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Figure 1: RobustSpring is a novel image corruption benchmark for optical flow, scene flow, and
stereo. It evaluates 20 image corruptions including blurs, color changes, noises, quality degra-
dations, and weather, applied to stereo video data from Mehl et al. (2023b). For comprehensive
robustness evaluations on all three tasks, RobustSpring’s image corruptions are integrated in time,
stereo, and depth, where applicable.

ABSTRACT

Standard benchmarks for optical flow, scene flow, and stereo vision algorithms
generally focus on model accuracy rather than robustness to image corruptions
like noise or rain. Hence, the resilience of models to such real-world perturba-
tions is largely unquantified. To address this, we present RobustSpring, a com-
prehensive dataset and benchmark for evaluating robustness to image corruptions
for optical flow, scene flow, and stereo models. RobustSpring applies 20 different
image corruptions, including noise, blur, color changes, quality degradations, and
weather distortions, in a time-, stereo-, and depth-consistent manner to the high-
resolution Spring dataset, creating a suite of 20,000 corrupted images that reflect
challenging conditions. RobustSpring enables comparisons of model robustness
via a new corruption robustness metric. Integration with the Spring benchmark
enables two-axis evaluations of both accuracy and robustness. We benchmark a
curated selection of initial models, observing that robustness varies widely by cor-
ruption type, and experimentally show that evaluations on RobustSpring indicate
real-world robustness. RobustSpring is a new computer vision benchmark that
treats robustness as a first-class citizen to foster models that combine accuracy
with resilience.

1 INTRODUCTION

Optical flow, scene flow, and stereo vision algorithms estimate dense correspondences and enable
real-world applications like robot navigation (McGuire et al., 2017; Zhang et al., 2025; Lamberti
et al., 2024), video processing (Mehl et al., 2024), structure-from-motion (Maurer et al., 2018; Phan
et al., 2020), medical image registration (Mocanu et al., 2021), or surgical assistance (Rosa et al.,
2019; Philipp et al., 2022). While estimation quality continuously improves on accuracy-driven
benchmarks (Mehl et al., 2023b; Menze & Geiger, 2015; Butler et al., 2012; Baker et al., 2011;
Scharstein et al., 2014; Geiger et al., 2012; Richter et al., 2017; Schöps et al., 2017), their robustness
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to real-world visual corruptions like noise or compression artifacts is rarely systematically assessed.
This lack of systematic assessment is problematic, as better accuracy does not necessarily trans-
late to improved robustness, and can even harm model robustness (Tsipras et al., 2019; Schmalfuss
et al., 2022b). Though image data in KITTI (Menze & Geiger, 2015), Sintel (Butler et al., 2012),
or Spring (Mehl et al., 2023b) comes with degradations like motion blurs, depth-of-field, or bright-
ness changes, they result from real-world data capture or efforts to increase data realism, but were
not included to systematically study model predictions under image corruptions. Broad corruption-
robustness studies as they exist for image classification (Hendrycks & Dietterich, 2019; Müller et al.,
2023), 3D object detection (Michaelis et al., 2019; Kong et al., 2023) or monocular depth estima-
tion (Kar et al., 2022) are rare for dense-correspondence tasks, where studies are limited to specific
degradations like weather (Schmalfuss et al., 2023) or low-light (Zheng et al., 2020). This not only
leaves uncertainty about the reliability of dense matching algorithms in real-world scenarios. It also
prevents systematic efforts to improve their robustness.

To enable systematic studies on the image corruption robustness of optical flow, scene flow, and
stereo, we propose the RobustSpring dataset. Based on Spring (Mehl et al., 2023b), it jointly bench-
marks robustness of all three tasks on corrupted stereo videos. While prior image corruptions affect
the monocular 2D or 3D space (Hendrycks & Dietterich, 2019; Kar et al., 2022; Michaelis et al.,
2019), RobustSpring’s image corruptions are integrated in time, stereo, and depth and thus tailored to
dense matching tasks. A principled corruption robustness metric and an accompanying benchmark
framework make RobustSpring the first systematic tool to evaluate and improve dense matching
robustness to image corruptions.

Contributions. Figure 1 gives an overview of RobustSpring. In summary, we make the following
contributions:

(1) Tailored image corruptions. RobustSpring is the first image corruption dataset for optical
flow, scene flow, and stereo. It integrates 20 corruptions for blurs, noises, tints, artifacts,
and weather in time, stereo, and depth.

(2) Corruption robustness metric. We propose a corruption robustness metric based on Lips-
chitz continuity, which subsamples the clean-corrupted prediction difference and disentan-
gles robustness and accuracy.

(3) Benchmark functionality. RobustSpring’s standardized evaluation enables community-
driven robustness comparisons of dense matching models. Public robustness benchmarking
can be integrated with Spring’s website.

(4) Initial robustness evaluation. We benchmark nine optical flow, two scene flow, and six
stereo models. All models are corruption sensitive, which reveals concealed robustness
deficits on dense matching models.

Intended Use. RobustSpring is not a fine-tuning dataset, but a benchmark of how dense matching
models generalize to unseen image corruptions. It seeks to foster robustness research and, simulta-
neously, helps assess real-world applicability of models. Hence, it is essential to tie RobustSpring
to an existing accuracy benchmark like Spring, as this minimizes the robustness evaluation hurdle
for researchers. While RobustSpring treats corruptions as perturbations to assess robustness, their
interpretation depends on the application domain. For instance, in autonomous driving, rain or snow
are typically considered disturbances to be ignored for stable navigation, whereas in video editing
or cinematic rendering, they may constitute meaningful scene content. To accommodate such differ-
ences, RobustSpring provides results per corruption type, allowing end-users to focus only on those
corruptions that align with their intended application.

2 RELATED WORK

While the quality of optical flow, scene flow, and stereo models advanced for over three decades,
their robustness recently regained attention as result of brittle deep learning generalization (Ranjan
et al., 2019; Schmalfuss et al., 2022b). We review robustness in dense-matching, particularly image
corruptions and metrics.

Robustness in Dense Matching. Robustness research for optical flow, scene flow, and stereo models
often focuses on adversarial attacks, which quantify prediction errors for optimized image pertur-
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bations. Most attacks are for optical flow (Agnihotri et al., 2024c; Schmalfuss et al., 2023; 2022b;
Schrodi et al., 2022; Ranjan et al., 2019; Yamanaka et al., 2021; Koren et al., 2022) rather than
stereo (Berger et al., 2022; Wong et al., 2021) and scene flow (Wang et al., 2024a; Mahima et al.,
2025). As remedies to adversarial vulnerability (Agnihotri et al., 2024b;a; 2023; Schrodi et al., 2022;
Anand et al., 2020) may be overcome through specialized optimization (Scheurer et al., 2024), an-
other line of robustness research considers non-adversarial data shifts. Those come in two flavors:
generalization across datasets, i.e. the Robust Vision Challenge (http://www.robustvision.net/), and
robustness to image corruptions. Work on dense matching models typically reports generaliza-
tion (Mehl et al., 2023a; Teed & Deng, 2020; 2021; Lipson et al., 2021; Huang et al., 2022; Xu et al.,
2022b) to several datasets, which span synthetic (Mehl et al., 2023b; Butler et al., 2012; Richter et al.,
2017; Mayer et al., 2016; Dosovitskiy et al., 2015; Gaidon et al., 2016; Ranjan et al., 2020; Li et al.,
2024) and real-world data (Geiger et al., 2012; Menze & Geiger, 2015; Kondermann et al., 2016;
Scharstein et al., 2014; Schöps et al., 2017), often in automotive contexts. While some datasets con-
tain image corruptions, e.g. motion blur, depth of field, fog, noise, or brightness changes (Sun et al.,
2021; Butler et al., 2012; Mehl et al., 2023b; Menze & Geiger, 2015), they do not systematically
assess corruption robustness. Yet, in the wild, robustness to image corruptions is crucial. For opti-
cal flow, systematic low light (Zheng et al., 2020) and weather datasets (Schmalfuss et al., 2022a;
2023) exist, and Schrodi et al. (2022); Yi et al. (2024) apply 2D image corruptions (Hendrycks &
Dietterich, 2019) to optical flow data. Beyond these isolated works on optical flow, no systematic
image-corruption study before RobustSpring spans all three dense matching tasks and includes scene
flow or stereo.

Robustness to Image Corruptions. Popularized by 2D common corruptions (Hendrycks &
Dietterich, 2019), the field of image corruption robustness rapidly expanded from classifica-
tion (Hendrycks & Dietterich, 2019; Müller et al., 2023) to depth estimation (Kar et al., 2022), 3D
object detection (Michaelis et al., 2019; Kong et al., 2023), and semantic segmentation (Kong et al.,
2023). Conceptually, corruptions were extended to the 3D space (Kar et al., 2022), LiDAR (Kong
et al., 2023), and procedural rendering (Drenkow & Unberath, 2024), but none have been tailored to
the depth-, stereo-, and time-dependent setup of dense matching with optical flow, scene flow, and
stereo.

