
Under review as a conference paper at ICLR 2023

AN INVESTIGATION OF DOMAIN GENERALIZATION
WITH RADEMACHER COMPLEXITY

Anonymous authors
Paper under double-blind review

ABSTRACT

The domain generalization (DG) setting challenges a model trained on multiple
known data distributions to generalise well on unseen data distributions. Due to its
practical importance, many methods have been proposed to address this challenge.
However much work in general purpose DG is heuristically motivated, as the DG
problem is hard to model formally; and recent evaluations have cast doubt on exist-
ing methods’ practical efficacy – in particular compared to a well tuned empirical
risk minimisation baseline. We present a novel learning-theoretic generalisation
bound for DG that bounds unseen domain generalisation performance in terms of
the model’s empirical risk and Rademacher complexity – providing a sufficient
condition for DG. Based on this insight, we empirically analyze the performance
of several methods and show that their performance is indeed influenced by model
complexity in practice. Algorithmically, our analysis suggests that tuning for do-
main generalisation should be achieved by simply performing regularised ERM
with a leave-one-domain-out cross-validation objective. Empirical results on the
DomainBed benchmark corroborate this.

1 INTRODUCTION

Machine learning systems have shown exceptional performance on numerous tasks in computer vision
and beyond. However performance drops rapidly when the standard assumption of i.i.d. training
and testing data is violated. This domain-shift phenomenon occurs widely in many applications of
machine learning (14; 37; 25), and often leads to disappointing results in practical machine learning
deployments, since data ‘in the wild’ is almost inevitably different from training sets.

Given the practical significance of this issue, numerous methods have been proposed that aim to
improve models’ robustness to deployment under train-test domain shift (37), a problem setting
known as domain generalisation (DG). These span diverse approaches including specialised neural
architectures, data augmentation strategies, and regularisers. Nevertheless, the DG problem setting is
difficult to model formally for principled derivation and theoretical analysis of algorithms; since the
target domain(s) of interest cannot be observed during training, and cannot be directly approximated
by the training domains due to unknown distribution shift. Therefore the many popular approaches
(37) are based on poorly understood empirical heuristics—a problem highlighted by (20), who found
that no DG methods reliably outperform a well-tune empirical risk minimisation (ERM) baseline.

Our first contribution is to present an intuitive learning-theoretic bound for DG performance. In-
tuitively, while the held-out domain of interest is unobservable during training, we can bound its
performance using learning theoretic tools similar to the standard ones used to bound the performance
on (unobserved) testing data given (observed) training data. In particular we show that the perfor-
mance on a held out target domain is bounded by the performance on known source domains, plus
two additional model complexity terms, that describe how much a model can possibly have overfitted
to the training domains. This provides a sufficient condition for DG and leads to several insights.

Firstly, our theory suggests that DG performance is influenced by a trade-off between empirical
risk and model complexity that is analogous to the corresponding and widely understood trade-off
that explains generalisation in standard i.i.d. learning as an overfitting-underfitting trade-off (17).
Based on this, we conjecture that the efficacy of the plethora of available strategies (37) – from
data-augmentation to specialised optimisers – is largely influenced by explicitly or implicitly choosing
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different fit-complexity trade-offs. And further, that the importance of proper tuning as discussed by
(20) may be mediated in part by the impact of hyperparameters on model complexity.

Analyzing these issues empirically is difficult, as model complexity is hard to carefully control in deep
learning due to the large number of relevant factors (explicit regularisers, data augmentation, optimiser
parameters, etc). (20) attempted to address this by random hyper-parameter search in the DomainBed
benchmark, but are hampered by the computational infeasibility of accurate hyper-parameter search.
In this paper, we use linear models, random forests, and shallow MLPs to demonstrate more clearly
how cross-domain performance depends on model complexity.

Secondly, our theory further suggests that the model selection criterion (22) is an important factor
in DG performance. In particular, regularisation should be stronger when optimizing for future DG
performance than when optimizing for performance on seen domains, which we confirm empirically.
Further, our theoretical and empirical results show that, contrary to the conclusion of (20), domain-
wise cross-validation is a better objective to drive DG model selection than instance-wise.

In summary, the take-home messages of our analysis are: (i) When achievable, low empirical risk
combined with low complexity provides a sufficient condition for DG. (ii) Model fit vs complexity
trade-off is a key factor in practical DG performance. (iii) The complexity control strategy used to
determine bias-variance trade-off is crucial, with peak DG performance achieved when optimizing
model complexity based on domain-wise validation. (iv) The regularisation strength required for
optimal DG is greater than for conventional optimization for within-domain performance.

2 RELATED WORK

Theoretical Analysis of the DG Setting and Algorithms The DG problem setting was first
analysed in (9). Since then there have been some attempts to analyse DG algorithms from a
generalisation bound perspective (29; 8; 23; 2; 33). However these studies have theoretical results that
are either restricted to specific model classes, such as kernel machines, or make strong assumptions
about how the domains seen during training will resemble those seen at test time—e.g., that all
domains are convex combinations of a finite pre-determined set of prototypical domains. In contrast,
our Rademacher complexity approach can be applied to a broad range of model classes (including
neural networks), and makes comparatively milder assumptions about the relationship between
domains—i.e., they are i.i.d. samples from another arbitrary distribution over domains.

The majority of the existing work investigating the theoretical foundations of DG follow the initial
formalisation of the domain generalisation problem in (9), where the goal is to minimise the expected
error over unseen domains. However, several recent works have also explored the idea of bounding
the error on a single unseen domain with the most pathological distribution shift (3; 24). This type of
analysis is typically rooted in methods from causal inference, rather than statistical learning theory.
As a consequence, they are able to make stronger claims for the problems they address, but the scope
of their analysis is necessarily limited to the scenarios where their assumptions about the underlying
causal structures are valid. For example, (24) provides bounds that assume problems conform to a
specific class of structural equation models, and the analysis assumes that infinite training data is
available within each observed training domain. We primarily address the standard DG formalisation
of (9), which is concerned with the expected performance of a model on new domains sampled
from a distribution over domains. However, we also provide a means to transform any bound on
the expected (or “average-case”) risk to a high-confidence bound on the worst-case risk. Possibly
the most similar work to our theoretical contributions is (1), that also provides learning-theoretic
generalisation bounds for DG. However, their analysis only applies to finite hypothesis classes (which
does not include, e.g., linear models or neural networks), whereas ours can be applied to any class
amenable to analysis with Rademacher complexity.

