025-01-27
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1.2 Accuracy vs energy consumption

As empirically demonstrated in [I3], there exists a relation between the values
of the hyperparameters of a ML algorithm and the computational time for its
training and validation (results referred to 5000 randomly selected hyperparame-
ter configurations, for five common ML algorithms). Although training time can
be considered a proxy of energy consumption and C'Os emissions, as recently
discussed in [24], it is not a direct measure of these two metrics. In this paper
we use a new software solution, namely CodeCarborﬂ to monitor energy con-
sumed for training and validating a ML algorithm given a specific configuration
of its hyperparameters and a target dataset.

Energy consumptions and accuracies collected on a 15 x 15 grid of hyperpa-
rameters configurations, for three common ML algorithms, lead us to observe
three different behaviors, with accuracy and energy consumption that can be:
inversely correlated (Figure[l]), correlated (Figure[2)), or uncorrelated (Figure [3).

This characterization is important because it means there are cases where
searching for the most accurate hyperparameters configurations can lead to a
reduction in the accumulated energy consumption and, consequently, sample-
efficiency translates into energy-efficiency.
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Fig. 1: SVC on banknote authentication dataset: accuracy (left) and energy con-
sumption (middle) depending on SVC’s hyperparameters (logig scaled). Accu-
racy vs energy consumed (right).

2 https://codecarbon.io
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Fig.2: MLP on blood transfusion dataset: accuracy (left) and energy consump-
tion (middle) depending on MLP’s hyperparameters. Accuracy vs energy (right).
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Fig. 3: RF on phoneme dataset: accuracy (left) and energy consumption (middle)
depending on RF’s hyperparameters. Accuracy vs energy consumed (right).

1.3 Related works

Automated ML (AutoML) — especially HPO — solutions are mostly based on
Bayesian Optimization (BO) [2I10], which has also been recently used to inves-
tigate the impact of topic models’ hyperparameters on the accuracy in Natural
Language Processing tasks [23]. The emerging need for HPO methods leading
to accurate but energy-efficient ML models required to extend the wvanilla BO
algorithm leading to GreenAutoML approaches.

One possibility is given by multi-fidelity and multiple information source BO
methods, using successive-halving [I1J12] or small portions of the original large
dataset [6], also for multi-objective HPO (e.g., simultaneous maximization of
accuracy and fairness, like in [7]) and combinatorial problems [I§].

Another possibility is represented by cost-aware BO methods, where the
seminal work [2T] proposed to penalize the acquisition function, specifically the
Expected Improvement (EI), by the location-dependent cost, ¢(x). However, this
approach resulted biased towards cheap locations, performing well only in the
cases where optima are relatively cheap. To overcome this undesired behaviour,
[13] proposed CArBO (Cost Apportioned BO), consisting of two consecutive
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stages: (i) a cost-effective selection of initial solutions and (ii) a cost-cooling strat-
egy where the penalty associated to the cost is modulated according to the query
cost incurred so far. In [I5] a cost-aware acquisition function based on Informa-
tion Directed Sampling (IDS), and named CostIDS, balances cost along with
regret and information gain. However, an additional constraint is introduced, in
optimizing CostIDS, to avoid that extremely cheap points are chosen repeatedly
without any significant increase in information. More recently, [27] has proposed
an acquisition function for cost-aware BO based on a previously-unexplored con-
nection with the Pandora’s Box problem (from economics). The Pandora’s Box
problem admits a Bayesian-optimal solution based on the Gittins index, which
can be seen as an acquisition function: empirical results demonstrate that the
approach performs well, especially in medium-high dimensions.

Finally, a recent survey on GreenAutoML is provided in [24], even if very re-
cent studies combining the two research directions (i.e., cost-aware and multiple
information source optimization) are missing, such as [9] and — obviously — the
approach presented in this paper.

