
Learning Interestingness in Automated Mathematical
Theory Formation

George Tsoukalas
The University of Texas at Austin

george.tsoukalas@utexas.edu

Rahul Saha
The University of Texas at Austin

rahul.saha@utexas.edu

Amitayush Thakur
The University of Texas at Austin

amitayush@utexas.edu

Sabrina Reguyal
Princeton University, Stanford University

sreguyal@stanford.edu

Swarat Chaudhuri
The University of Texas at Austin

swarat@cs.utexas.edu

Abstract

We take two key steps in automating the open-ended discovery of new mathe-
matical theories, a grand challenge in artificial intelligence. First, we introduce
FERMAT, a reinforcement learning (RL) environment that models concept discov-
ery and theorem-proving using a set of symbolic actions, opening up a range of
RL problems relevant to theory discovery. Second, we explore a specific prob-
lem through FERMAT: automatically scoring the interestingness of mathematical
objects. We investigate evolutionary algorithms for synthesizing nontrivial in-
terestingness measures. In particular, we introduce an LLM-based evolutionary
algorithm that features function abstraction, leading to notable improvements in
discovering elementary number theory and finite fields over hard-coded baselines.
We open-source the FERMAT environment at github.com/trishullab/Fermat.

1 Introduction

AI researchers have dreamed of building an “automated mathematician” since the 1950s [29]. Such a
system would allow human mathematicians to harness the vast processing capacity of computers to
discover entirely new areas of mathematics [42]. An emerging body of work seeks to realize this
dream using the tools of modern machine learning. In particular, the AI community has developed a
wide range of systems that can prove formal theorems [13, 47] and search for programs discovering
mathematical constructions [31, 40].

However, a key limitation of much of this research is that it is focused on solving predefined problems.
Mathematicians develop theories through an open-ended process of defining new concepts, studying
their properties, making conjectures, and proving or finding counterexamples. While some work [35]
has offered systems that construct new problems in addition to solving them, there is currently no
framework that supports the full theory-formation process, including, for example, the synthesis of
new definitions in addition to problems.

A central challenge in this open-ended process is guiding the search. The space of possible definitions
and conjectures is combinatorially vast, and most paths lead to trivial or dull mathematics. Human
mathematicians navigate this space using a nuanced, intuitive sense of “interestingness" — a judgment
of scientific potential that directs their focus. An explicit formulation of this concept has long been

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/trishullab/Fermat

debated, with different perspectives valuing properties such as the surprising connection between
disparate fields [36], depth and generality [22], or its unexpected real-world applicability [49].

In this paper, we take two key steps towards addressing these challenges. First, we provide a
reinforcement learning (RL) framework, called FERMAT (Figure 1), which can be used to design and
evaluate new algorithms for automatic theory formation. The system generalizes the early symbolic
computing-prover system HR [8], which used a system of production rules to generate new concepts
and conjectures, either symbolically or from explicit examples, and proof mechanisms for resolving
conjectures. We model these symbolic steps as the actions of a Markov Decision Process (MDP),
and the mathematical knowledge available at a given point during exploration as an MDP state. This
formulation opens up numerous RL problems relevant to theory formation.

Our second contribution is a solution to a particular algorithmic problem in FERMAT: learning
an interestingness heuristic for selecting mathematical concepts to develop. Conducting theory
formation requires navigating a combinatorial search space — many mathematical objects are not
meaningful or worthy of study. Prior works were attentive to this problem, but required hard-coded
measures to formalize the concept of interestingness [8, 26]. In contrast, we develop an LLM-driven
method, called EvoAbstract, for learning the intrinsic value of mathematical objects in the context
of the current theory. EvoAbstract is an evolutionary program synthesis algorithm that extends the
FunSearch [40] approach with a form of abstraction learning, allowing for interpretable abstractions
to be discovered during function search. We experimentally show that EvoAbstract can automatically
synthesize interestingness measures that lead to significant improvements in discovering concepts in
elementary number theory and finite fields over hard-coded baselines.

2 Problem Formulation and Motivation

2.1 Mathematical Theory Formation as a Markov Decision Process (MDP)

Figure 1: A high-level description of FERMAT, our
environment for mathematical theory formation.
At any given time, the current theory (state) is rep-
resented as a knowledge graph consisting of the
mathematical definitions, conjectures, and theo-
rems discovered so far. At each step, the policy
π inputs the current state and selects an action to
apply, updating the theory with additional infor-
mation. The action space allows the production of
new definitions, conjectures, and proofs of theo-
rems.

To rigorously study automated mathematical
theory formation using reinforcement learn-
ing, we first formalize the process as an MDP
(S,A, T ,R). This framework allows us to
model the sequential nature of mathematical
discovery, where an agent iteratively expands
a body of knowledge by making choices about
definitions, conjectures, and proof attempts. Let
M denote the universe of all well-formed math-
ematical entities. The components of this MDP
are defined as follows:

• Mathematical State Space (S): A state S ∈
S represents the current state of mathematical
knowledge, represented as a directed knowledge
graph G = (V,E), where:

• V ⊆ M is the set of mathematical enti-
ties, categorized into definitions D, conjec-
tures C, and theorems T .

• E is the set of dependency edges, where
an edge (u, v) exists if entity u was used
as direct input for the action that generated entity v, and is labeled with that action.

• Action Space (A): An action a ∈ A represents an operation that modifies the knowledge graph by
introducing a new entity or acting upon existing ones. Actions fall into the following categories:

• Definition Production Actions (Adef): Introduces a new definition, adding a node d′ to G and
connecting it to relevant entities via a function δdef : S ×Adef → S.

• Conjecture Production Actions (Aconj): Formulates a new conjecture c′ based on existing
entities and relationships, governed by a function δconj : S ×Aconj → S.

• Proof Actions (Aproof = {prove, disprove}): Verifies or refutes a conjecture c ∈ C by invoking
a backend theorem prover, updating its status to theorem or disproven.

2

• Transition Function (T): The transition function T : S ×A× S → [0, 1] models how applying
an action updates the knowledge graph. T (S, a, S′) denotes the probability of transitioning from
state S to S′ after applying action a. In particular,

• Adding a new definition or conjecture c extends V and introduces edges emanating from the
entities to which the production rule was applied: V ′=V ∪{c}, E′=E∪{(v, c) | v ∈ Vinputs}.

• A successful prove action converts a conjecture c into a theorem and attaches a proof attribute:
C′ = C \ {c}, T ′ = T ∪ {t} with proof structure πt. A successful disprove action refutes the
conjecture c, marking it as false and attaching a counterexample as a witness, where possible.

• Reward Function: We design an extrinsic reward functionRE : S ×A×S → R to incentivize the
discovery of a pre-defined set E of well-known mathematical entities. Let the application of action a
to state S produce a state S′ with a new entity mnew ∈M. The reward is defined as:

RE(S, a, S′) =
{
1 if mnew ∈ E
0 otherwise

A reward is thus granted only when the agent’s action results in the discovery of a specific ground-
truth concept. A policy, denoted by π(a|s), defines a strategy by specifying the probability of taking
action a in a given state s. A rollout refers to a single episode of interaction used to evaluate this
policy by generating a trajectory, τ = (S0, a0, r1, S1, a1, r2, . . . , aT−1, rT , ST). This sequence is
formed by starting in S0 and repeatedly sampling an action at ∼ π(·|St), after which the environment
dictates the next state St+1 ∼ T (St, at, ·) and the corresponding reward rt+1 = RE(St, at, St+1).
The total reward for the rollout is the sum of these rewards: R(τ) =

∑T
t=1 rt.

The intrinsic reward RI is a function RI : S × A × S → R that serves as a mechanism for the
agent/policy to learn effectively in a sparse extrinsic reward setting. Such internal rewards can be
critical for driving exploration and acquisition of general knowledge about the environment and
discovery of useful subgoals, especially when external feedback is infrequent or absent, by promoting
behaviors like curiosity or novelty-seeking [1, 3, 32, 33, 41, 43].

2.2 Interestingness as Intrinsic Reward

Humans use intuition and are intrinsically motivated to define interesting mathematical goals. Here
we model interestingness as a learnable intrinsic reward, guiding a policy to discover meaningful
theory. In this work, we wish to discover such interestingness measures autonomously, and view the
synthesis of an effective interestingness measure as a problem of intrinsic reward optimization.

Formally, we define the interestingness measure to be a function I :M×S → R. The value I(m,S)
is designed to estimate the scientific value or potential of a mathematical entity m in the context
of the current theory. We connect this entity-scoring function to our RL framework by defining the
intrinsic rewardRI for a state transition as the interestingness score of the newly generated entity. If
taking action a in state S produces a new entity mnew in state S′, the intrinsic reward is:

RI(S, a, S′) = I(mnew, S
′)

A policy π ∈ Π acts in the short term by selecting actions that maximize the measure I and in the
long term maximize the rewardR. In this work, we use a fixed policy template (detailed in Section 5)
that leverages the scores from I to prioritize which entities to build upon. Therefore, the problem of
learning an optimal exploration strategy simplifies to discovering an optimal interestingness measure
I∗ that maximizes the cumulative extrinsic reward:

I∗ = argmax
I

Eτ∼πI

[∑
t∈τ

γtRE(St, at)

]
where the policy πI is designed to maximize the interestingness measure I. In Section 4, we detail
our evolutionary algorithm designed towards discovering an optimal I.

3 FERMAT: A Framework for Automated Theory Formation

In this section, we discuss FERMAT, our framework for automated mathematical theory formation
built atop our MDP formulation of the theory discovery.

3

3.1 Mathematical Entities

The FERMAT framework, implemented in Python, provides the environment for automated theory
formation. It is built upon a structured representation of mathematical entities within an evolving
knowledge graph. At its core is a formal domain specific language (DSL) to define these entities.

Each mathematical entity m within the knowledge graph G = (V,E) (where m ∈ V) encapsulates
its meaning through several key components:

(1) Symbolic Definition (msym). This holds the formal representation of the entity m expressed in
FERMAT’s DSL. It precisely defines the entity’s logical structure. For an entity m = is_prime, the
symbolic definition might be the following expressed programmatically,

msym = λn.
(
n > 1

)
∧ ∀ k ∈ N .

(
∃ q ∈ N . n = q× k︸ ︷︷ ︸

divides(k,n)

⇒ (k = 1 ∨ k = n)
)

(2) Computational Interpretation (mcomp). An executable Python function that provides an
efficient, concrete evaluation of the entity’s symbolic definition, msym. Let I be the space of potential
input instances for m. The interpretation is a mapping mcomp : I → {⊤,⊥, ?} where, for an instance
i ∈ I , the function returns:

• (⊤ (True)) if i is computationally confirmed to satisfy msym.
• (⊥ (False)) when i is computationally confirmed to not satisfy msym.
• (? (Unknown)) when the status of i could not be determined computationally within resource

limits (e.g., due to universal quantification over an infinite set).

As an example, for an entity m = square, its computational interpretation could be given by
mcomp = lambda a, b: b == a*a.

(3) Cached Instances X (m) = (X+(m),X−(m)). These components store explicit input instances
for the entity m, where X+(m) = {i ∈ I | m(i) = True} stores examples, and X−(m) = {i ∈ I |
m(i) = False} stores nonexamples. These instances ground the entity’s semantics and can be used
for various purposes. For m = divides:

X+(m) = {(2, 4), (1, 3), (2, 2), (3, 6), . . . }, X−(m) = {(2, 3), (3, 5), (4, 1), (5, 4), . . . }

We write mi,mo for input and output arity of m, and size(m) = mi +mo for size of the examples.