Robustness Metrics and Benchmarks. Most robustness metrics for dense matching differ by
whether they utilize ground truth (Ranjan et al., 2019; Agnihotri et al., 2024c; Yi et al., 2024) or
not (Schmalfuss et al., 2022b; 2023; 2022a). However, multiple works (Schmalfuss et al., 2022b;
Tsipras et al., 2019; Taori et al., 2020) show that robustness and accuracy are competing qualities
that should not be quantified together. This informs our robustness metric. RobustSpring is the first
dense-matching robustness benchmark, and joins prior classification robustness benchmarks (Croce
et al., 2021; Jung et al., 2023; Tang et al., 2021)

3 ROBUSTSPRING DATASET AND BENCHMARK

RobustSpring is a large, novel image corruption dataset for optical flow, scene flow, and stereo.
Below, we describe how we build on Spring’s stereo video dataset and augment its frames with
diverse image corruptions integrated in time, stereo, and depth, how we evaluate robustness to image
corruptions, and use it to benchmark algorithm capabilities.

Spring Data. Spring (Mehl et al., 2023b) is a high-resolution benchmark with rendered stereo
sequences and dense ground truth. It is the ideal base for an image corruption dataset as its detailed
renderings permit image alterations of varying granularity – from removing detail by blurring to
adding detail via weather. Spring provides a public training and closed test split, where test ground
truth for optical flow, disparity, and extrinsic camera parameters is withheld. As RobustSpring
is designed to complement accuracy analyses, we build on the 2000 Spring test frames (two per
stereo camera). To apply corruptions with time, stereo, and depth consistency, we require depth
and extrinsics that are not publicly available. We therefore estimate extrinsics using COLMAP 3.8
and depths via Z = fx·B

d , with focal length fx, baseline B, and disparities d predicted by MS-
RAFT+ (Jahedi et al., 2022; 2024). This estimation avoids ground-truth leakage while maintaining
benchmark integrity. Quantitative results on the accuracy of our depth and extrinsics estimation are
given in App. A.5, and a detailed discussion of motion ranges in Spring is provided in App. A.7.
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(b) Overview of corruptions and their consistency in time,
stereo, or depth, with resulting visual changes w.r.t. the
original images as SSIM.

Figure 2: Overview of RobustSpring’s image corruptions.

3.1 CORRUPTION DATASET CREATION

RobustSpring corrupts the Spring test frames via 20 diverse image corruptions, summarized
in Fig. 2a and Fig. 2b. Below, we describe the image corruption types, their new consistencies,
their implementation, and their severity levels.

Corruption Types. In RobustSpring, we consider the five image corruption types from Hendrycks
& Dietterich (2019): color, blur, noise, quality, and weather. Color simulates different lighting
conditions and camera settings, including brightness, contrast, and saturation. Blur acts like focus
and motion artifacts, including defocus, Gaussian, glass, motion, and zoom blur. Noise represents
sensor errors and ambiance, including Gaussian, impulse, speckle, and shot noise. Quality dis-
tortions are lossy compressions and geometric distortions, including pixelation, JPEG, and elastic
transformations. Weather enacts outdoor conditions, including spatter, frost, snow, rain, and fog.
All corruptions applied to the same frame are shown in Fig. 2a.

While these 20 corruptions do not cover the entire corruption space, they are chosen to represent
the most common perturbations encountered in real imagery and to provide a balanced basis for ro-
bustness evaluation. Several implementations were adapted and we additionally include practically
relevant corruptions such as saturation, Gaussian blur, speckle noise, rain, and spatter. The blur and
noise families span the most dominant optical and sensor degradations, and the weather and quality
corruptions capture major outdoor and compression-related effects. At the same time, some per-
turbations, such as illumination changes requiring re-rendering (e.g. colored or dynamic lighting),
lie beyond what can be approximated in post-processing. These, along with further outdoor effects
(e.g. bloom, glare, dusty conditions) or extended codec distortions (e.g. JPEG 2000), form natural
directions for future extensions.

Corruption Consistencies. To increase the realism of these 20 corruptions for dense matching
models, we extend their definition to time, stereo, and depth: Time-consistent corruptions evolve
smoothly over subsequent frames for a single camera, mirroring persistent lens or sensor effect,
e.g. frost follows a temporally coherent pattern on one camera but differs between left and right.
Stereo-consistent corruptions equally influence both stereo cameras, such as shared brightness or
contrast adjustments. Unlike simply using the same hyperparameters, stereo consistency does not
imply identical pixel-wise noise realizations, only that both views undergo the same transformation
strength. Depth-consistent corruptions are rendered directly in the 3D scene, ensuring that their
projection into each stereo view respects geometry. This applies to weather effects, such as snow,
rain, and fog, where particles follow 3D trajectories and generate view-dependent projections. Other
corruptions, such as blur or noise, do not benefit from 3D rendering; therefore, they use independent
realizations per frame, despite sharing global severity parameters. Fig. 2b summarizes the consis-
tencies we added to 16 of our 20 corruptions. Note that motion blur is not stereo-consistent because
it depends on the specific camera view.

Corruption Implementation. Though most corruptions are loosely based on Hendrycks & Diet-
terich (2019), our corruption consistencies require multiple adaptations. Furthermore, we employ
specialized techniques for highly consistent effects, i.e. motion blur, elastic transform, snow, rain
and fog. We adapt implementations from Hendrycks & Dietterich (2019), modify glass blur, zoom
blur, frost, and pixelation to accommodate higher resolutions and non-square images, and adjust
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Brightness Fog Motion blur Pixelate Rain Speckle noise

Figure 3: RobustSpring example frames. First row shows clean and corrupted images. Second row
shows the left and right disparity maps predicted with LEA Stereo (Cheng et al., 2020). Third row
shows the target disparities for forward left, backward left, forward right, and backward right direc-
tions from M-FUSE (Mehl et al., 2023a). Fourth row shows optical flow estimates for forward left,
backward left, forward right, and backward right from RAFT (Teed & Deng, 2020). All disparities
and flows are computed on the corrupted dataset. See Fig. 6 in App. A.3.1 for additional frames.

frost, glass blur, and spatter for consistency across video scenes. Motion blur is based on Zheng
et al. (2006) and adds camera-induced motion with clean optical flow estimates. Elastic transform
uses PyTorch’s transforms package to create a see-through-water-like effect, changing object mor-
phology with smooth frame transitions. For snow and rain, we expand the two-step 3D particle
rendering of Schmalfuss et al. (2023) to multi-step particle trajectories and stereo views, change
from additive-blending to order-independent alpha blending (McGuire & Bavoil, 2013), and include
global illumination (Halder et al., 2019). To augment the large-scale Spring data, we improve its
performance via more effective particle generation and parallel processing. Fog is based on the
Koschmieder model following Wiesemann & Jiang (2016). Full details are in App. A.3.3.

Corruption Severity. Prior works (Hendrycks & Dietterich, 2019; Müller et al., 2023; Kar et al.,
2022; Michaelis et al., 2019; Kong et al., 2023) defined corruptions with several levels of severity.
Here, we opt for one severity per corruption, because evaluating one scene flow model on all 20
corruptions already produces 2.1 TB of raw data – 1.2 GB after subsampling, cf. Sec. 3.2. More
severity levels would overburden the evaluation resources of benchmark users. To balance severity
across corruptions, we tune their hyperparameters until the image SSIM reaches a defined threshold.
We generally use SSIM ≥ 0.7, and, because the SSIM is less sensitive to blurs than noises (Hore &
Ziou, 2010), SSIM ≥ 0.2 for noises for visually similar artifact strengths. We conducted a focused
perceptual study to validate the selection of corruption strengths and their corresponding SSIM
values in RobustSpring. See App. A.6 for more details. Final SSIMs are in Fig. 2b.

3.2 ROBUSTNESS EVALUATION METRIC

With various corruption types, we need a metric to quantify model robustness to these variations.
In the following, we motivate and derive a ground-truth-free robustness metric for dense matching,
introduce subsampling for efficiency, and discuss strategies for joint rankings over corruptions.

Definition of Optical Flow. Throughout this work, and consistent with the Spring benchmark (Mehl
et al., 2023b), we define optical flow as the true 3D motion of visible surfaces projected into the 2D
image plane (Horn & Schunck, 1981; Baker et al., 2011). This definition is standard in classical
benchmarks and provides the basis for accuracy evaluation. Alternative formulations, such as ap-
parent motion, exist in the literature, but RobustSpring’s robustness evaluation is agnostic to this
choice, since robustness is measured independently of ground truth. A more detailed discussion
on the implications of this definition, including the relation between perfect accuracy and perfect
robustness, is provided in App. A.1.

Robustness Metric Concepts. For dense matching, robustness to corruptions lacks a standard-
ized evaluation metric. Metrics exist for adversarial robustness, using the distance between corrupt
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prediction and either (i) ground-truth (Ranjan et al., 2019; Agnihotri et al., 2024c) or (ii) clean
prediction (Schmalfuss et al., 2022b; 2023; 2022a). The latter is preferred for two reasons: First,
(i)’s ground-truth comparisons mix accuracy and robustness, which are competing model quali-
ties (Schmalfuss et al., 2022b; Tsipras et al., 2019; Taori et al., 2020) that should be separate. This
competition is intuitive: A model that always outputs the same value is as robust as inaccurate. Like-
wise, an accurate model varies for any input change and thus is not robust. Second, (ii) separates
robustness from accuracy and builds on an established mathematical concept for system robust-
ness (Hein & Andriushchenko, 2017; Pauli et al., 2022): the Lipschitz constant Lc. It defines robust
models as those whose prediction f is similar on clean and corrupt image I and Ic, relative to their
difference. For dense matching, it reads

Lc =
∥f(I)− f(Ic)∥

∥I − Ic∥
, (1)

where the term ∥I − Ic∥ refers to the per-pixel intensity difference between the clean and cor-
rupted images. This robustness formulation is preferable for real-world applications that demand
stable scene estimations despite corruptions like snow, and remains valid independent of whether
optical flow is defined as true motion or apparent motion. We emphasize that RobustSpring ex-
plicitly measures robustness in terms of stability: models are considered robust if their predictions
remain consistent under corrupted inputs. Lower robustness scores correspond to higher stability,
not improved accuracy. Other definitions of robustness, such as ground-truth-based robustness, are
possible and may be more appropriate for different use cases. Our benchmark deliberately focuses
on stability-based robustness, providing a complementary axis of evaluation alongside accuracy.

