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Abstract

We take two key steps in automating the open-ended discovery of new mathe-
matical theories, a grand challenge in artificial intelligence. First, we introduce
FERMAT, a reinforcement learning (RL) environment that models concept discov-
ery and theorem-proving using a set of symbolic actions, opening up a range of
RL problems relevant to theory discovery. Second, we explore a specific prob-
lem through FERMAT: automatically scoring the interestingness of mathematical
objects. We investigate evolutionary algorithms for synthesizing nontrivial in-
terestingness measures. In particular, we introduce an LLM-based evolutionary
algorithm that features function abstraction, leading to notable improvements in dis-
covering elementary number theory and finite fields over hard-coded baselines. We
open-source the FERMAT environment at|github.com/trishullab/Fermat,

1 Introduction

Al researchers have dreamed of building an “automated mathematician” since the 1950s [29]. Such a
system would allow human mathematicians to harness the vast processing capacity of computers to
discover entirely new areas of mathematics [42]]. An emerging body of work seeks to realize this
dream using the tools of modern machine learning. In particular, the AI community has developed a
wide range of systems that can prove formal theorems [1347] and search for programs discovering
mathematical constructions [31}40].

However, a key limitation of much of this research is that it is focused on solving predefined problems.
Mathematicians develop theories through an open-ended process of defining new concepts, studying
their properties, making conjectures, and proving or finding counterexamples. While some work [335]
has offered systems that construct new problems in addition to solving them, there is currently no
framework that supports the full theory-formation process, including, for example, the synthesis of
new definitions in addition to problems.

A central challenge in this open-ended process is guiding the search. The space of possible definitions
and conjectures is combinatorially vast, and most paths lead to trivial or dull mathematics. Human
mathematicians navigate this space using a nuanced, intuitive sense of “interestingness" — a judgment
of scientific potential that directs their focus. An explicit formulation of this concept has long been
debated, with different perspectives valuing properties such as the surprising connection between
disparate fields [36l], depth and generality [22], or its unexpected real-world applicability [49].

In this paper, we take two key steps towards addressing these challenges. First, we provide a
reinforcement learning (RL) framework, called FERMAT (Figure|I)), which can be used to design and
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evaluate new algorithms for automatic theory formation. The system generalizes the early symbolic
computing-prover system HR [8]], which used a system of production rules to generate new concepts
and conjectures, either symbolically or from explicit examples, and proof mechanisms for resolving
conjectures. We model these symbolic steps as the actions of a Markov Decision Process (MDP),
and the mathematical knowledge available at a given point during exploration as an MDP state. This
formulation opens up numerous RL problems relevant to theory formation.

Our second contribution is a solution to a particular algorithmic problem in FERMAT: learning an
interestingness heuristic for selecting mathematical concepts to develop. To form a theory, one
must navigate a combinatorial search space of mathematical objects, most objects in which are not
meaningful or worthy of study. Prior works were attentive to this problem, but required hard-coded
measures to formalize the concept of interestingness [8, 26]. In contrast, we frame the discovery of
this heuristic as a learning problem. We specifically learn interestingness measures as programmatic
representations, as this makes them interpretable and allows us to analyze what may contribute to
fruitful discovery. To this end, we develop an LLM-driven method, called EvoAbstract, for learning
the intrinsic value of mathematical objects in the context of the current theory. EvoAbstract is an
evolutionary program synthesis algorithm that extends the FunSearch [40] approach with a form of
abstraction learning, allowing for interpretable abstractions to be discovered during function search.
We experimentally show that EvoAbstract can automatically synthesize interestingness measures
that lead to significant improvements in discovering concepts in elementary number theory and finite
fields over hard-coded baselines.

2 Problem Formulation and Motivation

2.1 Mathematical Theory Formation as a Markov Decision Process (MDP)

To rigorously study automated mathematical State Actions
theory formation using reinforcement learn- Theo T
ing, we first formalize the process as an MDP y Policy . Compose |
(S, A,T,R). This framework allows us to [ Definitions | . | Specialize |
model the sequential nature of mathematical ‘é _;‘ 7-‘- ~— [ Quantify |
discovery, where an agent iteratively expands | COmjEEnTes ) i

Y, g : Yy exp — b | Prove |
a body of knowledge by making choices about . Theorems ;
definitions, conjectures, and proof attempts. Let %E;‘jﬁ;j 7|

M denote the universe of all well-formed math-
ematical entities. The components of this MDP  Figure 1: A high-level description of FERMAT, our
are defined as follows: environment for mathematical theory formation.

« Mathematical State Space (S): A state S € At any given time, the current theory (stgte) is rep-
S represents the current state of mathematical resented as a knowledge graph consisting of the

knowledge, represented as a directed knowledge mathematical definitions, conjectures, and theo-
graph G _ (V, E), where: rems discovered so far. At each step, the policy

7 inputs the current state and selects an action to
* V C M is the set of mathematical enti- apply, updating the theory with additional infor-
ties, categorized into definitions D, conjec- mation. The action space allows the production of
tures C, and theorems .7 . new definitions, conjectures, and proofs of theo-
» I is the set of dependency edges, where rems.
an edge (u,v) exists if entity v was used
as direct input for the action that generated entity v, and is labeled with that action.

* Action Space (4): An action a € A represents an operation that modifies the knowledge graph by
introducing a new entity or acting upon existing ones. Actions fall into the following categories:

* Definition Production Actions (A4 ): Introduces a new definition, adding a node d’ to G and
connecting it to relevant entities via a function dge : S X Ager — S.

* Conjecture Production Actions (A, ;): Formulates a new conjecture ¢’ based on existing
entities and relationships, governed by a function dcon; : S X Aconj — S.

* Proof Actions (Ap,cof = {prove, disprove}): Verifies or refutes a conjecture ¢ € C by invoking
a backend theorem prover, updating its status to theorem or disproven.



* Transition Function (7): The transition function 7 : § x A x § — [0, 1] models how applying
an action updates the knowledge graph. 7 (S, a, S’) denotes the probability of transitioning from
state S to S’ after applying action a. In particular,

* Adding a new definition or conjecture c extends V' and introduces edges emanating from the
entities to which the production rule was applied: V' =V U{c}, E'=EU{(v,¢) | v € Vinputs}-

* A successful prove action converts a conjecture c into a theorem and attaches a proof attribute:
C'=C\{c}, 7' = 7 U {t} with proof structure 7;. A successful disprove action refutes the
conjecture ¢, marking it as false and attaching a counterexample as a witness, where possible.