The construction history C(m) = {a1, . . . , an} of an entity m is the ordered list of actions applied to
produce it. Definitions (m ∈ D) are further classified as either predicates or functions. This informs
which production rules in the action space A are applicable.

3.2 Production Rules

Following HR [8], FERMAT comes equipped with a set of production rules, consisting of composable
actions for constructing new definitions and conjectures from prior ones. These rules define all
construction actions in Adef ,Aconj ⊆ A to produce new entities. We divide the production rules
by whether they produce definitions or conjectures. We include a complete description of all the
production rules present in FERMAT in Appendix A.1, and give two condensed examples:

Definition Production Rules.

(1) Exists: Let P(x1, . . .xn) be a predicate, and let I := {i1, . . . , ik} be a list of indices to
existentially quantify over, and let J := {j1, . . . , jn−k} be the remaining indices in increasing order.
Then the production rule outputs a new predicate Q as follows,

exists P I → Q(xj1 , . . . ,xjn−k
) := ∃xi1 , . . . ,xik s.t. P(x1, . . . ,xn)

(2) Specialize: Given an entity, this rule outputs a new definition by specializing a variable to a fixed
value. Let A(x1, . . . ,xn) be a function (resp. predicate), and let i be the index to specialize, and v
be the value to substitute. Then the rule outputs a function (resp. predicate) B as follows,

specialize A i v → B(x1, . . . ,xi−1,xi+1, . . . ,xn) := A(x1, . . . ,xi−1, v,xi+1, . . . ,xn)

4

FERMAT contains 7 other definition production rules: (i) Compose, which composes definitions, (ii)
MapIterate, which successively applies an iterator function, (iii) ForAll, which universally quantifies
over variables in definitions, (iv) Match, which asserts equality of chosen variables in definitions, (v)
Negate, which outputs the negation of a concept, (vi) Size, which outputs a definition of the cardinality
of the set of inputs satisfying a condition, and (vii) Constant, which creates constants from examples.

Conjecture Production Rules. FERMAT contains 4 production rules designed to construct conjec-
tures. These are: (i) Implication, which asserts that one definition implies another over all inputs, (ii)
Equivalence, which asserts that two definitions are equivalent, (iii) Nonexistence, which asserts that
no examples of a definition exist, (iv) Exclusivity, which asserts that the only examples of a given
definition belong to a given finite set.

3.3 Prover

To complete the action space, we require the ability to validate conjectures generated using FERMAT’s
DSL. Critically, the generic DSL supports nested definitions, facilitating modular construction of
definitions and conjectures. These conjectures, which may involve previously defined concepts, are
automatically constructed by our framework and passed to a backend theorem prover for verification.
We instantiate this backend using the Z3 Theorem Prover [11], and provide it with SMT-LIB input
generated from our DSL via a custom-designed compiler. We choose Z3 as it is a powerful off-the-
shelf black-box prover, the use of which enables us isolate the problem of synthesizing definitions
and conjectures. We include examples of the Z3 support available through our DSL, and compilation
down to SMT-LIB format in Appendix A.3.

4 Learning Interestingness

Figure 2: Overview of EvoAbstract, which aims to discover an op-
timal interestingness measure for mathematical theory formation.
It operates through three phases: (1) Evolution, where popula-
tions of candidate programs are generated and refined through
LLM-driven mutations; (2) Abstraction, where high-performing
programs are analyzed and reusable subroutines are extracted; and
(3) Policy Evaluation, where the resulting programs are evaluated
within the theory formation environment using FERMAT, produc-
ing feedback that guides subsequent evolutionary steps.

In this section, we discuss our ap-
proach for automatically learn-
ing an interestingness measure
I(m,S) that guides the agent
in discovering human mathe-
matical knowledge. Following
HR [8], which developed simple
programmatic representations of
measures over features of the
state, we search in the space
of Python programs that imple-
ment interestingness measures.
To this end, we introduce EvoAb-
stract (Figure 2), an evolution-
ary search algorithm designed to
optimize an objective function
given a simple numerical evalu-
ator function.

LLM-Driven Evolutionary
Search. (EVOLUTIONSTEP).
At its core, EvoAbstract is an
evolutionary algorithm, aimed
at synthesizing programs itera-
tively. Each population consists
of candidate interestingness
programs. The generation of
new programs is primarily driven by an LLM, Lvar, conditioned on a prompt instructing it to
perform evolution. In each evolutionary step, Lvar takes the program template T and a selection
of high-performing parent programs from a population as input, and synthesizes new candidate
solutions (fnew). Lvar thus acts as an operator for exploration and exploitation, intended to perform
complex mutations informed by successful prior programs. We employ an island model with k
parallel populations (Pi) to maintain diversity.

5

Abstraction Learning. (ABSTRACTIONSTEP). Our central innovation in EvoAbstract is its ab-
straction learning mechanism. This component is designed to identify and reuse valuable subroutines
from evolved programs. This system comprises two main parts:

• Discovering and Utilizing Abstractions: Periodically EvoAbstract enters an abstraction phase,
where an LLM Labs, analyzes a set of high-scoring programs (S′i) sampled from each population.
Labs is tasked with identifying abstractions — valuable, reusable subroutines with defined
signatures and implementations —– within these successful programs and proposing them as new,
generalized functions (Anew). These proposed abstractions are then filtered for criteria such as
syntactic validity and uniqueness before being added to the island’s Libi.

• The Abstraction Library (Libi): Each island i maintains a dynamic Abstraction Library, Libi.
This library serves as a repository for functional abstractions that are identified as potentially
useful during the search. Initially, these libraries are empty. After each abstraction phase, the
generated abstractions are added to their respective libraries Libi. The evolutionary LLM, Lvar,
is conditioned not only on the template T and sampled programs but, crucially, also given
access to the current set of abstractions in Libi when generating new candidate programs. This
encourages Lvar to compose solutions by utilizing these validated sub-components, thereby
promoting modularity, facilitating the construction of more complex solutions, and guiding the
search towards more promising regions of the program space.

Policy Evaluation. (POLICYEVALUATIONSTEP). In each iteration, candidate programs produced
through evolution are assessed via episodic rollouts within the theory-formation environment. During
a rollout, a policy instantiated by an interestingness program interacts with FERMAT to guide
the discovery process over multiple steps. The cumulative reward obtained across these rollouts
determines each program’s fitness, providing the signal that drives subsequent evolutionary and
abstraction phases.

The overall EvoAbstract algorithm, detailed in Algorithm 1 (Appendix), thus proceeds in generations.
Within each generation, the evolutionary search driven by Lvar refines the populations on each island.
Periodically, the abstraction phase mediated by Labs enriches the abstraction libraries, which in turn
provide more powerful building blocks for subsequent evolutionary steps. This interplay between
LLM-driven evolution and LLM-driven abstraction learning allows EvoAbstract to progressively
discover and refine programmatic subroutines.

5 Experiments

In this section, we present empirical results evaluating the effectiveness of our approach. We aim to
answer key questions about the ability of EvoAbstract to learn effective interestingness measures and
the capability of FERMAT, guided by these measures, to generate meaningful mathematical theories.

Environment Configuration. FERMAT centrally supports exploration in elementary number theory
and finite fields, as these areas are extremely rich while easily represented. The number theory
environment is supported by the Z3 Theorem Prover, while finite field reasoning is handled by a
custom prover implemented in Python. For number theory, the ground truth benchmark E used for
the extrinsic reward functionR comprises 180 concepts, conjectures, and theorems sourced from an
introductory number theory textbook [2], constituting a set of interesting entities. We similarly curated
67 such ground truth entities over F27, the primary finite-field setting in our experiments. These
concepts span a range of theoretical sophistication, from the reflexive properties to the Goldbach
conjecture. A detailed description of E along with subsets of the ground truth knowledge graph is
detailed in Appendix A.4. For our experiments, we use three different starting configurations: (i)
succ_zero_eq — The definitions of zero, successor function, and the equality predicate with arity
2; (ii) arithmetic_base — Containing zero, one, two, addition, multiplication, divides, ≤, and the
equality predicate; (iii) ff_27 — Defining zero, one, and generators of F27. We include the policy
template in Algorithm 2 (Appendix).

Evaluation Metrics. To evaluate an interestingness measure, we instantiate the scoring function as
extrinsic reward obtained through episodic rollouts of a policy depending on the measure through

6

Figure 3: A plot of the best program found per iteration for FunSearch and EvoAbstract, shown
for the three different starting knowledge graphs, averaged over four runs. As can be seen, the
EvoAbstract and FunSearch methods dominate performance universally across all baselines. On
arithmetic_base, EvoAbstract slightly outperforms FunSearch, while on succ_zero_eq and
ff_27 EvoAbstract optimizes the interestingness measures early on, but its performance plateaus
sooner than FunSearch, which continues to improve.

FERMAT. We run 64 episodes with a timeout of 60 seconds*, and average the reward. This evaluation
metric measures the ability of the given policy to reconstruct the curriculum of human-made ground
truth mathematical entities E . We also provide qualitative analysis of the learned interestingness
measures and the content of the generated theories.

Baselines. We compare EvoAbstract against the following baseline methods for generating or
selecting interestingness measures:

• Random Policy: Selects applicable actions uniformly at random.
• HR Measures: We re-implement a number of interestingness measures manually defined in HR

[8], which operate on the state S and the newly generated entity m (which can be extracted from
the action a applied and the new state S′). In particular, we include the following measures:

1. Novelty. Computes the fraction of entities with the same example classification:
Mnovelty(m) = #{m′ ∈ S|X (m) = X (m′)}/#S.

2. Parsimony. Rewards a concept with fewer inputs: Mparsimony(m) = size(m)−1.
3. Productivity. Measures how many subsequent environment steps use that entity in a produc-

tion rule: Mproductivity(m) = #{m′ ∈ S|m is in an action ∈ C(m′)}/#S.
4. Applicability. Computes the fraction of all known instances that are examples:

Mapplicability(m) = X+(m)/(X+(m) + X−(m)).
5. Comprehensibility. Rewards a concept which is more comprehensible, measured by the

inverse of the number of construction steps: Mcomprehensibility(m) = #C(m)−1.
We evaluate these measures individually and when combined in an equally weighted sum. Note
that all of these measures are easily representable as Python programs.

• One-shot LLM. Instead of evolving a program, we sample 64 programs from GPT-4o and
evaluate their performance through episodic roll-outs, averaging the result.

• FunSearch: An ablation study where EvoAbstract is missing the abstraction component, which
is equivalent to the FunSearch [40] algorithm without island crossover, ran at a scale afforded by
our budget. We use the same hyperparameters as in our EvoAbstract evaluation.

EvoAbstract configuration. We configure EvoAbstract to employ k = 4 islands and runs over
Ngen = 64 iterations, with each interestingness function being evaluated in 16 i.i.d. rollouts. We
run every configuration of EvoAbstract & FunSearch 4 times and average the results. We instantiate
both the evolution and abstraction samplers Lvar,Labs to use GPT-4o-mini, and sample 2 programs
per iteration. We perform the abstraction phase every 8 iterations, sampling at most two abstractions
per island. Lvar,Labs are conditioned through prompting: a system-level instruction on generating

*We note that we run episodes for a duration rather than a step count due to high variance in the time taken
for Z3 to resolve conjectures.

7

interestingness measures is attached, as well as a description of a set of Python functions which return
features of the state’s knowledge graph representation as well as individual entities. These functions
represent the base features for the interestingness measures to manipulate. We provide a more
detailed list of hyperparameters, the full prompts, and our computational resources for experiments in
Appendix A.5.