Corruption Robustness Metric. Based on Eq. (1), we quantify model robustness to corruptions.
Because RobustSpring’s corrupt images Ic deviate from their clean counterparts I by a similar
amount, cf. SSIM equalization in Sec. 3.1, we omit the denominator in Eq. (1) and define cor-
ruption robustness Rc as distance between clean f(I) and corrupted f(Ic) predictions with distance
metric M:

Rc
M=M[f(I), f(Ic)]. (2)

For similarity to Spring’s evaluation, we use corruption robustness with various metrics M, reporting
Rc

EPE, Rc
1px and Rc

Fl for optical and scene flow, and Rc
1px, Rc

Abs and Rc
D1 for stereo. Here, EPE denotes

the average end-point error, 1px the percentage of pixels with an error exceeding 1 px, Fl the KITTI
optical-flow outlier rate, Abs the mean absolute disparity error, and D1 the KITTI disparity outlier
rate, see Mehl et al. (2023b) and Menze & Geiger (2015) for more details. Interestingly, our EPE-
based corruption robustness

Rc
EPE = EPE[f(I), f(Ic)] =

1

|Ω|
∑
i∈Ω

∥fi(I)−fi(I
c)∥ (3)

on image domain Ω is a generalization of optical-flow adversarial robustness (Schmalfuss et al.,
2022b) to dense matching and corruptions.

Metric Subsampling. For a benchmark, users should upload robustness results to a web server.
Given the large number of 20 datasets, data reduction is essential to facilitate evaluations and up-
loads. To this end, we evaluate on a reduced set of pixels by refining the original subsampling
strategy from Spring, which retains about 1% of the full data. First, we additionally subsample the
set of full-resolution Hero-frames because they are only kept in the original benchmark for visual-
ization purposes, leaving 0.95%, and then apply 20-fold subsampling, ultimately keeping 0.05% of
the full data.

Robustness Ranking. Because we generate 20 different corruption evaluations per dense matching
model, we need a summarization strategy to produce one result per model. Per-model results are
ranked based on three strategies: Average, Median, and the Schulze voting method (Schulze, 2018).
In contrast to averaging across all 20 evaluations, the median reduces the impact of extreme outliers.
The Schulze method provides a holistic, pairwise comparison approach that ranks models based
on preference aggregation and was used for prior generalization evaluations in the Robust Vision
Challenges. We evaluate their differences in Sec. 4.2.

3.3 DATASET AND BENCHMARK FUNCTIONALITY

Below, we summarize RobustSpring’s corruption dataset and describe its benchmark function. Fig. 3
shows data samples with stereo, optical flow, and scene flow estimates.
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Table 1: Initial RobustSpring results on corruption robustness of optical flow models, using Rc
EPE,

Rc
1px and Rc

Fl between clean and corrupted flow predictions. Low values indicate robust models.
εclean compares clean predictions with ground-truth flow, values from Mehl et al. (2023b).

SEA-RAFT GMFlow MS-RAFT+ FlowFormer GMA SPyNet RAFT FlowNet2 PWCNet
Rc

EPE Rc
1px Rc

Fl Rc
EPE Rc

1px Rc
Fl Rc

EPE Rc
1px Rc

Fl Rc
EPE Rc

1px Rc
Fl Rc

EPE Rc
1px Rc

Fl Rc
EPE Rc

1px Rc
Fl Rc

EPE Rc
1px Rc

Fl Rc
EPE Rc

1px Rc
Fl Rc

EPE Rc
1px Rc

Fl

C
ol

or Brightness 0.21 1.65 0.40 0.33 3.31 1.12 0.33 2.88 1.02 0.68 2.82 1.05 0.36 3.22 1.04 2.72 14.67 8.91 0.92 3.49 1.61 0.45 3.16 1.05 1.04 7.38 3.00
Contrast 0.75 3.75 1.51 0.46 6.71 1.71 0.87 6.69 3.24 0.93 5.48 1.96 0.68 6.43 2.20 8.23 38.90 27.23 1.32 5.73 2.64 1.87 9.26 4.74 2.98 30.07 7.42
Saturate 0.16 1.29 0.36 0.34 3.30 0.96 0.34 2.87 1.03 0.42 2.39 0.88 0.43 3.47 1.18 3.36 17.34 11.31 0.93 3.33 1.47 0.51 3.40 1.10 1.21 9.92 3.68

B
lu

r

Defocus 0.20 1.47 0.42 0.53 6.17 1.45 0.51 4.01 1.47 0.55 3.85 1.19 0.56 5.02 2.01 0.57 10.16 1.36 1.03 4.70 2.07 0.53 3.35 1.06 0.98 6.51 2.78
Gaussian 0.23 1.79 0.51 0.66 7.77 1.88 0.58 4.45 1.63 0.63 4.32 1.37 0.62 5.48 2.22 0.76 15.44 2.12 1.10 5.12 2.26 0.60 4.05 1.27 1.11 7.72 3.09
Glass 0.22 1.46 0.41 0.85 20.87 1.82 0.53 4.45 1.37 0.64 4.04 1.17 0.61 5.60 1.91 0.75 16.94 1.36 1.05 5.13 1.97 0.50 3.12 0.96 0.91 5.96 2.47
Motion 1.11 13.78 5.82 1.34 18.35 7.51 1.31 14.06 6.16 1.35 14.03 5.77 1.19 14.40 6.18 2.32 19.55 10.05 2.06 14.33 6.35 1.60 14.07 6.47 1.95 16.25 7.47
Zoom 1.83 24.51 8.41 1.88 35.80 9.90 1.81 21.84 7.13 1.66 22.72 6.77 1.54 23.17 7.16 4.82 46.67 28.37 3.14 22.80 7.61 2.36 24.63 9.04 3.52 50.33 15.64

N
oi

se

Gaussian 1.49 12.30 4.34 4.70 57.95 21.67 5.70 35.74 22.12 6.56 27.83 18.30 2.81 24.70 12.96 2.22 42.23 14.88 7.43 27.92 18.99 1.33 11.24 5.06 2.79 26.87 9.89
Impulse 2.58 19.01 7.51 6.64 66.14 28.70 7.39 45.72 29.05 7.33 23.58 14.47 4.08 31.31 18.13 2.92 53.45 20.41 6.51 29.65 18.32 2.37 15.70 7.48 3.57 35.67 14.45
Speckle 1.29 12.15 3.61 3.90 62.01 20.64 4.22 34.96 17.18 5.47 25.52 15.60 5.32 25.22 12.66 1.95 46.32 12.89 6.62 26.05 16.48 1.32 12.57 4.19 2.74 26.83 8.00
Shot 1.20 10.69 3.41 3.52 56.71 17.77 4.36 31.67 17.77 5.75 26.02 16.01 3.15 23.11 11.59 1.86 40.44 11.98 6.74 25.64 17.08 1.16 9.87 3.92 2.59 23.75 7.88

Q
ua

lit
y Pixelate 0.41 1.88 0.51 1.96 68.09 18.71 1.60 45.83 6.78 1.48 31.68 2.59 1.11 25.86 1.78 1.22 50.63 2.90 1.65 21.47 2.00 0.77 7.74 0.88 0.92 8.67 2.22

JPEG 4.02 34.86 13.57 3.32 83.54 27.92 2.09 41.69 12.82 2.89 42.62 14.96 1.92 38.70 11.51 2.95 53.97 18.08 3.19 37.72 13.67 2.56 31.00 11.85 2.88 49.15 15.91
Elastic 0.56 11.14 1.42 1.37 40.00 6.89 1.16 32.49 5.54 2.62 35.78 11.01 1.24 27.24 6.40 1.08 34.62 4.77 1.33 19.43 4.78 0.79 16.27 2.12 1.42 28.18 5.47

W
ea

th
er

Fog 1.20 11.20 7.41 0.80 14.42 5.32 0.91 10.32 6.33 0.86 9.66 5.67 0.84 11.21 6.42 5.20 28.15 19.97 1.97 12.01 7.11 1.74 11.77 7.82 16.84 20.96 12.89
Frost 7.60 36.86 21.86 8.20 63.96 29.96 7.38 29.96 21.25 8.18 34.19 23.87 8.13 34.30 22.31 6.97 45.13 30.13 8.37 32.75 21.76 7.22 33.69 21.15 8.27 50.31 27.44
Rain 16.73 36.87 25.09 8.60 64.20 32.72 19.99 36.74 31.22 11.13 33.50 20.83 33.00 43.98 36.18 18.20 68.87 56.38 42.41 38.89 31.99 63.71 48.25 41.15 40.18 73.51 57.05
Snow 8.54 60.52 43.81 3.60 70.60 29.90 4.69 33.21 30.91 7.92 40.20 33.82 5.30 40.82 33.35 12.08 74.27 66.65 7.16 37.04 31.37 39.79 68.67 61.60 39.73 90.80 81.91
Spatter 8.93 53.31 30.52 6.58 67.90 27.09 6.63 28.22 20.24 8.41 40.38 26.92 7.75 36.11 21.81 5.71 48.60 33.82 7.98 30.37 19.87 9.13 45.03 28.99 9.33 65.41 40.19