Empirical Analysis The main existing empirical analysis on DG is (20), who compared several
state of the art methods using DomainBed, a common benchmark and hyper-parameter tuning
protocol. They ultimately defend Empirical Risk Minimization (ERM) over more sophisticated
alternatives on the grounds that no competitor consistently beats it. We also broadly defend ERM,
and build on the same benchmark, but differently we provide a deeper analysis into when and why
ERM works. More specifically: (i) We provide a theoretical analysis of ERM’s generalisation quality
unlike the prior purely empirical evaluation, (ii) We re-use the DomainBed benchmark to directly
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corroborate this theory under controlled conditions using linear models and random forests, where
model complexity can be more feasibly tuned. (iii) Our complexity analysis provides a possible
explanation of the hyperparameter sensitivity observed by (20), and possible explanation for why
ERM is hard to beat (if methods primarily influence complexity). (iv) We identify, and empirically
validate, the preferred model selection criterion for DG, a point which was inconclusive in (20).

3 BOUNDING RISK FOR DOMAIN GENERALIZATION

I.i.d. learning is concerned with learning a mapping from some input space X , to a label space Y ,
given data drawn from a distribution on X × Y . One aims to find a model, f∗ ∈ F , that minimises
the expected loss (also called risk) on unseen data,

f∗ = argmin
f∈F

Lp(f), Lp(f) = E(x⃗,y)∼p[ℓ(f(x⃗), y)], (1)

where p is the data distribution and ℓ(·, ·) is the loss function. In practice, we only have access to
a finite set of data, S = {(x⃗i, yi)}mi=1, sampled i.i.d. from this distribution, so must minimise an
empirical risk estimate,

f̂ = argmin
f∈F

L̂p(f), L̂p(f) =
1

m

m∑
i=1

ℓ(f(x⃗i), yi). (2)

where m is the number of training examples. A central focuses of statistical learning theory is to
bound the difference between these two types of risk. For example, in the standard single domain
setting with a loss function bounded between zero and one (e.g., the misclassification rate) this can
be done via

Lp(f) ≤ L̂p(f) + 2R̂m(F) + 3

√
ln(2/δ)
2m

, (3)

which holds with probability at least 1 − δ, and R̂(F) is known as the empirical Rademacher
complexity of the hypothesis class, F . This complexity term is defined as

R̂m(F) = Eσ⃗

[
sup
f∈F

1

m

m∑
i=1

σiℓ(f(x⃗i), yi)

]
, (4)

where σi are Rademacher random variables, distributed such that P (σi = −1) = P (σi = 1) = 0.5.
For a hypothesis class consisting of norm-constrained linear classifiers or depth-restricted decision
trees (or ensembles of decision trees), one can achieve a bound on Rademacher complexity that scales
as O(m

−1
2 )1. There are a variety of ways to define hypothesis classes for neural networks, but most

recent approaches fix an architecture and specify constraints on the norms of weights or distances
they can move from their initialisations (4; 30; 19).

Domain generalisation. While standard i.i.d. learning assumes all data come from the same
distribution, the DG problem setting assumes the existence of an environment E , of distributions p (9).
Throughout the remainder we assume all probability density functions in supp(E) are measurable
according to some common base measure. Note that we do not restrict what types of differences one
could see between different domains sampled from E : for any two distributions in p, q ∈ supp(E)
it could be the case that either p(x⃗) ̸= q(x⃗), or p(y|x⃗) ̸= q(y|x⃗), or even that both types of
distribution shift have occurred. The conceptually simplest—and often implicitly assumed—goal
of DG methods is to minimise the expected risk across different distributions that could be sampled
from the environment,

LE(f) = Ep∼E [Lp(f)]. (5)
This object is also the most commonly analysed idealised objective in the learning theory literature
(9; 29; 8; 33), but other formulations also exist (3). As with the single domain learning problem, we
only have access to an empirical estimate of the risk,

L̂E(f) =
1

n

n∑
j=1

L̂pj (f), (6)

where we assume for ease of exposition that all n domains have the same number of examples.
1See Section 26.2 of (34) for a textbook example of bounding the Rademacher complexity of linear models

with bounded weight norms.
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3.1 TARGET DOMAIN-DEPENDENT GENERALISATION BOUND

One can construct a bound on the error of a model operating on a novel domain, q, by measuring the
mean total variation distance between q and each source domain pi, as follows.
Theorem 1. For a 1-Lipschitz loss, ℓ(·, ·), taking values in [0, 1], with confidence at least 1− δ for
all f ∈ F we have that

Lq(f) ≤ L̂E(f) + 2R̂mn(F) +
2

n

n∑
i=1

∥q − pi∥TV + 3

√
ln(2/δ)
2mn

, (7)

where n is the number of training domains and m is the number of training examples in each domain.

The proof can be found in the appendix. While such bounds at first glance seem intuitive and
appealing, they are of limited practical use in the DG setting, because it is not possible to either
measure or change the TV distance between the source and target distributions in the DG setting.

3.2 TARGET DOMAIN-INDEPENDENT GENERALISATION BOUND

We next bound the generalisation gap between the observed empirical risk, L̂E , on the source domains
and the expected risk, LE , on unseen domains that holds uniformly for all hypotheses in F .
Theorem 2. For a 1-Lipschitz loss, ℓ(·, ·), taking values in [0, 1], with confidence at least 1− δ for
all f ∈ F we have that

LE(f) ≤ L̂E(f) + 2R̂mn(F) + 2R̂n(F) + 3

√
ln(4/δ)
2mn

+ 3

√
ln(4/δ)
2n

, (8)

where n is the number of training domains and m is the number of training examples in each domain.

The proof can be found in Appendix A. We remark that this theorem makes no assumption on the
distribution over domains E , model invariances, or similarity between source and target domain. The
key assumption—shared with (9)—is that source and target are independent samples from E .