* Reward Function: We design an extrinsic reward function R¢ : S x A x S — R to incentivize the
discovery of a pre-defined set £ of well-known mathematical entities. Let the application of action a
to state S produce a state S’ with a new entity my,, € M. The reward is defined as:

1 ifmpyew €
0 otherwise

RS(Sa a, Sl) = {
A reward is thus granted only when the agent’s action results in the discovery of a specific ground-
truth concept. A policy, denoted by 7(al|s), defines a strategy by specifying the probability of taking
action a in a given state s. A rollout refers to a single episode of interaction used to evaluate this
policy by generating a trajectory, T = (So, ag,r1, 51, a1,72,...,ar—_1,rr,S7). This sequence is
formed by starting in Sy and repeatedly sampling an action a; ~ 7 (-|S;), after which the environment
dictates the next state Sy11 ~ T (St, at, -) and the corresponding reward 7,11 = Re (S, at, Si41)-

The intrinsic reward Rz is a function Rz : S x A x S — R that serves as a mechanism for the
agent/policy to learn effectively in a sparse extrinsic reward setting. Such internal rewards can be
critical for driving exploration and acquisition of general knowledge about the environment and
discovery of useful subgoals, especially when external feedback is infrequent or absent, by promoting
behaviors like curiosity or novelty-seeking [1} 13} 132,133} 141} 43].

2.2 Interestingness as Intrinsic Reward

Humans use intuition and are intrinsically motivated to define interesting mathematical goals. Cap-
turing this notion for an autonomous agent is a key challenge. We approach this by modeling
interestingness as a learnable intrinsic reward, guiding a policy to discover meaningful theory. In this
work, we wish to discover such interestingness measures autonomously, and view the synthesis of an
effective interestingness measure as a problem of intrinsic reward optimization.

Formally, we define the interestingness measure to be a function Z : M x § — R, where Z(m, S)
provides an estimate of the value of a mathematical entity m in the context of the current theory S.
We connect this entity-scoring function to our RL framework by defining the intrinsic reward Rz for
a state transition as the interestingness score of the newly generated entity. If taking action a in state
S produces a new entity myey in state S’, the intrinsic reward is Rz (S, a, S") = Z(myew, S').

In this work, we search over the class of interestingness measures that can be represented as program-
matic functions. The policy, 7z, is built using the measure Z according to a fixed template (detailed
in Section 5), and is designed to leverage the function’s scores to guide its selection of actions. While
the policy 7z acts based on this local, short-term measure, our learning problem is to discover an
optimal function Z* that maximizes the cumulative long-term extrinsic reward:

I* = arg max Errs zt: Y Re (S, ar)

where v € [0, 1] represents the discount factor. In Section E], we detail our evolutionary algorithm
designed towards discovering an optimal Z.

3 FERMAT: A Framework for Automated Theory Formation

In this section, we discuss FERMAT, our framework for automated mathematical theory formation
built atop our MDP formulation of the theory discovery.



3.1 Mathematical Entities

The FERMAT framework, implemented in Python, provides the environment for automated theory
formation. It is built upon a structured representation of mathematical entities within an evolving
knowledge graph. At its core is a formal domain specific language (DSL) to define these entities.

Each mathematical entity m within the knowledge graph G = (V| E) (where m € V') encapsulates
its meaning through several key components:

(1) Symbolic Definition (m,,,). This holds the formal representation of the entity m expressed in
FERMAT’s DSL. It precisely defines the entity’s logical structure. For an entity m = is_prime, the
symbolic definition might be the following expressed programmatically,

Mgym = AN (n>1)/\Vk€N.<3q€N.n:qu = (k=1V kzn))

divides(k,n)
(2) Computational Interpretation (1m,;). This is an executable Python function that provides an
efficient, concrete evaluation of the entity’s symbolic definition 1m,,,. Let I be the space of potential
input instances for m. The interpretation is a mapping mcomyp : I — {True, False, Unknown} where,
for an instance ¢ € I, the function returns:

* True (resp. False) if ¢ has been verified computationally (resp. not) to satisfy 1mym.

¢ Unknown when the evaluation of ¢ could not be determined computationally within resource
limits (e.g. due to universal quantification over an infinite set).

As an example, for an entity m = square, its computational interpretation could be given by
Meomp = lambda a, b: b == ax*a.

(3) Cached Instances X' (m) = (X' (m), X~ (m)). These components store explicit input instances
for the entity m, where X (m) = {i € I | m(i) = True} stores examples, and X~ (m) = {i € I |
m(i) = False} stores nonexamples. These instances ground the entity’s semantics and can be used
for various purposes. For m = divides:

Xt (m) = {(2,4), (1,3),(2,2),(3,6),...}, X~ (m) = {(2,3),(3,5),(4,1),(5,4),...}

We write m;, m, for input and output arity of m, and size(m) = m; + m,, for size of the examples.

The construction history C(m) = {a1, ..., ay} of an entity m is the ordered list of actions applied to
produce it. Definitions (m € D) are further classified as either predicates or functions. This informs
which production rules in the action space A are applicable.

3.2 Production Rules

Following HR [8], FERMAT comes equipped with a set of production rules, consisting of composable
actions for constructing new definitions and conjectures from prior ones. These rules define all
construction actions in Age ¢, Acon; C A to produce new entities. We divide the production rules
by whether they produce definitions or conjectures. We include a complete description of all the
production rules present in FERMAT in Appendix [A.T] and give two condensed examples:

Definition Production Rules.

(1) Exists: Let P(x1,...xy,) be a predicate and I := {iy, ..., i} be a list of indices to existentially
quantify over, and let J := {j1, ..., jn—k} be the remaining indices in increasing order. Then the
production rule outputs a new predicate Q as follows,

eXistsPI—)‘ OQ(Xjyy v r Xy, ) = Xy, oo, X5, st P(xq,...,Xy) ‘

Example. Consider the predicate P(z,y) defined by P(x,y) : <= Jz.,y = x X z, which expresses
that  divides y. This can be constructed by applying the Exists production rule to the predicate
product(z, 2z, y), which holds when y = = x z, with the index list I = {1} corresponding to the
variable z to be existentially quantified. Formally,

exists product I — ‘ Q(z,y) := Fz s.t. product(z, z, y) ‘




(2) Specialize: Given an entity, this rule outputs a new definition by specializing a variable to a fixed
value. Let A(xq,...,X,) be a function (resp. predicate), and let ¢ be the index to specialize, and v
be the value to substitute. Then the rule outputs a function (resp. predicate) B as follows,

specialize Ai v %‘ B(X1,. oy Xie1, X1y, Xpn) = A(X1, ooy Xim1, U, X1, - -+, X)) ‘

FERMAT contains 7 other definition production rules: (i) Compose, which composes definitions, (ii)
Maplterate, which successively applies an iterator function, (iii) ForAll, which universally quantifies
over variables in definitions, (iv) Match, which asserts equality of chosen variables in definitions, (v)
Negate, which outputs the negation of a concept, (vi) Size, which outputs a definition of the cardinality
of the set of inputs satisfying a condition, and (vii) Constant, which creates constants from examples.

Conjecture Production Rules. FERMAT contains 4 production rules designed to construct conjec-
tures. These are: (i) Implication, which asserts that one definition implies another over all inputs, (ii)
Equivalence, which asserts that two definitions are equivalent, (iii) Nonexistence, which asserts that
no examples of a definition exist, (iv) Exclusivity, which asserts that the only examples of a given
definition belong to a given finite set.