5.1 Experimental Results

We address the following research questions:

RQ1: Can EvoAbstract effectively learn interestingness measures that outperform baseline strate-
gies in discovering ground-truth mathematical entities?

RQ2: What do the learned interestingness measures look like? Do they capture non-trivial patterns?

RQ3: Can we successfully rediscover well-known concepts in elementary number theory and finite
fields?

Performance Comparison (RQ1). We compare the cumulative extrinsic reward of policies guided
by measures from EvoAbstract against baselines, with results summarized in Table 4. As expected,
starting with a larger initial theory (arithmetic_base) generally leads to greater rewards.

Measure succ_zero_eq arithmetic
_base ff_27

Random 4.68 (2.25) 4.44 (2.23) 2.33 (1.20)
Novelty 4.50 (2.39) 5.14 (2.83) 2.26 (1.47)
Parsimony 4.94 (2.90) 4.85 (3.09) 2.56 (1.32)
Applicability 4.95 (2.25) 5.71 (3.05) 2.89 (1.69)
Comprehensibility 8.23 (2.84) 8.55 (3.22) 5.38 (1.89)
Equal Weight 6.57 (2.45) 5.93 (2.82) 3.93 (2.82)
GPT-4o 5.26 (1.11) 6.46 (1.98) 2.36 (0.40)
GPT-4o (best) 8.21 (4.09) 9.45 (3.44) 3.50 (1.87)
FunSearch 10.23 (1.70) 22.41 (2.68) 11.34 (4.09)
EvoAbstract 9.62 (2.97) 23.98 (10.50) 9.82 (4.83)

Figure 4: Performance comparison of EvoAbstract against vari-
ous baseline measures on three starting theories: succ_zero_eq,
arithmetic_base, and ff_27. Each baseline receives 64 theory-
formation evaluations. For FunSearch and EvoAbstract, we in-
clude the average score of the best found program over four inde-
pendent runs.

Among static HR measures,
the random and novelty mea-
sures perform worst, exhibiting
roughly equivalent scores. Par-
simony’s inefficacy likely stems
from its limited discriminative
power, as most generated defini-
tions involve few inputs, offering
insufficient signal. Comprehen-
sibility is the strongest HR mea-
sure, because it rewards simplic-
ity of entities. However, it alone
cannot scale to more complex in-
teresting entities due to the com-
binatorial expansion of the action
space.

Interestingly, the GPT-4o base-
line performs only slighter better
than even the random baseline
(see Figure 14), and is outperformed by just the comprehensibility measure. Despite generating more
complex measures, its emphasis on rewarding construction depth and connectivity often assigns
disproportionately high interestingness to initial, but irrelevant, entities. This leads to a cascading
effect away from the ground truth set E , explaining its suboptimal performance.

The value of evolutionary search is demonstrated by FunSearch [40] & EvoAbstract. In con-
trast to GPT-4o, where few generated measures surpassed the random baseline, evolutionary pro-
gram synthesis yields significantly more performant measures, with the best measure discovered
averaging (10.23, 22.41, 11.34) ground-truth entities per episodic roll-out on (succ_zero_eq,
arithmetic_base, ff_27). Incorporating the abstraction phase in EvoAbstract introduces slight
gains on arithmetic_base, yielding measures that discover an average of 23.98 ground-truth
entities, but with higher variance. Notably, on ff_27 and succ_zero_eq, EvoAbstract finds better
solutions quicker, but the progress slows down and yields suboptimal performance at the end of
the runs, on average. The abstractions are helpful in optimizing on known patterns, but produces
an abstraction “lock-in” later on where it is difficult for the LLM to produce diverse samples that
continue to increase the reward. Beyond improved discovery, this phase also develops interpretable
modular components. Figure 3 illustrates the performance trajectory of EvoAbstract & FunSearch
compared to the baselines.

8

Analysis of Learned Interestingness Measures (RQ2). To understand the nature of the measures
synthesized by EvoAbstract, we conduct a qualitative analysis. Figures 15, 17 presents an example
of the best-performing program discovered by EvoAbstract on the succ_zero_eq task. A key
characteristic of this program is its utilization of numerous abstractions and subroutines that were
identified and refined during earlier abstraction phases. These abstractions are detailed in Figures 16,
18, which we now analyze.

First, EvoAbstract rediscovers and often refines variants of the baseline HR measures. For instance, it
generates applicability-like measures, such as compute_example_balance, which calculates the ra-
tio of examples to nonexamples. Notably, EvoAbstract can refine previous abstractions, exemplified by
calculate_uniqueness_score_v2, which generalizes prior uniqueness abstractions. Furthermore,
measures distinct from the HR baselines are found, such as calculate_rule_diversity_score,
which weighs the diversity of rules in the construction history. Additionally, it produces abstractions
which generalize known construction patterns, as seen from adjust_score_by_node_type.

A comparison with the best program generated by FunSearch (detailed in Figure 19) is instructive.
While the FunSearch program utilizes similar components to those found by EvoAbstract, they are
fewer in number. FunSearch tends to integrate these functionalities more directly, resulting in a less
modular structure. The distinct modularity evident in Figure 15 lends itself to quicker readability of
the high-level operation of the interestingness function.

Analysis of Generated Theories (RQ3). EvoAbstract & FunSearch discover a notable portion of
fundamental math concepts in our ground truth benchmark. When starting from the succ_zero_eq
base, the agent successfully develops the notion of addition, multiplication, divisibility, and the tau
function. Furthermore, it makes progress towards conjecturing fundamental properties of divisibil-
ity, such as the reflexivity of divisibility. When starting from arithmetic_base, the agent goes
further — discovering the concepts of powers and primality along with more complex composi-
tions of functions. In ff_27, the evolutionary methods are capable of discovering concepts such as
ff_sum_three_times, but cannot find the conjecture stating the characteristic of char(F27) = 3,
which requires further rule applications to discover. Relevant samples of the evolved knowledge
graphs are shown in Figure 20.

We note that the best-performing interestingness measures we find can still be suboptimal, upweight-
ing entities are not particularly interesting to humans. For instance, we find that equals, which
important for initial exploration, is assigned overly high interestingness, leading to an excess of
redundant or vacuous statements during theory formation. While the agent generated conjectures, it
had difficulty discovering many ground truth conjectures, which is likely due to the limited correct
ways to correctly specify a conjecture compared to a definition.

5.2 Discussion

We find that there are several avenues for further exploration towards discovering richer theories.
Firstly, the policy template we employ, designed to manage combinatorial growth, exposes only a
subset of complete action space at any step. This choice, while pragmatic, limits scalability to more
complex mathematical objects where a lengthy list of actions must be applied in a specific order.
Secondly, we observe that there are “bottleneck” entities, such as primality, which must be discovered
in order to continue the development of an interesting theory (see Figure 8). In our experiments,
when primality is discovered, the resultant knowledge graph is prohibitively large so as to obstruct
valuable actions involving it. Finally, FERMAT does not yet exploit symmetries in entities leading to
representational redundancy. For instance, while exhaustively checking for equivalences between
definitions would reduce this redundancy, we found the approach to be computationally intractable
with Z3 as theories grow. Further experimentation with FunSearch and EvoAbstract with heavy
compute budgets will help to investigate the potential for significant discovery with evolutionary
methods in these domains. Addressing these points will be crucial for advancing FERMAT’s ability to
construct deeper and more sophisticated mathematical theories.

6 Related Works

Automated Theory Formation. AM (1977) [26, 27] was a theory formation program which relied
on a curated set of 243 heuristics to discover concepts and prove conjectures in elementary set

9

theory and number theory. Similarly, the Graph Theorist (1987) [17] performed conjecturing &
proving using an input set of definitions. HR (2000) [8] introduces a small set of production rules
and manually curated heuristics to perform mathematical theory formation. Theorema (2006) [6]
performed human-in-the-loop theory exploration, leveraging computational tools in Mathematica
and with an emphasis on producing human-readable proofs. Theory formation is less explored
in the modern era. Notably, Minimo [35] trains a neural model to play a game of conjecture and
proof, but remains restricted to the initial axiomatic definitions. QuickSpec [44] is a symbolic theory
exploration tool that interleaves term generation and random testing for conjecturing. As a final note,
automated theory formation can be studied for domains other than mathematics — BACON (1983)
[25] represents a program which aimed to rediscover empirical laws in chemistry.

Conjecturing. Many works have focused on the particular problem of synthesizing plausible
conjectures. The PSLQ algorithm [19] was developed for identifying integer relations between
mathematical constants. Graffiti & TxGraffiti [18, 10] produced conjectures in graph theory using
several heuristics, given a large set of graphs and graph invariants. The Ramanujan Machine [4]
utilized several algorithms to conjecture relations between fundamental constants such as π and ζ(3).
Davies et al. [9] uses machine learning techniques to identify patterns that lead to conjectures.

Theorem-Proving. The most significant attention in modern research has been applied towards the
problem of theorem-proving. Simon & Newell’s Logic Theorist and Hao Wang’s Program II [29, 48],
were early explorations into a theorem-proving system. Recently, neural systems [15, 24, 38, 45, 37]
invoking interactive theorem provers like Lean [12], Isabelle [34], and Coq [46] have seen great
interest. AlphaProof [13] and AlphaGeometry [47] together attained a silver medal at the International
Mathematical Olympiad. Another interesting angle for resolving conjectures comes from use of
SAT & SMT solvers — notably, yielding a resolution to the Boolean Pythagorean Triples problem
[23]. Notably, the Four Colour Theorem was proved through computer-assisted case-checking [39].
Similarly, [7] used a combination of neural and symbolic techniques to disprove conjectures.

Program Synthesis & RL. FunSearch, AlphaEvolve [40, 31] are LLM-based evolutionary synthesis
approaches used to discover programs producing mathematical constructions. Similarly, LaSR [21]
addresses the symbolic regression task, performing an evolutionary search using both symbolic and
neural mutations and inducing a learned textual abstraction library. Eureka [28] uses iterative LLM
refinement to produce extrinsic reward functions that outperform human-engineered rewards on a suite
of RL environments. Several efforts [16, 20, 5] perform program synthesis in functional languages
and develop abstraction libraries using symbolic abstraction algorithms. An interesting direction
would be to develop separate explorative and exploitative policies, as in [30], for mathematical theory
formation.

7 Conclusion

In this work, we have introduced FERMAT, a novel RL gym environment designed to support research
in automated theory formation. Here we targeted discovering well known concepts in elementary
number theory and finite fields starting from basic definitions by learning interestingness measures.
We search for these measures that guide our policy using EvoAbstract, an LLM-based evolutionary
procedure which abstracts and stores useful subroutines identified during search. We show that our
learned interestingness measure outperforms several baselines, demonstrating its capability as an
effective guide for discovering important concepts.

Our investigation is a starting point for much broader research in automated theory formation.
Integrating interactive theorem provers, like Lean [12], into FERMAT will allow exploration in more
complex domains due to the broader expressivity of their underlying logics, and also unlocks learning
to prove tabula rasa as a problem to study. It is also an open problem how to autonomously synthesize
production rules. In future work, we see that extensions of FERMAT could lead to the development of
new mathematics as envisioned in the early days of Artificial Intelligence.

8 Acknowledgement

This research was supported in part by NSF awards CCF-2212559 and CCF-2403211, a grant from
Renaissance Philanthropy’s AI for Math Fund, and the NSF AI Institute for Foundations of Machine

10

Learning. We would also like to thank the anonymous reviewers for their insightful feedback, which
helped improve the quality of this manuscript.