Discussion Theorem 2 tells us that expected risk on unseen domains is bounded by the empirical
risk (training loss) on seen domains, plus Rademacher complexity terms and sampling error terms that
decay with the number of domains and training instances per domain. As with typical single-domain
bounds, the latter sampling error terms are not under control of the model designer. The former
Rademacher terms describe the complexity of the chosen model class and govern how much it could
possibly overfit to the seen domains while minimising empirical risk. In the case of linear models,
these terms depend on weight norms, while in the case of deep models they further depend on
properties of the chosen network architecture. Mirroring conventional generalisation in standard
i.i.d. learning, a very simple model may minimise the Rademacher terms, R̂, while producing high
empirical risk, L̂E , and vice-versa. Thus good generalisation critically depends on a carefully chosen
empirical risk vs model complexity trade-off. The difference between Theorem 2 and single domain
bounds (e.g., Equation 3) is the additional dependence on the number of domains n and additional
Rademacher complexity term. This highlights an important insight: When the goal is to generalise to
new domains, the risk of overfitting is higher. Therefore a lower complexity model is optimal for held
out domain performance compared for seen domain performance in standard i.i.d. learning.

3.3 BOUNDING THE EXCESS RISK OF ERM

As a second theoretical contribution, we next bound the excess expected risk between the ERM
solution f̂ and the best possible model f∗ within the function class F . Note that bounding excess
risk, as opposed to the generalisation gap, overcomes some of the known issues with theoretically
analysing the generalisation properties of deep networks (7).
Corollary 1. With probability at least 1− δ, the excess risk of the empirical risk minimiser in F is
bounded as

E[LE(f̂)− LE(f∗)] ≤ 2R̂mn(F) + 2R̂n(F) + 2

√
ln(4/δ)
2mn

+ 2

√
ln(4/δ)
2n

.
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The proof (in Appendix B) uses the same technique as the usual proof for excess risk (see, e.g., (31)),
and some of the intermediate results required for Theorem 2.

Discussion Corollary 1 tells us that the gap between ERM and the best possible predictor in the
function class depends on the same complexity terms observed in Theorem 2. In particular, for any
typical hypothesis class, ERM converges to the optimal classifier at a rate of O(1/

√
mn)+O(1/

√
n).

To justify itself theoretically, any future DG method that claims to be better than ERM should either:
(1) demonstrate a faster convergence rate than this—at least by an improved constant factor; or (2)
formally show that the chosen hypothesis class is composed of models that can extrapolate to new
domains without additional data. The latter would likely involve making specific assumptions about
the underlying data generation process, coupled with analysis of a specific hypothesis class using
methods from causal inference. An example of such analysis is given by (24). Methods based on
causal inference have the potential to give bounds with much better convergence rates than the rate
given above. However, because one must make assumptions about the underlying family of structural
equation models, the applicability of such bounds is much more restricted than our Rademacher
complexity technique, which does not require these assumptions.

3.4 FROM AVERAGE-CASE TO WORST-CASE

For some applications—such as safety critical systems that cannot be allowed to fail—one is interested
in the bounding the error in the worst-case domain,

L̃E(f) = sup
p∈supp(E)

Lp(f). (9)

Some papers accomplish this by making assumptions about the distribution E . E.g., by explicitly
constructing it as a convex combination of known domains, or showing that all models in F are
“invariant” to all domains in the support (3; 24). We instead aim to construct a bound that will hold
for most—but not necessarily all—domains that could be seen at test time. This allows us to instead
only make a relatively mild assumption about bounded variance, as shown in the following result.
Lemma 1. For p ∼ E , the following holds with confidence at least 1− κ,

Lp(f) ≤ LE(f) +

√
1− κ

κ
Varq∼E [Lq(f)].

Proof. The statement follows by aggregating performance on each domain into a scalar (from the
definition of Lq(·)), then computing the variance via the law of the unconscious statistician. Finally,
an application of the confidence interval formulation of a one-sided variant of Chebyshev’s inequality
is used. This concentration inequality is also sometimes known as Cantelli’s inequality.

As κ goes to zero, this Lemma allows us to bound the error for individual domains in increasingly
larger subsets of the support of E , thus achieving something practically similar to bounding Equation
9. Interestingly, those methods that attempt address worst-case domain generalisation by proving
invariance of models to the underlying domain (i.e., those that show Lp(f) = Lq(f), p ̸= q) will
have zero variance, by definition. Thus, the average-case bound in Theorem 2 also provides a bound
on the worst-case generalisation error in the case of invariant hypothesis classes.

For those methods that do not rely on domain expertise to prove invariance, it should be noted
that minimising the sample variance on the available training domains will not necessarily lead to
minimising the population variance in Lemma 1. However, it is possible to construct an upper bound
to the population variance, yielding the worst-case bound below.
Theorem 3. For p ∼ E , the following holds with confidence at least 1− (δ + κ),

Lp(f) ≤ A+

√
1− κ

κ
A,

where A is a bound on LE(f) that holds with confidence 1− δ (e.g., from Theorem 2).

The proof for this result can be found in Appendix C. This result suggests that one can apply a simple
transform to the average-case bound provided by Theorem 2 in order to obtain a high-confidence
upper bound on the worst-case error in unseen domains.
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3.5 FROM BOUNDS TO ALGORITHMS

The analyses above suggest that to optimise for performance on held-out domains, one should
simultaneously minimise empirical risk and model complexity. In practice the simplest way to tune
complexity is via regularisation. To find the regularisation hyperparameters that work best for the
average-case performance, one should measure held out domain performance via cross-validation
(if there are few domains available), or with a single validation set of held-out domains (if many
domains are available). This provides an unbiased estimate of the expected risk, LE , (denoted as
domain-wise CV criterion). In contrast, optimising for performance on held out instances of known
domains as recommended by (20) (denoted instance-wise) is an optimistically biased estimator.

If worst-case performance is of interest, one typically cannot obtain an unbiased estimate of L̃E .
However, it is interesting to note that the link between Theorems 2 and 3 somewhat surprisingly
suggests that any strategy that works well for the average-case objective also work for the worst-case
objective. This is because, although the worst case bound is more pessimistic, both bounds will be
minimised for the same regulariser strength (Rademacher complexity); the transform from average-
case to worst-case bound is a monotonically increasing function, so the location of extreme points
(i.e., optimal fit-complexity trade-off) is preserved. Thus a novel insight is that we can use the single
domain-wise validation strategy above to optimise for both average and worst-case DG performance.