2 The e?HPO algorithm

The energy-efficient HPO method proposed in this paper, namely e?HPO is
based on the multiple information source (Bayesian) optimization approach ini-
tially proposed in [5] and successively refined to implement green and fair-and-
green HPO tasks [6/7], that are, respectively, a single- and a bi-objective global
optimization problem under multiple information sources. The aim of e2HPO is
to embed, in an integrated schema, recent advances from both multiple informa-
tion source and cost-aware BO.

2.1 Energy saving by using a reduced dataset

Dealing with multiple information sources means choosing wether the next promis-
ing solution has to be evaluated on the actual expensive function (aka ground-
truth) or a cheap approximation of it, while keeping limited the overall cost
accumulated along the optimization process.

In a HPO task, the next promising solution is a hyperparameters’ configura-
tion, the ground-truth is the associated k-fold cross (kFCV) accuracy computed
by using the entire dataset, while the cheap approximation is the same metric
computed by using a small stratified portion of the dataset. In our experiments
k=10 and the cost is the energy consumed to compute the 10FCV accuracy: al-
though it is surely lower for the small dataset, nothing can be said a-priori about
the quality of approximation for a certain hyperparameters’ configuration, mo-
tivating the adoption of a multiple information source optimization method.

Denote with Dy = {(x(i)7y}i))}i:1mf and D, = {(x(i),y,(»i))}izlmr the hy-
perparameters’ configurations and their accuracies obtained by using the full
and the reduz dataset, respectively. A GP regression model is first fitted to Dy
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and then Dy is augmented by including queries in D, which can be considered
reliable, as follows:

D« Dy U {(X(i),yfj)) €D, : ,uf(x(i)) — y,(,i) <m af(x(i))} (1)

with p¢(x) and of(x) the predictive mean and uncertainty of the GP fitted
on Dy, and m a parameter to manage the reliability of cheap observations (larger
values of m increase the number of cheap queries from D, considered reliable and
included in D). The most suitable value empirically suggested in [5] is m = 1.
__ Finally, another GP regression model is fitted to the augmented set of queries
D leading to the so-called Augmented GP (AGP) that is at the core of [BI6[T]. It
is important to remark that Dis computed at each iteration of the optimization
process, according to , thus it changes over time due to oncoming observations.

2.2 Embedding energy-awareness

Multiple information source optimization (MISO) methods are, in some sense,
energy-efficient by-design, because they try to exploit cheap sources along the
optimization process to keep low the accumulated query cost. However, they
rely on the assumption that the cost entailed to query a source is constant over
the search space X, so they are not energy-aware in the sense of dealing with
location-dependent cost [21IT13]. A practical example about the importance of
energy-awareness in a MISO schema is given by the following situation: an MLP
with a large number of neurons and epochs on a small portion of the original
dataset could require a larger training time (and therefore energy) than a smaller
MLP on the original dataset.

The proposed e?HPO algorithm aims at properly embedding energy-awareness
into a MISO schema. To achieve this goal, we have to first define other two sets,
& = {(x(i),e}z))}izlmf and &, = {(x(i),eg))}izlmf, collecting the energy con-
sumptions of the hyperparameter configurations evaluated by using the full and
the redux dataset, respectively.

The acquisition function stems from [5l7] and is slightly modified to prop-
erly address energy-awareness. Specifically, the next promising hyperparameter
configuration to evaluate and the source to use are identified by solving:

(5.%) € argmax PO+ OTI] — 7"
si%f;;} 14 el(x)\ﬁ(x) - MS(X)\

(2)

where fi(x) + 8 o(x) is simply the AGP’s upper confidence bound and
77 = max{y : (x,y) € ﬁf} Thus, the numerator of is the most opti-
mistic improvementﬂ with respect to *, and only depends on x and the cur-
rent AGP. This quantity is penalized by the amount at the denominator, where
|pus(x) — fi(x)] is a simple and efficient discrepancy measure between the AGP’s

3 it could be negative, so in that case is the minimum worsening
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predictive mean and that of the GP fitted to D, with s € {f,r}. Finally, e (x)
is an upward estimate of the energy consumed to evaluate the hyperparameter
configuration x on the source s. Specifically, el (x) is the upper confidence bound
of another GP regression model fitted to &;.