References
[1] Ferran Alet, Martin F. Schneider, Tomas Lozano-Perez, and Leslie Pack Kaelbling. Meta-

learning curiosity algorithms, 2020. URL https://arxiv.org/abs/2003.05325.

[2] Titu Andreescu, Dorin Andrica, and Zuming Feng. 104 Number Theory Problems: From the
Training of the USA IMO Team. Birkhäuser Boston, 2007. ISBN 978-0-8176-4527-4.

[3] Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and
Remi Munos. Unifying count-based exploration and intrinsic motivation, 2016. URL https:
//arxiv.org/abs/1606.01868.

[4] Guy Ben-Aroya, Shahar Gottlieb, Ran J. Landsberg, and Ido Kaminer. The ramanujan machine:
Automatically generated conjectures on fundamental constants. Nature, 589(7842):67–73, 2021.
doi: 10.1038/s41586-020-03067-y.

[5] Matthew Bowers, Theo X. Olausson, Lionel Wong, Gabriel Grand, Joshua B. Tenenbaum,
Kevin Ellis, and Armando Solar-Lezama. Top-down synthesis for library learning. Proceedings
of the ACM on Programming Languages, 7(POPL):1182–1213, January 2023. ISSN 2475-1421.
doi: 10.1145/3571234. URL http://dx.doi.org/10.1145/3571234.

[6] Bruno Buchberger, Adrian Crǎciun, Tudor Jebelean, Laura Kovács, Temur Kutsia, Koji Naka-
gawa, Florina Piroi, Nikolaj Popov, Judit Robu, Markus Rosenkranz, and Wolfgang Windsteiger.
Theorema: Towards computer-aided mathematical theory exploration. Journal of Applied
Logic, 4(4):470–504, 2006. ISSN 1570-8683. doi: https://doi.org/10.1016/j.jal.2005.10.006.
URL https://www.sciencedirect.com/science/article/pii/S1570868305000716.
Towards Computer Aided Mathematics.

[7] François Charton, Jordan S. Ellenberg, Adam Zsolt Wagner, and Geordie Williamson. Pat-
ternboost: Constructions in mathematics with a little help from ai, 2024. URL https:
//arxiv.org/abs/2411.00566.

[8] Simon Colton, Alan Bundy, and Toby Walsh. Hr: Automatic concept formation in pure
mathematics. Automated Software Engineering, 17(1):139–174, 2000. doi: 10.1023/A:
1008923120573.

[9] Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev,
Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, Marc Lackenby, Geordie
Williamson, Demis Hassabis, and Pushmeet Kohli. Advancing mathematics by guiding human
intuition with ai. Nature, 600(7887):70–74, dec 2021. ISSN 1476-4687. doi: 10.1038/
s41586-021-04086-x. URL https://doi.org/10.1038/s41586-021-04086-x.

[10] Randy Davila. Automated conjecturing in mathematics with TxGraffiti, 2024. URL https:
//arxiv.org/abs/2409.19379.

[11] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’08/ETAPS’08, pp. 337–340, Berlin, Heidelberg,
2008. Springer-Verlag. ISBN 3540787992.

[12] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer.
The Lean theorem prover (system description). In Automated Deduction-CADE-25: 25th Inter-
national Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings
25, pp. 378–388. Springer, 2015.

[13] DeepMind. AI achieves silver-medal standard solving International Mathematical Olympiad
problems. Google DeepMind Blog, July 2024. URL https://deepmind.google/discover/
blog/ai-solves-imo-problems-at-silver-medal-level/. Accessed on 2025-04-22.
Blog post announcing AlphaProof and AlphaGeometry 2 results at IMO 2024. Technical details
on AlphaProof were stated to be forthcoming.

11

https://arxiv.org/abs/2003.05325
https://arxiv.org/abs/1606.01868
https://arxiv.org/abs/1606.01868
http://dx.doi.org/10.1145/3571234
https://www.sciencedirect.com/science/article/pii/S1570868305000716
https://arxiv.org/abs/2411.00566
https://arxiv.org/abs/2411.00566
https://doi.org/10.1038/s41586-021-04086-x
https://arxiv.org/abs/2409.19379
https://arxiv.org/abs/2409.19379
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

[14] Igor Dejanović. Parglare: A lr/glr parser for python. Science of Computer Programming,
pp. 102734, 2021. ISSN 0167-6423. doi: 10.1016/j.scico.2021.102734. URL https://www.
sciencedirect.com/science/article/pii/S0167642321001271.

[15] Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and
proving, 2025. URL https://arxiv.org/abs/2502.00212.

[16] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lucas Morales,
Luke Hewitt, Armando Solar-Lezama, and Joshua B. Tenenbaum. Dreamcoder: Growing
generalizable, interpretable knowledge with wake-sleep bayesian program learning, 2020. URL
https://arxiv.org/abs/2006.08381.

[17] Susan L. Epstein. On the discovery of mathematical theorems. In Proceedings of the 10th
International Joint Conference on Artificial Intelligence - Volume 1, IJCAI’87, pp. 194–197,
San Francisco, CA, USA, 1987. Morgan Kaufmann Publishers Inc.

[18] Siemion Fajtlowicz. On conjectures of graffiti. In J. Akiyama, Y. Egawa, and H. Enomoto
(eds.), Graph Theory and Applications, volume 38 of Annals of Discrete Mathematics, pp.
113–118. Elsevier, 1988. doi: https://doi.org/10.1016/S0167-5060(08)70776-3. URL https:
//www.sciencedirect.com/science/article/pii/S0167506008707763.

[19] Helaman Ferguson and David Bailey. A polynomial time, numerically stable integer relation
algorithm. 01 1992.

[20] Gabriel Grand, Lionel Wong, Maddy Bowers, Theo X. Olausson, Muxin Liu, Joshua B. Tenen-
baum, and Jacob Andreas. Lilo: Learning interpretable libraries by compressing and document-
ing code, 2024. URL https://arxiv.org/abs/2310.19791.

[21] Arya Grayeli, Atharva Sehgal, Omar Costilla-Reyes, Miles Cranmer, and Swarat Chaudhuri.
Symbolic regression with a learned concept library, 2024. URL https://arxiv.org/abs/
2409.09359.

[22] G. H. Hardy. A mathematician’s apology. Philosophy, 16(63):323–326, 1941.

[23] Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and Verifying the Boolean
Pythagorean Triples Problem via Cube-and-Conquer, pp. 228–245. Springer International
Publishing, 2016. ISBN 9783319409702. doi: 10.1007/978-3-319-40970-2_15. URL http:
//dx.doi.org/10.1007/978-3-319-40970-2_15.

[24] Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik,
Timothée Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs, 2023. URL https://arxiv.org/abs/2210.12283.

[25] Pat Langley, Gary L. Bradshaw, and Herbert A. Simon. Rediscovering Chemistry with the
Bacon System, pp. 307–329. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983. ISBN 978-
3-662-12405-5. doi: 10.1007/978-3-662-12405-5_10. URL https://doi.org/10.1007/
978-3-662-12405-5_10.

[26] Douglas B. Lenat. AM: An artificial intelligence approach to discovery in mathematics as
heuristic search. PhD thesis, Stanford University, 1977.

[27] Douglas B. Lenat. Eurisko: A program that learns new heuristics and domain concepts. In
Artificial Intelligence, volume 21, pp. 61–98. Elsevier, 1983. doi: 10.1016/S0004-3702(83)
80005-8.

[28] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh
Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design
via coding large language models, 2024. URL https://arxiv.org/abs/2310.12931.

[29] Allen Newell, J. C. Shaw, and Herbert A. Simon. The logic theory machine: A complex
information processing system. In IRE Transactions on Information Theory, volume 2, pp.
61–79. Institute of Radio Engineers, 1956. doi: 10.1109/TIT.1956.1056813.

12

https://www.sciencedirect.com/science/article/pii/S0167642321001271
https://www.sciencedirect.com/science/article/pii/S0167642321001271
https://arxiv.org/abs/2502.00212
https://arxiv.org/abs/2006.08381
https://www.sciencedirect.com/science/article/pii/S0167506008707763
https://www.sciencedirect.com/science/article/pii/S0167506008707763
https://arxiv.org/abs/2310.19791
https://arxiv.org/abs/2409.09359
https://arxiv.org/abs/2409.09359
http://dx.doi.org/10.1007/978-3-319-40970-2_15
http://dx.doi.org/10.1007/978-3-319-40970-2_15
https://arxiv.org/abs/2210.12283
https://doi.org/10.1007/978-3-662-12405-5_10
https://doi.org/10.1007/978-3-662-12405-5_10
https://arxiv.org/abs/2310.12931

[30] Ben Norman and Jeff Clune. First-explore, then exploit: Meta-learning to solve hard exploration-
exploitation trade-offs, 2024. URL https://arxiv.org/abs/2307.02276.

[31] Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian,
M. Pawan Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian
Nowozin, Pushmeet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and
algorithmic discovery, 2025. URL https://arxiv.org/abs/2506.13131.

[32] Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V. Hafner. Intrinsic motivation systems for
autonomous mental development. IEEE Transactions on Evolutionary Computation, 11(2):
265–286, 2007. doi: 10.1109/TEVC.2006.890271.

[33] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven explo-
ration by self-supervised prediction, 2017. URL https://arxiv.org/abs/1705.05363.

[34] Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

[35] Gabriel Poesia, David Broman, Nick Haber, and Noah D. Goodman. Learning formal mathe-
matics from intrinsic motivation, 2024. URL https://arxiv.org/abs/2407.00695.

[36] Henri Poincaré. Mathematical creation. The Monist, 20(3):321–335, 1910. doi: 10.5840/
monist19102037.

[37] Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving,
2020. URL https://arxiv.org/abs/2009.03393.

[38] Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue
Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang,
Yuxuan Liu, Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing formal
mathematical reasoning via reinforcement learning for subgoal decomposition, 2025. URL
https://arxiv.org/abs/2504.21801.

[39] Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas. The four-colour theorem.
Journal of Combinatorial Theory, Series B, 70(1):2–44, 1997. ISSN 0095-8956. doi: https://doi.
org/10.1006/jctb.1997.1750. URL https://www.sciencedirect.com/science/article/
pii/S0095895697917500.

[40] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming
Peng, Alhussein Fawzi, et al. Mathematical discoveries from program search with large
language models. Nature, 625(7995):466–474, 2024. doi: 10.1038/s41586-023-06924-6. URL
https://doi.org/10.1038/s41586-023-06924-6.

[41] Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010).
IEEE Transactions on Autonomous Mental Development, 2(3):230–247, 2010. doi: 10.1109/
TAMD.2010.2056368.

[42] Michael Shulman. Strange new universes: Proof assistants and synthetic foundations. Bull.
New Ser. Am. Math. Soc., 61(2):257–270, February 2024.

[43] Satinder Singh, Richard L. Lewis, Andrew G. Barto, and Jonathan Sorg. Intrinsically motivated
reinforcement learning: An evolutionary perspective. IEEE Transactions on Autonomous Mental
Development, 2(2):70–82, 2010. doi: 10.1109/TAMD.2010.2051031.

[44] Nicholas Smallbone, Moa Johansson, Koen Claessen, and Maximilian Algehed. Quick spec-
ifications for the busy programmer. Journal of Functional Programming, 27:e18, 2017. doi:
10.1017/S0956796817000090.

[45] Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An
in-context learning agent for formal theorem-proving, 2024. URL https://arxiv.org/abs/
2310.04353.

