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Abstract

Logit-based LLM watermarking traces and ver-001
ifies AI-generated content by maintaining green002
and red token lists and increasing the likelihood003
of green tokens during generation. However,004
it fails in low-entropy scenarios, where pre-005
dictable outputs make green token selection dif-006
ficult without disrupting natural text flow. Exist-007
ing approaches address this by assuming access008
to the original LLM to calculate entropy and se-009
lectively watermark high-entropy tokens. How-010
ever, these methods face two major challenges:011
(1) high computational costs and detection de-012
lays due to reliance on the original LLM, and013
(2) potential risks of model leakage. To address014
these limitations, we propose Invisible Entropy015
(IE), a watermarking paradigm designed to en-016
hance both safety and efficiency. Instead of017
relying on the original LLM, IE introduces a018
lightweight feature extractor and an entropy tag-019
ger to predict whether the entropy of the next020
token is high or low. Furthermore, based on the-021
oretical analysis, we develop a threshold navi-022
gator that adaptively sets entropy thresholds. It023
identifies a threshold where the watermark ratio024
decreases as the green token count increases,025
enhancing the naturalness of the watermarked026
text and improving detection robustness. Ex-027
periments on HumanEval and MBPP datasets028
demonstrate that IE reduces parameter size by029
99% while achieving performance on par with030
state-of-the-art methods. Our work introduces031
a safe and efficient paradigm for low-entropy032
watermarking. �IE-official-repo033

1 Introduction034

Textual watermarking, which aims to embed sub-035

tle patterns in the generated text to make it de-036

tectable by algorithms but invisible to humans, is037

an important step towards trustworthy AI. It can038

be applied at various stages, including logits gen-039

eration (Kirchenbauer et al., 2023), token sam-040

pling (Christ et al., 2024), and training (Sun et al.,041
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Figure 1: Existing watermarking methods in low-
entropy scenarios face safety and cost challenges, while
our method addresses them efficiently and securely.

2022, 2023; Gu et al., 2024). Logit-based water- 042

marking is cost-efficient, modifying probabilities 043

before token selection without adding training or 044

sampling steps (Liu et al., 2024). 045

As a pioneering work in logit-based watermark- 046

ing, Kirchenbauer et al. (2023) introduced KGW, 047

the first logit-based watermarking approach. This 048

method partitions the vocabulary into green and red 049

lists based on the previous token and a hash key, 050

then boosts the logits of the green list to embed the 051

watermark and decreases the probabilities of tokens 052

outside this green list (red list). However, KGW 053

fails in low-entropy scenarios where the next token 054

is highly predictable, such as the prompt “import 055

numpy as” almost certainly leading to“np” (entropy 056

0.048). If this expected token is placed in the red 057

list, two issues may arise: (1) If the model still 058

selects it despite the reduced probability, the unex- 059

pected inclusion of a red-list token may weaken the 060

watermark’s detectability. (2) If the model instead 061

picks a green-list token due to the boosted logits, it 062

may disrupt text fluency. Similarly, if the expected 063

token is directly placed in the green list, it may lead 064

to a false inflation of green-list token frequency in 065

generated text, thereby increasing the likelihood 066

of misclassify human-written content as machine- 067

generated. As a result, the watermark detection 068
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system becomes less reliable.069