Average 2.96 17.52 9.05 2.98 40.89 14.68 3.62 23.39 12.21 3.77 21.53 11.21 4.03 21.47 10.95 4.29 38.32 19.18 5.64 20.18 11.47 7.01 18.84 11.09 7.25 31.71 16.44
Std. Dev. 4.29 17.98 12.08 2.70 27.91 11.91 4.58 15.54 10.62 3.44 14.37 9.94 7.23 13.67 10.55 4.38 18.35 17.60 9.10 12.55 9.98 15.94 17.93 15.87 11.83 24.43 20.79

Median 1.20 11.68 3.98 1.92 48.35 13.83 1.71 29.09 6.95 2.14 24.55 8.89 1.39 23.93 6.79 2.82 41.33 13.88 2.60 22.13 7.36 1.47 12.17 4.90 2.77 26.85 7.94

εclean (Clean Error) 0.36 3.69 1.35 0.94 10.36 2.95 0.64 5.72 2.19 0.72 6.51 2.38 0.91 7.07 3.08 4.16 29.96 12.87 1.48 6.79 3.20 1.04 6.71 2.82 2.29 82.27 4.89

RobustSpring Dataset. The final RobustSpring dataset entails 20 corrupted versions of Spring,
resulting in 40,000 frames, or 20,000 stereo frame pairs. Each corruption evaluation yields 3960
optical flows (990 per camera & direction), 2000 stereo disparities (1000 per camera), and 3960
additional scene flow disparity maps (990 per camera per direction). To discourage corruption fine-
tuning and ensure a fair benchmark, we do not provide corrupted training data, only corrupted test
data. We separately provide the raw data and a curated dataset for predicting dense matches.

RobustSpring Benchmark. RobustSpring enables uploading robustness results to a benchmark
website for display in a public ranking. To emphasize that robustness and accuracy are two axes
of model performance with equal importance (Tsipras et al., 2019), we couple RobustSpring with
Spring’s established accuracy benchmark. Thus, researchers can report model robustness and accu-
racy on the same dataset. We provide mock-ups of this integration in App. A.8.

4 RESULTS

We evaluate RobustSpring under two aspects: First, we report initial results for 17 optical flow,
scene flow and stereo models. Then, we analyze the benchmark evaluation, particularly subsampling
strategy and ranking methods.

4.1 INITIAL ROBUSTSPRING BENCHMARK RESULTS

We provide initial results on RobustSpring for selected models from all three dense matching
tasks. For optical flow, we include SEA-RAFT (Wang et al., 2024b), GMFlow (Xu et al., 2022b),
MS-RAFT+ (Jahedi et al., 2024), FlowFormer (Huang et al., 2022), GMA (Jiang et al., 2021),
SPyNet (Ranjan & Black, 2017), RAFT (Teed & Deng, 2020), FlowNet2 (Ilg et al., 2017), and
PWCNet (Sun et al., 2018). For scene flow, we evaluate M-FUSE (Mehl et al., 2023a) and RAFT-
3D (Teed & Deng, 2021). For stereo estimation, we evaluate RAFT-Stereo (Lipson et al., 2021),
ACVNet (Xu et al., 2022a), LEAStereo (Cheng et al., 2020), and GANet (Zhang et al., 2019). An
overview of all models and used checkpoints is in the Appendix in Tab. 4. Importantly, none of these
models are fine-tuned to either Spring or RobustSpring data, to assess the generalization capacity of
existing models.

Optical Flow. The evaluation results in Tab. 1 and Fig. 4a show large robustness variations across
corruption types. Weather corruptions, especially rain and snow, degrade performance most, while
color corruptions have little effect. Model rankings also vary: FlowNet2 performs poorly overall but
is the most resilient to noise (Fig. 4b). SEA-RAFT and GMFlow achieve the lowest average Rc

EPE,
while GMA yields the lowest median, as detailed in Sec. 4.2.

To examine accuracy–robustness relations, we compare both in Fig. 4c. Accurate models tend to be
more robust, though no method excels in both dimensions, and the trend is weak and nonlinear (see
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Figure 4: Accumulated corruption robustness Rc
EPE for optical flow models over all corruptions

[left], only noise corruptions [middle], and accuracy vs. robustness [right] with a dashed line rep-
resenting a quadratic polynomial fit. Small values are robust (and accurate) models. All other
corruption classes color (purple), blur (blue), noise (cyan), quality (green), and weather (yellow) are
in App. A.4 in Fig. 7, and Fig. 8 shows accuracy vs. Median Rc

EPE.

also median robustness in Fig. 8). Fitting a quadratic regression to Fig. 4c highlights this nonlin-
earity. Accuracy and robustness coincide for some corruption families but diverge substantially for
others. This stands in contrast to adversarial robustness, where a strong accuracy–robustness trade-
off is observed (Schmalfuss et al., 2022b). The key to understanding these differences is to consider
different corruption types individually. Because accurate models need to process fine details in or-
der to achieve highly accurate predictions, this attention to details can be exploited by noise-based
adversarial attacks in Schmalfuss et al. (2022b). For RobustSpring’s non-adversarial corruptions,
accurate models are also relatively sensitive to noise corruptions (cf. Fig. 4b). However, the average
corruption robustness is mostly dominated by weather corruptions (cf. Fig. 4a), where more accu-
rate models achieve better robustness values. We identify the reason for this in Sec. 4.2: accurate
models retain corruption-induced motion errors around the particles rather than spreading them onto
the background (cf. Fig. 5a). This aligns with the results in Schmalfuss et al. (2023), which found
accurate models to be more robust towards adversarial weather attacks.

Architectural trends also emerge. Transformer models (GMFlow, FlowFormer) perform best over-
all but struggle with noise, likely due to global matching. Hierarchical models (e.g. MS-RAFT+)
show balanced robustness and may benefit from multi-scale feature processing to cope with quality
degradations. Stacked models (e.g. SEA-RAFT, FlowNet2) uniquely resist noise, possibly due to
their progressive refinement across layers. Overall, architecture influences robustness to specific
corruptions, but no paradigm is universally superior.

Scene Flow. The results for scene flow are in Tab. 2a, and include optical flow and target frame
disparity predictions for M-FUSE and RAFT-3D. M-FUSE generally produces more robust optical
flow across corruptions with a lower average Rc

EPE than RAFT-3D. But both methods suffer sig-

Table 2: Initial RobustSpring results on corruption robustness of scene flow and stereo disparity
models, using corruption robustness Rc

1px, Rc
Abs and Rc

Dl between clean and corrupted predictions.
Low values indicate robust models. Corresponding Disparity 1 from scene flow models LEAStereo
(s) for M-FUSE, and GANet (s) for RAFT-3D in Tab. 2b. Stereo disparity models use Stereo (s) and
KITTI (k) checkpoints.

(a) Initial scene flow evaluation.
M-FUSE RAFT-3D

Optical flow Disparity 2 Optical flow Disparity 2
Rc

EPE Rc
1px Rc

Fl Rc
Abs Rc

1px Rc
D2 Rc

EPE Rc
1px Rc

Fl Rc
Abs Rc

1px Rc
D2

C
ol

or Brightness 0.83 5.54 2.80 0.14 1.53 0.18 1.38 8.23 3.87 0.07 1.48 0.21
Contrast 0.99 7.86 3.60 0.17 1.71 0.17 1.42 10.71 5.07 0.07 1.65 0.22
Saturate 0.67 4.94 2.43 0.12 1.22 0.14 0.93 6.72 3.31 0.06 1.33 0.18

B
lu

r

Defocus 0.84 5.26 2.71 0.15 1.37 0.15 0.66 5.27 2.44 0.04 0.88 0.10
Gaussian 0.94 5.81 2.92 0.16 1.56 0.18 0.78 5.85 2.73 0.05 1.04 0.14
Glass 0.80 5.17 2.65 0.16 1.32 0.14 0.65 5.29 2.39 0.04 0.82 0.09
Motion 1.51 15.10 6.81 0.18 2.50 0.35 1.62 14.66 6.85 0.08 1.60 0.28
Zoom 2.28 27.88 9.52 0.28 3.74 0.41 2.68 34.06 11.99 0.14 2.84 0.50

N
oi

se

Gaussian 6.49 29.22 14.81 0.41 6.56 0.80 5.25 43.33 25.43 0.20 3.64 0.71
Impulse 5.98 37.32 19.16 0.43 8.11 0.88 6.73 59.86 33.16 0.22 4.43 0.75
Speckle 3.73 29.39 12.22 0.35 5.68 0.57 4.86 51.12 26.11 0.18 3.17 0.64
Shot 4.87 26.32 12.34 0.36 5.60 0.69 4.65 42.07 22.91 0.18 3.26 0.67

Q
ua

lit
y Pixelate 0.86 5.95 2.51 0.19 1.51 0.13 0.82 7.66 2.83 0.05 1.02 0.10

JPEG 1.98 27.21 6.82 0.32 3.62 0.36 2.73 33.93 10.55 0.13 2.59 0.41
Elastic 1.15 14.93 3.92 0.22 2.28 0.22 1.70 21.82 5.99 0.08 1.61 0.20

