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ABSTRACT

Unsupervised semantic segmentation aims to assign a semantic label to each pixel
in an image, identifying the object or scene class without any supervision. However,
the task becomes particularly difficult due to factors like unclear or overlapping
boundaries, intricate object textures, and the presence of multiple objects within the
same region. Traditional unsupervised models often suffer from class misalignment
and poor spatial coherence, leading to fragmented and imprecise segmentation, of-
ten employing postprocessing with Conditional Random Fields (CRFs) to improve
their results. Additionally, deterministic models lack the ability to capture predic-
tion uncertainty, making their outputs particularly prone to errors in ambiguous
regions. To address these issues, we propose a probabilistic unsupervised semantic
segmentation framework that enhances the robustness and accuracy of segmenta-
tion by refining predictions through uncertainty modeling and spatial smoothing
techniques. We also introduce a novel loss function that encourages the model to
focus on learning similarities within pixels by leveraging feature information from
pre-trained vision transformer backbones. We also provide theoretical analyses
of our proposed loss function, highlighting its favorable properties in relation to
the optimization of our models. Our method demonstrates superior accuracy and
calibration, outperforming various baselines across multiple unsupervised semantic
segmentation benchmarks including COCO, Potsdam, and Cityscapes. In con-
clusion, our framework offers a foundation for more reliable, uncertainty-aware
segmentation models, advancing research in unsupervised semantic segmentation.

1 INTRODUCTION

Semantic segmentation is a powerful tool in the field of computer vision, providing a complex and
nuanced understanding of images down to the pixel level. As a dense prediction problem, semantic
segmentation surpasses simple object detection and image classification by offering a detailed,
granular perspective of an image’s content. Unsupervised image segmentation builds upon this, by
aiming to segment images without the use of labeled training data.

Despite recent progress in self-supervised and unsupervised segmentation techniques, considerable
challenges remain. Noisy image regions or blurry edges, often caused by low resolution or motion
blur, may result in regions of poor spatial coherence, leading models to output inconsistent and
fragmented labels for adjacent parts of the same object. Additionally, images arising in real-world
tasks often contain multiple instances of the same object class varying drastically in size and available
contextual information. Models must be capable of capturing fine-grained details while still remaining
capable of labeling large objects coherently. Moreover, variability in the appearance of the objects
present in the images themselves, due to changes in color, lightning, or texture, renders it difficult to
consistently identify and distinguish objects. Situations like this often arise in dense urban scenes,
where objects may also overlap one another like people on sidewalks or trees in the background of
an urban environment. Together, these challenges pose significant obstacles for robust and accurate
segmentation models.

Existing unsupervised segmentation frameworks primarily leverage clustering algorithms, such as
K-means (Lloyd, 1982; MacQueen et al., 1967), Fuzzy C-means (Bezdek et al., 1984), or Mean-
Shift (Comaniciu & Meer, 2002), which group pixels based on similarity in color, texture, or intensity.
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Figure 1: Illustration of our proposed probabilistic unsupervised segmentation framework. We can
divide our modeling pipeline conceptually into five distinct steps: (i) Obtaining patch embeddings for
each input image by passing them through a frozen ViT, (ii) Generating pseudo labels for the input
image by passing the patch embeddings through a pretrained frozen Backbone Model (STEGO, EA-
GLE, CAUSE, KNNs, etc.), (iii) Probabilistic refinement via modified SNGP for uncertainty-aware
Gaussian embeddings, (iv) Fine grained segmentation to delineate objects, (v) Metric learning to
categorize distinct object classes. Steps highlighted in blue signify frozen parts of the pipeline. Green
and orange signify probabilistic and deterministic components respectively.
The four images on the bottom showcase from left to right: The true label (only used for evaluation),
intermediate predictions produced during training, the final prediction after training has been con-
cluded, the variance of the predictions, and dark red regions highlight regions of higher uncertainty.

However, these methods are inherently limited by the pixel-level locality of clustering approaches,
which often struggle to capture broader contextual relationships within images.

In recent years, deep learning-based methods, such as autoencoders (Evan et al., 2020) and
GANs (Goodfellow et al., 2014), have gained popularity for feature learning in segmentation tasks.
Many newer techniques now combine deep learning with classical clustering and filtering methods.
Prominent models like STEGO (Hamilton et al., 2023), EAGLE (Kim et al., 2024), HP (Seong
et al., 2023), CutLER (Wang et al., 2023), SAM (Kirillov et al., 2023), U2Seg (Niu et al., 2024)
and CAUSE (Kim et al., 2023) incorporate self-supervised, pretrained Vision Transformer (ViT)
backbones like DINO (Caron et al., 2021) to extract features. These are then paired with smaller,
trainable models to produce dense segmentation maps.