[46] The Coq Development Team. The Coq Proof Assistant, September 2023.

13

https://arxiv.org/abs/2307.02276
https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/1705.05363
https://arxiv.org/abs/2407.00695
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2504.21801
https://www.sciencedirect.com/science/article/pii/S0095895697917500
https://www.sciencedirect.com/science/article/pii/S0095895697917500
https://doi.org/10.1038/s41586-023-06924-6
https://arxiv.org/abs/2310.04353
https://arxiv.org/abs/2310.04353

[47] Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

[48] H. Wang. Toward mechanical mathematics. IBM Journal of Research and Development, 4(1):
2–22, 1960. doi: 10.1147/rd.41.0002.

[49] Eugene P. Wigner. The unreasonable effectiveness of mathematics in the natural sciences.
Communications on Pure and Applied Mathematics, 13(1):1–14, 1960. doi: 10.1002/cpa.
3160130102.

14

A Appendix / supplemental material

A.1 Production Rules.

Here we include a full description of each production rule available in FERMAT, including those
mentioned in the main content for completeness.

Definition Production Rules.

1. Compose: This rule allows for composition of functions, predicates, and function-to-
predicates.

Function Composition. Let

F : X1 × . . .×Xn → Y1 × . . .× Ym, G : Z1 × . . .× Zk →W

be functions, and I : {1, . . . ,m} → {1, . . . , k} be a map from F’s output indices to G’s
input indices. Let x1, . . . ,xn denote the parameters to be passed into F , and p1, . . . ,pi

denote any additional parameters to be passed to G. Then the production rule outputs a
function as follows,

compose F G I → H(x1, . . . ,xn,p1, . . . ,pi) := G(v1, . . . ,vk)

where

vj

{
= F(x1, . . . ,xn)i, if j = I(i),

∈ {p1, . . . ,pi}, if j /∈ Image(I).

Predicate Composition. Let

P : X1 × · · · ×Xn −→ Bool, Q : Z1 × · · · × Zk −→ Bool.

be predicates, and S : {1, . . . , n} → {1, . . . , k} be a sharing map from P’s input variables
to Q’s input variables, that is, S(i) = j if the i-th input variable of P and j-th input
variable of Q will be shared when constructing the output predicateR defined below. Let
Image(S) = {i1, . . . , is} with i1 < . . . < is. Then the production rule outputs a predicate
as follows,

compose P Q S → R(x1, . . . ,xn, p1, . . . ,pi) := P(x1, . . . ,xn) ∧ Q
(
v1, . . . ,vk

)
where

vj

{
= xi, if j = I(i),

∈ {p1, . . . ,pi}, if j /∈ Image(I).

Function to Predicate Composition. This case works identically to function composition.
Let

F : X1 × . . .×Xn → Y1 × . . .× Ym, P : Z1 × . . .× Zk → Bool

be a function and a predicate, and I : {1, . . . ,m} → {1, . . . , k} be a map from F’s output
indices to P’s input indices. Let x1, . . . ,xn denote the parameters to be passed into F , and
p1, . . . ,pi denote any additional parameters to be passed to P . Then the production rule
outputs a predicate as follows,

compose F P I → H(x1, . . . ,xn,p1, . . . ,pi) := P(v1, . . . ,vk)

where

vj

{
= F(x1, . . . ,xn)i, if j = I(i),

∈ {p1, . . . ,pi}, if j /∈ Image(I).

2. Exists: This rule allows for existentially quantifying out variables in a predicate or function.
Predicate. Let P(x1, . . .xn) be a predicate, and let I := {i1, . . . , ik}, where k < n, be a

list of input indices to existentially quantify over. Let J := {1, . . . , n}\I = {j1, . . . , jn−k}

15

with j1 < . . . jn−k be the remaining indices. Then the production rule outputs a new
predicate Q as follows,

exists P I → Q(xj1 , . . . ,xjn−k
) := ∃xi1 , . . . ,xik s.t. P(x1, . . . ,xn)

Function. Let F(x1, . . .xn) be a function, and let I and J be defined similarly as before.
Then the production rules outputs a new predicate Q as follows,

exists F I → Q(xj1 , . . . ,xjn−k
, y) := ∃xi1 , . . . ,xik s.t. F(x1, . . . ,xn) = y.

3. Map Iterate: This rule turns an iterator function (unary or binary) into a new function by
applying the iterator function n times.

Unary Function. Let F be a unary iterator function. Let Fn be the n-fold application
of F , that is, Fn(x) = F

(
F
(
. . .F︸ ︷︷ ︸

n times

(x)
)
. . .

)
. Then this rule outputs a new function G as

follows,
map_iterate F → G(x, n) := Fn(x) .

Binary Function. Let F be a binary iterator function, and v be an initial value concept to
be passed into the iterator. Then this production rule outputs a new function G as follows,

map_iterate F v →
G(x, 0) := v,

G(x, n+ 1) := F(G(x, n), x).

4. Forall: This rule allows for universal quantification of variables over either one or two
predicates.

Single Predicate. Let P(x1, . . . ,xn) be a predicate, and let U = {u1, . . . , uj} be a list
of indices of the variables to universally quantify over. Let Ū = {ū1, . . . , ūn−j} be the
remaining indices of the free variables. The production rule outputs a new predicateR such
that

forall P U → R(xū1 , . . . ,xūn−j) := ∀xu1 , . . . ,xuj , P(x1, . . . ,xn) .

Two Predicates. Let P(x1, . . . ,xn) and Q(y1, . . . ,yk) be predicates. Let S ⊆
{1, . . . , n} × {1, . . . , k} be a one-to-one sharing map, so that whenever (i, j) ∈ S, we
identify the variables xi and yj by substituting yj with xi.
Define the merged variable set M := {m1, . . . ,mn+k−|S|} where the first n variables are
x1, . . . ,xn in order, and the next k − |S| variables are yi variables where i does not appear
in the second component of any pair in S, indexed in ascending order. Let mτ(i) denote the
variable in M corresponding to yi.
Define the universal quantifier set U ⊆ {1, . . . , n + k − |S|} to be the set of indices of
variables in M to quantify over. Let Ū denote the remaining indices of the free variables.
Letting U = {u1, . . . , uj} and Ū = {ū1, . . . , ūn+k−|S|−j}, the production rule outputs a
new predicateR such that

forall P Q S U →

R(mū1
, . . . ,mū|Ū|) := ∀mu1

, . . . ,muj
, P(m1, . . . ,mn) =⇒ Q(mτ(1), . . . ,mτ(k)).

5. Match: This rule allows variables to be set equal to each other. Let A(x1, . . . ,xn) be a
function (resp. predicate), and let I := {i1, . . . , ik} with i1 < . . . ik be a set of indices to
be matched. Let J := ({1, . . . , n} \ I) ∪ {i1} = {j1, . . . , jn−k+1} with j1 < . . . jn−k+1.
Then the rule outputs a new function (resp. predicate) B with n−k+1 arguments satisfying

match A I → B
(
xj1 , . . . ,xjn−k+1

)
:= A(x1, . . . ,xn)

∣∣∣
xi2 ,...,xik

← xi1

—that is, every occurrence of xi2 , . . . ,xik in A is replaced by the variable xi1 .

16

6. Constant: This rule can turn an example into a concept (that accepts no inputs, i.e. a value
concept). In FERMAT, we make the distinction between concepts and examples, and this
rule provides a convenient way to bridge the gap. Let e ∈ X+(m) be an example of the
concept m. Then the production rule synthesizes a value concept E out of this example,

constant e→ E

7. Specialize: This rule allows for specializing the input (for functions and predicates) or
output (for functions).

Specialize Input. Let A(x1, . . . ,xn) be a function (resp. predicate), and let i be the
index to specialize, and v be the value to substitute. Then the rule outputs a new function
(resp. predicate) B satisfying

specialize A i v → B(x1, . . . ,xi−1,xi+1, . . . ,xn) := A(x1, . . . ,xi−1, v,xi+1, . . . ,xn)

Specialize Output. Let F(x1, . . . ,xn) be a function and let v be the value we want to
specialize the concept to. Then the rule outputs a new predicate P satisfying

specialize F v → P(x1, . . . ,xn) := (F(x1, . . . ,xn) = v)

8. Negate: Let P be a predicate, then this production rule outputs the negation of the predicate,
i.e.

negate P → Q := Not(P)

9. Size: Let P(x1, . . . ,xn) be a predicate and I = {i1, . . . , im} be a set of indices. Let
J := {1, . . . , n} \ I = {j1, . . . , jn−m} with j1 < . . . jn−k. Then the production rule
outputs a new concept Q

size P I → Q(xj1 , . . . ,xjn−m
) := #{(xi1 , . . . ,xim) | P(x1, . . . ,xn)}

where #X denotes the cardinality of the set X .

Conjecture Production Rules.

1. Implication: Let P and Q be predicates over the same domain, each with n inputs. Then
the production rule outputs a conjecture

implies P Q → ∀x1, . . . ,xn,P(x1, . . . ,xn) =⇒ Q(x1, . . . ,xn)

2. Equivalence: This rule conjectures equivalence of concepts.
Predicate. Let P and Q be predicates over the same domain, each with n inputs. Then

the production rule outputs a conjecture

equivalence P Q → ∀x1, . . . ,xn,P(x1, . . . ,xn) ⇐⇒ Q(x1, . . . ,xn)

Function. Let F and G be functions over the same domain, each with n inputs. Then the
production rule outputs a conjecture

equivalence F G → ∀x1, . . . ,xn,F(x1, . . . ,xn) = G(x1, . . . ,xn)

3. Nonexistence: This rule asserts non-existence conjectures.
Predicate. Let P(x1, . . . ,xn) be a predicate. Then the production rule outputs a conjec-

ture
nonexistence P → ̸ ∃x1, . . . ,xn, P(x1, . . . ,xn)

Function. Let F(x1, . . . ,xn) be a function and v be a value. Then the production rule
outputs a conjecture

nonexistence F v → ̸ ∃x1, . . . ,xn, F(x1, . . . ,xn) = v

17

4. Exclusivity: This production rule outputs conjectures stating that certain concepts are
satisfied only on a particular finite set of inputs.

Predicate. Let P(x1, . . . ,xn) be a predicate, and S be a subset of Domain(P). Then
the production rule outputs a conjecture

exclusivity P S → ∀x1, . . . ,xn, P(x1, . . . ,xn) =⇒ (x1, . . . ,xn) ∈ S

Function. Let F(x1, . . . ,xn) be a function and v be a value. Then the production rule
outputs a conjecture

exclusivity F S v → ∀x1, . . . ,xn, F(x1, . . . ,xn) = v =⇒ (x1, . . . ,xn) ∈ S

A production rule application will propagate the input entities’ computational implementation and ex-
amples where possible. While the produced symbolic definitions and computational implementations
are deterministic, some rules have nondeterminism in the manner which new examples are adding
upon creating.

A.2 FERMAT Technical Details.

Here we describe further implementation details regarding FERMAT.

1. Forbidden paths: Following HR, we institute some forbidden paths which disallow the
application of certain rules automatically. In particular, this disallows the creation of the
following definitions & conjectures on input definition P : [¬¬P, P =⇒ P, P ⇐⇒
P, P ⇐⇒ ¬P]. Though this forms a minor optimization for our experiments, we believe
that this set of forbidden paths can be learned automatically. In particular, in an extension of
FERMAT which also allows interpretable proofs, an agent may quickly recognize these paths
lead to uninteresting proofs and prevent their usage in the future.