3.3 Prover

To complete the action space, we require the ability to validate conjectures generated using FERMAT’s
DSL. Critically, the generic DSL supports nested definitions, facilitating modular construction of
definitions and conjectures. These conjectures, which may involve previously defined concepts, are
automatically constructed by our framework and passed to a backend theorem prover for verification.
We instantiate this backend using the Z3 Theorem Prover [[11], and provide it with SMT-LIB input
generated from our DSL via a custom-designed compiler. We choose Z3 as it is a powerful off-the-
shelf black-box prover, the use of which enables us isolate the problem of synthesizing definitions
and conjectures. We include examples of the Z3 support available through our DSL, and compilation
down to SMT-LIB format in Appendix[A.3]

4 Learning Interestingness

# New metric: influence score

In this section, we discuss our ap-
proach for automatically learn-
ing an interestingness measure
Z(m,S) that guides the agent
in discovering human mathe-
matical knowledge. Following
HR [8]], which developed simple
programmatic representations of
measures over features of the
state, we search in the space
of Python programs that imple-
ment interestingness measures.
To this end, we introduce EvoAb-
stract (Figure E]), an evolution-
ary search algorithm designed to
optimize an objective function
given a simple numerical evalu-
ator function.

LLM-Driven Evolutionary
Search. (EVOLUTIONSTEP).
At its core, EvoAbstract is an
evolutionary algorithm, aimed
at synthesizing programs itera-
tively. Each population consists
of candidate interestingness
programs. The generation of

influence_score = (ancestors_count +
descendants_count) / (1 + num_concepts +
num_conjectures)
1. Evolution
B — score = (0.30 * influence_score + 0.35 *
def calculate_interestingness(): depth_score + .28 * age_score + B.15 *
# Return weighted score arity_score)
score = (0.35 * depth_score + B.35
* age_score + B.38 * arity_score)

def calculate_influence_score(A:1, Az):
influence_score = (Mi*ancestors_count
R + Az*descendants_count) /
2. Abstraction (1 + num_concepts + num_conjectures)

return score

POpulﬁtiOnS return influence_score

3. Policy Evaluation
Theory Formation Environment

— E
(= ;

R
- 7T FERMAT

Figure 2: Overview of EvoAbstract, which aims to discover an op-
timal interestingness measure for mathematical theory formation.
It operates through three phases: (1) Evolution, where popula-
tions of candidate programs are generated and refined through
LLM-driven mutations; (2) Abstraction, where high-performing
programs are analyzed and reusable subroutines are extracted; and
(3) Policy Evaluation, where the resulting programs are evaluated
within the theory formation environment using FERMAT, produc-
ing feedback that guides subsequent evolutionary steps.



new programs is primarily driven by an LLM, L., conditioned on a prompt instructing it to
perform evolution. In each evolutionary step, £, takes the program template 7" and a selection
of high-performing parent programs from a population as input, and synthesizes new candidate
solutions (fyew)- Lyar thus acts as an operator for exploration and exploitation, intended to perform
complex mutations informed by successful prior programs. We employ an island model with &
parallel populations (P;) to maintain diversity.

Abstraction Learning. (ABSTRACTIONSTEP). Our central innovation in EvoAbstract is its ab-
straction learning mechanism. This component is designed to identify and reuse valuable subroutines
from evolved programs. This system comprises two main parts:

* Discovering and Utilizing Abstractions: Periodically EvoAbstract enters an abstraction phase,
where an LLM L, analyzes a set of high-scoring programs (S}) sampled from each population.
Laps 1s tasked with identifying abstractions — valuable, reusable subroutines with defined
signatures and implementations — within these successful programs and proposing them as new,
generalized functions (A,,¢.,). These proposed abstractions are then filtered for criteria such as
syntactic validity and uniqueness before being added to the island’s Lib;.

* The Abstraction Library (Lib;): Each island ¢ maintains a dynamic Abstraction Library, Lib;.
This library serves as a repository for functional abstractions that are identified as potentially
useful during the search. Initially, these libraries are empty. After each abstraction phase, the
generated abstractions are added to their respective libraries Lib;. The evolutionary LLM, L,
is conditioned not only on the template 7" and sampled programs but, crucially, also given
access to the current set of abstractions in Lib; when generating new candidate programs. This
encourages L., to compose solutions by utilizing these validated sub-components, thereby
promoting modularity, facilitating the construction of more complex solutions, and guiding the
search towards more promising regions of the program space.

Policy Evaluation. (POLICYEVALUATIONSTEP). In each iteration, candidate programs produced
through evolution are assessed via episodic rollouts within the theory-formation environment. During
a rollout, a policy instantiated by an interestingness program interacts with FERMAT to guide
the discovery process over multiple steps. The cumulative reward obtained across these rollouts
determines each program’s fitness, providing the signal that drives subsequent evolutionary and
abstraction phases.

The overall EvoAbstract algorithm, detailed in Algorithm[I] (Appendix), thus proceeds in generations.
Within each generation, the evolutionary search driven by £, refines the populations on each island.
Periodically, the abstraction phase mediated by L, enriches the abstraction libraries, which in turn
provide more powerful building blocks for subsequent evolutionary steps. This interplay between
LLM-driven evolution and LLM-driven abstraction learning allows EvoAbstract to progressively
discover and refine programmatic subroutines.

S Experiments

In this section, we present empirical results evaluating the effectiveness of our approach. We aim to
answer key questions about the ability of EvoAbstract to learn effective interestingness measures and
the capability of FERMAT, guided by these measures, to generate meaningful mathematical theories.

Environment Configuration. FERMAT centrally supports exploration in elementary number theory
and finite fields, as these areas are extremely rich while easily represented. The number theory
environment is supported by the Z3 Theorem Prover, while finite field reasoning is handled by a
custom prover implemented in Python. For number theory, the ground truth benchmark £ used for
the extrinsic reward function R comprises 180 concepts, conjectures, and theorems sourced from an
introductory number theory textbook [2], constituting a set of interesting entities. We similarly curated
67 such ground truth entities over Fy7, the primary finite-field setting in our experiments. These
concepts span a range of theoretical sophistication, from the reflexive properties to the Goldbach
conjecture. A detailed description of £ along with subsets of the ground truth knowledge graph is
detailed in Appendix For our experiments, we use three different starting configurations: (i)
succ_zero_eq — The definitions of zero, successor function, and the equality predicate with arity
2; (il) arithmetic_base — Containing zero, one, two, addition, multiplication, divides, <, and the
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Figure 3: A plot of the best program found per iteration for FunSearch and EvoAbstract, shown
for the three different starting knowledge graphs, averaged over four runs. As can be seen, the
EvoAbstract and FunSearch methods dominate performance universally across all baselines. On
arithmetic_base, EvoAbstract slightly outperforms FunSearch, while on succ_zero_eq and
f£f_27 EvoAbstract optimizes the interestingness measures early on, but its performance plateaus
sooner than FunSearch, which continues to improve.

equality predicate; (iii) £f_27 — Defining zero, one, and generators of Fo7. We include the policy
template in Algorithm 2] (Appendix).

Evaluation Metrics. To evaluate an interestingness measure, we instantiate the scoring function as
extrinsic reward obtained through episodic rollouts of a policy depending on the measure through
FERMAT. We run 64 episodes with a timeout of 60 second{] and average the reward. This evaluation
metric measures the ability of the given policy to reconstruct the curriculum of human-made ground
truth mathematical entities £. We also provide qualitative analysis of the learned interestingness
measures and the content of the generated theories.