To address the low-entropy problem, Lee et al.070

(2024) proposed SWEET, which applies water-071

marks only to high-entropy tokens, preserving072

text quality. Similarly, Lu et al. (2024) intro-073

duced EWD, which enhances detection by assign-074

ing higher weights to high-entropy tokens. How-075

ever, these entropy-based watermarking methods076

face a critical limitation: they assume the detec-077

tor has access to the original LLM to calculate078

entropy. This reliance on the original model intro-079

duces several challenges, as illustrated in Fig. 1.080

First, providing the original model to third parties081

poses significant risks of model leakage, poten-082

tially leading to unintended exposure or unautho-083

rized access (Song and Raghunathan, 2020; Duc084

et al., 2014). Second, using the original LLM in-085

curs substantial computational costs, particularly086

when processing large-scale datasets or running087

multiple detections.088

Using a proxy model to approximate entropy cal-089

culation is potentially feasible. SWEET replaces090

the original model, e.g., LLaMA2-13B (Touvron091

et al., 2023), with a smaller model from the same092

family, e.g., LLaMA2-7B, for entropy estimation.093

Although this practice outperforms KGW, it still094

suffers from significant performance degradation.095

While the original EWD work does not explicitly096

explore the use of proxy models, our experimental097

results in Tab. 1 show a similar trend. It is also098

important to note that the effectiveness of a proxy099

model heavily depends on its architectural similar-100

ity to the original model.101

Motivated by this, we attempt to train a102

lightweight proxy model to eliminate the depen-103

dency on the original LLM during entropy-based104

watermark detection. Our experiments in App. C105

show that regressing continuous entropy using an106

MLP is challenging, but reframing the task as a107

classification problem – determining whether the108

entropy of next token exceeds a given threshold –109

is more feasible. Considering the aforementioned110

issue that proxy models rely on architectural simi-111

larity to the original model, we introduce a Unified112

Feature Extractor that converts prefix tokens into a113

unified feature representation using a token trans-114

lator and an embedding model, thereby ensuring115

compatibility across different LLMs and tokenizers.116

When using a fixed threshold to distinguish high-117

and low-entropy tokens, we observe that apply-118

ing the same threshold across all samples ignores119

inter-sample variability. Moreover, in practical sce-120

narios, the generator and the detector cannot share 121

threshold, which limits the applicability of water- 122

marking methods. To balance the naturalness of 123

generated text and watermark detectability, we pro- 124

pose a sample-level entropy threshold optimization 125

method. We evaluate our method in a represen- 126

tative low-entropy setting, namely the code gen- 127

eration task, with two widely used benchmarks: 128

HumanEval (Chen et al., 2021) and MBPP (Austin 129

et al., 2021). 130

Our main contributions are as follows: (1) We 131

propose IE, a novel watermarking framework that 132

relies on a small MLP instead of the original LLM 133

to enable safe, efficient and accurate watermark de- 134

tection. (2) We present Threshold Navigator, a low- 135

high entropy threshold auto-optimization method 136

that enhances detection performance not only for 137

our framework but also for various watermarking 138

approaches. (3) Our proposed watermarking frame- 139

work, IE, which integrates the three components, 140

achieves a 99% reduction in parameter usage while 141

delivering state-of-the-art detection performance, 142

showcasing its efficiency and scalability. 143

2 Related Work 144

Traditional Text Watermarking typically mod- 145

ifies generated text to embed watermarks. Based 146

on the granularity of these modifications, existing 147

approaches can be categorized as format-based, 148

lexical-based, syntactic-based, and generation- 149

based methods. Format-based watermark- 150

ing (Rizzo et al., 2016; Brassil et al., 1995; Por 151

et al., 2012; Sato et al., 2023) originates from im- 152

age watermarking and focuses on altering the text 153

format rather than its content, such as by adjust- 154

ing text layout or using Unicode-based substitu- 155

tions. Lexical-based watermarking (Munyer et al., 156

2024; Ni et al., 2023; Yang et al., 2023; Yoo et al., 157

2023; Yang et al., 2022) replaces selected words 158

with their synonyms while preserving the original 159

sentence’s syntactic structure. However, this ap- 160

proach is susceptible to attacks involving random 161

synonym replacements. To address this vulnerabil- 162

ity, syntactic-based methods (Atallah et al., 2001; 163

Topkara et al., 2006; Meral et al., 2009) embed 164

watermarks by modifying the text’s syntactic struc- 165

ture, which enhances resistance to removal attacks. 166

Nevertheless, these methods often produce unnat- 167

ural transformations, degrading the quality of the 168

generated text and increasing its susceptibility to 169

detection and targeted attacks. 170
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LLM-Based Watermarking embeds watermarks171

in LLMs by intervening at different generation172

stages, including logits generation, token sampling,173

and training. Watermarking during logits genera-174

tion adjusts the probability distribution over tokens175

to embed identifiable patterns, while token sam-176

pling (Christ et al., 2024; Kuditipudi et al., 2024;177

Hou et al., 2024a,b) modifies the token selection178

process to incorporate watermarks. Watermarks179

can also be embedded into model weights during180

training (Sun et al., 2022, 2023; Gu et al., 2024;181

Xu et al., 2024b,a), encoding watermarks into the182

model itself to ensure traceability and resilience183

against removal or tampering.184

Watermarking during logits generation is the185

most cost-effective approach, avoiding the over-186

head of retraining or complex dynamic sampling187

while remaining flexible for post hoc application.188

Kirchenbauer et al. (2023) proposed the classic189

vocabulary partitioning method, dividing tokens190

into "green" and "red" sets, biasing generation to-191

ward "green" tokens. Building on this, studies192

(Fernandez et al., 2023; Lu et al., 2024; Kirchen-193

bauer et al., 2024) improved detectability, while194

others (Hu et al., 2024; Wu et al., 2023; Fu et al.,195

2024; Guan et al., 2024; Lee et al., 2024; Chen196

et al., 2024; Liu and Bu, 2024; Wang et al., 2024;197

Wouters, 2024; Wang et al., 2025) focused on pre-198

serving text quality.199

To handle low-entropy scenarios, Lee et al.200

(2024) focused on watermarking only high-entropy201

tokens, while Lu et al. (2024) applied entropy-202

weighted adjustments to detection statistics. How-203

ever, both approaches rely on re-querying original204

LLM during detection. Our proposed method, IE,205

eliminates the need for the original LLM during206

detection, enhancing safety and efficiency.207

3 Preliminaries208

Our method builds upon the KGW watermarking209

strategy (Kirchenbauer et al., 2023) for logits gener-210

ation. KGW operates in two phases: the generation211

phase and the detection phase.212

During the generation phase, when generating213

the t-th token st, a hash key is derived from the214

previous token st−1. Using this hash key, the vo-215

cabulary is divided into a green list and a red list,216

with the proportion of green tokens determined by217

γ. A bias δ is then added to the logits of tokens in218

the green list, increasing their likelihood of being219

selected during sampling.220

In the detection phase, for a generated sequence 221

{s1, s2, . . . , s|T |}, where |T | is the number of to- 222

kens, the count of green tokens is denoted as |S|G. 223

A watermark detection statistic z is calculated as: 224

z =
|S|G − γ|T |√
|T |γ(1− γ)

. (1) 225

A detection threshold ẑ is predefined. If z > ẑ, the 226

text is classified as watermarked; otherwise, it is 227

considered human-generated. 228

4 Methodology 229

In this section, we introduce our IE model in detail. 230

The model consists of three modules: the Unified 231

Feature Extractor, Entropy Tagger, and Threshold 232

Navigator, as illustrated in Fig. 2. 233

4.1 Unified Feature Extractor 234

Existing works (Lee et al., 2024; Lu et al., 2024) 235

rely on the original LLM to compute exact entropy 236

for determining whether a token has low entropy. 237

However, this approach significantly increases com- 238

putational costs and the risk of model leakage. In 239

practical applications, knowing the exact entropy 240

value is often unnecessary—binary classification 241

(low or high entropy) is sufficient. Thus, we pro- 242

pose using a smaller model to perform binary en- 243

tropy prediction. In this subsection, we introduce a 244

Unified Feature Extractor that learns vector repre- 245

sentations of the generated text so far. In the next 246

subsection, we present the binary entropy tagger. 247

Concretely, assume that a sequence of tokens 248

{s0, s1, ..., st−1} has already been generated, and 249

the model is currently generating token st. These 250

tokens may originate from different tokenizers as- 251

sociated with various LLMs. To handle this, our 252

approach employs a tokenizer translator that con- 253

verts prefix tokens into a unified format. The to- 254

kenizer translator first converts the prefix tokens 255

back into raw text and then re-encodes them using 256

the tokenizer of an embedding model. The em- 257

bedding model processes the translated tokens and 258

generates unified token embeddings. While LLMs 259

typically support long input sequences, embed- 260

ding models—often smaller, encoder-only archi- 261

tectures—are limited by a maximum input length. 262

To address this, the embedding model focuses on 263

processing only the last segment of tokens, up to 264

its maximum allowable length, ensuring that crit- 265

ical information is retained. The representation 266

of the last token, vt, is used to represent the en- 267

tire generated sequence. This token encapsulates 268
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import numpy as np
def process_array(arr):

indices = np.arange(len(arr))
arr = np.array(arr)
arr[indices % 3 == 0] ** = 2

return np.sum(arr)

import numpy as np
# Define a function to process the array
def process_array(arr):
indices = np.arange(len(arr))

arr = np.array(arr)

return np.sum(arr)

𝑆𝑆 𝐺𝐺 = 63
WR  = 0.49

𝑆𝑆 𝐺𝐺 = 26
WR  = 0.57
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……
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“ import numpy as ”

……

Using the Entropy 
Tagger to determine 
whether the next token 
exhibits low entropy.
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Low HighEmbedding Model
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tokenized using 
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tokenizer, with 
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Figure 2: Overview of IE (Invisible Entropy). The model includes three components: the Unified Feature Extractor
for tokenizer compatibility and feature extraction, the Entropy Tagger to predict if the next token’s entropy exceeds
threshold τ , and the Threshold Navigator to optimize τ for effective watermarking, naturalness, and robustness.
Tokens are color-coded as red (red list), green (green list), and gray (unwatermarked). This example shows the
search stopping at τ = 0.6. At τ = 0.9, insufficient watermarking occurs, while at τ = 0.3, excessive low-entropy
classification causes token generation issues (e.g., the underscore “_”).