2. Global Instance Storage: By instance of a theory, we refer to all concrete values of the
domain introduced thus far in the theory. Our environment keeps track of all instances seen
in the theory throughout the theory exploration process.

3. Z3 Example Addition: Definitions created involving the universal or existential quantifier
rules cannot add examples or non-examples respectively. This is because adding such
instances to the data of the entity requires iterating over all values of the Nat type, which is
infinite. However, the more data an entity has the richer the theory. For such cases, we add
certified examples for such definitions, by randomly sampling an instance of values, and
using Z3 to determine whether it forms an example or non-example. We find this helps to
prevent future nonexistence and trivial implication conjectures.

A.3 Proving through Z3.

Our DSL allows users to define functions and predicates over bounded and unbounded parameters,
and to compose them into logical conjectures using constructs such as ForAll, Exists, Implies,
And, and arithmetic expressions. Critically, the DSL supports nested definitions: a predicate can
define helper functions and other predicates inside its body, and similarly for functions. This enables
the modular construction of conjectures and facilitates reuse of previously discovered building blocks.

Compiler and SMT-LIB Translation. The DSL is compiled to SMT-LIB, the input language
accepted by Z3. Our compiler performs:

1. Flattening of nested definitions into top-level SMT functions,

2. Lexical scoping resolution and name hygiene to avoid collisions,

3. Translation of DSL-level constructs into logically equivalent SMT forms. We write a
compiler which converts our DSL into the SMT-lib target language. The compiler is written
using the parglare [14] library.

18

f_0 := Func(
params 1;
bounded params 0;
ReturnExpr 2 * x_0;
ReturnPred None;

);
f_1 := Func(

params 0;
bounded params 0;
ReturnExpr 6;
ReturnPred None;

);
ReturnExpr None;
ReturnPred Exists(

[b_0],
f_0(x_0=b_0) == f_1()

);

(a) A DSL program asserting that 6 is even using
function composition.

p_0 := Pred(
params 1;
bounded params 1;

f_0 := Func(
params 1;
bounded params 0;
ReturnExpr x_0 + 1;
ReturnPred None;

);

ReturnExpr None;
ReturnPred Exists(

[b_0],
f_0(x_0=b_0) == x_0

);
);

(b) A nested DSL predicate defining an inner function
and using it in an existential condition.

Figure 5: DSL snippets

(define-fun f_0_p_0 ((x_0 Int)) Int (+ x_0 1))
(define-fun p_0 ((x_0 Int)) Bool

(exists ((b_0 Int)) (= (f_0_p_0 b_0) x_0)))

Figure 6: SMT-LIB code generated from Figure 5b, where naming collisions are avoided by hygienic
flattening.

Semantics and Proof Feedback. When a conjecture is compiled and passed to Z3, the prover
returns one of three outcomes:

UNSAT — The conjecture is logically valid. It is added to the theory as a verified theorem and can be
used in future derivations.

SAT — The conjecture is invalid. Z3 returns a counterexample, which is parsed back into the DSL
domain.

Timeout — We used 2s timeout with the Z3 solver.

Theory-Guided Composition. The DSL serves as a unifying language in our system: all definitions,
lemmas, and conjectures are expressed as DSL programs. As new concepts are discovered by
our theory formation framework (FERMAT), they are registered as definitions in the DSL. New
conjectures are then automatically generated by composing these building blocks. This compositional
ability—enabled by nesting and a hygienic compiler—allows our system to express and verify
arbitrarily structured mathematical ideas.

A.4 Ground Truth Set

We curated 180 ground truth functions, theorems, and conjectures using a well-known introductory
elementary number theory text [2] as well as a small set of famous conjectures in the number
theory literature, and an additional 67 ground truth entities drawn from the theory of finite fields
over F27. These ground truth concepts can be entirely derived by applying the production rules
to the base concepts (zero, successor, and equality for number theory, and generators and
field operations for F27). Figure 7 illustrates a small subset of ground truth concepts that relate to
divisibility, demonstrating an area in which the model would receive extrinsic reward for discovering
the most basic properties of natural numbers. On the other hand, Figure 8 illustrates a small subset
of ground truth concepts relating to more sophisticated theorems and conjectures in the theory of

19

prime numbers which offer extrinsic reward in theorizing about abstract ideas such as the existence
of infinite instances. Figure 9 covers a subset of definitions and theorems in F27.

It is worth noting that there may be multiple paths to arriving at a single concept. For example, it is
possible to derive the concept is even either by applying:

apply specialized divides two index_to_specialize=0

which gives a new concept with the first argument of the divides function to two, or by applying:

apply exists double indices_to_quantify=0

which gives a new concept that returns True for an input if there exists a natural number such that
doubling it results in the input. The number of possible paths to reach a certain ground truth concept
increases exponentially with complexity. Because we want to evaluate the algorithm on its ability to
find a ground truth concept regardless of the path it takes, we included redundant concepts in our
ground truth set. In this manner, we cover as many paths to meaningful math concepts as possible,
and we provide a smooth reward signal to the algorithm for defining interestingness.

Figure 7: Sample knowledge graph of ground truth entities relating to basic properties of divisibility
in the domain of natural numbers.

A.5 Computational Resources & Hyperparameters

Our experiments are run on 64 Intel Xeon Platinum 8352Y and 64 AMD EPYC 7413 24C CPUs.
We leverage parallelism built into FERMAT to enable speedup in the evaluations. Given this alloca-
tion, evaluating a single interestingness measure through episodic rollouts with FERMAT using the
configuration detailed in takes ∼ M = 120 seconds when using 64 workers. Our FunSearch and
EvoAbstract experiments take significantly longer due to large number of interestingness measures
generated and evaluated during evolutionary search. In particular, each experimental result reported
with either FunSearch/EvoAbstract takes approximately 18 hours with 64 workers. The evaluation of
our GPT-4o baseline takes a total of 6 hours when using 64 workers.

20

Figure 8: Sample knowledge graph of ground truth entities relating to theorems and conjectures
central to the theory of prime numbers. Note that the concept of primality, is_prime, is an ancestor
of many concepts.

Algorithm 1 EvoAbstract: Synthesis via Evolution and Abstraction Learning

Require: Template T ; Number of islands k; Generations Ngen; Abstraction frequency G ∈ N+;
Require: Parent sample size np ∈ N+; Abstraction candidate sample size nabs ∈ N+; Evolution

sample size ne;
Require: Evolution & Abstraction LLMs Lvar,Labs;

1: Initialize k populations P1, . . . ,Pk with seed programs.
2: Initialize k empty abstraction libraries Lib1, . . . ,Libk.
3: for generation g = 1 to Ngen do
4: Sample island i ∼ Uniform{1, . . . , k}.
5: P ←EVOLUTIONSTEP(Pi, T,Libi, np, ne,Lvar,Scores).
6: Score← POLICYEVALUATIONSTEP(P).
7: Update population Pi ← Pi ∪ {P}
8: if g mod G ≡ 0 then ▷ Perform abstraction phase periodically
9: for all islands i = 1 to k do

10: Libi ← Libi ∪ ABSTRACTIONSTEP(Pi, T,Libi, nabs,Labs,Scores).
11: return Best program f∗ found across all populations P1, . . . ,Pk.

21

Figure 9: Sample knowledge graph of ground truth entities relating to theorems and conjectures
central to the theory of the finite field F27.

22

Algorithm 2 Policy Template for Action Selection

Require: Interestingness measure I(entity, graph) 7→ R.
Require: Knowledge Graph G = (V,E) with definitions D ⊂ V .
Require: Number of definitions to sample N ∈ N+.
Require: Simulation limit Slim ∈ N+.

1: Dsampled ← ∅ ▷ Set of N sampled definitions
2: Scores← {} ▷ Map each definition to its interestingness score
3: for each definition d ∈ D do
4: Scores[d]← I(d,G)
5: end for
6: Dsampled ← SampleByScore(Scores,N)
7: Apotential ← EnumeratePossibleActions(Dsampled, G)
8: Asim ← Sample(Apotential,min(Slim, |Apotential|)) ▷ Randomly sample up to Slim actions

for simulation
9: SimulatedActionScores← {}

10: for each action a ∈ Asim do
11: enew ← SimulateAction(a,G) ▷ Simulate action a to get resulting entity enew
12: scorea ← I(enew, G) ▷ Compute interestingness of the new entity
13: SimulatedActionScores[a]← scorea
14: end for
15: a∗ ← SampleByScore(Asim, 1)
16: return a∗

We note that our episodic roll-outs are time-capped, not finishing after a limit number of steps. This
is because there is a natural variance in the types of mathematical entities that get constructed, and
calls to the Z3 theorem prover can often take many seconds. When resolving conjectures, we set
the timeout to Z3 to be 2.0 seconds, and to 0.5 seconds when using Z3 to add instances to entities
without any.

A.6 REPL

FERMAT also comes equipped with a read-eval-print-loop (REPL) for manual interaction with the
environment. The REPL allows the user to use an interactive shell to define, inspect, and evaluate
mathematical entities.

Available commands.

Command Description
help Get help on commands or list available rules
list List available concepts, rules, or conjectures
apply Apply a production rule to create new concepts/conjectures
inspect Show detailed information about an entity
compute Test computational implementation with arguments
rename Rename an entity
remove Remove an entity
visualize Create a visualization of the current knowledge graph
clear Clear the screen
save Save knowledge graph to file
exit Exit the REPL

Example usage.

23

REPL Command Concept Produced
apply iter successor add
apply iter add zero multiply
apply match add indices_to_match=[0,1] double
apply match multiply indices_to_match=[0,1] square
apply specialize successor zero index_to_specialize=0 one

24

Write a Python function called `calculate_interestingness` that takes an
entity_id and a knowledge graph, and returns a float between 0 and 1
representing how interesting the entity is. Use the primitive functions to
extract relevant features and combine them in a meaningful way.

Your function should aim to identify entities that are:
1. Not too simple and not overtly complicated and uninteresting.
2. Likely to be fruitful for further exploration
3. Have characteristics that mathematicians would find interesting
4. Possess a good balance of generality and specificity

You can use mathematical operations (arithmetic, min/max, etc.) and common
Python libraries like math and numpy to combine the primitives in a way that
captures interestingness. CONSTRAINTS:
- You **MUST** respond with **only** the complete, syntactically correct
Python code for the new function (`calculate_interestingness_vN`).
- Include the `def calculate_interestingness_vN(...):` signature line and the
function body. Add a concise docstring.
- **DO NOT** include any introductory text, explanations, comments outside
the function body, or usage examples in your response.
- If you use any of the primitives or abstractions, make sure you use them
correctly. Provide the right inputs as described in the documentation given
about the primitives!
- The descriptions of the primitives and abstractions indicate what arguments
they take. Follow proper Python syntax. Watch out for potential division by
zero errors.

You have access to the following primitive functions that can be used in your
interestingness function. Each primitive provides some information about a
mathematical entity in the knowledge graph: {}

Please implement the interestingness measure in the following format:

def calculate_interestingness(entity_id: str, graph: KnowledgeGraph) ->
float:

"""
Calculate the interestingness of a mathematical entity.

Args:
entity_id: The ID of the entity in the knowledge graph
graph: The knowledge graph containing all mathematical entities

Returns:
A float between 0 and 1 representing how interesting the entity is,
where 0 is least interesting and 1 is most interesting

"""
Implement your interestingness scoring here
...

Return a value between 0 and 1
return score

Make sure your function handles potential errors gracefully, for example by
catching exceptions when calling primitives. The function should always return
a valid float between 0 and 1, even if there are unexpected inputs or errors.

