Abstract

Accurate fisheries data are crucial for effective and
sustainable marine resource management. With
the recent adoption of Electronic Monitoring (EM)
systems, more video data is now being collected
than can be feasibly reviewed manually. This pa-
per addresses this challenge by developing an op-
timized deep learning pipeline for automated fish
re-identification (Re-ID) using the novel AutoFish
dataset, which simulates EM systems with con-
veyor belts with six similarly looking fish species.
We demonstrate that key Re-ID metrics (R1 and
mAP®@k) are substantially improved by using hard
triplet mining in conjunction with a custom im-
age transformation pipeline that includes dataset-
specific normalization. By employing these strate-
gies, we demonstrate that the Vision Transformer-
based Swin-T architecture consistently outperforms
the Convolutional Neural Network-based ResNet-
50, achieving peak performance of 41.65% mAP@k
and 90.43% Rank-1 accuracy. An in-depth analysis
reveals that the primary challenge is distinguish-
ing visually similar individuals of the same species
(Intra-species errors), where viewpoint inconsistency
proves significantly more detrimental than partial
occlusion. The source code and documentation are
available at: https://github.com/msamdk/Fish_
Re_Identification.git

1 Introduction

The sustainable management of global fisheries
hinges on the availability of accurate, comprehen-
sive, and timely data [1, 2]. Electronic Monitoring
(EM) systems, which utilize cameras on fishing ves-
sels, have emerged as a powerful and cost-effective
tool for fisheries data collection, offering an alterna-
tive to traditional methods relying on on-board ob-
servers and logbooks [3]. EM systems in fisheries are
used for various objectives, including documenting
catches [4, 5], ensuring legal compliance with fishing
regulations, including catch limits [6], and reducing
discards and bycatch [5-9]. However, the increased
uptake of EM systems on-board fishing vessels has
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Figure 1. Sample images showing the diversity in
image/video data encountered from EM systems. (a)-(d)
show common problems: (a) obstruction of the camera
view by the crew’s hands; (b) lens fogging and high
occlusion; (c) heavy pixelation from degraded video
compression; (d) organic debris masks portions of the
catch. In contrast, (e) represents a clear view of a catch
with overlapping individuals, and (f) shows the ideal
scenario in which the individuals are dispersed in an
even layer across the conveyor belt without overlapping
(Data Source: [15]).

created a new bottleneck where the volume of video
data has exceeded the capacity to perform full-scale
manual reviews [10, 11], a problem compounded
by poor image quality, occlusions, and varied video
recording conditions [8, 12-14] (Fig. 1).

Deep learning-based EM systems have emerged
as a promising technology for automating catch doc-
umentation in different types of fisheries, including
demersal trawling [16, 17], demersal beam trawling
[18], tropical purse seines [19], and longlines [20-22].
Although these studies have shown commendable
results in documenting catches in low occlusion en-
vironments, a critical challenge remains as occlusion
levels increase: maintaining the identity of individ-
ual fish for accurate counting and documentation.
For example, on a dynamic conveyor belt, fish are
frequently occluded or move out of view, making
it difficult to determine if a fish is being seen for
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Figure 2. A conceptual diagram illustrating re-identification (Re-ID) applied to an Electronic monitoring system
with a conveyor belt. (a) An individual is detected and assigned a unique identity (ID-25). (b-c) The system
performs re-identification, successfully matching the fish after it’s handled, disappears, and reappears with a
new orientation within the same camera view on the conveyor belt. (d) The model’s capacity for long-term,
inter-camera Re-ID is shown, correctly matching ID-25 hours later in a different location under a new camera.

This could be a subsampling station in the fishing vessel.

the first or second time. This frequent loss of visual
contact leads to a fundamental problem of identity
loss, which can cause significant errors in fisheries
data. To solve this, a robust approach is needed to
match an individual’s identity each time it appears,
a task known as re-identification (Re-ID) (Fig. 2).
Re-ID has been extensively applied to persons [23]
and vehicles [24]. However, the application of Re-ID
in the aquatic domain remains sparse. Targeted
Re-ID research in the field of aquatic sciences has
primarily focused on species with distinct visual
patterns [25-30].