step-by-step contextual dependencies, providing269

an effective summary of the preceding text for the270

binary prediction task.271

4.2 Entropy Tagger272

Following the motivation outlined in the previous273

section, we propose an Entropy Tagger that predicts274

whether a token st is low-entropy by leveraging the275

feature vector vt obtained from the feature extrac-276

tor. The tagger outputs the probability pt that the277

token’s entropy is below a threshold τ , optimized278

by binary cross-entropy loss:279

L = − 1
N

∑N
t=1 [yt log(pt) + (1− yt) log(1− pt)] ,280

where yt denotes the truth label for the t-th sample,281

computed by the original LLM (0 for high-entropy282

tokens and 1 for low-entropy tokens), and N is the283

total number of samples.284

For the tagger implementation, we find that a285

small learnable multi-layer perceptron is sufficient286

to make accurate predictions. For entropy calcula-287

tion, we employ Shannon entropy (Lee et al., 2024)288

over the dense Spike Entropy (Kirchenbauer et al.,289

2023), as its dispersed distribution offers clearer290

boundaries.291

4.3 Threshold Navigator292

The entropy threshold τ is crucial in balancing wa-293

termarked and non-watermarked tokens, directly294

impacting watermark effectiveness. When τ is too295

high, more tokens are classified as low-entropy,296

reducing the number of tokens eligible for water-297

marking, as seen in Block A of Fig. 2, where gray298

(unwatermarked) tokens dominate. Conversely, if τ 299

is too low, fewer tokens are treated as low-entropy, 300

leading to excessive watermarking (e.g., colored to- 301

kens (watermarked) dominate in Block C of Fig. 2). 302

Existing entropy-based watermarking methods rely 303

on manually predefined or empirically determined 304

entropy thresholds (Lee et al., 2024), making them 305

less robust since they overlook sample variations 306

and depend heavily on the chosen parameter. 307

To address these limitations, we propose our 308

Threshold Navigator. The Threshold Navigator 309

automatically searches for an appropriate entropy 310

threshold for each sentence. Here, we define an 311

optimistic threshold τ as the point where the wa- 312

termark ratio (WR, defined as the ratio of wa- 313

termarked tokens to the total number of gener- 314

ated tokens) drops while the count of green tokens 315

rises. Intuitively, a lower watermark ratio indicates 316

lighter modifications to the original text, thereby 317

reducing interference from the watermarking mech- 318

anism. Meanwhile, an increased count of green 319

tokens signifies better alignment with machine- 320

generated text, making it easier for the watermark 321

to be detected. We also provide a theoretical proof 322

on this in §6.2. 323

Based on the above sensitivity analysis, we in- 324

troduce two metrics. Watermark Ratio Change 325

(w) measures the change in watermark ratios be- 326

tween entropy thresholds τi−1 and τi: wτi = 327

WRτi−1/WRτi . Green Token Counts Change 328

(p) quantifies the variation in green token counts: 329

pτi = |S|Gτi−1
/|S|Gτi

. During the dynamic adjust- 330

ment process, the Threshold Navigator lowers the 331
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Method HUMANEVAL MBPP

Params ↓ PPR ↑ UES ↑ Pass@1 ↑ AUROC ↑ TPR ↑ PPR ↑ UES ↑ Pass@1 ↑ AUROC ↑ TPR ↑

Post-hoc
Log P(X) 120M 5.513 0.662 0.334 0.533 0.113 5.373 0.645 0.378 0.525 0.054
LogRank 120M 5.583 0.670 0.334 0.553 0.127 5.373 0.645 0.378 0.527 0.052
DetectGPT 1.1B 0.613 0.675 0.334 0.533 0.165 0.619 0.681 0.378 0.565 0.158
DetectGPT(T5-3B) 3B 0.220 0.660 0.334 0.549 0.092 0.214 0.643 0.378 0.531 0.040
GPTZero - - 0.661 0.334 0.521 0.122 - 0.619 0.378 0.449 0.026
OpenAI Classifier - - 0.643 0.334 0.518 0.053 - 0.634 0.378 0.500 0.036

Watermark-based
KGW - - 0.768 0.253 0.904 0.652 - 0.732 0.242 0.930 0.718

EWD 15.5B 0.056 0.872 0.295 0.943 0.780 0.051 0.790 0.293 0.930 0.678
EWD 3B 0.290 0.871 0.295 0.941 0.778 0.256 0.767 0.293 0.916 0.602
EWD 1B 0.861 0.861 0.295 0.931 0.745 0.757 0.757 0.293 0.910 0.567

SWEET 15.5B 0.057 0.884 0.301 0.944 0.789 0.051 0.785 0.322 0.901 0.536
SWEET 3B 0.264 0.792 0.253 0.933 0.722 0.245 0.737 0.293 0.896 0.500
SWEET 1B 0.764 0.764 0.253 0.925 0.615 0.732 0.732 0.293 0.891 0.487

IE 130M 6.709 0.872 0.294 0.941 0.787 5.805 0.755 0.301 0.892 0.534

Table 1: Main results on HUMANEVAL and MBPP. "-" indicates either undisclosed parameters (e.g., GPTZero,
OpenAI Classifier) or no additional models required (e.g., KGW).