4 EXPERIMENTS

Based on our previous theoretical analysis, we conduct experiments on DomainBed (20) and we
study the following questions: (1) Theorem 2 shows that novel domain generalisation is governed by
empirical-risk complexity trade-off. Can we directly demonstrate the dependence of generalisation
on complexity by controlling model complexity? (2) Could the hyperparameter sensitivity of DG
methods observed by (20) be mediated by model complexity? (3) Given that model complexity is a
key determinant of generalisation, what is the best objective for tuning regularisation strength? (4)
Could our bounds ever generate non-trivial guarantees for cross-domain recognition performance?

4.1 DOMAIN GENERALISATION PERFORMANCE DEPENDS ON MODEL COMPLEXITY

To directly investigate the impact of model complexity on domain generalisation, we use pre-computed
deep features 2 and shallow classifiers linear SVM and Random Forest (RF). For linear models, tight
bounds on model complexity are known and can be directly controlled by a scalar hyperparameter
(5). The objective is convex so confounding factors in deep network training (optimiser choice, early
stopping, etc) disappear, and training is fast enough that we can densely and exhaustively evaluate
a wide range of complexities. Similarly for RF, complexity is controlled by the depth of the trees
when the models are applied to binarised features (10). This is a direct consequence of the resulting
hypothesis class being finite, and an application of Massart’s lemma (5).

Setup We use DINO (12) pre-trained DINO-ViTB8 as deep features, and then train classifiers
using scikit-learn. We experiment on six different DG benchmarks, including RotatedMNIST (18),
PACS (26), VLCS (16), OfficeHome (36), SVIRO (15) and Terra Incognita (6). For linear SVM,
we use the objective C

n

∑n
i ℓ(fw(xi), yi) + ∥w∥2, with parameter C controlling the complexity of

model w through loss-regularisation trade-off, and search a range of log2 C in {−10, . . . , 10}. For
RF we search a range of depths D in {1, . . . , 30}. We then conduct two experiments, holding training
and test split size constant across both: (i) Training on the train splits of all domains, and testing on
the test splits of all domains (i.e., standard i.i.d. learning). (ii) Training on the train splits of three
domains, and testing on the test splits of a held out domain (i.e., DG performance).

Results The results in Fig. 1 average over 5 random seeds for dataset splitting, and all choices of
held-out target domain. From these we can see that: (i) Experiments exhibit the classic trade-off
between fitting the data well and constraining hypothesis class complexity appropriately. For SVM we
observe underfitting for high regularisation (small C), and overfitting at low regularisation (large C).
RF is similar but with less severe overfitting. (ii) Comparing the within- and across-domain evaluation:
across-domain leads to lower performance—which is to be expected, due to the distribution shift.

2Note that using a fixed feature extractor trained on independent data does not impact the model complexity
or associated generalisation bound.
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Figure 1: Linear SVM (Top) and Random Forest (Bottom) performance on DomainBed benchmark
datasets. Optimal tuning for performance on novel target domains (red) always requires stronger
regularisation (lower C or D) than for performance on seen domains (blue).

A more noteworthy observation is that, the optimal regularisation for novel-domain performance
is stronger than for seen-domain performance (red vertical lines left of blue). This corroborates
our theoretical result that the ideal model complexity is lower for DG than for conventional i.i.d.
learning. More examples are in Appendix Fig. 4. Note that these results are an exhaustive search of
model complexity, and do not constitute a complete algorithm, which would need to chose a specific
complexity. We evaluate this in Section 4.3.

4.2 IMPACT OF HYPER-PARAMETERS ON COMPLEXITY AND DG PERFORMANCE

Our experiment in Section 4.1 showed that linear models exhibit a very clean trade-off between
complexity and generalization. However there are many subtle factors that influence effective model
complexity in neural networks besides architecture: learning rate, learning rate schedule, weight
decay, early stopping, etc. The prior evaluation (20) attempted to control these factors for state
of the art neural DG methods by applying a common hyperparameter search strategy that aimed
to find the best tuning (cf: Fig. 1) for each competitor. Under these conditions, they found that
existing state of the art methods failed to outperform well tuned ERM. We observe that many of these
factors controlled by DomainBed directly (e.g., weight decay) or implicitly (e.g., batch size) impact
model complexity. To study such hyper-parameter tuning through the lens of complexity, we take
one representative factor of stopping iteration, and measure its impact on model complexity – as a
possible explanation of why it is important to control.

Setup To ensure that complexity can be measured well, we work with 2-layer MLPs. Specifically,
we take fixed ImageNet pre-trained ResNet-18 features, and feed them to MLPs, which are then
trained using the DomainBed framework. We then report the results of an ERM model, checkpointed
at a range of training iterations.

Measuring Model Complexity Because we have limited our attention to 2-layer MLPs, we
can take advantage of a model capacity metric that is specialised for this class of models. We
retrospectively determine the complexity of a trained network using the measure proposed by (30),
which bounds the Rademacher complexity of a 2-layer MLP hypothesis classes. More concretely, the
expression used for computing complexity is ∥V ∥F (∥U − U0∥F + ∥U0∥2), where U is the weight
matrix of the first layer, U0 is its random initialisation, and V is the weight matrix of the second
layer. We use ∥ · ∥F to denote Frobenius norm, and ∥ · ∥2 to indicate the spectral norm. Note that for
simplicity we have omitted constant factors that depend only on the architecture and problem setting,
and not the learned weights, as we use the same architecture for all methods we investigate.
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Figure 2: Leave-one-domain out cross-validation performance of shallow neural networks as a
function of their measured model complexity while training on DomainBed (DB) when checkpointed
every 300 iterations up to 50,000. The overall results are consistent with a standard bias-variance
trade-off (cf. Fig 1 for linear models), with peak performance in the middle of the complexity range.