W
ea

th
er

Fog 2.35 15.39 10.13 0.19 2.43 0.19 2.29 18.15 11.67 0.06 1.23 0.15
Frost 7.91 41.60 23.41 0.38 6.55 0.78 7.49 45.07 24.26 0.16 3.75 0.52
Rain 10.21 41.78 28.99 0.70 12.79 1.29 27.89 74.23 59.77 0.47 10.75 1.96
Snow 6.36 47.06 33.55 0.46 7.67 0.80 19.08 80.49 60.01 0.31 6.79 0.84
Spatter 7.00 46.35 22.10 0.39 6.21 0.80 7.06 55.55 25.80 0.17 3.82 0.53

Average 3.39 22.00 11.17 0.29 4.20 0.46 5.03 31.20 17.36 0.14 2.89 0.46
Std. Dev. 2.95 15.23 9.60 0.15 3.11 0.34 6.85 24.26 17.63 0.11 2.40 0.43

Median 2.13 20.86 8.17 0.25 3.06 0.35 2.49 27.88 11.11 0.10 2.12 0.35
Clean Error 2.52 13.96 6.89 7.11 32.95 14.54 2.53 20.98 8.48 8.08 57.03 21.54

(b) Initial stereo disparity evaluation.
RAFT-Stereo (s) ACVNet (s) LEAStereo (s) LEAStereo (k) GANet (k) GANet (s)
Rc

1px Rc
Abs Rc

D1 Rc
1px Rc

Abs Rc
D1 Rc

1px Rc
Abs Rc

D1 Rc
1px Rc

Abs Rc
D1 Rc

1px Rc
Abs Rc

D1 Rc
1px Rc

Abs Rc
D1

C
ol

or Brightness 8.98 2.13 2.83 19.82 6.89 8.80 6.38 1.27 1.78 11.57 2.02 3.73 12.46 2.48 4.61 10.74 2.11 3.39
Contrast 14.04 2.62 3.81 19.33 8.34 9.88 19.00 3.33 6.45 18.23 2.86 5.63 18.02 2.72 5.49 23.14 3.94 6.74
Saturate 7.54 0.74 0.95 8.12 3.18 3.79 6.43 1.24 1.71 13.57 3.05 4.64 16.69 3.53 5.77 13.53 2.70 3.86

B
lu

r

Defocus 10.61 2.47 3.90 8.06 1.10 1.90 8.55 2.02 2.49 29.31 3.26 5.21 41.32 3.29 4.68 12.34 2.46 3.16
Gaussian 11.40 2.57 3.97 9.29 1.55 2.38 9.64 2.16 2.65 48.95 3.68 5.54 47.97 3.55 4.98 13.76 2.69 3.45
Glass 13.10 2.61 3.34 11.72 1.31 1.95 11.56 2.17 2.55 70.01 4.79 6.36 71.45 4.33 5.18 19.42 2.61 3.15
Motion 12.41 2.30 2.61 9.72 1.13 2.07 10.59 1.82 2.74 20.04 2.44 4.77 16.99 2.27 4.26 13.12 2.31 3.61
Zoom 59.50 5.86 7.19 64.76 6.43 9.32 63.52 6.38 9.74 74.92 8.84 16.83 74.29 8.18 14.80 59.89 7.29 11.21

N
oi

se

Gaussian 40.76 20.44 24.16 56.40 39.19 37.76 80.74 80.89 62.28 65.13 15.23 24.53 49.20 7.90 13.17 85.78 33.35 45.02
Impulse 44.79 21.16 27.99 69.34 53.14 49.67 85.39 85.24 65.42 69.03 17.24 25.47 51.64 8.18 12.70 85.00 38.94 50.45
Speckle 42.58 13.64 21.85 71.99 63.51 57.36 84.06 84.54 65.37 66.23 15.68 24.31 55.36 7.64 13.63 83.70 29.65 41.90
Shot 39.84 15.55 20.23 59.56 42.20 41.10 79.41 76.53 59.94 64.06 14.29 22.95 49.36 6.95 11.98 81.49 28.20 39.89

Q
ua

lit
y Pixelate 66.69 46.19 13.86 57.29 4.14 4.98 35.19 3.85 4.11 57.19 3.72 4.83 62.71 4.00 4.60 59.61 3.70 4.07

JPEG 55.27 8.24 5.27 60.87 15.98 15.16 55.18 9.20 10.84 68.22 5.63 7.97 65.92 7.41 11.19 59.52 6.76 10.10
Elastic 65.53 6.52 4.32 58.39 8.17 7.29 71.96 8.02 10.92 93.40 7.16 8.90 87.38 6.89 8.86 76.47 4.85 5.05

W
ea

th
er

Fog 13.71 1.57 2.10 17.99 17.70 12.12 17.95 14.25 10.88 23.36 8.18 12.90 21.36 9.69 12.45 20.55 9.68 9.75
Frost 41.63 18.84 10.68 39.79 8.15 19.27 38.43 7.28 18.51 53.98 12.37 23.89 39.74 9.84 20.93 47.40 11.20 24.31
Rain 43.10 79.42 32.27 34.62 12.92 18.48 56.55 22.14 34.58 65.45 12.54 28.62 49.08 11.44 22.55 59.22 26.50 42.34
Snow 41.05 51.30 32.90 40.96 18.62 29.03 47.03 20.51 32.23 52.16 13.88 29.40 35.16 11.83 22.94 45.88 17.24 33.30
Spatter 35.50 27.17 12.57 18.01 2.18 3.85 31.43 5.13 10.19 35.54 7.93 14.24 28.00 6.75 12.42 34.58 6.04 13.86

Average 33.40 16.57 11.84 36.80 15.79 16.81 40.95 21.90 20.77 50.02 8.24 14.04 44.71 6.44 10.86 45.26 12.11 17.93
Std. Dev. 20.16 20.72 10.79 23.56 18.64 17.08 29.19 31.33 23.64 23.69 5.15 9.43 21.37 3.00 6.10 28.09 12.17 17.25

Median 40.30 7.38 6.23 37.21 8.16 9.60 36.81 6.83 10.51 55.58 7.55 10.90 48.53 6.92 11.58 46.64 6.40 9.93
Clean 15.27 3.02 5.35 14.77 1.52 5.35 19.89 3.88 9.19 47.50 6.15 17.16 27.91 5.29 11.56 23.22 4.59 10.39
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nificant performance losses for severe weather like rain and noise-based corruptions, e.g. impulse
noise. Interestingly, their robustness does not improve compared to conventional optical flow mod-
els. Noise and weather corruptions remain a challenge for Disparity 2 predictions. Here, RAFT-3D
consistently achieves lower robustness scores compared to M-FUSE, but conditions like impulse
noise or rain still notably affect disparity predictions. Overall, both models have limited robustness,
but temporal consistency may contribute to lower robustness scores under several corruption types.

Stereo. Results of stereo disparity estimations are presented in Tab. 2b. The effect of the different
corruptions on the performance is significant, with noise and weather-based corruptions leading to
the largest errors, especially for GANet and LEAStereo. In particular, Gaussian and impulse noise
introduce extremely large errors, highlighting the sensitivity of stereo models to pixel-level noise.
Blur distortions, especially zoom blur, also have a severe impact on all models. In contrast, color-
based distortions generally yield smaller errors. RAFT-Stereo shows stronger resilience across most
corruption groups, performing better on color and noise based corruption than other models, but also
struggles with noise and severe weather effects such as rain and snow.

Table 3: Evaluations of the metrics used in RobustSpring.

(a) Influence of subsampling. We compare robustness
evaluations on the full test data (Full) to evaluations on
Spring’s original subsampling (Spring), original subsam-
pling without Hero-frames (Spring*), and our refined cor-
ruption subsampling (Ours).

Subsampling Rc
EPE Subsampling Rc

1px

Full Spring Spring* Ours Full Spring Spring* Ours
% Original Data 100% 1.00% 0.94% 0.05% 100% 1.00% 0.94% 0.05%

SEA-RAFT 2.96 3.19 2.96 2.96 17.52 18.44 17.52 17.52
GMFlow 2.98 3.20 2.98 2.98 40.89 41.99 40.89 40.89
MS-RAFT+ 3.62 3.84 3.62 3.62 23.38 24.44 23.39 23.39
FlowFormer 3.77 3.89 3.77 3.77 21.52 22.39 21.53 21.53
GMA 4.03 4.28 4.03 4.03 21.47 22.59 21.48 21.47
SPyNet 4.30 4.56 4.29 4.29 38.32 39.28 38.32 38.32
RAFT 5.64 6.15 5.64 5.64 20.17 21.20 20.18 20.18
FlowNet2 7.01 7.36 7.01 7.01 18.84 19.79 18.84 18.84
PWCNet 7.25 7.52 7.25 7.25 31.71 32.55 31.72 31.71

(b) Robustness ranking of optical flow models
with ranking strategies Average Rc

EPE, Median
Rc

EPE, and Schulze to summarize results over
corruptions. Please note that Schulze does not
produce numeric values.