entropy threshold and monitors changes in WR and332

the number of green tokens |S|G. The optimization333

process stops when p > 1 and w < 1, indicating334

that increasing the entropy threshold improves the335

sensitivity of the watermarked text to the green336

token counts while reducing the watermark ratio,337

thus achieving a balanced and robust distinction.338

Alg. 4 provides the main procedure. An example339

is shown in Fig. 2, and additional examples can be340

found in Fig. 6 in App. A.341

5 Experiments342

5.1 Tasks and Metrics343

We evaluate IE and baselines in two Python code344

generation tasks: HumanEval (Chen et al., 2021)345

and MBPP (Austin et al., 2021). We assess IE and346

baselines in effectiveness and efficiency.347

The evaluation of effectiveness focuses on both348

code generation ability and detectability. We assess349

code generation using Pass@k, and detectability350

using AUROC, which measures the model’s ability351

to distinguish watermarked from non-watermarked352

text. We also report the True Positive Rate (TPR),353

which measures the proportion of correctly identi-354

fied machine-generated text when the False Posi-355

tive Rate (FPR) is less than 5%. We propose the356

Unified Effectiveness Score (UES), averaging the357

normalized Pass@1 and detectability metrics for358

overall evaluation: UES =
Pass@1

Pass@1non
+(AUROC+TPR

2 )
2 ,359

where Pass@1non represents the Pass@1 for text360

without watermark.361

From an efficiency standpoint, we highlight the362

number of parameters, denoted as Params, neces-363

sary for watermarking in the detection phase. The364

detection time required by the watermarking meth- 365

ods is also reported in Tab. 8. 366

To combine effectiveness and efficiency, we 367

introduce a new metric called Performance-to- 368

Params Ratio (PPR), defined as: PPR = UES
Params . 369

5.2 Baselines 370

We compare IE with post-hoc detection baselines 371

and watermarking methods. Post-hoc detection 372

does not require any modification during the gen- 373

eration process, thus maintaining the same text 374

quality as non-watermarked text. LogP(x) and 375

LogRank (Gehrmann et al., 2019), and Detect- 376

GPT (Mitchell et al., 2023) are zero-shot detection 377

methods that do not require labeled data. In con- 378

trast, GPTZero and OpenAI Classifier (Solaiman 379

et al., 2019) are trained classifiers. 380

We select KGW (Kirchenbauer et al., 2023), 381

SWEET (Lee et al., 2024), and EWD (Lu et al., 382

2024) as watermarking methods for comparison. 383

KGW applies watermarking to all tokens during 384

both the generation and detection phases. SWEET 385

only applies watermarking to low-entropy tokens 386

during both phases, resulting in higher text quality 387

and detectability compared to KGW (see details 388

in App. B). EWD improves text watermarking de- 389

tection by assigning higher influence weights to 390

higher-entropy tokens during detection. To explore 391

the performance SWEET and EWD on smaller 392

surrogate models, we also provide experimental 393

results using StarCoder-3B and StarCoder-1B to 394

compute entropy. In this setting, KGW serves as 395

the watermark generator, while SWEET and EWD 396

act as detectors. 397

5



(a) (b) (c)

Figure 3: Analysis of the Entropy Tagger. (a) Comparison of applying the Entropy Tagger at different stages:
generation-detection versus detection-only. (b) The relationship between Entropy Tagger accuracy and its effec-
tiveness in watermarking. (c) Demonstration of the superior performance of the Entropy Tagger compared to a
surrogate model and randomly set entropy.

5.3 Implementation398

In our implementation, we use Starcoder (Li et al.,399

2023) as the LLM and SimCSE (Gao et al., 2021)400

as the embedding model. We use MBPP dataset to401

train Entropy Tagger, where details are in App. C.402

For the post-hoc methods, KGW and SWEET, we403

adopt the optimal hyperparameters reported by Lee404

et al., 2024. While for EWD, we follow the settings405

in Lu et al. (2024). Since SWEET provides results406

corresponding to specific entropy threshold, we407

calculate the average of the results across these408

different entropy thresholds. For IE, we use the409

optimal hyperparameters γ = 0.5 and δ = 3.0410

unless otherwise specified. All experiments can be411

conducted on one single A100-40G. More detailed412

settings are provided in App. D.413

5.4 Main Results414

We show the main results in Tab. 1.415

From Effectiveness perspective, we can draw416

the following conclusions: (1) Post-hoc meth-417

ods fail to handle machine-generated text in low-418

entropy scenarios. The UES of all watermark-419

based methods exceeds 0.75 on the HumanEval420

dataset and 0.70 on the MBPP dataset, whereas421

post-hoc methods remain below 0.70 on both422

datasets. (2) Our IE demonstrates strong effective-423

ness, outperforming post-hoc methods and achiev-424

ing comparable performance to SWEET and EWD.425

(3) SWEET and EWD suffer performance degrada-426

tion when applied with smaller models. When us-427

ing a surrogate model, IE (130M) significantly out-428

performs SWEET (1B/3B). While EWD is less sen-429

sitive to the choice of surrogate model compared to430

SWEET, it still underperforms IE on HumanEval.431

From an Efficiency perspective, LogP(x) and Lo-432

gRank use BERT with 0.12B parameters for detec-433

tion. DETECTGPT relies on SantaCoder (1.1B) or434

T5-3B (3B). GPTZero and OpenAI Classifier are435

closed-source, with parameter counts unavailable. 436

KGW requires no additional model, while SWEET 437

and EWD depend on the original LLM (15.5B). 438

In contrast, our method uses an embedding model 439

and a lightweight MLP, totaling 0.13B parameters, 440

comparable to Post-hoc methods. 441

We finally use PPR to evaluate the combined ef- 442

fectiveness and efficiency of the methods. Among 443

all methods, IE achieves the highest PPR, signifi- 444

cantly outperforming other watermarking methods. 445

While Post-hoc methods like LogP(x) and LogRank 446

achieve relatively higher PPRs compared to weaker 447

baselines, their effectiveness remains low. 448

6 Analysis and Discussion 449

6.1 Analysis on Entropy Tagger 450

Generation-Detection or Detection-only? We 451

compare the performance of the Entropy Tagger 452

in two setups: Detection-only and Generation- 453

Detection. In the Detection-only setup, ground 454

truth entropy values are used to classify tokens 455

as high or low entropy, with a fixed threshold ap- 456

plied for watermark detection. In contrast, the 457

Generation-Detection setup incorporates the En- 458

tropy Tagger during the generation phase, predict- 459

ing entropy values to embed watermarks dynami- 460

cally. As shown in Fig. 3(a), experimental results 461

indicate that Generation-Detection consistently out- 462

performs Detection-only in both Pass@1 and AU- 463

ROC across different watermark strengths. This 464

demonstrates that aligning entropy-aware methods 465

during both generation and detection is essential 466

for achieving robust and effective watermarking. 467

Relationship between Entropy Tagger Accuracy 468

and Watermark Detectability. We investigate 469

how Entropy Tagger accuracy impacts watermark 470

detectability by varying the tagger’s accuracy and 471

observing its effect on detection metrics. Under 472

6



Probability of
 Type-I Error

  2.28 %

(a) (b) (c)

Figure 4: (a) Type-I Error probability and the distribution of detection statistic z for human-written text. (b) Impact
of threshold navigator search directions. (c) Robustness of detection to paraphrasing attacks.