Baselines. We compare EvoAbstract against the following baseline methods for generating or
selecting interestingness measures:

* Random Policy: Selects applicable actions uniformly at random.

* HR Measures: We re-implement a number of interestingness measures manually defined in HR
[8]], which operate on the state .S and the newly generated entity m (which can be extracted from
the action a applied and the new state S”). In particular, we include the following measures:

1. Novelty. Computes the fraction of entities with the same example classification:
Mnovelty(m) = #{m/ € S|X(m) = X(m/)}/#s
2. Parsimony. Rewards a concept with fewer inputs: Mparsimony (M) = size(m) ™'
3. Productivity. Measures how many subsequent environment steps use that entity in a produc-
tion rule: Mproduciivity (M) = #{m' € S|m is in an action € C(m/)}/#S.
4. Applicability.  Computes the fraction of all known instances that are examples:
Mapplicability(m) = X+(m)/(x+ (m) + A (m))
5. Comprehensibility. Rewards a concept which is more comprehensible, measured by the
inverse of the number of construction steps: Mcomprehensibitity (712) = F#C (m)~ L.
We evaluate these measures individually and when combined in an equally weighted sum. Note
that all of these measures are easily representable as Python programs.
* One-shot LLM. Instead of evolving a program, we sample 64 programs from GPT-40 and
evaluate their performance through episodic roll-outs, averaging the result.
» FunSearch: An ablation study where EvoAbstract is missing the abstraction component, which
is equivalent to the FunSearch [40] algorithm without island crossover, ran at a scale afforded by
our budget. We use the same hyperparameters as in our EvoAbstract evaluation.

EvoAbstract configuration. We configure EvoAbstract to employ k& = 4 islands and runs over
Ngyen = 64 iterations, with each interestingness function being evaluated in 16 i.i.d. rollouts. We

“We note that we run episodes for a duration rather than a step count due to high variance in the time taken
for Z3 to resolve conjectures.



run every configuration of EvoAbstract & FunSearch 4 times and average the results. We instantiate
both the evolution and abstraction samplers L, Lqps to use GPT-40-mini, and sample 2 programs
per iteration. We perform the abstraction phase every 8§ iterations, sampling at most two abstractions
perisland. £, Lqps are conditioned through prompting: a system-level instruction on generating
interestingness measures is attached, as well as a description of a set of Python functions which return
features of the state’s knowledge graph representation as well as individual entities. These functions
represent the base features for the interestingness measures to manipulate. We provide a more
detailed list of hyperparameters, the full prompts, and our computational resources for experiments in

Appendix

5.1 Experimental Results
We address the following research questions:
RQ1: Can EvoAbstract effectively learn interestingness measures that outperform baseline strate-
gies in discovering ground-truth mathematical entities?
RQ2: What do the learned interestingness measures look like? Do they capture non-trivial patterns?

RQ3: Can we rediscover well-known concepts in elementary number theory and finite fields?

Performance Comparison (RQ1). We compare the cumulative extrinsic reward of policies guided
by measures from EvoAbstract against baselines, with results summarized in Table 4] As expected,
starting with a larger initial theory (arithmetic_base) generally leads to greater rewards.

Among static HR measures,

the random and novelty mea-  Measure succ_zero_eq aritg-i eetic ££_27
sures perform worst, exhibiting -
roughly equivalent scores. Par- Random 4.68 (2.25) 4.44 (2.23) 2.33 (1.20)
simony’s inefficacy likely stems Nov?lty 4.50 (2.39) 5.14 (2.83) 2.26 (1.47)
from its limited discriminative iarsimog.yl,t i-g‘s‘ 832; ;‘3? ggg; %-gg 823;
. t ted defini- pplicability . . . . . .
gggsefnj;lglofse vf?gefl?seoffeeﬁg‘ Comprehensibility  8.23 (2.84) 8.55(3.22)  5.38(1.89)
. yolve Tew 1nputs, & Bqual Weight 6.57 (2.45) 593(2.82)  3.93(2.82)
insufficient signal. Comprehen-  Gpy 4, 526 (1.11) 6.46 (198)  2.36 (0.40)
sibility is the strongest HR mea-  Gpr.40 (best) 8.21 (4.09) 9.45(3.44)  3.50(1.87)
sure as it rewards simplicity of  FynSearch 10.23 (1.70) 22.41(2.68) 11.34 (4.09)
entities. However, it alone can-  EvoAbstract 9.62 (2.97) 23.98 (10.50)  9.82 (4.83)

not scale to more complex enti-

ties due to the combinatorial ex-
pansion of the action space.

Interestingly, the GPT-40 base-
line performs only slighter better
than even the random baseline

Figure 4: Performance comparison of EvoAbstract against vari-
ous baseline measures on three starting theories: succ_zero_eq,
arithmetic_base, and £f_27. Each baseline receives 64 theory-
formation evaluations. For FunSearch and EvoAbstract, we in-
clude the average score (standard deviation) of the best found

(sce Figure [[4), and is outper program over four independent runs.

formed by just the comprehensibility measure. Despite generating more complex measures, its
emphasis on rewarding construction depth and connectivity often assigns disproportionately high
interestingness to initial, but irrelevant, entities. This leads to a cascading effect away from the ground
truth set £, explaining its suboptimal performance.

FunSearch [40] & EvoAbstract demonstrate the value of evolutionary search. In contrast to GPT-4o,
where few generated measures surpassed the random baseline, evolutionary program synthesis yields
significantly more performant measures, with the best measure discovered averaging (10.23, 22.41,
11.34) ground-truth entities per episodic roll-out on (succ_zero_eq, arithmetic_base, ff_27).
Incorporating the abstraction phase in EvoAbstract introduces slight gains on arithmetic_base,
yielding measures that discover an average of 23.98 ground-truth entities, but with higher variance.
Notably, on £f_27 and succ_zero_eq, EvoAbstract finds better solutions quicker, but the progress
slows down and yields suboptimal performance at the end of the runs, on average. The abstractions
are helpful in optimizing on known patterns, but produces an abstraction “lock-in” later on where
it is difficult for the LLM to produce diverse samples that continue to increase the reward. Beyond
improved discovery, this phase also develops interpretable modular components. Figure [3]illustrates
the performance trajectory of EvoAbstract & FunSearch compared to the baselines.



Analysis of Learned Interestingness Measures (RQ2). We also conduct a qualitative analysis of
the measures that EvoAbstract synthesizes. Figures presents an example of the best-performing
program discovered by EvoAbstract on the succ_zero_eq task. A key characteristic of this program
is its utilization of numerous abstractions and subroutines that were identified and refined during
earlier abstraction phases. These abstractions are detailed in Figures[T6] [T8] which we now analyze.

First, EvoAbstract rediscovers and often refines variants of the baseline HR measures. For instance, it
generates applicability-like measures, such as compute_example_balance, which calculates the ra-
tio of examples to nonexamples. Notably, EvoAbstract can refine previous abstractions, exemplified by
calculate_uniqueness_score_v2, which generalizes prior uniqueness abstractions. Furthermore,
measures distinct from the HR baselines are found, such as calculate_rule_diversity_score,
which weighs the diversity of rules in the construction history. Additionally, it produces abstractions
which generalize known construction patterns, as seen from adjust_score_by_node_type.