This paper evaluates deep learning architectures
for fish Re-ID in a simulated conveyor belt environ-
ment using the AutoFish dataset [31]. To rigorously
isolate the feature extraction performance from up-
stream detection errors, this study utilizes ground-
truth (GT) annotations, establishing a theoretical
performance ceiling for the Re-ID component. Our
primary contributions are:

(1). A comparative analysis evaluating the hier-
archical Vision Transformer Swin-T (Tiny)
against the Convolutional Neural Network
(CNN) ResNet-50, establishing the architectural
advantage of self-attention mechanisms for fine-
grained fish Re-ID.

. The identification of methodological strategies,
including custom image transforms and hard
triplet mining, that significantly improve Re-ID
performance.

An in-depth analysis of the trained Swin trans-
former’s failure modes, revealing the core chal-
lenges in Fish Re-ID in partially occluded sce-
narios.

(3).

To the best of our knowledge, this paper presents
the first in-depth work on the re-identification of
similarly looking commercial fish species.
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Figure 3. Modification of the pre-trained ResNet-50
(top) and Swin-T (bottom) backbones to produce 512-D
embeddings for metric learning. In both architectures,
the final classification layer is removed to expose the raw
feature vector (2048-D for ResNet-50; 768-D for Swin-T).
A new, learnable linear layer is then appended to each
backbone to project these high-dimensional features into
a final, shared 512-dimensional embedding space. D
represents Dimensions.

2 Methodology

In the domains of person [23] and vehicle [24] Re-
ID, a paradigm shift is currently underway, with
Transformer-based architectures increasingly outper-
forming established CNN baselines. However, the
transferability of these emerging architectures to
the visually homogeneous aquatic domain remains
underexplored.

Previous aquatic research has typically focused on
single-species identification using various method-
ologies. Arzoumanian et al. [25], and Speed et al.
[26] rely on the extraction of high-contrast keypoints
(e.g., spots) to generate geometric point patterns in
whale sharks.

Haurum et al [27] advanced the field by applying
deep metric learning to zebrafish. While Moskvyak
et al. [28] employ a landmark-guided approach that
explicitly inputs annotated anatomical features (e.g.,
eyes, gills) to guide the learning of discriminative em-
beddings for manta rays, Pedersen et al. [29] utilize
a keypoint matching approach for sunfish. The lat-
ter relies on detecting and matching low-level visual
interest points (using descriptors like SIFT or Su-
perPoint) to establish geometric correspondence via
homography, without requiring semantic knowledge
of specific body parts. In contrast, our work ad-
dresses the more complex challenge of re-identifying
individuals across multiple, visually similar commer-
cial fish simultaneously.

In EM scenarios, relying on localized markers is
precarious; if a distinguishing feature is occluded
on a conveyor belt, identification fails at both the
species and individual levels. To address this, we
evaluate the Swin-T [32] against a ResNet-50 [33]

model, under a closed-world Re-ID setting.

2.1 Dataset and Data preparation

The study employed the publicly available AutoFish
dataset [31], a resource designed for the fine-grained
analysis of fish. The dataset is composed of 1500
RGB images of 454 unique fish specimens from six
most common fish species in the North Sea (Horse
mackerel, whiting, haddock, cod, hake, saithe), and
a miscellaneous category. Crucially for Re-ID evalua-
tion, the dataset is pre-split into training, validation,
and test sets, ensuring that there are no overlap-
ping fish IDs between the splits and shows a similar
species composition in each split. A key feature of
the dataset is its structured organization designed to
simulate various real-world challenges. The data is
partitioned into subcategories based on two factors:
Fish arrangement and body viewpoint.

Arrangement is categorized as either Separated,
where fish do not overlap, or Touched, where fish
are arranged to simulate partial occlusion. View-
point is categorized as either Initial, representing
one side of the fish, or Flipped, representing the op-
posite side. This structure results in four distinct ex-
perimental conditions: Separated-Initial, Separated-
Flipped, Touched-Initial, Touched-Flipped. Each
fish specimen in the dataset is represented by a
comprehensive set of 40 image instances, with 10
instances distributed into each of these four condi-
tions.

For our experiments, the input data was prepared
by using the GT instance segmentation masks to
crop each fish, with a two pixel padding to preserve
boundary details.