a Detection-only setting, we calculate the exact473

entropy of watermarked text and simulate tagger474

inaccuracies by introducing disturbances, where475

the disturbance proportion r (0.0 to 1.0) determines476

the tagger’s accuracy as 1− r. Results in Fig. 3(b)477

show that higher tagger accuracy leads to improved478

AUROC and TPR, highlighting the importance of479

precise entropy predictors for robust watermarking.480

Comparison with surrogate and random en-481

tropy. We also replace the Entropy Tagger in the IE482

framework with a surrogate model (StarCoder-3B)483

and with Random Entropy (a floating-point value484

randomly selected between -5.0 and 5.0), respec-485

tively. As shown in Fig. 3(c), the results demon-486

strate that using the Entropy Tagger significantly487

outperforms both the Surrogate Model and Ran-488

dom Entropy. Furthermore, the Entropy Tagger489

contains only 0.13B parameters, making it signifi-490

cantly more cost-effective than the surrogate model.491

These comparisons confirm the superiority of En-492

tropy Tagger both effectively and efficiently.493

6.2 Analysis on Threshold Navigator494

Theoretical Validation The primary goal of water-495

mark detection is to minimize Type-I and Type-II496

errors. Thus, we analyze the impact of the Thresh-497

old Navigator on both. Generally, our analysis498

shows that it has no impact on Type-I Error but499

significantly reduces Type-II Error.500

Type-I Error measures the probability of human-501

written text being misclassified as watermarked.502

For human-written text T , each token is assumed503

to be independent of the watermarking algorithm,504

and the probability of a token being included in the505

green list is denoted by γ. As a result, the number506

of green tokens |S|G follows a normal distribution:507

|S|G ∼ N (γ|T |, γ(1−γ)|T |). In the case of selec-508

tive watermarking methods such as SWEET, where509

only a portion of tokens are watermarked, the dis-510

tribution becomes: |S|G ∼ N (γ|T̃ |, γ(1− γ)|T̃ |).511

Here, |T̃ | = WR×|T | represents the fraction of the 512

text covered by the watermark. Regardless of the 513

value of WR, the distribution can be standardized 514

using: z = |S|G−γ|T̃ |√
γ(1−γ)|T̃ |

. Because |S|G follows a 515

normal distribution, the standardized variable z fol- 516

lows a standard normal distribution N (0, 1). The 517

probability density function p(z) describes the like- 518

lihood of observing a specific value of z, and the 519

Type-I Error corresponds to the area under the stan- 520

dard normal curve beyond a given threshold (e.g., 521

when z = 2, the error is 2.28%, shown as the red 522

region in Fig. 4(a)). Since the probability of z > ẑ 523

for human text remains constant across τ , the se- 524

lection of τ does not affect the Type-I Error rate. 525

Type-II Error measures the probability of water- 526

marked text being misclassified as human-written 527

text, with lower Type-II Error indicating better de- 528

tection performance. To show how the Threshold 529

Navigator reduces Type-II Error, we analyze its 530

search criterion (p > 1 and w < 1) and its ef- 531

fect on the detection statistic z, as higher z val- 532

ues directly lower Type-II Error. Specifically, we 533

examine the relationship between z and two key 534

factors: green token count (|S|G) and watermark 535

ratio (WR). For selective watermarking methods 536

(e.g., IE or SWEET), z can be expressed as: 537

z =
|S|G − γ ·WR · |T |√
WR · |T | · γ(1− γ)

. 538

A higher z for machine-generated text indicate bet- 539

ter watermark detectability, as z quantifies the sta- 540

tistical deviation of the green token count from its 541

expected value in human text. 542
To understand how z changes with |S|G and 543

WR, we compute the partial derivatives of z: 544

∂z

∂|S|G
=

1√
WR · |T | · γ(1− γ)

> 0, 545

showing that z is positively correlated with |S|G. 546

∂z
∂WR = − |S|G√

|T |·γ(1−γ)
· 1

2·
√
WR3

−
√

γ|T |
1−γ ·

1
2
√
WR

< 0, 547
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(a) (b) (c) (d)

Figure 5: Effectiveness of the Threshold Navigator. (a) Improved detectability and quality with the Navigator
across δ. (b) Improved UES with the Navigator. (c) Generalizability to SWEET: Pass@1 vs. AUROC, demonstrating
similar improvements. (d) UES comparison for SWEET, showing significant gains with the Navigator.

showing that z is negatively correlated with WR.548

These results show that increasing |S|G im-549

proves z under the condition p > 1, allowing green550

token counts to grow as thresholds adjust. Simulta-551

neously, decreasing WR enhances z under w < 1,552

reducing watermarked tokens and improving de-553

tectability. Therefore, our Threshold Navigator ef-554

fectively reduces Type-II Error by optimizing |S|G555

and WR, leading to improved watermark detection.556

Impact of Search Directions Our default thresh-557

old search proceeds from high to low. Since dif-558

ferent search directions may impact the results,559

we compare searches starting from high to low560

(←) and low to high (→) to assess their effects.561

The experimental results are shown in Fig. 4(c). It562

can be observed that as the watermarking strength563

increases, navigation towards the Right generally564

achieves higher AUROC in most cases. Conversely,565

when the watermarking strength is relatively low,566

navigation towards the Left results in better code567

quality. This is because, at higher watermarking568

strengths, the impact on code quality becomes569

more significant, and navigation towards the Left,570

which prioritizes selecting higher entropy thresh-571

olds, helps mitigate the degradation of code quality.572

Effectiveness and Orthogonality. Fig. 5(a)573

presents an ablation study where the Threshold574

Navigator is removed, showing the Pass@1 and575

AUROC of the watermark under different water-576

mark strengths. Fig. 5(b) illustrates the UES across577

the same range of watermark strengths. These re-578

sults demonstrate that the Threshold Navigator sig-579

nificantly enhances the AUROC and UES of IE, en-580

abling the output to strike a balance between quality581

and detectability. To further evaluate the generaliz-582

ability of the Threshold Navigator across different583

watermark backbones, we apply it to the SWEET584

watermarking method. As shown in Fig. 5(c,d), the585

Navigator significantly improves SWEET across586

various watermark strengths. This highlights the587

versatility of the Threshold Navigator, as it can be 588

seamlessly integrated with existing watermarking 589

methods to enhance their effectiveness. 590

6.3 Robustness to Paraphrasing Attacks 591

Malicious users may attempt to remove the wa- 592

termark by paraphrasing attacks (Krishna et al., 593

2023; Gao et al., 2025). Here, we conduct vari- 594

able name paraphrasing attacks on the generated 595

codes at different levels. Specifically, for the gen- 596

erated codes from each watermarking method on 597

the HumanEval dataset, we replace varying propor- 598

tions of variable names in the watermarked text. 599

Fig. 4(c) shows the detectability of the attacked 600

code, measured by AUROC. The Attack Level de- 601

notes the percentage of variable names changed, 602

with 0% meaning none are altered and 25% indi- 603

cating a quarter are paraphrased. It can be seen that 604

as the Attack Level increases, the detectability of 605

all methods declines. Notably, KGW and SWEET 606

experience the most significant drops, with KGW’s 607

detectability falling below 20% and SWEET drop- 608

ping below 80%. Meanwhile, IE and EWD show 609

better robustness, maintaining around 90%. 610

7 Conclusion 611

We introduce IE (Invisible Entropy), a selective 612

watermarking method that overcomes two key limi- 613

tations: reliance on the original LLM for costly en- 614

tropy calculations and difficulty watermarking pre- 615

dictable, low-entropy outputs. IE uses a lightweight 616

feature extractor and entropy tagger to predict to- 617

ken entropy without the original LLM and a Thresh- 618

old Navigator for adaptive entropy thresholds, en- 619

suring balance in effectiveness, naturalness, and de- 620

tectability. Experiments on HumanEval and MBPP 621

show a 99% parameter reduction with state-of-the- 622

art performance. In the future, we aim to further 623

enhance the accuracy of the entropy tagger to im- 624

prove watermarking effectiveness and robustness. 625
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Limitations626