A comparison with the best program generated by FunSearch (detailed in Figure[T9) is instructive.
While the FunSearch program utilizes similar components to those found by EvoAbstract, they are
fewer in number. FunSearch tends to integrate these functionalities more directly, resulting in a less
modular structure. The distinct modularity evident in Figure [15|1lends itself to quicker readability of
the high-level operation of the interestingness function.

Analysis of Generated Theories (RQ3). EvoAbstract & FunSearch discover a notable portion of
fundamental math concepts in our ground truth benchmark. When starting from the succ_zero_eq
base, the agent successfully develops the notion of addition, multiplication, divisibility, and the tau
function. Furthermore, it makes progress towards conjecturing fundamental properties of divisibil-
ity, such as the reflexivity of divisibility. When starting from arithmetic_base, the agent goes
further — discovering the concepts of powers and primality along with more complex composi-
tions of functions. In ££_27, the evolutionary methods are capable of discovering concepts such as
ff_sum_three_times, but cannot find the conjecture stating the characteristic of char(Fa7) = 3,
which requires further rule applications to discover. Relevant samples of the evolved knowledge
graphs are shown in Figure 20]

We note that the best-performing interestingness measures we find can still be suboptimal, upweight-
ing entities are not particularly interesting to humans. For instance, we find that equals, which
important for initial exploration, is assigned overly high interestingness, leading to an excess of
redundant or vacuous statements during theory formation. While the agent generated conjectures, it
had difficulty discovering many ground truth conjectures, which is likely due to the limited correct
ways to correctly specify a conjecture compared to a definition.

5.2 Discussion

We find that there are several avenues for further exploration towards discovering richer theories.
Firstly, the policy template we employ, designed to manage combinatorial growth, exposes only a
subset of complete action space at any step. This choice, while pragmatic, limits scalability to more
complex mathematical objects where a lengthy list of actions must be applied in a specific order.
Secondly, we observe that there are “bottleneck” entities, such as primality, which must be discovered
in order to continue the development of an interesting theory (see Figure [§). In our experiments,
when primality is discovered, the resultant knowledge graph is prohibitively large so as to obstruct
valuable actions involving it. Finally, FERMAT does not yet exploit symmetries in entities leading to
representational redundancy. For instance, while exhaustively checking for equivalences between
definitions would reduce this redundancy, we found the approach to be computationally intractable
with Z3 as theories grow. Further experimentation with FunSearch and EvoAbstract with heavy
compute budgets will help to investigate the potential for significant discovery with evolutionary
methods in these domains. Addressing these points will be crucial for advancing FERMAT’s ability to
construct deeper and more sophisticated mathematical theories.

6 Related Works

Automated Theory Formation. AM (1977) [26] 27] was a theory formation program which relied
on a curated set of 243 heuristics to discover concepts and prove conjectures in elementary set
theory and number theory. Similarly, the Graph Theorist (1987) [17]] performed conjecturing &



proving using an input set of definitions. HR (2000) [8] introduces a small set of production rules
and manually curated heuristics to perform mathematical theory formation. Theorema (2006) [6]]
performed human-in-the-loop theory exploration, leveraging computational tools in Mathematica
and with an emphasis on producing human-readable proofs. Theory formation is less explored
in the modern era. Notably, Minimo [33]] trains a neural model to play a game of conjecture and
proof, but remains restricted to the initial axiomatic definitions. QuickSpec [44] is a symbolic theory
exploration tool that interleaves term generation and random testing for conjecturing. As a final note,
automated theory formation can be studied for domains other than mathematics — BACON (1983)
[25] represents a program which aimed to rediscover empirical laws in chemistry.

Conjecturing. Many works have focused on the particular problem of synthesizing plausible
conjectures. The PSLQ algorithm [19] was developed for identifying integer relations between
mathematical constants. Graffiti & TxGraffiti [18} [10] produced conjectures in graph theory using
several heuristics, given a large set of graphs and graph invariants. The Ramanujan Machine [4]
utilized several algorithms to conjecture relations between fundamental constants such as 7 and {(3).
Davies et al. [9]] uses machine learning techniques to identify patterns that lead to conjectures.

Theorem-Proving. The most significant attention in modern research has been applied towards the
problem of theorem-proving. Simon & Newell’s Logic Theorist and Hao Wang’s Program II [29 48],
were early explorations into a theorem-proving system. Recently, neural systems [15} 24} 38} 45} 137]
invoking interactive theorem provers like Lean [[12]], Isabelle [34], and Coq [46] have seen great
interest. AlphaProof [[13]] and AlphaGeometry [47] together attained a silver medal at the International
Mathematical Olympiad. Another interesting angle for resolving conjectures comes from use of
SAT & SMT solvers — notably, yielding a resolution to the Boolean Pythagorean Triples problem
[23]]. Notably, the Four Colour Theorem was proved through computer-assisted case-checking [39].
Similarly, [7] used a combination of neural and symbolic techniques to disprove conjectures.

Program Synthesis & RL. FunSearch [40]] and AlphaEvolve[31] are LLM-guided evolutionary
algorithms used to discover programs producing mathematical constructions. The closely related
LaSR [21] algorithm uses LLM-guided evolution and a learned fextual abstraction library for symbolic
regression. Eureka [28]] uses iterative LLLM refinement to produce extrinsic reward functions that
outperform human-engineered rewards on a suite of RL environments. Several efforts [5, (16} [20]
perform program synthesis in functional languages and develop abstraction libraries using symbolic
abstraction algorithms. An interesting direction would be to develop separate explorative and
exploitative policies, as in [30], for mathematical theory formation.

7 Conclusion

In this work, we targeted the problem of capturing the interestingness of concepts in the context
of open-ended mathematical discovery. To support our research, we introduced FERMAT, a novel
RL environment for theory formation. We introduced EvoAbstract, an LLM-based evolutionary
procedure which abstracts and stores useful subroutines identified during search. We show that our
learned interestingness measures outperforms several baselines when conducting theory formation
using FERMAT, starting from basic definitions, in elementary number theory and finite fields.

Our investigation is a starting point for much broader research in automated theory formation.
Integrating interactive theorem provers, like Lean [12], into FERMAT will allow exploration in more
complex domains and enable studying the problem of learning to prove tabula rasa. It is also an open
problem how to autonomously synthesize production rules. In future work, we see that extensions
of FERMAT could lead to the development of new mathematics as envisioned in the early days of
Artificial Intelligence.
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A Appendix / supplemental material

A.1 Production Rules.

Here we include a full description of each production rule available in FERMAT, including those
mentioned in the main content for completeness.

Definition Production Rules.