In summary, in the presence of two information sources, namely f and r, our
e?HPO algorithm uses five GPs: two for modeling 10FCV accuracy with respect
to the full dataset (s = f) and the redux dataset (s = r), respectively, an AGP
integrating them into a unique model, and two GPs to approximate the energy
consumption with respect to the full and redux dataset, separately.

3 Experiments

3.1 ML algorithms to optimize and datasets

In our experiments we have considered three different ML algorithms, specifi-
cally: (7) a Support Vector Machine Classifier (SVC) with regularization param-
eter C' and radial kernel, (i7) a MultiLayer Perceptron (MLP), and (éii) Random
Forest (RF). For each algorithm we have just considered two crucial hyperparam-
eters to optimize, which are well-known to affect accuracy and training timeﬁ
Hyperparameters and associated search spaces are reported in Table

‘ Algorithm ‘ Hyperparams ‘ Type ‘ Domain ‘ Scaling ‘
SVC C Real {0.01, ..., 100} logyq
~y Real {0.01, ..., 100} logy,
MLP Size Integer |[{max{8,ns},..,[1.5*max{8,ns}|} |min-max
Epochs Integer [{100,...,300} min-max
RF Niree Integer [{300,...,700} min-max
Dfeats Real {0.25,...,0.75} min-max

Table 1: Search spaces of the ML algorithms for the HPO task.

As far as MLP is concerned, we have to clarify that its architecture is prefixed
and consists of three hidden layers. The number of neurons in the first hidden
layer is given by the hyperparameter Size, and the number of neurons in the next
hidden layers is iteratively halved (and rounded), as shown in Figure 4| Thus,
the value of Size uniquely determines the overall structure of the network.

For the RF algorithm, N¢pee and pfeq:s denote, respectively, the number of
trees in the forest and the percentage of input features sampled in the decision
tree learning procedure. Finally, C' and + are, respectively, the regularization of
the SVM classifier and the hyperparameter of its radial basis function kernel.

4 Although other arguments are available and commonly treated as hyperparameters,
their impact on accuracy and training time is not so easy to estimate. They are
usually related to the specific implementation of the learning algorithm, such as the
optimization method internally used by the MLP to minimize the training loss.
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Fig. 4: MLP’s basic architecture.

HPO of these three ML algorithms has been performed on five different
datasets, all related to binary classification problems. The main characteristics
of these datasets are summarized in Table 2l

|Dataset Name | Observations | Features | Class 1 | Class 2 |

Banknote authentication 1372 4 762 610
Blood transfusion 748 4 570 178
Heloc 10000 22 5000 5000
Phoneme 5404 5 3818 1586
WDBC 569 30 357 212

Table 2: Main characteristics of the datasets considered in this study.

The datasets were downloaded from OpenMIE| and underwent to the same
pre-processing procedure, where input features — all numerical — were rescaled
using min-max scaling. After pre-processing, a redux version of each dataset was
generated by randomly selecting 10% of the observations while preserving the
original class distribution through stratified sampling.

3.2 Performance metric and energy monitoring

As already stated, the 10FCV accuracy of a given hyperparameter configuration
is the target performance metric for our HPO tasks.

To monitor the amount of energy consumed in computing the target metric,
we have adopted CodeCarbon, a lightweight software package, compatible with
Python, created to quantify energy consumed and the amount of COs emis-
sions produced by a computing task running on a monitored system. Although

5 OpenML ids of the original (not preprocessed) datasets: Banknote authentication
1462, Blood transfusion 1464, Heloc 45026, Phoneme 1489, WDBC 1510.
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CodeCarbon provides many other functionalities (like the possibility to compute
COs emissions depending on different energy mixes), in this paper we have just
considered the amount of energy consumed, measured as the power supplied to
the hardware (GPU, CPU, RAM, and overall) at frequent time intervals.