Results The results in Fig. 2 summarise the trade-off between measured model complexity (x-axis),
and unseen domain test accuracy (y-axis), averaged over all held out domains for each dataset for an
ERM model checkpointed every 300 iterations against the corresponding complexity. Neural models
typically gain complexity with iterations (32; 21), and we see this in the plot. The overall result is one
of overfitting-underfitting trade-off curves mirroring Fig. 1. This explains why checkpoint selection
was found to be crucial in (20) – it directly affects complexity and hence generalisation via Thm 2.
More generally, to the extent that all the other considered hyper-parameters influence complexity (we
leave quantifying this to future work), it may explain why hyper-parameter selection more generally
is crucial to control for DG (20). A limitation of this analysis is that we do not have tight bounds for
deep neural networks, so can not repeat this same analysis for popular models such as ResNet.

4.3 EVALUATING LINEAR MODELS ON DOMAINBED

Having shown that model complexity is a major factor in DG performance, we next consider practical
algorithms for complexity tuning. From Fig. 1, we see within-domain and cross-domain evaluation
have different optimal tuning. When automating the search for a good regularisation parameter, these
evaluation criteria correspond respectively to hyperparameter selection based on a validation set from
the seen source domains (instance-wise), vs a validation set drawn from a held out source domain
(domain-wise). As discussed in Section 3.5, the latter criterion corresponds to a unbiased estimator
of expected cross-domain generalisation performance LE(f), which our theorem bounds.

Setup We performed DG evaluation on DomainBed using ERM with linear models using DINO
features as in Section 4.1 and pre-trained ResNet-50 for direct comparability to (20). For each
held out domain, we performed hyperparameter tuning with either instance-wise cross-validation
(where validation folds are drawn from the same source domains used for training) or domain-wise
cross-validation (where validation folds are drawn from held-out domains not seen during training).

Results The results in Tab. 1 report the average accuracy across held out domains, and the average
selected logC regularisation strength (See Appendices for the full breakdown of results for each
held-out domain). The domain-wise cross-validation objective leads to similar or better accuracy,
and similar or smaller C value selection (i.e., stronger regularisation). This outcome is as predicted
by our theory, but different to the conclusion of (20). We attribute this difference to the difficulty of
accurately tuning tuning stochastically trained neural networks as attempted in (20).

4.4 INSTANTIATING THE BOUND

A limitation of our theory, shared by most existing work on statistical learning theory, is that – while
derived bounds give insights into the factors affecting generalization such as complexity – they are
often not tight enough to provide useful performance guarantees for many problems and models of
interest. As a counterpoint to this we illustrate one example where our bound provides non-trivial
guarantees. While benchmarks within DomainBed have a relatively small number of domains,
many problems in the broader AI community have a larger number of domains, making them more
amenable to guarantees. For example, the LEAF (11) suite of benchmarks popular in the Federated
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Table 1: Comparing model selection criteria using linear SVMs. Domain-wise validation usually
outperforms instance-wise and selects stronger regularisation (lower C) as predicted by our theory.

DINO VIT-B8 ResNet-50
Domain Wise Instance Wise Domain Wise Instance Wise

Acc logC Acc logC Acc logC Acc logC

PACS 74.3 -1.73 (±0.40) 70.6 1.56 (±0.66) 68.1 2.43 (±0.69) 66.9 5.03 (±0.66)
VLCS 80.4 -1.04 (±0.69) 80.5 -0.87 (±0.35) 76.7 1.73(±1.20) 77.6 2.25 (±0.35)

OfficeHome 73.6 -0.17 (±0.35) 73.1 1.04 (±0.40) 70.0 1.91 (±0.35) 69.1 3.64 (±0.66)
SVIRO 97.2 0.21 (±0.33) 95.3 4.85 (±0.46) 93.3 4.16(±0.92) 92.7 6.93 (±0.00)

Terra Inc. 45.4 -0.17 (±0.87) 38.8 5.37 (±0.35) 28.3 2.08 (±1.27) 26.9 6.93 (±0.00)

Learning community have a larger number of domains. We consider the multi-domain text analysis
task defined in LEAF. The task is binary sentiment classification of tweets from different users, with
each user defining a domain. We train a random forest on this task, and show the guaranteed DG
classification accuracy along with the empirical DG classification accuracy in Figure 3.

5 CONCLUSION
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Figure 3: Empirical and guaranteed
DG performance on LEAF Senti-
ment analysis using RF.

From the results we can see that our Theorem 2 (together with
the RF bound from (10)) provides a mostly non-trivial (bet-
ter than random performance) guarantee for small depth RFs.
We studied the performance of domain generalisation methods
through the lens of model complexity (bias-variance trade-off)
from both theoretical and empirical perspectives. Both perspec-
tives show that complexity impacts cross-domain generalisation
in a way that mirrors the bias-variance trade-off in conventional
i.i.d. learning—but where stronger regularisation is required if
optimising for cross-domain generalisation than if optimising
for conventional within-domain generalisation. We clarified the
preferred model selection criterion in each case.

We set out to address four questions, which can be answered
as: (1) Yes. The influence of cross-domain generalisation on
complexity can be directly demonstrated using linear models
and RFs. (2) Maybe. Hyperparameter choice in DomainBed
influences neural network complexity, and this may in turn
influence neural generalisation. (3) If the goal is to optimise for domain generalisation, then domain-
wise validation is preferred to instance-wise validation for model-selection. This will lead to stronger
regularisation for better out-of-domain generalisation (at a cost to in-domain generalisation). (4)
Yes. While current complexity bounds may not be tight enough to provide useful guarantees for
DomainBed and deep neural networks, many benchmarks and models popular in the broader AI
community can already support non-trivial performance guarantees for cross domain generalisation.

Using general purpose pre-trained features (12) as we did here, and focusing on learning shallow
models that can be accurately tuned for DG may be a promising alternative avenue for improving DG
in practice compared to popular focus on sophisticated neural DG methods (37). Although achieving
state of the art performance is not our focus, we note that our results in Tab. 1 are not far behind
end-to-end trained state of the art (20), despite using fixed features and shallow models.

While we focused on ERM, we remark that our bound applies to any class of models for which
Rademacher complexity can be computed—our analysis is rooted in uniform convergence, so it is
agnostic to the training algorithm used to obtain that model. For example, the choice of auxiliary loss
function, whether (9) or not (13) the training algorithm uses domain labels, or whether some form
of adversarial training is employed (35) will not have any bearing on our bounds unless they also
change the underlying hypothesis class in some way.