2.2 Model Architectures and Prepro-
cessing

Our core experiment was a comparative analysis
between ResNet-50 [33], and Swin-T [32]. The
ResNet-50 architecture, a quintessential CNN, relies
on a deep stack of convolutional layers and residual
connections to learn hierarchical local features. Its
inductive bias is well-suited for capturing spatial hi-
erarchies like textures and patterns. In contrast, the
Swin-T architecture is a hierarchical Vision Trans-
former that models long-range dependencies using
a shifted window self-attention mechanism. This
allows it to capture global context and subtle, non-
local relationships across an image. To establish a
baseline, we first evaluated the off-the-shelf models
in a zero-shot retrieval task, utilizing their original
output dimensions (2048-D for ResNet-50, 768-D for
Swin-T). Subsequently, for the fine-tuning experi-
ments, we adapted both models by replacing their
final classification layers with a unified, learnable
512-dimensional embedding head (Fig. 3).



An integral part of our methodology is a custom
resize-and-pad-to-square transformation, applied to
fish crops before network input. This operation first
resizes each image to preserve its original aspect
ratio, then pads it to fit a 224 x 224 canvas, ensuring
that the entire fish and all local markings remain vis-
ible. In contrast, commonly used standard PyTorch
training pipelines for ImageNet-style classification
typically include random-sized crops or center crops
after resizing, which can remove parts of the ob-
jects or heavily rescale a small region [34, 35]. Such
cropping is acceptable for coarse object classification.
But it is prone to discarding subtle identity cues (e.g.,
local patterning and fin-edge structure) that are crit-
ical for fine-grained Re-ID. Finally, we computed
and applied dataset-specific normalization statistics
(Channel-wise mean - [0.0495, 0.0503, 0.0535]; Stan-
dard deviation = [0.1370, 0.1363, 0.1412]) to scale
the preprocessed images properly.

2.3 Training

Models were trained using Triplet Margin Loss (fixed
margin = 0.5). To ensure each batch was effective
for this loss, we used a custom PK sampler, which
constructs each batch by selecting P unique fish
IDs and K instances per fish ID. The batch size is
the product of P and K. This guarantees the pres-
ence of positive and negative pairs in each batch.
Based on the preliminary tests, we employed hard
triplet mining from PyTorch Metric Learning, which
selects both hard positives and hard negatives (A,
Phard; Nhara) where the negative is closer to the
anchor than the positive, ensuring only challeng-
ing triplets contribute to the loss. Training ran
for 300 epochs with AdamW optimizer (learning
rate = 1075, weight decay = 10~%), and a learning
rate scheduler was employed to reduce the learning
rate by a factor of 0.2 if the validation loss did not
improve for 10 consecutive epochs.

2.4 Experimental Design

Our research progressed through four experimental
stages. First, we established a baseline by evaluat-
ing the pre-trained models in a zero-shot retrieval
task to confirm the need for fine-tuning. Second, we
conducted preliminary experiments that validated
our choice of custom image transforms and hard
triplet mining over semi-hard triplet mining alterna-
tive by showing their superior performance. Third,
the main experiment consisted of training the archi-
tectures with this optimized protocol across various
batch sizes (16, 32, 64, and 256). Table 1 shows
the combinations of P and K values for the selected
batch sizes.

Final stage, after identifying the best-performing
model, we conducted a rigorous in-depth analysis to
evaluate its robustness under specific, challenging

Table 1. The batch size variable. P represents the
number of unique fish IDs per batch and K represents
the number of instances per unique fish ID per batch.

Batch size P K
16 4 4
32 4 8
64 8 8
256 32 8

conditions that simulate real-world complexities. For
this, we partitioned the test set into its four subcat-
egories as mentioned in section 2.1, and constructed
distinct query and gallery sets to test the model’s
performance in several key scenarios systematically:

(1). Identical Conditions: We first established
the model’s baseline capabilities by performing
Re-ID within identical conditions (e.g., query-
ing Separated-Initial against a Separated-Initial
gallery). This measures the model’s perfor-
mance when viewpoint and occlusion levels are
consistent.

(2). Viewpoint Invariance: We tested the model’s
robustness to changes in viewpoint by query-
ing fish from one side against a gallery of im-
ages showing the opposite side (e.g. Separated-
Initial vs Separated-Flipped). This directly
evaluates the model’s ability to recognize an
individual fish regardless of which side is pre-
sented to the camera.

. Occlusion Robustness: We assessed the
model’s resilience to occlusion by querying
clearly visible fish against a gallery where the
fish are touching and particularly obscured (e.g.,
Separated-Initial vs. Touched-Initial).