Ranking Method
Rank Average Rc

EPE Median Rc
EPE Schulze

1 2.96 SEA-RAFT 1.20 SEA-RAFT SEA-RAFT
1 2.98 GMFlow 1.39 GMA MS-RAFT+
2 3.62 MS-RAFT+ 1.47 FlowNet2 GMA
3 3.77 FlowFormer 1.71 MS-RAFT+ FlowNet2
4 4.03 GMA 1.92 GMFlow GMFlow
5 4.29 SPyNet 2.14 FlowFormer FlowFormer
6 5.64 RAFT 2.60 RAFT SPyNet
7 7.01 FlowNet2 2.77 PWCNet PWCNet
8 7.25 PWCNet 2.82 SPyNet RAFT

4.2 METRICS AND BENCHMARK CAPABILITY

After reporting initial RobustSpring results, we analyze aspects of its benchmark character: The
subsampling strategy for data efficiency, and different ranking systems for result comparisons across
20 different prompt variations. We also validate our robustness metric for object corruptions and
explore RobustSpring’s transferability to the real-world.

Subsampling. We evaluate RobustSpring’s strict data subsampling by comparing to results on the
full test set. As shown in Tab. 3a, our subsampling strategy produces results that are nearly identical
to those that include all pixels in the robustness calculation. We observe the largest discrepancy
for Spring’s original subsampling, because it includes a handful of full-resolution Hero-frames. If
those frames are also subsampled (Spring*), results align with the full dataset. Overall, our stricter
subsampling to 0.05% of all data is not only data efficient but also exact.

Metric Ranking. To explore how ranking strategies influence the optical-flow robustness order,
we contrast our three summarization strategies: Average, Median, and Schulze (cf. App. A.4.3).
The rankings in Tab. 3b notably differ across strategies. The Average differs most from the other
rankings. For example, it ranks GMFlow 2nd, which is only 5th on Median and Schulze, suggesting
a good performance across corruptions without excessive outliers but no top performance on most
corruptions. Interestingly, Median and Schulze rankings are more aligned. As Schulze’s ranking
involves complex comparisons of per-corruption rankings and must be globally recomputed for new
models, the Median ranking is a cheap approximation to it. The ranking strategy has significant
implications for selecting robust models. While SEA-RAFT is optimal across rankings, the rankings
accentuate different aspects: overall performance, outlier robustness, or balanced performance in
pairwise comparisons. Hence, RobustSpring reports them all.

Robustness on Object Corruptions. In RobustSpring, robustness is defined as stability of pre-
dictions under corrupted inputs: models are robust if their outputs remain consistent for clean and
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2015) for most optical flow models.

Figure 5: Additional evaluations of RobustSpring’s benchmark character.

corrupted scenes (Eq. 1). A natural question is whether this metric remains valid when corrup-
tions introduce moving objects, such as rain or snow. To test this, we separate the contributions of
background and corruption pixels by excluding pixels of objects like rain drops from the score cal-
culation. Object pixels are detected via the value difference d between clean and corrupted images,
and excluded if (1 − d) exceeds a threshold. Threshold 0 excludes none (the vanilla RRain

EPE ), while
threshold 100 excludes all. Figure 5a shows the robustness score if rain is excluded from the cal-
culation, along with bars indicating the amount [%] of excluded pixels. Remarkably, the robustness
score changes by at most 5% even when all rain pixels (about 90% of the image) are discarded. High
scores for rain or snow (cf. App. A.4.4) thus result mainly from mispredictions in the periphery of
altered pixels, not from motion predictions on altered pixels. As scene-wide effects dominate, our
stability-based robustness yields consistent rankings suited for broad robustness evaluations.

Robustness in the Real World. Finally, we investigate if RobustSpring’s corruption robustness
transfers to the real world. To this end, we select the noisiest 10% KITTI data, estimating noise as
in Immerkaer (1996). These noisy KITTI frames have no clean counterparts to calculate corruption
robustness RNoise

EPE . Thus, we approximate RNoise
EPE via the accuracy difference on noisy and non-noisy

KITTI frames. To account for model-specific performance differences on Spring and KITTI, we
normalize with the clean dataset performance and show the resulting relative robustness RNoise

EPE
EPEClean in

Fig. 5b. Relatively robust models with low scores on RobustSpring are also robust on KITTI and
vice versa. The only outlier, FlowFormer, overperforms on KITTI, potentially due to outstanding
memorization capacity and exposure to KITTI during training. Because overall noise resilience on
RobustSpring qualitatively transfers to KITTI, RobustSpring supports model selection for real-world
settings where corruption robustness cannot be measured.

5 CONCLUSION

With RobustSpring we introduce an image corruption dataset and benchmark that evaluates the ro-
bustness of optical flow, scene flow, and stereo models. We carefully design 20 different image
corruptions and integrate them in time, stereo, and depth for a holistic evaluation of dense matching
tasks. Furthermore, we establish a corruption robustness metric using clean and corrupted predic-
tions, and compare ranking strategies to unify model results across all 20 corruptions. Robust-
Spring’s benchmark further supports data-efficient result uploads to an evaluation server. Our initial
evaluation of 17 optical flow, scene flow, and stereo models reveals an overall high sensitivity to cor-
rupted images. As our robustness results translate to real-world performance, systematic corruption
benchmarks like RobustSpring are crucial to uncover potential model performance improvements.

Limitations. Due to its benchmark character, we have limited the image corruptions on Robust-
Spring to a selection of 20. While this does not cover the full space of potential corruptions, this
data-budget limitation is necessary to make the RobustSpring dataset applicable and not overburden
the computational resources of researchers during evaluation.
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A APPENDIX

A.1 DISCUSSION OF ROBUSTNESS DEFINITION

Scope of RobustSpring’s robustness definition. Robustness is a multifaceted concept. In Robust-
Spring we focus on one specific and mathematically established perspective: robustness as predic-
tion stability under input corruptions. This choice is motivated by its independence from ground-
truth definitions of optical flow, and by its practical utility in assessing whether models maintain
consistent scene estimates in the presence of visual disturbances. Other notions of robustness, such
as those directly tied to ground truth, are equally valid but outside the scope of this benchmark.

Accuracy vs. Robustness. RobustSpring explicitly disentangles accuracy and robustness. Accuracy
measures the deviation between model predictions and ground truth, which depends on the adopted
definition of optical flow—here, the true 3D motion of visible surfaces projected into the 2D image
plane (Horn & Schunck, 1981; Baker et al., 2011). Robustness, by contrast, is defined via Lipschitz
continuity (Eq. 1) as the stability of predictions under corrupted inputs, independent of ground truth.

Why Ground-truth-free Robustness. Some works define robustness as the difference between
predictions on corrupted images and the corresponding ground truth (Ranjan et al., 2019; Agnihotri
et al., 2024c). This approach entangles robustness with accuracy and requires ambiguous judgments
about how each corruption changes the motion field (e.g. elastic transforms, rain, snow). By adopt-
ing a ground-truth-free definition, RobustSpring avoids this ambiguity and aligns with established
robustness literature (Schmalfuss et al., 2022b; Tsipras et al., 2019; Taori et al., 2020; Hein & An-
driushchenko, 2017; Pauli et al., 2022).

Perfect Accuracy vs. Perfect Robustness. Under our definitions, a perfectly accurate method may
achieve poor robustness scores for corruptions that genuinely alter the motion field (e.g. snow, elas-
tic transform), because its predictions change in accordance with the altered scene. Conversely, a
perfectly robust method (constant predictions) is maximally stable but inaccurate. This disentan-
glement is intentional: it reveals cases where accuracy and robustness align versus diverge. Such
divergence highlights model behavior that plain accuracy metrics cannot capture.

Practical Relevance. As demonstrated in Fig. 5a, current models tend to propagate spurious fore-
ground motions introduced by rain into the background, leading to degraded scene estimates. Ro-
bustSpring’s robustness metric captures this instability and thus provides valuable insight into real-
world performance. The combination of accuracy and robustness offers practitioners a two-axis
evaluation, allowing trade-offs between precision and stability depending on the target application.

A.2 LINKS AND CHECKPOINTS FOR EVALUATED MODELS

We evaluated the original, author provided optical flow, scene flow and stereo methods on the Ro-
bustSpring dataset. Tab. 4 reports the repositories and checkpoints for the optical flow, scene flow
and stereo models, which were benchmarked on RobustSpring in Tab. 1, Tab. 2a, and Tab. 2b. Fur-
ther details on training and checkpoints for these models can be found in their original publications.

Ressources and Run Times. We conducted all evaluations on a single NVIDIA RTX A6000 (48
GB) GPU. The evaluation time of models on the RobustSpring data strongly depends on the compu-
tational efficiency and requirements of the original models. As a representative example, the optical
flow evaluation with RAFT (Teed & Deng, 2020) took 20 hours on the full RobustSpring data.

Once the methods are evaluated and the results uploaded to our benchmark server prototype, the ro-
bustness evaluation for an optical flow method takes 13 minutes on our evaluation machine (Intel(R)
Xeon(R) Gold 6130 CPU @ 2.10GHz, 8 vCPUs). The robustness evaluation for scene flow takes
about 26 minutes, and 7 minutes for stereo.

A.3 ROBUSTSPRING IMAGE CORRUPTIONS

Below, we provide supplementary information on the image corruptions for the RobustSpring
dataset. Besides visualizing further benchmark samples and supplying a video that showcases the
space- and time-integration of our corruptions, we also give details on their implementation with a
focus on RobustSpring-specific consistencies.
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Table 4: Repositories and checkpoints used for evaluating methods in RobustSpring. *The Mixed
checkpoint MS-RAFT+ is pretrained on Chairs and Things and then fine-tuned on a mix of Sintel,
Viper, KITTI 2015, Things, and HD1k.