3.3 Limitations implied by the usage of CodeCarbon

As already remarked in recent literature, CodeCarbon has some limitations.
First, it relies on the data provided by the computer’s components (e.g., Intel
Power Gadget for Intel CPUs), with values that can differ for each module and
manufacturer. Furthermore, the tracking is not continuous, because CodeCarbon
measures the energy usage at a certain frequency. However, as remarked in [16],
CodeCarbon is a good tool to track energy consumption and estimate carbon
emissions, despite the negative points mentioned above. It is a software-based
solution that makes emission monitoring simpler and more convenient without
needing specialized equipments, such as wattmeters. A more detailed analysis
has been recently given in [25] and [3], where CodeCarbon has been compared
against other software tools, like CarbonTracker [I], resulting the most precise
tool when accuracy of measures is evaluated against physical wattmeters. The
main difference regards the estimation of the energy consumed by the RAM:
CodeCarbon employs a fixed value of 3 Watts for every 8GB of DDR3 or DDR4
RAM, while CarbonTracker relies on the Intel RAPL for this purpose.

Although relevant limitations with respect to specialized equipments, Code-
Carbon is the best software solution for energy monitoring of large computer
systems [17] as well as Green AutoML solutions (i.e., it is the first tool sug-
gested by AutoML Group on its Websit@.

Finally, since all the experiments in this paper have been performed on the on
a single computer, the bias implied by CodeCarbon can be considered irrelevant
because it should be constant over all the experiments.

4 Experiments and results

4.1 Preliminary considerations

As a preliminary investigation, a 15 x 15 grid of hyperparameter configurations,
for each ML algorithm, has been evaluated separately on each data set. The
collected observations led to conveniently grouping the pairs ML algorithm -
dataset into three categories (analogously to Figures : high accuracy hyper-
parameters configurations associated to (a) low energy consumption, (b) high
energy consumption, and (c) any energy consumption. For immediate consulta-
tion, the resulting grouping is reported in Table [3] It is evident that SVC re-
sults energy-efficient "by-design", with accurate hyperparameter configurations
requiring small amounts of energy, for all the datasets. Moreover, the dataset
Phoneme seems to be easy to classify, with the most accurate hyperparameter

S https://www.automl.org/green-automl/ (last access on 2025-05-15).
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configurations, for all the ML algorithms, requiring the lowest amount of energy.

y | Banknote auth. | Blood transf. | Phoneme | WDBC [ Heloc |
SvC Energy | Energy | Energy | | Energy | Energy |
MLP Energy 1 Energy 1 Energy |

RF Energy |

Table 3: Energy consumption associated to hyperparameters configurations with
high accuracy: () and (1) denote, respectively, a low and high energy consump-
tion, while (~) is for no relation between accuracy and energy.

4.2 Experiment 1: HPO given a max number of queries.

In this experiment we compare results obtained on (a) the 15 x 15 grid search
against (b) HPO via vanilla BO and (c) the proposed e?HPO algorithm.

In this conference paper, the comparison against other cost-aware or multiple
information source optimization methods is not considered. Indeed, multiple
information source optimization already proved to be more effective and efficient
than cost-aware optimization [4] as well as multi-fidelity approaches [7].

The termination criterion is a maximum number of evaluated hyperparam-
eter configurations, that is equal to the size of the grid. For HPO and e*HPO,
this number is divided into 5 runs, each starting from a different set of 5 random
hyperparameter configurations (shared by HPO and e?HPO) and 20 sequential
queries (i.e., 5 runs x (5420 hyperparameter configurations) = 225). Indepen-
dent runs are here considered as restart of HPO and e?HPO, and the best model
over the runs is chosen, to mitigate the effect of the random initialization that
is well-known to affect performances of BO algorithms.

Table [4] shows the best 10FCV accuracy obtained on the 225 evaluated con-
figurations and the overall energy consumption as measured by CodeCarbon.
For e?HPO, the accuracy refers to the best value on the full dataset only; the
percentage of full dataset usage by e?HPO is also reported. The most relevant
results can be summarized as follows.