. Compound Challenges: Finally, we eval-
uated the model under the most difficult
conditions by combining both viewpoint and
occlusion changes (e.g., Separated-Initial vs.
Touched-Flipped). This scenario simulates the
challenging real-world task of identifying a fish
that is both occluded and has been flipped over.

The detailed subcategory level experiments are listed
in the Table 2.

2.5 Evaluation

The evaluation followed a standard Re-ID protocol
where query and gallery sets were constructed pro-
grammatically from the test data. For each unique
fish ID with multiple instances, one image was ran-
domly selected to serve as the query. All remaining
instances from all IDs were then used to populate



Table 2. Experimental setup for the in-depth subcategory analysis, detailing the query and gallery combinations
used to test the model’s robustness under various conditions.

Scenario

Query

Gallery

Identical condition scenarios

Separated-Initial
Separated-flipped
Touched-Initial
Touched-flipped

Separated-Initial
Separated-flipped
Touched-Initial
Touched-flipped

Viewpoint invariance scenarios

Separated-Initial
Touched-Initial

Separated-flipped
Touched-flipped

Occlusion robustness scenarios

Separated-initial
Separated-flipped

Touched-initial
Touched-flipped

Compound challenge scenarios

Separated-Initial
Separated-flipped

Touched-flipped
Touched-initial

a single, comprehensive gallery. To ensure this ran-
dom split is consistent and reproducible across ex-
periments, a fixed seed was used for the selection
process. The similarity between a query and each
gallery image was quantified by calculating the Eu-
clidean distance between their L2-normalized 512-
dimensional embeddings, where a smaller distance
indicates higher visual similarity. For each query, all
gallery images were then ranked in ascending order
based on this distance.

The performance of this ranking was quantified
using two standard metrics. R1 Accuracy mea-
sures the percentage of queries where the top-ranked
result is a correct identification and is defined as:
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Where |@Q)| is the total number of queries, and I is
an indicator function that is 1 if the ID of the query
(q) matches the ID of its top-ranked gallery image
(94.1)-

mean Avergae Precision (mAP) at rank k
(mAP@Xk) provides a more comprehensive score by
evaluating the entire ranked list for each query. It is
calculated by averaging the Average Precision (AP)
scores across all queries in the test set Q). The AP
for a single query q is defined as:

d(gq,1)) (1)

APy = pA Z Prec(i) - Relevance(i)  (2)

Where ¢ is a single query image being evaluated,
n is the total number of images in the ranked gallery
list. |R| is the total number of relevant images
for the query ¢ that exists in the gallery (i.e., the
number of other images with the same fish ID).
>, is the summation over every position (rank)
in the gallery, from the first position (i=1) to the
last (i=n). Prec(i) is the precision at rank i, which
the proportion of correct matches found within the

top i results of the ranked list. Relevance(i) is an
indicator function that is 1 if the image at rank 7 is
a correct match (relevant to the query) and 0 if it is
not. The precision can be calculated as follows.

TP

TP +FP 3)

Precision =
Where TP represents the number of true positives
and FP represents the number of false positives. The
final mAP is the mean of these AP scores:

Q| AP
= T )

In our specific protocol, since each query has ex-
actly 39 corresponding true matches in the gallery,
we report the mAP calculated over the top 39 ranks
(mAPQ@k = mAP@39). This provides a precise score
of the model’s ability to retrieve all relevant in-
stances within those top results.

For the in-depth analysis, the same evaluation
metrics were used.

mAP(Q) =

3 Results

3.1 Preliminary experiments and

Baseline

The preliminary experiments in Fig. 4 showed that
hard triplet mining consistently outperformed semi-
hard triplet mining for both Swin-T and ResNet-50.
Our custom image transformation further improved
R1 and mAP@k for Swin-T, and although it caused
a slight R1 decrease for ResNet-50 under hard triplet
mining. Its overall benefit was confirmed by higher
mAP@k. Based on the clear superiority of this com-
bination, an optimized protocol using our custom
image transformation and hard triplet mining was
adopted for all main experiments.

The initial zero-shot retrieval task confirmed the
necessity of domain-specific training. Both models
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Figure 5. Performance trends of the fine-tuned Swin-T
and ResNet-50 architectures across various batch sizes,
measured by R1 accuracy and mAP@k. The Baseline
group shows the initial performance of the pre-trained
models for reference and the rest of the chart shows the
fine-tuned performance of the model architectures.

performed poorly, with Swin-T achieving only 3.19%
R1 and 0.27% mAP@k, and ResNet-50 achieving
23.40% R1 and 2.26% mAPQk (Fig. 5).