9
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A PROOF OF MAIN RESULTS

We use a slightly modified version of the standard empirical Rademacher complexity bound on
generalisation error, as stated by (28) but originally shown by (5), where the modification is to
weaken the i.i.d. assumption to be only an independence assumption—i.e., allow instances to be
drawn from different distributions. The proof is exactly the same (because McDiarmid’s inequality
requires only independence, and not identical distributions), but we re-state it here for completeness.

Theorem 4. For p1, ..., pn independent samples from E , and 1-Lipschitz loss ℓ(·, ·) taking values in
[0, 1], the following holds with confidence at least 1− δ,

1

n

n∑
j=1

Lpj (f) ≤
1

n

n∑
j=1

L̂pj (f) + 2R̂mn(F) + 3

√
ln(2/δ)
2mn

, (10)

where L̂pj
(f) is measured on Spj

= {(x⃗ij , yij)}mi=1, a collection of m i.i.d. samples from pj .

Proof. Let S = Sp1

⋃
...
⋃
Spn

and define

Φ(S) = sup
f∈F

1

n

n∑
j=1

(Lpj
(f)− L̂pj

(f)). (11)

Note that Φ(S) satisfies the bounded differences property required by McDiarmid’s inequality: i.e., if
we construct S ′ by replacing any one of the (xij , yij) in S with another random variable also drawn
from pj , then |Φ(S)−Φ(S ′)| ≤ 1

mn . Therefore McDiarmid’s inequality implies that with confidence
at least 1− δ

2

Φ(S) ≤ ESp1:n∼p1:n
[Φ(S)] +

√
ln(2/δ)
2mn

. (12)

We continue by bounding the expected value of Φ(S),

ESp1:n
∼p1:n [Φ(S)] (13)

= ESp1:n
∼p1:n

[
sup
f∈F

1

n

n∑
j=1

(Lpj (f)− L̂pj (f))

]
(14)

= ESp1:n∼p1:n

[
sup
f∈F

1

n

n∑
j=1

(
ES′

pj
∼pj

[
1

m

m∑
i=1

ℓ(f(x⃗′
ij , y

′
ij)

]
− 1

m

m∑
i=1

ℓ(f(x⃗ij , yij)

)]
(15)

≤ ESp1:n
∼p1:n

ES′
p1:n

∼p1:n

[
sup
f∈F

1

n

n∑
j=1

1

m

m∑
i=1

(ℓ(f(x⃗′
ij), y

′
ij)− ℓ(f(x⃗ij), yij))

]
(16)

= ESp1:n
∼p1:nES′

p1:n
∼p1:nEσ⃗

[
sup
f∈F

1

n

n∑
j=1

1

m

m∑
i=1

σij(ℓ(f(x⃗
′
ij), y

′
ij)− ℓ(f(x⃗ij), yij))

]
(17)

≤ ES′
p1:n

∼p1:n
Eσ⃗

[
sup
f∈F

1

n

n∑
j=1

1

m

m∑
i=1

σijℓ(f(x⃗
′
ij), y

′
ij)

]
(18)

+ ESp1:n
∼p1:n

Eσ⃗

[
sup
f∈F

1

n

n∑
j=1

1

m

m∑
i=1

−σijℓ(f(x⃗ij), yij)

]
(19)

= 2ESp1:n
∼p1:nEσ⃗

[
sup
f∈F

1

n

n∑
j=1

1

m

m∑
i=1

σijℓ(f(x⃗ij), yij)

]
(20)

= 2ESp1:n∼p1:n
[R̂mn(F)], (21)

where the first inequality is from moving the supremum inside the expectation and the second is from
subadditivity of suprema. Observing that the absolute difference of computing R̂mn(F) on S and S ′
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cannot exceed 1
mn , another application of McDiarmid’s inequality tells us that with confidence at

least 1− δ
2

2ESp1:n∼p1:n
[R̂mn(F)] ≤ 2R̂mn(F) + 2

√
ln(2/δ)
2mn

. (22)

Combining Equations 12 and 22 with the union bound concludes the proof.

A.1 PROOF OF UNOBSERVABLE BOUND

Proof. We start by bounding the left-hand side of the main theorem statement as

Lq(f) =
1

n

n∑
j=1

Lpj
(f) + Lq(f)−

1

n

n∑
j=1

Lpj
(f) (23)

≤ 1

n

n∑
j=1

Lpj
(f) +

1

n

n∑
j=1

∫
Z
f(z⃗)(q(z⃗)− pj(z⃗)) · dz⃗ (24)

≤ 1

n

n∑
j=1

Lpj
(f) +

1

n

n∑
j=1

∥f∥∞∥q − pj∥1 (25)

=
1

n

n∑
j=1

Lpj
(f) +

2

n

n∑
j=1

∥q − pj∥TV . (26)

(27)

The result follows by applying Theorem 4 to the first summation.

A.2 PROOF OF OBSERVABLE BOUND

We now prove Theorem 2.

Proof. Theorem 4 tell us that with confidence at least 1− δ,

1

n

n∑
j=1

Lpj (f) ≤ L̂E(f) + 2R̂mn(F) + 3

√
ln(2/δ)
2mn

. (28)

Thus, we must provide a (high confidence) upper bound on

LE(f)− 1

n

n∑
j=1

Lpj
(f) (29)

that holds uniformly for all f ∈ F . We can use the same idea the proof for Theorem 4 to show how
Rademacher complexity controls generalisation to novel domains, rather than novel instances within
the same domain. Begin by letting P = {p1, ..., pn} be an i.i.d. sample of n domains from E , and
define

Φ(P ) = sup
f∈F

LE(f)− 1

n

n∑
j=1

Lpj
(f). (30)

If we construct P ′ by replacing any pj ∈ P with p′j ∼ E , then we have |Φ(P ) − Φ(P ′)| ≤ 1
n , so

McDiarmid’s inequality tells us that with confidence at least 1− δ
2

Φ(P ) ≤ Ep1:n∼E [Φ(P )] +

√
ln(2/δ)
2n

. (31)
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We proceed by bounding the expected value of Φ(P ),