Result#1. As expected, HPO is more sample-efficient than grid search (ex-
cept for MLP on Heloc and RF on WDBC), since based on BO: it offers equally
or more accurate models than the grid search, given the same number of queries.

Result#2. In some cases e?HPO provides a lower accuracy than HPO (and
even grid search), specifically when the full dataset is less used (i.e., 51%-53%).

Result#3. In the face of a slightly higher accuracy, HPO entails an energy
consumption close to that of the grid search (even larger in some cases), which
is approximately twice as e?HPO. Thus, sample-efficiency of HPO (Result#1)
does not translate into energy-efficiency.
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Result#4. The use of the full dataset, by e2HPO, depends on both the ML
algorithm and the dataset. Thus, e2HPO is able to adapt its beheviour according
to the target HPO task. When the full dataset usage increases the overall energy
consumption obviously becomes closer — never higher — to that of HPO and grid
search, but it can offer higher accuracies, as for RF on the first three datasets.

ML Grid Grid | HPO HPO | ¢?’HPO €?HPO full dataset
algorithm|Dataset Accuracy Energy|Accuracy Energy|Accuracy energy  usage
(%] [Wh] | [%] [Wh] | [%] [Wh] 7]

Banknote auth.| 100.00 0.375 | 100.00 0.325 | 100.00 0.214 54.22
Blood transf. 7741 0.217 | 77.54 0.238 | 77.27  0.153 51.11

SVC  |Phoneme 90.16 7.859 | 90.30 8.082 | 90.08 4.155 51.11
WDBC 98.24 0.219 | 98.42 0.156 | 98.24 0.149 67.56
Heloc 71.85 79.778| 71.90 64.832| 71.86 36.114 51.11

Banknote auth.| 100.00 5.487 | 100.00 5.319 | 100.00 3.419 51.56
Blood transf. 77.14 1991 | 78.61 2.716 | 77.27  1.422 52.44

MLP |Phoneme 83.25 20.961| 83.25 23.364| 83.23 12.327 52.00
WDBC 97.89 2429 | 9789 2377 | 97.89  1.999 70.67
Heloc 71.50 48.648| 71.35 40.893| 71.35 23.863 51.11

Banknote auth.| 99.49 43.630| 99.49 44.516| 99.56 38.356 87.56
Blood transf. 67.53 41.920| 67.66 42.325| 67.93 36.355 59.56

RF  |Phoneme 91.64 28.101| 91.62 29.228| 91.65 25.881 86.67
WDBC 97.19 25.036| 97.02 25.387| 96.84 23.460 84.89
Heloc 71.60 68.221| 71.66 67.807| 71.63 43.962 68.44

Table 4: HPO given a max number of queries. I0FCV accuracy and overall energy
consumption for: grid search, a simple HPO based on vanilla BO, and e?HPO.

4.3 Experiment 2: HPO given a limit on the energy consumption.

Results from the previous experiment have been reorganized so that each run
of HPO is considered as finished when its accumulated energy consumption
reaches — without exceeding — that of e2HPO on the same run. The new values
of the 10FCV accuracy and energy consumption are reported in Table [5] where
grid search is omitted because it makes no sense in this case. Moreover, the
improvement /worsening of e?HPO with respect to HPO is also reported.

Since the energy consumed by the two approaches is now comparable, the
most relevant results just refer to 10FCV accuracy:

Results#5. According to considerations in Table[3] SVC is the only energy-
efficient "by-design" ML algorithm among the three considered, with highly ac-
curate hyperparameters configurations being also energy-efficient. When e?HPO
tries to reduce energy consumption by using the redux dataset it decreases the
number of configurations evaluated on the full dataset — they are just 51%-67% —
also reducing the chance to achieve a higher accuracy than HPO. This is mainly
due to the fact that SVC training time increases as n3 with n the number of
data samples into the training set. As a consequence, e?HPO is significantly
"tempted" to use the redux dataset instead of the full one.
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ML HPO HPO | ¢?HPO €ZHPO full dataset Accuracy
algorithm|Dataset Accuracy Energy|Accuracy energy usage |improvement
(%] [Wh] | [%]  [Wh] [%] [%]
Banknote auth.| 100.00 0.210 | 100.00 0.214 54.22 0.00
Blood transf. 77.54 0.151 77.27  0.153 51.11 -0.27
SVC |Phoneme 90.29 4.036 | 90.08 4.155 51.11 -0.21
WDBC 98.42 0.145 | 98.24  0.149 67.56 -0.18
Heloc 71.89 34.812| 71.86 36.114 51.11 -0.03
Banknote auth.| 100.00 3.355 | 100.00 3.419 51.56 0.00
Blood transf. 77.01 1.383 | 77.27 1.422 52.44 +0.26
MLP |Phoneme 83.25 12.078| 83.23 12.327 52.00 -0.02
WDBC 97.89 1.9573| 97.89 1.999 70.67 0.00
Heloc 71.35 23.461| 71.35 23.863 51.11 0.00
Banknote auth.| 99.49 37.891| 99.56 38.356 87.56 +0.07
Blood transf. 67.66 35.872| 67.93 36.355 59.56 +0.27
RF Phoneme 91.62 25.576| 91.65 25.881 86.67 +0.03
WDBC 97.02 23.230| 96.84 23.460 84.89 -0.18
Heloc 71.66 43.185| 71.63 43.962 68.44 -0.03

Table 5: HPO given a limit on the overall energy consumption. 10FCV accuracy
and energy for a simple HPO based on vanilla BO and e?HPO.

Result#6. With respect to MLP, HPO and e?HPO resulted comparable,
except on the blood transfusion dataset. From Table [3| this is one of the cases
where accuracy and energy consumption are inversely correlated. As HPO goes
towards high accurate hyperparameter configurations it increases the accumu-
lated energy consumption by quickly reaching the limit and, consequently, re-
ducing the number of evaluated configurations (i.e., 25 on median and 19-30 as
min-max, over the five independent runs). On the contrary, e?HPO reduces its
energy consumption by using the redux dataset while the number of configu-
rations evaluated on the full dataset are sufficient to identify a more accurate
MLP model than HPO.

Result#7. e2HPO can provide more accurate RF models than HPO because
accuracy and energy consumption resulted uncorrelated (as in Table .

In summary, a simple HPO using vanilla BO could result more effective and
energy efficient than e?HPO if the ML algorithm to be optimized is "natively"
energy-efficient with respect to the hyperparameters cosnidered, just like SVC
resulted in our experiments. Indeed, SVC models identified by e2HPO are 0.14%
less accurate, on average, than those identified by HPO (0.17% if tie is omitted).

Whenever a positive correlation between accuracy and energy consumption
exists, e2HPO is able to exploit it leading to equally or more accurate models
than HPO, as empirically observed for MLP. Indeed, MLP models identified
by e?HPO are 0.05% more accurate, on average, than those identified by HPO
(0.12% if ties are omitted).

Finally, e2HPO was able to provide more accurate RF models than HPO
because accuracy and energy consumption are uncorrelated, with an accuracy
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improvement of 0.03% on average and up to 0.27% when using the redux dataset
is reliable (i.e., RF on the blood transfusion dataset).

Figure [5] shows two examples clarifying the role of the cheap source’s relia-
bility. On the left, 10FCV accuracy with respect to MLP’s hyperparameters on
blood transfusion is depicted, separately for the ground-truth (i.e., full dataset)
and the cheap source (i.e., redux dataset). The two surfaces are obtained as
interpolation on Dy and D,, respectively. Due to their correlation, optimizing
with respect to the cheap source leads to solutions close to the optimizer of the
ground-truth — indeed, the full dataset was used for just 52.44% of the overall
configurations. Instead, on the right it is a case where the cheap source is signif-
icantly different from the ground-truth, that is the experiment with the highest
use of the full dataset, 87.56% (i.e., RF on banknote authentication).