3.2 Model architecture comparison
for Re-ID

In the main experiment comparing the fine-tuned
architectures across various batch sizes, Swin-T con-
sistently and significantly outperformed ResNet-50
(Fig. 5). The Swin-T architecture demonstrated re-
markable stability and high performance across all
tested batch sizes, achieving over 87% R1 and 39%
mAP@k in all configurations. Peak performance

was achieved with a batch size of 16 yielding 90.43%
R1 accuracy and 41.65% mAP®@Qk. In contrast, the
ResNet-50 model’s performance was highly depen-
dent on the batch size, improving as the batch size
increased but never approaching the performance
of Swin-T. Its peak performance was achieved with
a batch size 256, reaching 70.21% R1 and 13.56%
mAP@k. These results establish the clear architec-
tural superiority of the Swin-T for this fine-grained
fish Re-ID task.

To assess the learned feature space, we analyzed
KDE and t-SNE plots of test set embeddings. The
KDE plots (Fig. 6) show that Swin-T achieves a
clear separation between positive and negative dis-
tance distributions with minimal overlap, indicating
compact same-identity clusters and well-separated
different identities. The ResNet-50 exhibits sub-
stantial overlap, consistent with its lower perfor-
mance. The t-SNE visualizations (Fig. 7) further
confirm that the Swin-T embeddings form distinct,
well-separated clusters for different fish IDs, while
ResNet-50 embeddings are sparsely distributed and
poorly clustered with intermingled identities.

3.3 In-Depth Analysis

A rigorous in-depth analysis revealed a clear per-
formance hierarchy across the various experimental
scenarios (Table 3). Using the Separated-Initial
subset as the primary query reference (first row),
our analysis reveals a distinct performance hierar-
chy governed by feature correspondence (viewpoint)
rather than feature completeness (occlusion). The
identical condition established a near-perfect up-
per bound (yellow zone), confirming the model’s
extraction capability under ideal conditions.



Table 3. In-depth analysis of the best-performing model (Swin-T). The table shows the mAP@k — R1 accuracy
(%) for Re-ID performance across the four dataset subcategories. Cell colors highlight specific interaction types

mentioned in Table 2 (
Occlusion robustness scenarios;

. Identical condition scenarios;
: Compound challenge scenarios).

. Viewpoint Invariance scenarios;

Gallery

Query Separated Initial

Separated Flipped

Touched Initial Touched Flipped

95.40% — 100.00%
67.93% — 76.81%
79.70% — 89.89%
55.29% — 62.34%

Separated Initial
Separated Flipped
Touched Initial
Touched Flipped

69.24% — 78.59%
93.64% — 100.00%
56.94% — 63.51%
81.33% — 89.79%

78.48% — 95.42%
55.11% — 70.64%
77.59% — 100.00%
48.31% — 58.62%

55.41% — 71.88%
79.87% — 95.96%
49.45% — 59.26%
77.64% — 100.00%
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Figure 6. Kernel Density Plots (KDE) of the main ex-
periments with Swin-T (a-d) and ResNet-50 (e-h). Grey
density curves represent the distribution of Euclidean
distances between positive pairs (same fish ID), and pur-
ple curves represent negative pairs (Different fish IDs).

As we introduce challenges, a clear divergence
emerges: the model demonstrates remarkable per-
formance to partial occlusion in the Touched-Initial
gallery scenario (blue zone), maintaining a R1 ac-
curacy of 95.42% and a mAP@k of 78.48%. This
high performance is attributed to the preservation of
the lateral viewpoint, allowing the model to exploit
high-frequency texture details despite occlusion. In
sharp contrast, the Separated-Flipped scenario (red
zone)—which presents the full, non-occluded fish but
from the opposite side—causes a significant drop to
78.59% R1 accuracy and 69.24% mAP@k. This con-
firms that the loss of asymmetric lateral features is
far more detrimental to identification than partial
occlusion. The compound challenge (green zone)

Table 4. Summary table of rank-1 inter-species and
intra-species confusions recorded in four subcategory
level in the test dataset.