Although IE offers a safe, efficient and accurate wa-627

termarking approach, we identify two limitations628

and suggest potential solutions to address them.629

Entropy Tagger Accuracy Calibration In the630

App. C, we report the accuracy of the trained En-631

tropy Tagger. Although the current Entropy Tagger632

performs comparably to the precise entropy cal-633

culation, there is still some slight decrease in per-634

formance. Therefore, future work could focus on635

training a more precise Entropy Tagger, such as by636

incorporating certain specific low-entropy tokens637

as analyzed in App. G.638

Optimization Strategy for Threshold Navigator639

In § 6.2, we analyze the impact of the two search di-640

rections of the Threshold Navigator on watermark-641

ing performance. However, in our experiments, the642

search granularity is fixed at 0.3, which may limit643

optimization flexibility. Future work could explore644

adaptive search granularities that dynamically ad-645

just based on context or performance feedback, as646

well as alternative search directions that better align647

with different watermarking scenarios to further en-648

hance performance.649
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A Case study for threshold navigator931

In this section, we present a case study on Thresh-932

old Navigator. We select different entropy thresh-933

olds τ (0.3, 0.6, 0.9, and 1.2), where token below934

the entropy threshold are not watermarked. The ex-935

perimental results are shown in Fig. 6. In the water-936

marked text, tokens are annotated in red, green, or937

gray to represent red tokens, green tokens, and un-938

watermarked tokens, respectively. The evaluation is939

conducted from two perspectives, correct (whether940

the code correctly answer the question) and de-941

tected (whether the watermark is successfully de-942

tected).943

It is indicated that when τ is set to 0.3, the pro-944

portion of watermarked token is relatively high,945

which tends to result in lower code correctness.946

Conversely, when τ is set to 1.2, the proportion of947

watermarked tokens is relatively low. While this948

helps maintain code correctness to some extent, it949

also leads to a decrease in watermark detectability.950

Using the Threshold Navigator algorithm, the re-951

sults are shown in Tab. 2. When τ is set to 0.3, the952

values of p and w satisfy the condition p > 1 and953

w < 1, respectively. Therefore, a "transition" is954

required for 0.3, leading to the correct selection of955

0.6 as entropy threshold. This is further validated956

in Fig. 6, where an entropy threshold of 0.6 ensures957

both correctness and detectability.958

Entropy Threshold 0.3 0.6 0.9

p 3.57 0.12 0.75

w 0.98 0.29 0.58

p > 1 and w < 1? Yes No No

Table 2: p and w under different entropy thresholds.

B Algorithms for entropy-based selective959

watermark (SWEET)960

In this section, we present the algorithms for961

entropy-based selective watermark generation and962

detection (SWEET), as shown in Alg. 1 and Alg. 2.963

The core idea has already been introduced in the964

§ 3, while watermarking is applied only to the to-965

kens with entropy greater than τ during generation966

and detection process.967

The algorithm for text generation with entropy-968

based selective watermarking is built on KGW, as969

shown in Alg. 1. Initially, the language model pro-970

cesses the preceding tokens to compute the proba-971

bility distribution p(t) over the vocabulary for the972

question

def sum_square(lst):
  '''
  This function will take a list of integers.
  For all entries in the list, the function shall
  square the integer entry if its index is a multiple
  of 3 and will cube the integer entry if its index is
  a multiple of 4 and not a multiple of 3. The function 
  will not change the entries in the list whose indexes
  are not multiple of 3 or 4. The function will return 
  the sum of all entries. Examples: For lst = [1,2,3]
  the output should be 6 For lst = [] the output 
  should be 0 For lst = [-1, -5, 2, -1, -5] the 
  output should be -126
  '''

canonical solution

  result = []
  for i in range(len(lst)):
    if i % 3 == 0:
      result.append(lst[i] ** 2)
    elif i % 4 == 0:
      result.append(lst[i] ** 3)
    else:
      result.append(lst[i])
  return sum(result)

entropy threshold = 0.3

  for i in range(len(lst)):
    if (i % 3 == 0):
      lst[i] = lst[i] ** 2
    elif (i % 4 == 0):
      lst[i] = lst[i] ** 3
  return sum(lst)

correct detected

entropy threshold = 0.6

  # Initialize the sum to zero and the index of the 
element to zero
  sum = 0
  index = 0
  # For each element in the list lst.
  for i in lst:
    # If the index of the element is a multiple of 3.
    if index % 3 == 0:
      # Square the element
      sum += (i * i)
    # If the index of the element is a multiple of 4 and 
not a multiple of 3.
    elif index % 4 == 0:
      # Cube the element
      sum += (i * i * i)
    # Otherwise just add the element to the sum.
    else:
      sum += i
    # Increment the index of the element.
    index += 1
  # Return the sum of the entries in the list after 
processing the entries as specified.
  return sum

entropy threshold = 0.9

  for i in range(len(lst)):
    if (i % 3 == 0):
      lst[i] = lst[i] ** 2
    elif i % 4 == 0:
      lst[i] = lst[i] ** 3
  return sum(lst)

entropy threshold = 1.2

  new_lst = []
  for i in range(len(lst)):
    if i % 3 == 0:
      new_lst.append(lst[i] ** 2)
    elif i % 4 == 0:
      new_lst.append(lst[i] ** 3)
    else:
      new_lst.append(lst[i])
  return sum(new_lst)

correct detected

correct detected

correct detected

Figure 6: Results for various entropy thresholds.
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next token st (Line 3). The entropy of this distribu-973