MLP on blood transfusion RF on banknote authentication
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Fig.5: 10FCV accuracy as interpolation on D¢ (ground-truth, in blue) and D,
(cheap source, in red) for two representative cases. On the left, optimizing the
cheap source leads to solutions close to the ground-truth’s optimizer, x*, due
too their correlation. On the right, the cheap source results not reliable because
significantly different from the ground-truth.

4.4 Code and data availability, and technical details.

The proposed e?HPO has been developed in R starting from the code provided
in [5] and [7]. GP regression is performed via the R package DiceKriging, while
the ML algorithms are from the Python library scikit-learn (aka sklearn)
and run under a Python environment, as required by CodeCarbon. Basically,
e?HPO launches a Python script associated to the target ML algorithm by also
specifying the dataset and the values for the ML algorithm’s hyperparameters.
The resulting 10FCV accuracy is returned to e2HPO by the Python script, while
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the energy consumption is shared between CodeCarbon and e?HPO through an
output comma-separated-value file (along with other computational metrics).

To guarantee reproducibility of the results and support knowledge sharing
and research collaboration on the topic, the entire code and datasets are publicly
available at the following a GitHub repository:

https://github.com/ElenaSignori/E2HP0.git

5 Conclusions

We have presented a novel energy efficient HPO algorithm which integrates into
a unique framework recent advances from both cost-aware and multiple informa-
tion source Bayesian optimization. We would like to remark that this intuition
has recently emerged in the (optimization) community, such as in [9], but — at
the authors’s knowledge — our paper is the first one specifically addressing HPO
of ML algorithms with such an integrated view.

Focusing on HPO of three common ML algorithms, and specifically on their
core hyperparemeters, allowed us to draw important conclusions. Unsurprisingly,
e?HPO is more energy efficient than a simple vanilla BO based HPO, given the
same number of queries, but there is no clear winner in terms of 10FCV accuracy.

However, when comparison is performed with respect to a threshold on the
accumulated energy consumption, e2HPO results, on average, better than the
simple vanilla BO based method, but not for all the three ML algorithms con-
sidered. Indeed, some ML algorithms (i.e., SVC) proved to be energy-efficient
"by-design" with respect to their core hyperparameters, so vanilla BO quickly
converges close to the maximum 10FCV accuracy while cumulating low energy
consumptions. On the contrary, e?HPO tries to (further) reduce energy con-
sumption by querying the redux dataset, from time to time, at the cost of a
lower number of queries on the full dataset and, therefore, reducing the chance
of reaching the maximum 10FCV accuracy (on the full dataset).

In conclusion, we are aware that the extent to which e?HPO techniques con-
tribute to energy efficiency remains ambiguous, particularly given the variability
in energy consumption across different ML algorithms and dataset. Future works
will consider a larger set of datasets and ML algorithms, especially large-scale
models to evaluate scalability of the proposed approach. This will also allow us
to improve e?HPO so that it can better deal with settings where 10FCV accuracy
and energy are negatively correlated and the gain in using the cheap information
source exceeds that of querying the ground-truth.

Another important step we are going to address is to include the comparison
against other cost-aware and multi-fidelity approaches as well as other research
works combining the two methodologies analogously to the proposed e2HPO.

Finally, we would like to remark (and discuss) that focusing on the core
hyperparameters is definitely not a limitation. Indeed, other ML algorithm’s
arguments — usually treated as hyperparameters — refer to options related to the
specific implementation of the learning procedure. Although the ML community
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is active in proposing more efficient implementations for ML — that is another
way to address sustainability in AI — the core hyperparameters of common ML
algorithms are always the same. Consider for instance SVC and MLP, which
a plethora of possible implementations have been provided for: although they
became more efficient, their core hyperparameters never changed. Thus, if every
implementation is considered as a ML algorithm per-se, the crucial information
is if it is energy efficient by design or not.
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