Method Repository Checkpoint

Optical Flow
RAFT https://github.com/princeton-vl/RAFT Sintel
PWCNet https://github.com/NVlabs/PWC-Net Sintel
GMFlow https://github.com/haofeixu/gmflow Sintel
GMA https://github.com/zacjiang/GMA Sintel
FlowNet2 https://github.com/NVIDIA/flownet2-pytorch Sintel
FlowFormer https://github.com/drinkingcoder/FlowFormer-Official Sintel
MS-RAFT+ https://github.com/cv-stuttgart/MS_RAFT_plus Mixed*
SEA-RAFT https://github.com/princeton-vl/SEA-RAFT Spring (M)
SPyNet https://github.com/anuragranj/flowattack (PyTorch implementation) Sintel

https://github.com/anuragranj/spynet (original implementation)
Scene Flow

M-FUSE https://github.com/cv-stuttgart/M-FUSE KITTI 2015

Stereo
RAFT-Stereo https://github.com/princeton-vl/RAFT-Stereo/ Scene Flow (s)
ACVNet https://github.com/gangweiX/ACVNet Scene Flow (s)
LEAStereo https://github.com/XuelianCheng/LEAStereo Scene Flow (s), KITTI (k)
GANet https://github.com/feihuzhang/GANet Scene Flow (s), KITTI (k)

Contrast Saturate JPEG Compression Elastic Transform Spatter Frost Snow

Defocus Blur Gaussian Blur Glass Blur Zoom Blur Gaussian Noise Impulse Noise Shot Noise

Figure 6: RobustSpring example frames, complementing Fig. 3. The first row shows clean and
corrupted images. The second row shows the left and right disparity maps predicted with LEA
Stereo (Cheng et al., 2020). The third row shows the target disparities for forward left, backward
left, forward right, and backward right directions from M-FUSE (Mehl et al., 2023a). The fourth
row shows optical flow estimates for forward left, backward left, forward right, and backward right
from RAFT (Teed & Deng, 2020). All disparities and flows are computed on the corrupted dataset.

A.3.1 ADDITIONAL CORRUPTION BENCHMARK SAMPLES

To complement the benchmark samples in Fig. 3, we show benchmark results on additional corrup-
tions in Fig. 6.
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A.3.2 VIDEO OF CORRUPTIONS

With the supplementary material, we include a video that visualizes all corruptions applied to the
Spring test dataset.

A.3.3 CORRUPTION IMPLEMENTATION

Below we provide the implementation details and parameters for all corruptions in the RobustSpring
dataset. We cluster the corruptions by their main classes. The original (uncorrupted) image is
denoted as I , while the corrupted version is Î . The pixel-aligned depth values are D. In the stereo
video setting, the image subscripts t and t + 1 denote frames over time, while l and r denote left
and right frame, where necessary. All of RobustSpring’s noises are independent of time, stereo and
depth, which means they are sampled independently for every single image of the dataset.

Brightness. The brightness is adapted via

Î = I + c, (4)

and for time- and stereo-consistent brightness changes in RobustSpring we choose the parameter
c = clt = crt = clt+1 = crt+1 = 0.39.

Contrast. The equation to adapt contrast is

Î = (I −mean(I)) · c+mean(I), (5)

where we selected c = clt = crt = clt+1 = crt+1 = 0.16 for time- and stereo-consistent contrast
adaptations.

Saturation. For those adaptations the RGB image is transformed to HSV, and the saturation com-
ponent S is adapted via

Ŝ = S · α+ β, (6)
with α = αl

t = αr
t = αl

t+1 = αr
t+1 = 2.3 and βl

t = βr
t = βl

t+1 = βr
t+1 = 0.01 for time- and

stereo-consistent saturation changes.

Defocus Blur. The defocus blur convolves the image with a circular mean filter Cmean

Î = I ∗ Cmean
r , (7)

where we choose the radius r = rlt = rrt = rlt+1 = rrt+1 = 6 for time- and stereo-consistent
blurring.

Gaussian Blur. Gaussian blur convolves the image with a Gaussian Cgauss

Î = I ∗ CGauss
σ , (8)

where we choose the standard deviation σ = σl
t = σr

t = σl
t+1 = σr

t+1 = 4 for time- and stereo-
consistent blurring.

Glass Blur. This is a Gauss-blurred image, whose pixels are afterwards shuffled via the shuffling
S(I, i, r) over several iterations i within a neighborhood of radius r

Î = S(I ∗ CGauss
σ , i, r), (9)

where two sets of time-consistent parameters are picked for the different stereo cameras: σl
t =

σl
t+1 = 1.2, σr

t = σr
t+1 = 1.2, ilt = ilt+1 = 1, irt = irt+1 = 1, rlt = rlt+1 = 3 and rrt = rrt+1 = 3.

Motion Blur. Motion blur is implemented by averaging the intensities of pixels along the motion
trajectory determined by the optical flow. Let v(x, y) = (vx(x, y), vy(x, y)) be the optical flow
vector at pixel (x, y), and let

N = max
(
1,

⌊
10 ·max

(x,y)
∥v(x, y)∥

⌋)
(10)

be the number of samples along the motion path. Then, the blurred pixel is computed as

Î(x, y) =
1

N + 1

N∑
k=0

I

(
x+

k

N
vx(x, y), y +

k

N
vy(x, y)

)
. (11)
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Here, the scaling factor 10 controls the extent of the blur relative to the magnitude of the motion.

Zoom Blur. Zoom blur is created by averaging the original image with a series of zoomed-in
versions of itself. Specifically, let Z(I, z) denote the image I zoomed by a factor z, and let {zi} be
a set of zoom factors ranging from 1 to approximately 1.24 (in increments of 0.02). Then the final
image is computed as

Î =
1

N + 1

(
I +

N∑
i=1

Z(I, zi)

)
, (12)

where N is the number of zoom factors. This formulation averages the original image with its
progressively zoomed versions, resulting in a smooth zoom blur effect.

Gaussian Noise. This noise adds a random value from a Normal distribution to every pixel in the
original image, where NI(µ, σ

2) is a I-shaped array of random numbers that are drawn from the
Normal distribution with mean µ and variance σ2:

Î = I + α · NI(0, 1). (13)

The scaling α = 0.115 is selected for all images in RobustSpring, but NI(0, 1) is sampled anew for
every image.

Impulse Noise. Here, for a fixed fraction of pixels p, their values are replaced by the values 0 or
255. For RobustSpring, p = 0.075.

Speckle Noise. Like Gaussian noise, Speckle noise also builds on random values from a Normal
distribution, but adds these values after additionally scaling with I:

Î = I + I · α · NI(0, 1). (14)

For RobustSpring, the parameter is α = 0.45.

Shot Noise. Shot noise uses values drawn from a Poisson distribution P per pixel

Î =
P(I · c)

c
, (15)

where c = 23 for RobustSpring.

Pixelation. This is achieved by downsampling the image to size s, a fraction of its original size,
with a box filter box (I, s), followed by upsampling up(I, s) to the size s, which is the original size:

Î = up(box (I, I · c), I). (16)

For RobustSpring, we use the size fraction c = clt = crt = clt+1 = crt+1 = 0.16 for time- and
stereo-consistent pixelation.

JPEG Compression. For JPEG compression, the quality q is the only variable parameter

Î = JPEG(I, q), (17)

which is selected as q = qlt = qrt = qlt+1 = qrt+1 = 6 for time- and stereo-consistent JPEG
compression.

Elastic Transformation. The elastic transformation applies an elastic deformation using
torchvision.transforms.v2 with parameters α = 110.0 and σ = 5.0 to control the de-
formation magnitude and smoothness, while preserving the original frame dimensions.

Spatter. The spatter corruption simulates liquid droplets by generating a liquid layer from Gaussian
noise, applying blur and thresholding, and blending it with the original image using a predefined
color.

Frost. The frost corruption overlays a frost texture onto the image by randomly selecting and resiz-
ing a pre-stored frost image and blending it with the input to create an icy appearance.

Snow and Rain. The implementation for snow and rain is based on Schmalfuss et al. (2023), with
methodological and performance improvements. On the methodological side, we replaced additive
blending with order-independent alpha blending (Meshkin’s Method, McGuire & Bavoil (2013))
and included global illumination (Halder et al., 2019) in the color rendering. Also, we expanded the
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Figure 7: Additional results on accumulated corruption robustness Rc
EPE for optical flow models

over corruption classes color, blur, quality, and weather. More results are in Fig. 4.

monocular two-step motion simulation to multi-step stereo images. On the performance side, we
introduce an efficient parallel particle initialization and improve the parallel processing performance.

Fog. Fog is modelled using the Koschmieder model from Wiesemann & Jiang (2016) as

Î = I · e−
D·ln(20)

dm + l · (1− e−
D·ln(20)

dm ), (18)

where dm is the visibility range and l the luminance of the sky. For RobustSpring, we use dm = 45
and l = 0.8. As it directly depends on the depth D, this is depth-consistent and due to its integration
into the 3D scene it is also stereo- and time-consistent.

A.4 ADDITIONAL EXPERIMENTAL RESULTS

Below, we expand on the experiments in the main paper and provide supplementary results for our
major experiments.