tion determines whether the watermark is applied974

(Line 4). If the entropy Ht exceeds a threshold975

τ , the vocabulary is partitioned into a "green list"976

and a "red list" using a hash function seeded by the977

previous token. The size of the green list is con-978

trolled by a proportion parameter γ, and its logits979

are increased by a hardness parameter δ to influ-980

ence token selection. The final token is sampled981

from the adjusted probability distribution (Lines982

5 to 9). If the entropy Ht is below the threshold,983

the token is sampled from the original distribution984

without modification (Line 11).985

The detection phase for entropy-based selective986

watermarking is similar to the generation phase, as987

shown in Alg. 2. It initializes counters for green988

list tokens (|S|G), scored tokens (|T̂ |), total gener-989

ated tokens (|T |), and the Watermark Ratio (WR)990

(Line 2). For each token, the entropy Ht is com-991

puted (Line 4). If Ht exceeds the threshold τ , a992

hash of the previous token seeds a random number993

generator to partition the vocabulary into a green994

list G and a red list R. Tokens in the green list995

increment the green token count, while all scored996

tokens update the scored token count (Lines 5 to 9).997

After processing all tokens, a standardized score z998

is calculated to measure the deviation in green to-999

ken frequency and the Watermark Ratio WR (Line1000

13). If z exceeds a predefined threshold ẑ, the text1001

is classified as watermarked; otherwise, it is con-1002

sidered unwatermarked (Lines 14 to 18).1003

C Training details of entropy tagger1004

C.1 Preprocess1005

The statistics of HumanEval and MBPP datasets is1006

shown in Tab. 3. During the preprocessing phase,1007

we use the training split of the MBPP dataset to1008

construct the training dataset for the Entropy Tag-1009

ger, with the preprocessing algorithm described in1010

Alg. 3. Specifically, we first concatenate the prompt1011

with the code. (Line 4) Next, we truncate the se-1012

quence starting from the beginning, adding one to-1013

ken at a time, and compute the exact entropy using1014

LLM as the label. Then, we use the Unified Fea-1015

ture Extractor to extract features from the truncated1016

sequence to obtain the feature vector v. (Lines 51017

to 12) Finally, we obtain the preprocessed dataset1018

D̂ = {(Xi, yi)}, where Xi represents the i-th fea-1019

ture vector v, and yi represents the corresponding1020

actual entropy for Xi. The dataset size for each1021

split is shown in Tab. 3.1022

Algorithm 1 Text Generation with entropy-based
selective watermark

1: Input: prompt, s−Np , . . . , s−1

entropy threshold, τ
green list size, γ ∈ (0, 1)
hardness parameter, δ > 0

2: for t = 0, 1, ... do
3: Apply the language model to prior tokens

s−Np , . . . , s−1 to get a probability vector
p(t) over the vocabulary.

4: Calculate the entropy Ht for next token st.
5: if Ht > τ then
6: Compute a hash of token st−1, and use it

to seed a random number generator.
7: Using this random number generator, ran-

domly partition the vocabulary into a
"green list" G of size γ|V |, and a "red
list" R of size (1− γ)|V |.

8: Add δ to each green list logit. Apply the
softmax operator to these modified logits
to get a probability distribution over the
vocabulary.

p̂
(t)
k =


e

(
l
(t)
k

+δ

)
∑

i∈R el
(t)
i +

∑
i∈G el

(t)
i

+δ
, k ∈ G

e
l
(t)
k∑

i∈R el
(t)
i +

∑
i∈G el

(t)
i

+δ
, k ∈ R

9: Sample the next token, st, using the
marked distribution p̂(t).

10: else
11: Sample the next token, st, using the origin

distribution p(t).
12: end if
13: end for

Dataset Split # Samples # Converted

HumanEval test 164 32,168

MBPP
train 374 29,747
validation 90 7,391
test 500 40,571

Table 3: Statistics of HumanEval and MBPP. #Sam-
ples indicates the number of samples in each split of
the dataset, while #Converted represents the number of
samples in each split after preprocessing.
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Algorithm 2 Detection with entropy-based selec-
tive watermark

1: Input: prompt, s−Np , . . . , s−1

entropy threshold, τ
green list size, γ ∈ (0, 1)
z threshold, ẑ

2: Initialize: green token counts, |S|G ← 0
scored tokens counts, |T̂ | ← 0
generated tokens counts, |T | ← 0
watermark ratio, WR← 0

3: for t = 0, 1, ... do
4: Compute the entropy Ht of the next token

st.
5: if Ht > τ then
6: Compute a hash of st−1, and use it to seed

a random number generator.
7: Using the random number generator, ran-

domly partition the vocabulary into a
"green list" G of size γ|V |, and a "red
list" R of size (1− γ)|V |.

8: Increment |S|G if st in green list.

|S|G ←
{
|S|G + 1, if st ∈ G
|S|G, otherwise

9: Increment |T̂ | ← |T̂ |+ 1
10: end if
11: Increment |T | ← |T |+ 1
12: end for
13: Compute z and WR.

z =
|S|G − γ|T̂ |√
γ(1− γ)|T̂ |

,

WR =
|T̂ |
|T |

14: return z > ẑ,WR, |S|G

Entropy MBPP MBPP HumanEval
Threshold Validation Test Test

0.3 83.89 81.93 68.47
0.6 82.52 81.06 66.61
0.9 83.45 82.31 68.51
1.2 84.54 83.73 70.95
1.5 86.97 86.79 75.71

Table 4: Accuracy of Entropy Tagger for different en-
tropy thresholds.

Algorithm 3 Algorithm for preprocessing of En-
tropy Tagger

1: Input: Original dataset D = {Ti}, where Ti

represents a sample containing a prompt and
corresponding code.

2: Output: Preprocessed dataset D̂ =
{(Xi, yi)}, where Xi is the feature vector and
yi is the actual entropy.

3: for each sample Ti in D do
4: Concatenate the prompt and code in Ti to

form a single sequence S.
5: Initialize an empty list Ŝ = [] to store trun-

cated sequences.
6: for k = 1 to length(S) do
7: Truncate S to the first k tokens to create

Sk.
8: Append Sk to Ŝ.
9: end for

10: for each truncated sequence Sk in Ŝ do
11: Compute the exact entropy yk of Sk using

StarCoder.
12: Extract the feature vector vk for Sk using

the Unified Feature Extractor.
13: Add (vk, yk) to D̂.
14: end for
15: end for
16: Return: Preprocessed dataset D̂.