Ep1:n∼E

[
sup
f∈F

(
Eq∼E [Lq(f)]−

1

n

n∑
j=1

Lpj (f)

)]
(32)

= Ep1:n∼E

[
sup
f∈F

Eq1:n∼E

[
1

n

n∑
j=1

(
Lqj (f)− Lpj

(f)
)]]

(33)

≤ Ep1:n,q1:n∼E

[
sup
f∈F

1

n

n∑
j=1

(
Lqj (f)− Lpj

(f)
)]

(34)

= Ep1:n,q1:n∼EEσ⃗

[
sup
f∈F

1

n

n∑
j=1

σj

(
Lqj (f)− Lpj (f)

)]
(35)

≤ 2Ep1:n∼EEσ⃗

[
sup
f∈F

1

n

n∑
j=1

σjLpj
(f)

]
(36)

= 2Ep1:n∼EEσ⃗

[
sup
f∈F

1

n

n∑
j=1

σjE(x⃗,y)∼pj
[ℓ(f(x⃗), y)]

]
(37)

≤ 2Ep1:n∼EE(x⃗j ,yj)∼pj
Eσ⃗

[
sup
h∈F

1

n

n∑
j=1

σjℓ(f(x⃗j), yj)

]
(38)

= 2Ep1:n∼EE(x⃗j ,yj)∼pj
[R̂n(F)], (39)

where the first inequality comes from moving the supremum inside the expectation, σ⃗ is a vector
of Rademacher random variables, the second inequality is due to the subadditivity of suprema,
and the final inequality comes from moving the expectation outside of the supremum. Noting that
replacing one of the (x⃗j , yj) pairs in the final equality will result in R̂n(F) changing by at most 1

n ,
McDiarmid’s inequality can be used to say with confidence 1− δ

2 that

2Ep1:n∼EE(x⃗j ,yj)∼pj
[R̂n(F)] ≤ 2R̂n(F) + 2

√
ln(2/δ)
2n

. (40)

Combining Equations 28, 31, and 40 using the union bound completes the proof.

B PROOF OF COROLLARY 1

Proof. We begin with the expected excess risk, which can be bounded from above by

ES [L
E(f̂)− LE(f∗)] = ES [L

E(f̂)− L̂E(f̂)] + ES [L̂
E(f̂)− L̂E(f∗)] + ES [L̂

E(f∗)− LE(f∗)]

(41)

≤ ES [L
E(f̂)− L̂E(f̂)] + ES [L̂

E(f∗)− LE(f∗)] (42)

= ES [L
E(f̂)− L̂E(f̂)] (43)

= ES

[
LE(f̂)− 1

n

n∑
j=1

Lpj
(f̂)

]
+ ES

[
1

n

n∑
j=1

Lpj
(f̂)− L̂E(f̂)

]
, (44)

where the inequality arises because, by definition, the empirical risk of f̂ must be less than or equal
to the empirical risk of the optimal model. The second equality comes from the fact that f∗ is
determined independently of the particular training set that we sample, so ES [L̂

E(f∗)] = LE(f∗).
For the final equality: the first term can be bounded from above (with confidence 1− δ) using the
bound for the expected value of Φ(S) derived in the proof of Theorem 4; and the second term can be
bounded from above (with confidence 1− δ) using the bound for the expected value of Φ(P ) derived
in the proof for Theorem 2. Combining these two high confidence bounds using the union bound
yields the result.
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C PROOF OF THEOREM 3

Proof. The result follows from Lemma 1 and the following bound on the population variance,

Varq[Lq(f)] = Varq1:n

[
1

n

n∑
i=1

Lqi(f)

]
(45)

= Eq1:n∼E

[
1

n

n∑
i=1

L2
qi(f)

]
− Eq1:n∼E

[
1

n

n∑
i=1

Lqi(f)

]2
(46)

≤ Eq1:n∼E

[
1

n

n∑
i=1

L2
qi(f)

]
(47)

≤ LE(f), (48)

where the first inequality is from the positivity of the second term, and the second is because ℓ takes
values in the range [0, 1].

D FURTHER ANALYSIS

D.1 COMPLETE RESULTS FOR DEPENDENCE ON MODEL COMPLEXITY

In Section 4.1 we showed three of six datasets due to space constraint. The full set of resuts across
six datasets are shown here in Figure 4.

D.2 WORST-CASE ANALYSIS

We also consider the worst case scenario in Fig. 5, where the worst out of all held out domains is
reported, in contrast to the average case in Fig. 1. From the results, we can see that: (i) worst case
performance is also governed by model complexity, and (ii) the best complexity value for worst case
metric is very similar to the corresponding complexity for average case, as predicted in Section 3.5.

D.3 ANALYZING DOMAINBED METHODS

In Section 4.2, we analyzed the performance and complexity of ERM in DomainBed as a function
of the a representative hyper-parameter – the number of training iterations. Here we analyze the
performance and complexity of several published neural DG methods implemented in DomainBed,
run repeatedly with random hyper-parameters. From the plot in Figure 6 we can see that: (i) different
hyper-parameters can lead the same model to have different complexity and different accuracy.
(ii) While the decay with respect to overfitting is less pronounced here than for linear models in
Fig. 1, there is a slow decay past the peak complexity, which is around 1 in each dataset. The
reason for the less pronounced decay with higher complexity may be that our measure is an upper
bound on complexity, with effective complexity likely being lower. Ongoing developments in tighter
Rademacher complexity bounds may reveal clearer structure in future. Overall these results provide a
possible explanation for the hyper-parameter sensitivity highlighted in (20) – hyper-parameter choice
influences complexity and hence generalisation via Thm 2; and a possible explanation for differing
performance of state of the art methods – if each method provides a different kind of explicit or
implicit regularisation, then they could each find a different empirical risk and complexity tradeoff.