A.4.1 CORRUPTION ROBUSTNESS BY CORRUPTION GROUP

Figure 7 shows the corruption robustness Rc
EPE for each optical flow method across the remaining

four corruption groups in addition to Fig. 4 in the main paper. It underlines the varying degrees of
robustness of the evaluated methods against specific types of corruption.

A.4.2 ACCURACY VS. MEDIAN CORRUPTION ROBUSTNESS

In Fig. 8 we show the accuracy-robustness evaluation with the Median corruption robustness, to
complement Fig. 4c which uses the average corruption robustness. Even though the robustness rank-
ing of methods varies between average and media corruption robustness, cf. Sec. 4.2 for a discussion
on ranking differences, the general trend that corruption robustness and accuracy are weakly corre-
lated remains. However, there is still no clear winner, and an accuracy-robustness tradeoff persists
among particularly accurate or robust methods.

A.4.3 SCHULZE PAIRWISE COMPARISON MATRIX

The Schulze method is a ranking algorithm used to determine the most preferred candidate based
on pairwise comparisons. We include a pairwise comparison matrix in Table 5 for our ranking.
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Figure 8: Accuracy vs. robustness of optical flow methods, measured as EPE and median Rc
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Small values indicate accurate and robust methods. The dashed line represents a quadratic polyno-
mial fit. Fig. 4c shows the average Rc

EPE.

Table 5: Pairwise comparison matrix for the Schulze method.
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SEA-RAFT 0 14 14 14 14 17 17 15 19
GMFlow 6 0 9 14 9 10 16 9 14

MS-RAFT+ 6 9 0 15 11 11 19 12 15
FlowFormer 6 6 5 0 3 12 16 8 13

GMA 6 11 9 17 0 12 20 10 15
SPyNet 3 10 9 8 8 0 13 4 13
RAFT 3 4 1 4 0 7 0 4 9

FlowNet2 5 10 8 12 10 16 16 0 18
PWCNet 1 6 5 7 5 7 11 2 0
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Figure 9: Stability of corruption robustness Rc
EPE for snow corruption. Analogous rain results

in Fig. 5a.

The table shows how often the method in row i is better than the method in column j, based on the
number of corruptions where method i achieves a lower error than method j. The ranking process
consists of the following steps:

1) Constructing the Pairwise Comparison Matrix. For each pair of methods, we count how many
times one method achieves a lower EPE than the other across different corruptions. If method A
has a lower EPE than method B in a given corruption, the corresponding entry in the matrix is
incremented.

2) Computing the Strongest Paths. We define the strength of a path from method A to method B as
the number of cases where A outperforms B. The strongest paths between methods are determined
by considering indirect paths: if method A is better than method B, and method B is better than
method C, then the strength of the indirect path from A to C is considered.

3) Determining the Final Ranking. Method A is ranked higher than method B if the strongest path
from A to B is stronger than the strongest path from B to A. This ensures that even if a method
loses to another in some comparisons, it can still be ranked higher if it consistently performs well
against other methods.

A.4.4 CORRUPTION ROBUSTNESS ON SNOW

Finally, we complement the evaluation of our corruption robustness metric in the presence of rain
in Fig. 5a with the corresponding evaluation in the presence of snow in Fig. 9. The results with
rain translate to snow with the following minor differences: Because snow has less motion blur
than rain, it covers fewer pixels (60% of all pixels vs. 90% for rain). For snow, the score drops a
bit more than for rain when object pixels are excluded (≤25% drop vs. ≤5% for rain), potentially
as a consequence of the increased object opacity for snow particles. Still, the background error
(≥ 75% contribution to corruption robustness) dominates the score, and the robustness ranking for
optical flow methods remains stable, whether snow pixels are included in the score calculation or
not. Hence, the additional evaluation on snow further substantiates the stability and expressiveness
of corruption robustness as an evaluation metric.

A.4.5 REPRODUCIBILITY

We compute the noise in the KITTI (Geiger et al., 2012) frames according to Immerkaer (1996), and
select the top 10% noisiest frames. The final frames and their noise levels are listed in Tab. 6.
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Table 6: Top 10% noisiest KITTI frames with noise estimation from Immerkaer (1996). Frames
from kitti15/dataset/training/image 2.
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Noise 3.54 3.22 3.07 2.92 2.80 2.79 2.77 2.74 2.69 2.66 2.62 2.61 2.61 2.60 2.48 2.47 2.46 2.46 2.43 2.41

A.5 DEPTH AND EXTRINSICS ESTIMATION FOR CORRUPTIONS

Disparity and Depth. For depth-dependent corruptions, we estimate disparity maps with MS-
RAFT+ (Jahedi et al., 2022; 2024). On the Spring validation set, we find a mean EPE of 1.09 px
and D1-all of 5.60%. Mean EPE measures the average Euclidean distance between predicted and
ground-truth disparities, while D1-all reports the percentage of pixels with disparity error larger
than 3 px or 5% of the ground-truth disparity. These errors are sufficiently small to support realistic
augmentations. Note that depth estimates are used by only 3 of the 20 corruption types (fog, snow,
and rain; motion blur uses depth only implicitly).

Extrinsics. We estimate camera extrinsics using COLMAP 3.8. As trajectories are not expressed
in a common reference frame, quantitative pose metrics such as absolute trajectory error (ATE) or
relative pose error (RPE) cannot be meaningfully computed without a rigid alignment step, which
itself introduces error. Extrinsics are required for only 2 corruptions (snow, rain). We therefore
evaluate them qualitatively: the resulting augmentations exhibit realistic motion behavior for both
effects.

A.6 USER STUDY ON SSIM THRESHOLDS

The SSIM thresholds of 0.7 for color, blur, quality, and weather corruptions and 0.2 for noise were
chosen empirically to yield comparable perceptual corruption strength across categories.

We conducted a focused perceptual study to validate the choice of corruption strengths and their as-
sociated SSIM values in RobustSpring. For five representative corruptions (one per main corruption
family: contrast, fog, Gaussian blur, Gaussian noise, and pixelation), participants repeatedly viewed
a clean Spring frame alongside three corrupted versions. See Figs. 10 and 11 for examples. They
then selected the corrupted image that looked most like a “reasonably” corrupted version of the clean
frame. This means the image is clearly degraded, inducing a distribution shift, yet still recognizably
close to the original. Across 14 user studies, with 10 samples each, for a total of 140 comparisons,
we observed agreement rates ranging from 70% to 100% from each user for the SSIM values used in
our study. The average agreement was 87.14%, which suggests that the SSIM ranges used for these
representative corruptions align with human perception of realistic, moderate corruption strengths.

In the user study, the web interface displayed one clean reference image from Spring and three
corresponding corrupted versions of the same image on each page. These images were obtained
by applying a single corruption type at three different intensities. We applied thresholds for three
levels of severity: low, medium, and high, with corresponding SSIM values of 0.95, 0.7, and 0.2,
respectively. The three corrupted images were randomly ordered, and participants were asked to
select one image per page that they perceived as the most reasonably corrupted version of the clean
image. The corruption should be clearly visible and sufficient to cause a distribution shift but not so
strong that the scene appears implausible or too different from the original image. This setup was
repeated for the five corruption types listed above, and for each page and participant, the selected
intensity was recorded. This allowed us to compute per-participant agreement with the nominal
level and the aggregate agreement statistics reported above. In each scenario, the nominal value
corresponds to the SSIM value chosen for the respective corruption in our work.
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(a) Clean image. (b) Low severity.

(c) Medium severity (best). (d) High severity.

Figure 10: Clean image and three corrupted versions with different severity levels for fog used in
the user study on SSIM thresholds. “Best” is the one we choose in RobustSpring.

(a) Clean image. (b) Low severity.

(c) Medium severity. (d) High severity (best).

Figure 11: Clean image and three corrupted versions with different severity levels for Gaussian noise
used in the user study on SSIM thresholds. “Best” is the one we choose in RobustSpring.
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A.7 MOTION RANGE OF SPRING

As discussed in the Spring paper (Mehl et al., 2023b), the dataset covers a wider range of motion
than standard benchmarks. While Sintel (Butler et al., 2012) and KITTI (Menze & Geiger, 2015)
align with Spring for smaller motions (u: −500 to 500, v: −250 to 250), Spring extends the range
up to 1700 (u) and −750 (v). This corresponds to motion magnitudes about 1.5–3 times larger than
those in Sintel and KITTI. We highlight this here as one reason for selecting Spring as the foundation
of RobustSpring.

A.8 INTEGRATION INTO THE SPRING BENCHMARK WEBSITE

To illustrate how RobustSpring can extend the existing Spring benchmark infrastructure, we provide
mock-ups of the website with our additional robustness results. These examples demonstrate how
robustness values can be integrated alongside existing accuracy metrics.

Overview Page. Fig. 12 shows the modified overview page for optical flow methods. Three new
columns report the average robustness scores. This extension allows users to compare methods
across both accuracy and robustness at a glance.

Method Detail Page. Fig. 13 displays the detail page for a single optical flow method. In addition
to the accuracy results already present in Spring, robustness values are provided per corruption type,
as well as aggregated average and median robustness values. This detailed view enables users to
assess strengths and weaknesses of individual methods with respect to specific corruptions.

Figure 12: Modified Spring benchmark overview page for optical flow. Newly added robustness
columns are highlighted in red.
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Figure 13: Modified Spring benchmark method detail page for optical flow. Robustness values
are reported for each corruption, as well as aggregated average and median scores. Newly added
sections are highlighted in red.
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