Figure 10: The one-shot prompt for our GPT-4o baseline. We do not insert the primitives here for
brevity, these can be found in Figure 11.

25

- `get_ancestors(entity_id, graph)`: Returns list of ancestor node IDs.
- `get_descendants(entity_id, graph)`: Returns list of descendant node IDs.
- `get_construction_depth(entity_id, graph)`: Returns the longest path from a
root node.
- `get_in_degree(entity_id, graph)`: Returns the number of direct parent nodes.
- `get_out_degree(entity_id, graph)`: Returns the number of direct child nodes.
- `get_construction_history_rule_names(entity_id, graph)`: Returns list of rule
names used in construction.
- `get_entity_step_age(entity_id, graph)`: Returns the entity's age in
construction steps.
- `get_num_concepts(graph)`: Returns the total number of concepts.
- `get_num_conjectures(graph)`: Returns the total number of conjectures.
- `get_entity_node_type(entity_id, graph)`: Returns 'Concept', 'Conjecture', or
'Theorem' depending on the type of the entity.
- `get_concept_category(entity_id, graph)`: Returns 'Predicate', 'Function', or
'Constant' depending on the type of the entity.
- `get_input_arity(entity_id, graph)`: Returns input arity of the entity..
- `get_num_component_types(entity_id, graph)`: Returns number of component
types in examples.
- `get_examples(entity_id, graph)`: Returns list of positive examples, each
example is a tuple of ints.
- `get_nonexamples(entity_id, graph)`: Returns list of negative examples, each
example is a tuple of ints.
- `get_num_construction_inputs(entity_id, graph)`: Returns number of direct
construction inputs.
- `is_proven(entity_id, graph)`: Returns 1.0 if proven theorem, 0.0 otherwise.
- `create_weighted_interestingness_function(functions: List[Callable], weights:
List[float])`: Creates a weighted interestingness function from a list of
interestingness functions and a list of weights.

Figure 11: A list of primitive methods available to the interestingness measure synthesizers. Each
method returns a simple property or information about the knowledge graph and/or the input entity.

26

You are an expert Python programming assistant specializing in evolving code
based on performance feedback.

You are participating in an evolutionary function discovery process (FunSearch)
to find a high-performing Python function called `calculate_interestingness`.
This function evaluates the 'interestingness' of mathematical entities within a
knowledge graph.

The user prompt contains several **example implementations** of this function
(named `calculate_interestingness_v0`, `calculate_interestingness_v1`, etc.),
showcasing different approaches that have shown some success. The prompt ends
with the header for the **new function** you need to generate: `def
calculate_interestingness_vN(entity_id: str, graph: KnowledgeGraph) -> float:`.

Your specific task is to **generate a new, potentially improved version** of
the `calculate_interestingness` function, named `calculate_interestingness_vN`.
You should **analyze all the example functions** provided in the user prompt
(`_v0` to `_v(N-1)`) to understand different successful strategies and
potentially combine or adapt their ideas.

The function you write will receive `entity_id` (string) and `graph` (a
`KnowledgeGraph` object) as input. You can use the following methods on the
`graph` object to get information about the entity (`entity_id`) or the graph
itself, the description explains what arguments it takes: {}

Optionally, you can also use the following abstractions: {}

You also have access to standard Python libraries like `math`. Do not use
notation like `graph.METHOD_NAME(args)`, only `METHOD_NAME(args)` will work.

The goal is to create a function that receives a higher score when evaluated,
indicating it better captures mathematical interestingness.

Output Constraints:
- You **MUST** respond with **only** the complete, syntactically correct Python
code for the new function (`calculate_interestingness_vN`).
- Include the `def calculate_interestingness_vN(...):` signature line and the
function body. Add a concise docstring.
- **DO NOT** include any introductory text, explanations, comments outside the
function body, or usage examples in your response.
- Enclose the entire function definition within a single markdown code block
like this:
- If you use any of the primitives or abstractions, make sure you use them
correctly by supplying the proper arguments.
- Try not to rely on the abstractions alone - use them in a compositional way,
where you also implement some of the logic yourself (passing interesting
arguments to the abstractions counts).
- Try not to copy the examples exactly, but rather use them as inspiration to
create a new, better, function that *can* be similar.
- You do not have to use all primitives, and you do not have to make extremely
complex functions if you don't think it necessary.
- Watch out for potential division by zero errors.

```python
def calculate_interestingness_vN(entity_id: str, graph: KnowledgeGraph) ->
float:

"""A new function version inspired by provided examples."""
# ... implementation ...
return score

```

Figure 12: The prompt supplied to the evolution sampler Lvar, indicating the evolution task that
needs to be applied. We have removed the description of the DSL primitives which appears in 11.

27

You are an expert programmer specializing in code refactoring and identifying
useful, general-purpose abstractions within existing code.
You will be given a set of Python functions, each with a performance score,
and a list of already-identified abstractions. Your task is to analyze the
functions and extract new, reusable subroutines.

An "abstraction" is a self-contained function that performs a useful
calculation. It should be general enough to be used in various contexts. For
example, an abstraction can generalize a pattern by turning constants into
parameters.

You must only return the Python code blocks for the new abstractions you
create. Do not include any other text, explanation, or conversation.

Your goal is to identify and implement useful, reusable subroutines
(abstractions) from the provided program examples.

1. Existing Abstractions
Review the following abstractions that have already been created. **Avoid
creating new abstractions that are functionally identical to these.**
{current_abstractions}

2. Program Examples to Analyze
Here are the programs to analyze, along with their performance scores. You
should **prioritize creating abstractions from programs with higher scores**,
as they are more likely to contain useful logic.
{program_examples}

3. Your Task & Guiding Principles
Carefully analyze the program examples and identify common or useful patterns
that can be generalized into new abstractions.
- An abstraction should be a **small, reusable function** that captures a
specific calculation or logical step.
- Good abstractions are **general**. Instead of hard-coding values, define
them as function arguments. For example, if you see `(x - y) * 0.5` in a
program, a good abstraction would be `def scaled_difference(a, b, factor):
return (a - b) * factor`, not `def specific_difference(a, b): return (a - b)
* 0.5`.
- You can create **improved or generalized versions** of existing
abstractions. If you do, append `_v2`, `_v3`, etc., to the original name to
ensure it is unique.
- You may also **compose existing abstractions** to create a new, more
powerful one.