1. Compose: This rule allows for composition of functions, predicates, and function-to-
predicates.

Function Composition. Let
F: Xix...xX, =Y x...xY,, G:ZyX...XZp, > W

be functions, and [ : {1,...,m} — {1,...,k} be a map from F’s output indices to G’s
input indices. Let x4, ..., X, denote the parameters to be passed into F, and p1,...,P;
denote any additional parameters to be passed to G. Then the production rule outputs a
function as follows,

compose F G I — ’ H(X1y. oy Xn, P1y---5Pi) :=G(V1,..., VL) ‘

where
{:.}—(Xl,...7xn)i, lfj:I(Z),
Vi

€ {p1,...,pi}, if 7 ¢ Image(I).
Predicate Composition. Let
P:.:Xix---x X, — Bool, Q:7Z1 XX Z;, — Bool.

be predicates, and S : {1,...,n} — {1,...,k} be a sharing map from P’s input variables
to Q’s input variables, that is, S(i) = j if the i-th input variable of P and j-th input
variable of Q will be shared when constructing the output predicate R defined below. Let
Image(S) = {i1,...,is} with i; < ... < i4. Then the production rule outputs a predicate
as follows,

compose P QS —| R(X1,..-,Xn, P1,---,Pi) = P(X1,...,Xn) A Q(Vl,...,Vk)

where
= X, lfj:I(Z)v
Vi e
€ {p1,...,pi}, ifj ¢ Image(]).
Function to Predicate Composition. This case works identically to function composition.

Let
F: Xix...xX, =Y x...xY,, P:Zy x...x Zr — Bool

be a function and a predicate, and I : {1,...,m} — {1,...,k} be a map from F’s output
indices to P’s input indices. Let x1, ..., X, denote the parameters to be passed into F, and
P1,--.,P; denote any additional parameters to be passed to P. Then the production rule
outputs a predicate as follows,

compose FPI — ’ H(X1y -y Xny Ply- -5 Pi) = PV, .., Vi) ‘

where
{:]—"(xl,...,xn)i, lfj:I(Z),
Vv

e {p1,---,Pi} if j ¢ Image(I).

2. Exists: This rule allows for existentially quantifying out variables in a predicate or function.

Predicate. Let P(x1, ...X,) be a predicate, and let I := {i1,...,ix}, where k < n, be a
list of input indices to existentially quantify over. Let J := {1,...,n}\I = {j1,.. ., Jn—k}
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with j; < ...jn—_j be the remaining indices. Then the production rule outputs a new
predicate Q as follows,

exists”PI—>‘ OQ(Xjy, - Xy, ) = Xy, oon, X5y, st P(X1,...,Xy) ‘

Function. Let F(x1,...X,) be a function, and let I and J be defined similarly as before.
Then the production rules outputs a new predicate Q as follows,

exists]—'[—>‘ QXjyy ooy Xy ¥) = Xy, oo, Xy, st F(X1,...,Xp) =Y. ‘

. Map Iterate: This rule turns an iterator function (unary or binary) into a new function by
applying the iterator function n times.

Unary Function. Let F be a unary iterator function. Let 7" be the n-fold application
of F, that is, F"(z) = F(F(...Fx))...). Then this rule outputs a new function G as
———

n times
follows,

map_iterate F —>’ G(x,n) = F"(x) ‘

Binary Function. Let F be a binary iterator function, and v be an initial value concept to
be passed into the iterator. Then this production rule outputs a new function G as follows,

G(x,0) := v,

map_iterate F v — g(x,n+1):= F(G(x,n), x).

. Forall: This rule allows for universal quantification of variables over either one or two
predicates.

Single Predicate. Let P(xy,. .., X,,) be a predicate, and let U = {uq,...,u;} be alist
of indices of the variables to universally quantify over. Let U = {iy, ..., j} be the
remaining indices of the free variables. The production rule outputs a new predicate R such
that

forall’PU—)‘ R(Xays - Xa,_;) = VXups oo Xy, P(X1,.0,Xn) ‘

Two Predicates. Let P(xy,...,x,) and Q(y1,...,¥x) be predicates. Let S C

{1,...,n} x {1,...,k} be a one-to-one sharing map, so that whenever (i, j) € S, we
identify the variables x; and y; by substituting y; with x;.
Define the merged variable set M := {my, ..., m, | 5‘} where the first n variables are
X1,...,Xy, in order, and the next k — | S| variables are y; variables where i does not appear
in the second component of any pair in .S, indexed in ascending order. Let m ;) denote the
variable in M corresponding to y;.

Define the universal quantifier set U C {1,...,n + k — |S|} to be the set of indices of
variables in M to quantify over. Let U denote the remaining indices of the free variables.
Letting U = {u1,...,u;} and U = {dy, ..., Upq,—|s|—;} the production rule outputs a

new predicate R such that
forall P QSU —

R(mg,, ... ,mum) =Vmy,,..,my, P(my,..,my) = Q(my(y),. .., Myp)).
. Match: This rule allows variables to be set equal to each other. Let A(x1,...,x,) be a
function (resp. predicate), and let I := {iy,...,i;} with i; < ...4; be a set of indices to

be matched. Let J := ({1,...,n}\ ) U{i1} = {J1,- -, Jn—kt+1} With j1 < ... Jn—kt1-
Then the rule outputs a new function (resp. predicate) B with n — k + 1 arguments satisfying

match A1 — B(le,...,xjnikﬂ) = A(x1,...,%Xp)

Xig -y Xip, € Xig

—that is, every occurrence of x;,, . .., X;, in A is replaced by the variable x;, .
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6. Constant: This rule can turn an example into a concept (that accepts no inputs, i.e. a value
concept). In FERMAT, we make the distinction between concepts and examples, and this
rule provides a convenient way to bridge the gap. Let e € X' (m) be an example of the
concept m. Then the production rule synthesizes a value concept F out of this example,

constant e —

7. Specialize: This rule allows for specializing the input (for functions and predicates) or
output (for functions).
Specialize Input. Let A(x1,...,X,) be a function (resp. predicate), and let ¢ be the
index to specialize, and v be the value to substitute. Then the rule outputs a new function
(resp. predicate) B satisfying

specialize Aiv —>‘ B(X1,. oy Xie1, Xig1y -3 Xn) = A(X1, 0oy Xim1, 0, Xip 1, - -« s X)) ‘

Specialize Output. Let F(x1,...,X,) be a function and let v be the value we want to
specialize the concept to. Then the rule outputs a new predicate P satisfying

specialize F v —>‘ P(xi,...,%pn) = (F(X1,...,Xpn) =) ‘

8. Negate: Let P be a predicate, then this production rule outputs the negation of the predicate,

ie.
negate P —| Q := Not(P)

9. Size: Let P(xy,...,X;,) be a predicate and I = {i1,...,%,,} be a set of indices. Let
J=A{L...;on}\I = {j1,..,dn—m} With j1 < ...jn_k. Then the production rule
outputs a new concept Q

size P I —>‘ OXjyy-- oy X4, ) = F#{(Xiy, -, X ) | P15 .o %0)} ‘

where # X denotes the cardinality of the set X .

Conjecture Production Rules.