C.2 Training 1023

Ablation study on training objective We evalu- 1024

ate the accuracy of the Entropy Tagger under two 1025

training objectives: classification and regression. 1026

In the classification setting, the model is trained 1027

as a binary classifier to directly predict whether 1028

each token is low entropy. Accuracy is computed 1029

by comparing the predicted class label ŷi ∈ {0, 1}, 1030

with the ground-truth label yi ∈ {0, 1}: 1031

Acc.cls =
1

N

N∑
i=1

1[ŷi = yi] (2) 1032

In the regression setting, the model predicts a scalar 1033

entropy value êi ∈ R. The ground-truth entropy 1034

value ei ∈ R is also provided. We discretize both 1035

values into bins of width 0.3, capping the maxi- 1036

mum bin value at 1.5, and evaluate accuracy by 1037
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comparing the resulting discrete labels:1038

Bin(x) = min
(⌊ x

0.3

⌋
× 0.3, 1.5

)
(3)1039

Acc.reg =
1

N

N∑
i=1

1 [Bin(êi) = Bin(ei)] (4)1040

Tab. 5 demonstrates that the regression-based1041

Entropy Tagger consistently underperforms the1042

classification-based version in terms of accuracy1043

across all three datasets. Consequently, we adopt1044

the classification objective for training the Entropy1045

Tagger.1046

Details on Training Entropy Tagger During the1047

training phase, we construct a binary classification1048

MLP, and then, based on the threshold τ , we map1049

y in D̂ to True or False. If yi < τ , it is set to True,1050

otherwise False. We then train using BCELoss and1051

optimize with AdamW (Loshchilov, 2017). The1052

hyperparameter settings are shown in the Tab. 6.1053

Finally, the epoch with the highest accuracy on the1054

MBPP validation split is selected as the Entropy1055

Tagger.1056

Hyperparameter Setting

# epochs 100
batch_size 32
lr 1e-4
optimizer AdamW
weight_decay 2e-5

Table 6: The hyperparameter settings for training the
Entropy Tagger.

C.3 Validation1057

We use the MBPP test and HumanEval test as the1058

test sets, representing the in-domain and out-of-1059

domain scenarios, respectively. The test results are1060

shown in Tab. 4. The results show that the accuracy1061

of the Entropy Tagger is consistent across different1062

splits of the same dataset (in-domain), achieving1063

over 80%. When applied across datasets (out-of-1064

domain), using the Entropy Tagger for prediction1065

also achieves an accuracy of over 66.61%, with an1066

accuracy of 75.71% at the τ = 1.5.1067

D Implementation details1068

All methods can be implemented on a single1069

NVIDIA A100-SXM4-40GB. For Post-hoc methods1070

and KGW, we follow the implementation provided1071

in the Lee et al., 2024. For EWD, we adopt the rec-1072

ommended hyperparameters from Lu et al., 2024.1073

However, to ensure a fair comparison, we use the 1074

same hash key in KGW for EWD. For SWEET, we 1075

use the settings recommended in the original pa- 1076

per. Since the Threshold Navigator automatically 1077

selects a fixed threshold, we report the averaged re- 1078

sults across all thresholds for SWEET. As SWEET 1079

consider the trade-off between code generation abil- 1080

ity and detectability, two results are reported for 1081

MBPP. We select the one with the highest AUROC. 1082

For IE, we report the result with the highest UES 1083

under the condition that Pass@1 is allowed to drop 1084

by up to 20%. Detailed settings for each method 1085

on each dataset can be found in Tab. 7. 1086

E Computational Time Used Analysis 1087

To evaluate the computational efficiency of each 1088

method, we measure the total runtime required to 1089

complete evaluation on the HumanEval benchmark. 1090

Due to the variation in generated text lengths across 1091

different methods, all watermarking approaches are 1092

applied exclusively during the detection phase to 1093

ensure a fair comparison. Each method is evaluated 1094

three times under the same hardware conditions, 1095

and the average total runtime is reported. The re- 1096

sults are summarized in Tab. 8. 1097

As shown in the Tab. 8, our method achieves 1098

the lowest total runtime, demonstrating its practical 1099

advantage in terms of computational efficiency. 1100

F Algorithms for Threshold Navigator 1101

The algorithmic details of Threshold Navigator 1102

are shown in Alg. 4. Given a prompt sequence, 1103

green list size, and search granularity, we begin 1104

by initializing the entropy threshold τ0 and com- 1105

puting the corresponding Watermark Ratio (WR0) 1106

and the number of green tokens |S|Gτ0
under this 1107

threshold. (Lines 3-5). Then, we enumerate down- 1108

ward from the initial entropy threshold (e.g., 1.5) 1109

to lower values (e.g., 1.2, 0.9, 0.6, 0.3). For 1110

each new entropy threshold, we compute the up- 1111

dated Watermark Ratio (WRτi−1) and green token 1112

count (|S|Gτi
). (Lines 6-8) For every pair of ad- 1113

jacent entropy thresholds, we calculate the green 1114

token change ration p (Line 9) and the Watermark 1115

Ratio change ratio w (Line 10). The search stops 1116

when the condition p > 1 and w < 1 is met for 1117

the first time, and the previous entropy threshold is 1118

selected as the final threshold and returned (Lines 1119

11-13). 1120
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Figure 7: Top-K tokens most frequently classified as low entropy tokens.

Methods
MBPP MBPP HumanEval

Validation Test Test

Regression 38.16 36.90 37.94
Classification 84.27 83.16 70.05

Table 5: Accuracy of Entropy Tagger for different train-
ing objectives.

Dataset Method γ δ

HumanEval

KGW 0.25 3.0
EWD 0.5 2.0
SWEET 0.25 3.0
IE 0.5 3.0

MBPP

KGW 0.25 3.0
EWD 0.5 2.0
SWEET 0.5 2.0
IE 0.25 3.0

Table 7: Detailed settings for each watermark methods.

Algorithm 4 Threshold Navigator
1: Input: prompt, s0, . . . , st−1

green list size, γ ∈ (0, 1)
search granularity, ∆

2: Output: τ̂ (final entropy threshold)
3: Initialize τ0 (initial entropy threshold)
4: τ̂ ← τ0
5: Calculate WR0 (Watermark Ratio) and |S|Gτ0

(green to-
ken count).

6: for i = 1 to ⌊τ0/∆⌋ do
7: τi ← τi−1 −∆
8: Calculate WRτi and |S|Gτi

.
9: p← |S|Gτi−1

/|S|Gτi

10: w ← WRτi−1/WRτi

11: if p > 1 and w < 1 then
12: τ̂ ← τi−1

13: break
14: end if
15: end for
16: return τ̂
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Table 8: Total runtime (in seconds) on the HumanEval
benchmark for each method.

Method Total Time (s)

KGW 55.86(± 10.67)
EWD 118.83(± 11.82)
SWEET 110.75(± 11.29)
IE 100.36(± 6.53)

G Analysis on low entropy tokens1121

We rank the frequency of tokens classified as low1122

entropy token under γ = 0.25 and δ = 3.0 across1123

different entropy thresholds and report the top 101124

tokens. To enhance clarity, we use "b" to repre-1125

sent spaces and "n" to represent newlines. The1126

results are shown in Fig. 7. It can be observed that,1127

despite varying entropy thresholds, certain tokens1128

frequently appear as low entropy tokens, such as1129

"_", ".", ":", "1", "(", ")", spaces, newlines, and1130

their combinations.1131
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