4. Required Output Format
Provide your response as a list of Python functions. Each function must have
a concise docstring explaining its purpose. Use descriptive argument names.

```python
def new_abstraction_name(arg1, arg2: float) -> any:

"""
A concise description of what this abstraction calculates.
"""
# ... implementation ...
return result

Figure 13: The prompt supplied to the abstraction sampler Labs, indicating the abstraction task that
needs to be carried out.

28



def calculate_interestingness(entity_id: str, graph) -> float:
"""
Calculate the interestingness of a mathematical entity.

Args:
entity_id: The ID of the entity in the knowledge graph
graph: The knowledge graph containing all mathematical entities

Returns:
A float between 0 and 1 representing how interesting the entity is,
where 0 is least interesting and 1 is most interesting

"""
import numpy as np

try:
# Get various properties of the entity
construction_depth = get_construction_depth(entity_id, graph)
in_degree = get_in_degree(entity_id, graph)
out_degree = get_out_degree(entity_id, graph)
num_construction_inputs = get_num_construction_inputs(entity_id, graph)
node_type = get_entity_node_type(entity_id, graph)
input_arity = get_input_arity(entity_id, graph)
num_component_types = get_num_component_types(entity_id, graph)
is_proven_theorem = is_proven(entity_id, graph)

# Calculate base metrics with small adjustments to prevent division by
zero
complexity = np.log(1 + construction_depth) / (1 + input_arity)
influence = (in_degree * out_degree) / (1 + num_construction_inputs)
specificity = 1 / (1 + num_component_types)
proof_bonus = 0.1 if is_proven_theorem else 0

# Combine metrics with weights; weights can be adjusted as needed
score = (0.4 * complexity + 0.3 * influence + 0.2 * specificity + 0.1 *
proof_bonus)

# Ensure score is between 0 and 1
return min(max(score, 0.0), 1.0)

except Exception as e:
# Handle unexpected errors by returning a neutral score
return 0.5

Figure 14: An interestingness measure generated by GPT-4o. It begins by extracting relevant features
of the state using the primitives. The measure itself is not very performant as it overly rewards
complexity and node connectivity in the graph, which only increase in new entities. As ground-
truth entities are not developed immediately using this measure, the episodes proceed by producing
increasingly convoluted and uninteresting objects.

29



def calculate_interestingness(entity_id: str, graph: KnowledgeGraph) -> float:
"""Calculate the interestingness score for a given entity.

Args:
entity_id: The ID of the entity to score.
graph: The knowledge graph containing the entity.

Returns:
A float value representing the interestingness score (higher is more interesting).

"""
try:

# Retrieve entity metrics
metrics = retrieve_entity_metrics(entity_id, graph)
(node_type, depth, in_degree, out_degree, step_age, num_concepts,
num_conjectures, proven_status, arity, num_components,
num_construction_inputs, ancestors_count, descendants_count,
examples, nonexamples, rules) = metrics

# Base score calculations
(depth_score, connectivity_score, age_score, arity_score) = calculate_base_scores(

depth, in_degree, out_degree, step_age, arity, num_components, num_concepts, num_conjectures)

# Calculate additional influence scores
influence_score = calculate_influence_score(ancestors_count, descendants_count, num_concepts, num_conjectures)

# Calculate example-based scores
example_balance = calculate_example_balance(examples, nonexamples)
uniqueness_score = calculate_uniqueness_score_v2(examples, nonexamples)

# Rule diversity score
rule_diversity_score = calculate_rule_diversity_score(rules)

# Complexity score
complexity_score = calculate_complexity_score(num_construction_inputs, depth)

# Weights and score calculation
weights = {

'depth': 0.15,
'connectivity': 0.15,
'age': 0.1,
'arity': 0.1,
'proven_status': 0.1,
'influence': 0.2,
'example_balance': 0.05,
'uniqueness': 0.1,
'rule_diversity': 0.05,
'complexity': 0.1

}

# Calculate overall score
score = calculate_combined_score(

depth_score, connectivity_score, age_score, arity_score,
proven_status, influence_score, example_balance, uniqueness_score,
rule_diversity_score, complexity_score, category_bonus=0.0, weights=weights)

# Adjust score by node type with refined multipliers
score = adjust_score_by_node_type(score, node_type, concept_multiplier=1.3, conjecture_multiplier=1.2)

return score

except Exception:
return 0.0

Figure 15: The best program found by EvoAbstract in our main run on the starting knowledge graph
succ_zero_eq. We include the abstractions identified which are used in this program in Figure 16.

30



def retrieve_entity_metrics(entity_id: str, graph: KnowledgeGraph) -> tuple:
node_type = get_entity_node_type(entity_id, graph)
depth = get_construction_depth(entity_id, graph)
in_degree = get_in_degree(entity_id, graph)
out_degree = get_out_degree(entity_id, graph)
step_age = get_entity_step_age(entity_id, graph)
num_concepts = get_num_concepts(graph)
num_conjectures = get_num_conjectures(graph)
proven_status = is_proven(entity_id, graph)
arity = get_input_arity(entity_id, graph)
num_components = get_num_component_types(entity_id, graph)
num_construction_inputs = get_num_construction_inputs(entity_id, graph)
ancestors_count = len(get_ancestors(entity_id, graph))
descendants_count = len(get_descendants(entity_id, graph))
examples = get_examples(entity_id, graph)
nonexamples = get_nonexamples(entity_id, graph)
rules = get_construction_history_rule_names(entity_id, graph)

return (node_type, depth, in_degree, out_degree, step_age, num_concepts, num_conjectures, proven_status, arity,
num_components, num_construction_inputs, ancestors_count, descendants_count, examples, nonexamples, rules)

def calculate_base_scores(depth, in_degree, out_degree, step_age, arity, num_components, num_concepts,
num_conjectures) -> tuple:

depth_score = depth / (1 + num_concepts)
connectivity_score = (in_degree + out_degree) / (1 + num_concepts + num_conjectures)
age_score = step_age / (1 + depth)
arity_score = arity / (1 + num_components)
return depth_score, connectivity_score, age_score, arity_score

def calculate_influence_score(ancestors_count, descendants_count, num_concepts, num_conjectures) -> float:
"""
Calculate influence score considering ancestors and descendants.

Returns the influence score based on ancestor and descendant counts.
"""
return (ancestors_count + descendants_count) / (1 + num_concepts + num_conjectures)

def calculate_example_balance(examples, nonexamples) -> float:
"""
Calculate the example balance score.

This score reflects the proportion of examples compared to nonexamples,
with an adjustment to prevent division by zero.
"""
return len(examples) / (1 + len(nonexamples))

def calculate_uniqueness_score_v2(examples, nonexamples) -> float:
"""
Calculate uniqueness score based on the difference between example and non-example sets.
This abstraction is an improvement on calculate_uniqueness_score, allowing flexibility in weighting the size of
examples.
"""
unique_examples_count = len(set(examples).difference(set(nonexamples)))
return unique_examples_count / (1 + len(examples))

def calculate_rule_diversity_score(rules) -> float:
"""
Calculate rule diversity score for a set of rules.

Returns the diversity score based on the uniqueness of construction rules.
"""
return len(set(rules)) / (1 + len(rules))

def calculate_complexity_score(construction_inputs, depth) -> float:
"""
Calculate the complexity score based on construction inputs and depth.
"""
return construction_inputs / (1 + depth)

def calculate_combined_score(depth_score, connectivity_score, age_score, arity_score, proven_status, influence_score,
example_balance, uniqueness_score, rule_diversity_score=None, input_diversity_score=None, category_bonus=0.0,
weights=None) -> float:

"""
Combine various component scores into a single score, accounting for weights and optional inputs. Computes a
weighted sum.
"""
{implementation removed for brevity}
return score

def adjust_score_by_node_type(score, node_type, concept_multiplier=1.2, conjecture_multiplier=1.1) -> float:
if node_type == 'Concept':

return score * concept_multiplier
elif node_type == 'Conjecture':

return score * conjecture_multiplier
return score

Figure 16: The abstractions used in the best program found by EvoAbstract during the run on
succ_zero_eq.

31



def calculate_interestingness_v2(entity_id: str, graph: KnowledgeGraph) -> float:
"""Improved version of `calculate_interestingness_v1` with enhanced score integration."""
# Retrieve entity characteristics
node_type, concept_category, in_degree, out_degree, construction_depth, step_age, num_construction_inputs,
proven_status = retrieve_entity_characteristics(entity_id, graph)

# Base score calculation
base_score = compute_base_score(node_type, concept_category)

# Diversity score using construction rule names
rule_names = get_construction_history_rule_names(entity_id, graph)
diversity_score = calculate_diversity_score_v2(rule_names, factor=0.18) # Balanced diversity factor

# Connectivity score with adjusted factor
connectivity_score = calculate_comprehensive_connectivity_score(in_degree, out_degree, construction_depth,
factor=1.1)

# Construction score with emphasis on age
construction_score = calculate_emphasized_construction_score(step_age, num_construction_inputs, age_factor=1.2,
input_factor=0.4)

# Create weights dictionary
weights = {

'base': 1.2, # Increased emphasis on base
'connectivity': 0.85, # Higher connectivity weight
'construction': 0.95, # Slightly reduced construction weight
'diversity': 0.25, # Consistent diversity emphasis
'boost_amount': 0.9 # Slightly reduced boost for proven status

}

# Compute the final score
score = compute_final_score(base_score, connectivity_score, construction_score, diversity_score, proven_status ==
1.0, weights)

return score

Figure 17: A performant program found by EvoAbstract in our main run on the starting knowledge
graph ff_27. We include the abstractions identified which are used in this program in Figure 18.

32



Figure 18: The abstractions used in the best program found by EvoAbstract during the run on ff_27.
Note that often newer abstractions use previous ones, sometimes trivially.

def calculate_comprehensive_connectivity_score(in_degree: int, out_degree: int, construction_depth: int, factor:
float) -> float:

"""
Calculate the comprehensive connectivity score of an entity.

Args:
in_degree: The in-degree of the entity.
out_degree: The out-degree of the entity.
construction_depth: The construction depth of the entity.
factor: The scaling factor for the connectivity score.

Returns:
A float value representing the comprehensive connectivity score.

"""
return calculate_connectivity_score_with_factors(in_degree, out_degree, construction_depth, factor)

def calculate_emphasized_construction_score(step_age: int, num_construction_inputs: int, age_factor: float,
input_factor: float) -> float:

"""
Calculate an emphasized construction score based on step age and number of construction inputs,
adjusted by specified age and input factors.

Args:
step_age: The age of the construction step.
num_construction_inputs: The number of inputs in the construction.
age_factor: The factor to adjust the emphasis on the age of the step.
input_factor: The factor to adjust the emphasis on the number of inputs.

Returns:
A float value representing the emphasized construction score.

"""
return (step_age * age_factor) / (num_construction_inputs * input_factor + 1)

def calculate_base_score(node_type: str, concept_category: str) -> float:
"""
Calculate the base score for an entity based on its node type and concept category.
"""
base_score = 0.0
if node_type == 'Theorem':

base_score += 1.0
elif node_type == 'Conjecture':

base_score += 0.8
else:

base_score += 0.5

if concept_category == 'Function':
base_score += 0.3

elif concept_category == 'Predicate':
base_score += 0.2

return base_score

def calculate_connectivity_score_with_factors(in_degree: int, out_degree: int, construction_depth: int, factor: float
= 1.0) -> float:

return ((in_degree + out_degree) / (construction_depth + 1)) * factor

def calculate_diversity_score_v2(rule_names: list, factor: float) -> float:
"""
Calculate the diversity score based on the unique rule names and a factor.

Args:
rule_names: A list of rule names associated with construction history.
factor: A float value representing the factor to scale the diversity.

Returns:
A float value representing the diversity score.

"""
return len(set(rule_names)) * factor

def compute_final_score(base_score: float, connectivity_score: float, construction_score: float, diversity_score:
float, proven_status: bool, weights: dict) -> float:

"""
Compute the final interestingness score after combining scores and potentially boosting for proven status.

Args:
base_score: The base component of the score.
connectivity_score: The connectivity component of the score.
construction_score: The construction component of the score.
diversity_score: The diversity component of the score.
proven_status: Whether the entity is proven or not.
weights: A dictionary containing weights and a boost amount for proven status.

Returns:
A float representing the final computed score.

"""
score = calculate_scores_v2(base_score, connectivity_score, construction_score, diversity_score, weights)
return adjust_score_for_status_v2(score, proven_status, weights['boost_amount'])

33



def calculate_interestingness(entity_id: str, graph: KnowledgeGraph) -> float:
"""Calculate the interestingness score for a given entity.

Args:
entity_id: The ID of the entity to score.
graph: The knowledge graph containing the entity.

Returns:
A float value representing the interestingness score (higher is more interesting).

"""
try:

# Retrieve properties of the entity
in_degree = get_in_degree(entity_id, graph)
out_degree = get_out_degree(entity_id, graph)
construction_depth = get_construction_depth(entity_id, graph)
entity_step_age = get_entity_step_age(entity_id, graph)
node_type = get_entity_node_type(entity_id, graph)
num_examples = len(get_examples(entity_id, graph))
num_nonexamples = len(get_nonexamples(entity_id, graph))
num_concepts = get_num_concepts(graph)
num_conjectures = get_num_conjectures(graph)
input_arity = get_input_arity(entity_id, graph)
num_component_types = get_num_component_types(entity_id, graph)
num_construction_inputs = get_num_construction_inputs(entity_id, graph)

# Calculate structural score with construction depth normalization
structural_score = (in_degree + out_degree + math.log1p(num_examples + num_nonexamples)) / (1 +
math.sqrt(construction_depth) + num_construction_inputs)

# Enhance novelty score using exponential decay
novelty_score = math.exp(-0.05 * entity_step_age)

# Calculate density factor taking root of concept and conjecture counts
density_factor = (math.sqrt(num_concepts) + math.sqrt(num_conjectures)) / (1 + construction_depth) if
(num_concepts + num_conjectures) > 0 else 1.0

# Calculate type score with increased weight for proven theorems
type_score = 0.0
if node_type == 'Concept':

type_score = 1.2 * density_factor
elif node_type == 'Conjecture':

type_score = 0.7 * density_factor
elif node_type == 'Theorem':

type_score = is_proven(entity_id, graph) * 1.8 * density_factor

# Arity complexity with stronger penalty for multiple types
arity_complexity_factor = 1.0 / (1 + 2 * input_arity + num_component_types)

# Calculate balance in examples to non-examples with log adjustment
example_balance_score = (2 * math.log1p(num_examples) + math.log1p(num_nonexamples)) / math.log1p(num_examples +
num_nonexamples + 1)

# Example ratio to emphasize more positive examples
example_ratio = (num_examples - num_nonexamples) / (1 + num_examples + num_nonexamples)

# Aggregate score with adjusted weight distribution
score = (

0.3 * structural_score +
0.2 * novelty_score * arity_complexity_factor +
0.2 * type_score * arity_complexity_factor +
0.15 * example_balance_score +
0.1 * (1.0 / (1 + num_component_types)) +
0.05 * example_ratio

)
return score

except Exception:
return 0.0

Figure 19: The best program found by FunSearch during the run on succ_zero_eq.

34



Figure 20: Sample sections of elementary number theory discovered by EvoAbstract during runs on
succ_zero_eq and arith_base.

35



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the abstract and introductory aptly describe our contributions in FERMAT,
investigations in interestingness learning, and EvoAbstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, our paper discusses limitations of our investigation and framework in the
discussion portion of the experiments section (Section 5).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

36



Answer: [NA]

Justification: Our paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, the paper discloses all information required to reproduce the main results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

37



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we include our code and commands for running experiments in the
supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we share all details for hyperparameters in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we report standard deviations of rewards obtained during experiments
with different measures, and run our method averaged over 4 runs for a comparison with
FunSearch.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

38

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We list the computational resources we used in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have verified that our research conforms with the NeurIPS code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no immediate societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

39

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets we do not exclusively develop are properly credited and respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

40

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, our new framework and codebase comes with documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

41



16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use LLMs to conduct any core method development in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

42

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Problem Formulation and Motivation
	Mathematical Theory Formation as a Markov Decision Process (MDP)
	Interestingness as Intrinsic Reward

	Fermat: A Framework for Automated Theory Formation
	Mathematical Entities
	Production Rules
	Prover

	Learning Interestingness
	Experiments
	Experimental Results
	Discussion

	Related Works
	Conclusion
	Acknowledgement
	Appendix / supplemental material
	Production Rules.
	Fermat Technical Details.
	Proving through Z3.
	Ground Truth Set
	Computational Resources & Hyperparameters
	REPL