1. Implication: Let P and Q be predicates over the same domain, each with n inputs. Then
the production rule outputs a conjecture

implies P Q —| Vx1,...,Xpn, P(X1,...,X,) = O(X1,...,Xy) ‘

2. Equivalence: This rule conjectures equivalence of concepts.

Predicate. Let P and Q be predicates over the same domain, each with n inputs. Then
the production rule outputs a conjecture

equivalence’PQ—>‘ VX1,yeoo s X, P(X1, 00y Xp) <= OQ(X1,...,Xn) ‘

Function. Let F and G be functions over the same domain, each with n inputs. Then the
production rule outputs a conjecture

equivalence F G —>‘ VX1 oy Xy F(X1y ey Xn) = G(X1, ..., Xp) ‘

3. Nonexistence: This rule asserts non-existence conjectures.

Predicate. Let P(xy, .. .,X,) be a predicate. Then the production rule outputs a conjec-
ture
nonexistence P — ‘ AXy, .o Xp, P(X1,..0,%Xp) ‘
Function. Let F(x1,...,X,) be a function and v be a value. Then the production rule

outputs a conjecture

nonexistence}'v—>‘ AX1y e Xy F(X1,.00,Xn) =0 ‘
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4. Exclusivity: This production rule outputs conjectures stating that certain concepts are
satisfied only on a particular finite set of inputs.

Predicate. Let P(x1,...,x,) be a predicate, and .S be a subset of Domain(P). Then
the production rule outputs a conjecture

exclusivityPS—>‘ VX1, Xy P(X1, .o, Xn) = (X1,...,%X,) €S ‘

Function. Let F(x,...,X,) be a function and v be a value. Then the production rule
outputs a conjecture

exclusivity}'Sv—)‘ VX1, ey Xy F(X1yeeoyXp) =0 = (xl,...,xn)GS‘

A production rule application will propagate the input entities’ computational implementation and ex-
amples where possible. While the produced symbolic definitions and computational implementations
are deterministic, some rules have nondeterminism in the manner which new examples are adding
upon creating.

A.2 FERMAT Technical Details.
Here we describe further implementation details regarding FERMAT.

1. Forbidden paths: Following HR, we institute some forbidden paths which disallow the
application of certain rules automatically. In particular, this disallows the creation of the
following definitions & conjectures on input definition P: [--P,P — PP <
P,P <= —P]. Though this forms a minor optimization for our experiments, we believe
that this set of forbidden paths can be learned automatically. In particular, in an extension of
FERMAT which also allows interpretable proofs, an agent may quickly recognize these paths
lead to uninteresting proofs and prevent their usage in the future.

2. Global Instance Storage: By instance of a theory, we refer to all concrete values of the
domain introduced thus far in the theory. Our environment keeps track of all instances seen
in the theory throughout the theory exploration process.

3. Z3 Example Addition: Definitions created involving the universal or existential quantifier
rules cannot add examples or non-examples respectively. This is because adding such
instances to the data of the entity requires iterating over all values of the Nat type, which is
infinite. However, the more data an entity has the richer the theory. For such cases, we add
certified examples for such definitions, by randomly sampling an instance of values, and
using Z3 to determine whether it forms an example or non-example. We find this helps to
prevent future nonexistence and trivial implication conjectures.

A.3 Proving through Z3.

Our DSL allows users to define functions and predicates over bounded and unbounded parameters,
and to compose them into logical conjectures using constructs such as ForAll, Exists, Implies,
And, and arithmetic expressions. Critically, the DSL supports nested definitions: a predicate can
define helper functions and other predicates inside its body, and similarly for functions. This enables
the modular construction of conjectures and facilitates reuse of previously discovered building blocks.

Compiler and SMT-LIB Translation. The DSL is compiled to SMT-LIB, the input language
accepted by Z3. Our compiler performs:

1. Flattening of nested definitions into top-level SMT functions,
2. Lexical scoping resolution and name hygiene to avoid collisions,

3. Translation of DSL-level constructs into logically equivalent SMT forms. We write a
compiler which converts our DSL into the SMT-lib target language. The compiler is written
using the parglare [[14] library.
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f_0 := Func(
params 1;
bounded params O;
ReturnExpr 2 *x x_0;
ReturnPred None;
)
f_1 := Func(
params O;
bounded params O;
ReturnExpr 6;
ReturnPred None;
)
ReturnExpr None;
ReturnPred Exists(
[b_o0],
f_0(x_0=b_0) == £_10
)

(a) A DSL program asserting that 6 is even using
function composition.

p_0 := Pred(
params 1;
bounded params 1;

f_0 := Func(
params 1;
bounded params O;
ReturnExpr x_0 + 1;
ReturnPred None;

)

ReturnExpr None;

ReturnPred Exists(
[b_01,
f_0(x_0=b_0) == x_0

)

)

(b) A nested DSL predicate defining an inner function
and using it in an existential condition.

Figure 5: DSL snippets

(define-fun f_0_p_0 ((x_0 Int)) Int (+ x_0 1))
(define-fun p_0 ((x_0 Int)) Bool
(exists ((b_0 Int)) (= (£_0_p_0 b_0) x_0)))

Figure 6: SMT-LIB code generated from Figure where naming collisions are avoided by hygienic
flattening.

Semantics and Proof Feedback. When a conjecture is compiled and passed to Z3, the prover
returns one of three outcomes:

UNSAT — The conjecture is logically valid. It is added to the theory as a verified theorem and can be
used in future derivations.

SAT — The conjecture is invalid. Z3 returns a counterexample, which is parsed back into the DSL
domain.

Timeout — We used 2s timeout with the Z3 solver.
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Theory-Guided Composition. The DSL serves as a unifying language in our system: all definitions,
lemmas, and conjectures are expressed as DSL programs. As new concepts are discovered by
our theory formation framework (FERMAT), they are registered as definitions in the DSL. New
conjectures are then automatically generated by composing these building blocks. This compositional
ability—enabled by nesting and a hygienic compiler—allows our system to express and verify
arbitrarily structured mathematical ideas.

A.4 Ground Truth Set

We curated 180 ground truth functions, theorems, and conjectures using a well-known introductory
elementary number theory text [2] as well as a small set of famous conjectures in the number
theory literature, and an additional 67 ground truth entities drawn from the theory of finite fields
over Fo7. These ground truth concepts can be entirely derived by applying the production rules
to the base concepts ( zero, successor, and equality for number theory, and generators and
field operations for Fy7). Figure[/|illustrates a small subset of ground truth concepts that relate to
divisibility, demonstrating an area in which the model would receive extrinsic reward for discovering
the most basic properties of natural numbers. On the other hand, Figure [§]illustrates a small subset
of ground truth concepts relating to more sophisticated theorems and conjectures in the theory of
prime numbers which offer extrinsic reward in theorizing about abstract ideas such as the existence
of infinite instances. Figure [9]covers a subset of definitions and theorems in Fo7.

It is worth noting that there may be multiple paths to arriving at a single concept. For example, it is
possible to derive the concept is even either by applying:

apply specialized divides two index_to_specialize=0

which gives a new concept with the first argument of the divides function to two, or by applying:

apply exists double indices_to_quantify=0

which gives a new concept that returns True for an input if there exists a natural number such that
doubling it results in the input. The number of possible paths to reach a certain ground truth concept
increases exponentially with complexity. Because we want to evaluate the algorithm on its ability to
find a ground truth concept regardless of the path it takes, we included redundant concepts in our
ground truth set. In this manner, we cover as many paths to meaningful math concepts as possible,
and we provide a smooth reward signal to the algorithm for defining interestingness.