Intra-species Inter-species

Subcategory

errors errors
Separated Initial side 3 0
Separated Flipped side 5 0
Touched Initial side 21 0
Touched Flipped side 12 1

shows the lowest performance, as expected due to
the combination of viewpoint as well as the occlusion.
This trend holds true regardless of the query subset,
reinforcing the conclusion that viewpoint consistency
is the critical limiting factor for performance.

Furthermore, the Separated-Initial query achieves
a slightly higher mAP@k against the Touched-Initial
gallery (78.48%) than the Touched-Initial query does
against itself (77.59%). This pattern recurs in the
flipped scenario (79.87% vs 77.64%). This coun-
terintuitive finding indicates that query integrity is
paramount; a holistic, non-occluded query generates
a more discriminative feature representation than a
partially occluded one.

Critically, an analysis of the Rank-1 errors re-
vealed that the model’s mistakes were almost ex-
clusively intra-species errors, confusing a fish with
a different individual of the same species. Inter-
species errors were nearly non-existent. This finding
demonstrates that the Swin-T model is exceptionally
robust at species-level discrimination and that the
primary challenge for fine-grained fish Re-ID lies in
differentiating between visually similar individuals
(Table 4).

4 Discussion and Conclusion

This study aimed to develop and evaluate an op-
timized deep learning methodology for individual
fish Re-ID in a controlled setting simulating an EM
context. Our findings demonstrate the superiority
of the Swin Transformer architecture and highlight
critical methodological choices required for this fine-
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Figure 7. t-SNE (t-Distributed Stochastic Neighbour Embedding) plots for the best performer Swin-T (16 batch
size) (Top) and the best ResNet-50 (256 batch) (Bottom). These are the gallery embedding vectors of the test
dataset. Only 8 fish IDs out of 94 fish IDs in the test set are visualized in here for a clear view.

grained task. The consistent superiority of Swin-T
over ResNet-50 is attributed to two key architectural
differences. First, the transformer’s shifted window
self-attention mechanism allows the model to prop-
agate information across the entire image, captur-
ing global context and subtle, distributed biological
markers that local CNN receptive fields may miss.
Second, our experiments revealed that Swin-T main-
tains high performance even at smaller batch sizes,
whereas ResNet-50 performance degrades. We at-
tribute this to the difference in normalization strate-
gies: ResNet relies on batch normalization (BN),
where the calculation of mean and variance becomes
unstable with small batches [36]. In contrast, Swin-
T employs layer normalization (LN), which com-
putes statistics independently for each sample [37].
This makes the transformer architecture significantly
more robust for tasks where hardware constraints
limit batch size.

Methodologically, the resize and pad to square
image transformation proved essential for preserving
extremity features, and a fixed hard triplet margin
(m = 0.5) successfully enforced rigorous identity
separation in this controlled setting. However, we
acknowledge that this hyperparameter involves a
trade-off. While effective for clean laboratory data,
a high fixed margin may hinder convergence in real-
world fishing environments characterized by high
visual noise (e.g., blood, debris). Future work should
prioritize an ablation study to optimize margins for
noisy domains or explore adaptive margin strategies.

Crucially, our analysis reveals that viewpoint con-
sistency is a stronger determinant of Re-ID success
than feature completeness for this specific study.
This confirms that the lateral viewpoint contains
the primary identity signature; preserving it allows

for robust matching even under occlusion, whereas
flipping the fish removes access to critical or subtle
asymmetric features. Furthermore, we observe that
consistency in occlusion state is secondary to query
integrity. Retrieval performance decreases when us-
ing an occluded query (Touched) even against a
similarly occluded gallery. In contrast, a feature-
rich, non-occluded query (Separated) successfully
retrieves targets even in occluded scenarios. This
suggests that a complete visual signature is more
valuable to the model than matching the occlusion
levels between the query and the gallery.

The error analysis reveals that mistakes were al-
most exclusively intra-species. This indicates that
future data collection efforts should prioritize acquir-
ing Hard-Negative examples—visually similar individ-
uals of the same species under varied viewpoints—to
further refine the model’s capability for fine-grained
discrimination. These insights are highly valuable
for developing robust automated catch recognition
systems. By prioritizing high-quality query acqui-
sition or best shot selection systems can prevent
identity loss even in cluttered environments. This
capability ensures reliable re-identification, directly
improving the quality of catch data required for
downstream tasks such as stock assessments, selec-
tivity studies, and gear development.
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