How Do DG Models Control Complexity? By different modifications to standard ERM, DG
models explicitly or implicitly modify the bias and variance of the function class to be learned. (20)
highlight neural models as being dependent on learning rate, batch size, dropout rate, and weight
decay; with other factors being choice of optimiser and weight initialiser, etc. RSC introduce more
sophisticated dropout-like mechanisms, which would be expected to reduce complexity. Meanwhile
alignment-based methods like CORAL and MMD effectively add auxiliary losses, which will
implicitly affect complexity, but are hard to explicitly link to it. Consistency based methods like IRM
and VRex penalise loss variance on the training data, which also tends to reduce the generalisation gap
in the single task case (27), and may have links to the worst-case analysis in Section 3.4 that depends
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Figure 4: Linear SVM (Top two rows) and Random Forest (Bottom two rows) performance on
DomainBed benchmark datasets. Optimal tuning for performance on novel target domains (red)
always requires stronger regularisation (lower C or D) than for performance on seen domains (blue).

upon the population variance. The specific setting of all the corresponding hyperparameters (e.g.,
regulariser strength, dropout rates) influence final model complexity, which influences performance.

E DETAILED RESULTS

Detailed results on each DG benchmark In Tab. 1 we reported results of our linear model
competitors on DomainBed summarised over choice of held out domain. In Tabs. 2-7, we report the
detailed results of accuracy and choice of C paramater for each held out domain.

Cross Validation 0 15 30 45 60 75 Ave.

Raw pixel

Domain Wise Acc 0.577 0.785 0.799 0.783 0.769 0.586 0.716 (0.096)
C 256.0 128.0 128.0 128.0 64.0 256.0

Instance Wise Acc 0.582 0.774 0.788 0.783 0.765 0.579 0.712 (0.093)
C 1024.0 512.0 1024.0 1024.0 1024.0 1024.0

Table 2: Accuracy and selected ’C’ on Rotated-MNIST, using LinearSVC.
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Figure 5: Worst case linear SVM (Top: Row 1-2) and Random Forest (Bottom: Row 3-4) performance
on DomainBed benchmark.

Cross Validation A C P S Ave.

DINO ViT-B8

Domain Wise Acc 0.877 0.676 0.971 0.446 0.743 (0.201)
C 0.25 0.125 0.25 0.125

Instance Wise Acc 0.866 0.620 0.891 0.445 0.706 (0.184)
C 4.0 8.0 8.0 2.0

ResNet-50

Domain Wise Acc 0.74 0.532 0.975 0.477 0.681 (0.196)
C 8.00 8.00 32.00 8.00

Instance Wise Acc 0.698 0.550 0.969 0.458 0.669 (0.193)
C 256.00 128.00 256.00 64.00

Table 3: Accuracy and selected ’C’ on PACS, using LinearSVC.
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Figure 6: Leave-one-domain out cross-validation performance of neural networks as a function
of their measured model complexity after training on DomainBed (DB). The overall results are
consistent with a standard bias-variance trade-off (cf. Fig 1 for linear models), with peak performance
in the middle of the complexity range. Various neural DG algorithms evaluated by DomainBed (Each
method is trained with five different random hyperparameters). Horizontal error bars correspond to
the standard deviation of the model complexity measured for each cross-validation iteration.

Cross Validation C L S V Ave.

DINO ViT-B8

Domain Wise Acc 0.972 0.648 0.787 0.811 0.804 (0.115)
C 0.5 0.5 0.125 0.5

Instance Wise Acc 0.977 0.648 0.785 0.811 0.805 (0.117)
C 0.25 0.5 0.5 0.5

ResNet-50

Domain Wise Acc 0.986 0.598 0.730 0.755 0.767 (0.140)
C 16.00 8.00 8.00 1.00

Instance Wise Acc .986 0.598 0.730 0.792 0.776 (0.140)
C 16.00 8.00 8.00 8.00

Table 4: Accuracy and selected ’C’ on VLCS, using LinearSVC.

Cross Validation A C P R Ave.

DINO ViT-B8

Domain Wise Acc 0.748 0.512 0.832 0.850 0.736 (0.135)
C 1.0 1.0 1.0 0.5

Instance Wise Acc 0.730 0.514 0.833 0.846 0.731 (0.133)
C 4.0 2.0 2.0 4.0

ResNet-50

Domain Wise Acc 0.681 0.521 0.784 0.813 0.700 (0.114)
C 8.00 8.00 4.00 8.00

Instance Wise Acc 0.652 0.513 0.794 0.803 0.691 (0.119)
C 64.00 32.00 16.00 64.0

Table 5: Accuracy and selected ’C’ on OfficeHome, using LinearSVC.

Cross Validation aclass escape hilux i3 lexus tesla tiguan tucson x5 zoe Ave.

DINO ViT-B8

Domain Wise Acc 0.979 0.980 0.967 0.997 0.959 0.981 0.942 0.986 0.975 0.954 0.972 (0.016)
C 1.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 2.0

Instance Wise Acc 0.922 0.991 0.910 0.998 0.902 0.960 0.937 0.983 0.976 0.955 0.953 (0.032)
C 128.0 64.0 128.0 64.0 256.0 128.0 256.0 128.0 128.0 128.0

ResNet-50

Domain Wise Acc 0.963 0.941 0.961 0.926 0.942 0.940 0.947 0.951 0.913 0.847 0.933 (0.032)
C 16.00 64.00 128.00 128.00 32.00 16.00 256.00 128.00 64.00 64.00

Instance Wise Acc 0.968 0.928 0.959 0.877 0.954 0.931 0.954 0.958 0.827 0.913 0.927 (0.042)
C 1024.00 1024.00 1024.00 1024.00 1024.00 1024.00 1024.00 1024.00 1024.00 1024.00

Table 6: Accuracy and selected ’C’ on SVIRO, using LinearSVC.
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Cross Validation L100 L38 L43 L46 Ave.

DINO ViT-B8

Domain Wise Acc 0.444 0.457 0.516 0.399 0.454 (0.041)
C 0.25 1.0 1.0 2.0

Instance Wise Acc 0.472 0.391 0.366 0.324 0.388 (0.054)
C 256.0 128.0 256.0 256.0

ResNet-50

Domain Wise Acc 0.305 0.145 0.338 0.344 0.283 (0.081)
C 4.00 2.00 16.00 32.00

Instance Wise Acc 0.211 0.336 0.271 0.257 0.269 (0.045)
C 1024.00 1024.00 1024.00 1024.00

Table 7: Accuracy and selected ’C’ on Terra Incognita, using LinearSVC.
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