A.5 Computational Resources & Hyperparameters

Our experiments are run on 64 Intel Xeon Platinum 8352Y and 64 AMD EPYC 7413 24C CPUs.
We leverage parallelism built into FERMAT to enable speedup in the evaluations. Given this alloca-
tion, evaluating a single interestingness measure through episodic rollouts with FERMAT using the
configuration detailed in takes ~ M = 120 seconds when using 64 workers. Our FunSearch and
EvoAbstract experiments take significantly longer due to large number of interestingness measures
generated and evaluated during evolutionary search. In particular, each experimental result reported
with either FunSearch/EvoAbstract takes approximately 18 hours with 64 workers. The evaluation of
our GPT-40 baseline takes a total of 6 hours when using 64 workers.
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Figure 7: Sample knowledge graph of ground truth entities relating to basic properties of divisibility
in the domain of natural numbers.

Algorithm 1 EvoAbstract: Synthesis via Evolution and Abstraction Learning

Require: Template T'; Number of islands k; Generations Ng.,,; Abstraction frequency G € N*;
Require: Parent sample size n, € N*; Abstraction candidate sample size 1,5, € N*; Evolution

sample size n.;

Require: Evolution & Abstraction LLMs L4, Laps;
1: Initialize k£ populations P1, . .., Py with seed programs.
2: Initialize k empty abstraction libraries Liby, .. ., Liby.
3: for generation g = 1 to Ny, do

4: Sample island ¢ ~ Uniform{1, ..., k}.

5: P <EVOLUTIONSTEP(P;, T, lez,np,n& Lyar, Scores).

6: Score < POLICYEVALUATIONSTEP(P).

7: Update population P; + P; U {P}

8: if g mod G = 0 then > Perform abstraction phase periodically
9: for all islands ¢ = 1 to k do
10: Lib; < Lib; U ABSTRACTIONSTEP(P;, T, Lib;, naps, Labs, Scores).
11: return Best program f* found across all populations P, . .., Pg.
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Figure 8: Sample knowledge graph of ground truth entities relating to theorems and conjectures
central to the theory of prime numbers. Note that the concept of primality, is_prime, is an ancestor
of many concepts.

Algorithm 2 Policy Template for Action Selection

Require: Interestingness measure Z(entity, graph) — R.
Require: Knowledge Graph G = (V, E) with definitions D C V.
Require: Number of definitions to sample N € N*.

Require: Simulation limit S;;,,, € N*.

RN AR

11:
12:
13:
14:
15:
16:

Dsampled < 0 > Set of NV sampled definitions
Scores < {} > Map each definition to its interestingness score
for each definition d € D do
Scores[d] < I(d,G)
end for
Dsampied < SampleByScore(Scores, N)
Apotential < EnumeratePossibleActions(Dsgmpled, G)
Asim < Sample(Apotentiar, MiN(Siim, | Apotentiai|)) > Randomly sample up to Si;,,, actions
for simulation
Simulated ActionScores + {}
for each action a € A,;,, do

enew < SimulateAction(a, G) > Simulate action a to get resulting entity €,,¢.,
scoreq < Z(enew, G) > Compute interestingness of the new entity
Simulated ActionScores|a] < score,

end for

a* + SampleByScore( Agim, 1)

return o*
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Figure 9: Sample knowledge graph of ground truth entities relating to theorems and conjectures

central to the theory of the finite field Fay7.
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l l

Figure 10: The one-shot prompt for our GPT-40 baseline. We do not insert the primitives here for
brevity, these can be found in Figure [TT}

l l

Figure 11: A list of primitive methods available to the interestingness measure synthesizers. Each
method returns a simple property or information about the knowledge graph and/or the input entity.

We note that our episodic roll-outs are time-capped, not finishing after a limit number of steps. This
is because there is a natural variance in the types of mathematical entities that get constructed, and
calls to the Z3 theorem prover can often take many seconds. When resolving conjectures, we set
the timeout to Z3 to be 2.0 seconds, and to 0.5 seconds when using Z3 to add instances to entities
without any.

A.6 REPL
FERMAT also comes equipped with a read-eval-print-loop (REPL) for manual interaction with the

environment. The REPL allows the user to use an interactive shell to define, inspect, and evaluate
mathematical entities.

Available commands.

Command Description

help Get help on commands or list available rules

list List available concepts, rules, or conjectures

apply Apply a production rule to create new concepts/conjectures
inspect Show detailed information about an entity

compute Test computational implementation with arguments
rename Rename an entity

remove Remove an entity

visualize Create a visualization of the current knowledge graph
clear Clear the screen

save Save knowledge graph to file

exit Exit the REPL

Example usage.

REPL Command Concept Produced
apply iter successor add

apply iter add zero multiply

apply match add indices_to_match=[0,1] double

apply match multiply indices_to_match=[0,1] square

apply specialize successor zero index_to_specialize=0 one

\ l

Figure 12: The prompt supplied to the evolution sampler £, indicating the evolution task that
needs to be applied. We have removed the description of the DSL primitives which appears in E}
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\ l

Figure 13: The prompt supplied to the abstraction sampler L, indicating the abstraction task that
needs to be carried out.

\ l

Figure 14: An interestingness measure generated by GPT-4o. It begins by extracting relevant features
of the state using the primitives. The measure itself is not very performant as it overly rewards
complexity and node connectivity in the graph, which only increase in new entities. As ground-
truth entities are not developed immediately using this measure, the episodes proceed by producing
increasingly convoluted and uninteresting objects.

l l

Figure 15: The best program found by EvoAbstract in our main run on the starting knowledge graph
succ_zero_eq. We include the abstractions identified which are used in this program in Figure

l

Figure 16: The abstractions used in the best program found by EvoAbstract during the run on
succ_zero_eq.

l l

Figure 17: A performant program found by EvoAbstract in our main run on the starting knowledge
graph ££f_27. We include the abstractions identified which are used in this program in Figure

Figure 18: The abstractions used in the best program found by EvoAbstract during the run on ££_27.
Note that often newer abstractions use previous ones, sometimes trivially.

l l

Figure 19: The best program found by FunSearch during the run on succ_zero_eq.
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Figure 20: Sample sections of elementary number theory discovered by EvoAbstract during runs on

succ_zero_eq and arith_base.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the abstract and introductory aptly describe our contributions in FERMAT,
investigations in interestingness learning, and EvoAbstract.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, our paper discusses limitations of our investigation and framework in the
discussion portion of the experiments section (Section 5).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, the paper discloses all information required to reproduce the main results.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we include our code and commands for running experiments in the
supplementary material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, we share all details for hyperparameters in our experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we report standard deviations of rewards obtained during experiments
with different measures, and run our method averaged over 4 runs for a comparison with
FunSearch.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We list the computational resources we used in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have verified that our research conforms with the NeurIPS code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no immediate societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All assets we do not exclusively develop are properly credited and respected.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Yes, our new framework and codebase comes with documentation.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not use LLMs to conduct any core method development in this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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