However, the segmentation maps generated by these models often suffer from noise, particularly
in low-frequency regions, leading to grainy outputs. To mitigate this, postprocessing techniques
such as clustering, upsampling, and refinement via fully connected Conditional Random Fields
(CRFs) (Quattoni et al., 2004) are commonly applied.

Our approach differs fundamentally from these methods. Rather than applying additional postpro-
cessing, we leverage the coarse segmentation maps produced by these models as pseudo-labels for
our SNGP model. Moreover, existing deterministic models lack the capability to quantify uncertainty
in their predictions, making them particularly vulnerable to errors in ambiguous or complex regions
of the image.

To address these limitations, we propose a post-hoc probabilistic framework, combined with a novel
loss function, which can be seamlessly integrated into existing methods (Kim et al., 2023; 2024;
Hamilton et al., 2023). Our framework enhances semantic segmentation by making it uncertainty-
aware, improving accuracy, and demonstrating robustness against noisy regions and blurry edges

Our contributions are: (i) We introduce a novel probabilistic framework followed by a novel loss
function that enables a more precise definition of class boundaries and improves the robustness of
prediction by unsupervised image semantic segmentation. (ii) Our distance-aware uncertainty loss and
probabilistic embedding enable the model to better capture the underlying uncertainty in the data. By
accounting for spatial relationships and variations in the embedding space, our method improves the
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segmentation quality, particularly around ambiguous or overlapping class boundaries, while providing
more reliable confidence estimates. (iii) We provide a theoretical foundation for the convergence
of our proposed algorithm. Specifically, we show that our proposed loss function substantiates
the convergence of the optimization process. The theoretical justification not only highlights the
robustness of our approach but also provides a principled explanation for its effectiveness in improving
representation quality. (iv) We conduct comprehensive experiments to show the advantage of our
method compared to deterministic approaches. We test our method on three baselines and examine it
on the Cityscapes, Potsdam, and COCO-Stuff segmentation datasets. Our approach achieves superior
performance to uncertainty trade-off compared to the other methods, which highlights the promising
benefit of probabilistic training to unsupervised segmentation frameworks.

2 BACKGROUND AND RELATED WORKS

Learning Unsupervised Representation and Semantic Pseudo-label Assignment Recent state-
of-the-art unsupervised segmentation techniques exploit self-supervised learning models like
DINO (Caron et al., 2018) as feature extraction for pixel embedding. These methods utilize pretrained
Vision Transformer (ViT) models to generate rich, semantic representations that can be leveraged
for downstream tasks. For instance, STEGO (Hamilton et al., 2023) introduces an approach to
distill unsupervised features into semantic labels, achieving improved spatial coherence in segmen-
tation results. EAGLE (Kim et al., 2024) enhances this by utilizing the eigenvectors of a similarity
matrix-based Laplacian, allowing for the discovery of semantic relations between objects. Similarly,
CAUSE (Kim et al., 2023) advances the field by incorporating a discretized concept clusterbook and
concept-wise self-supervised learning to refine the segmentation process. These approaches focus
primarily on label assignment by deriving pseudo-labels from high-level feature embeddings. Despite
the progress, there remains a challenge in managing uncertainties and noise inherent in unsupervised
methods. Our work addresses these limitations by proposing a probabilistic framework that integrates
seamlessly with existing pseudo-labeling techniques, introducing a novel loss function to account for
uncertainty in predictions. This not only improves the accuracy of segmentation but also makes it
more robust to noisy and ambiguous boundaries.

Spectral Normalized Gaussian Process (SNGP) (Liu et al., 2020) improves the uncertainty quantifi-
cation capabilities of deep learning models by introducing two key modifications: spectral normaliza-
tion and a Gaussian process output layer. Spectral normalization regularizes the network’s weights,
ensuring smooth representations that preserve distances between input samples. The Gaussian process
output layer models the uncertainty in predictions using a probabilistic framework. This makes SNGP
suitable for supervised learning tasks, where the goal is to learn a mapping from input data to
desired outputs. The SNGP model can be expressed as f(x) = GP (µ(x), k(x, x′)), where µ(x) and
k(x, x′) represent the mean and covariance functions of the GP, respectively. These functions are
parameterized by a neural network, with spectral normalization applied to each layer to control the
Lipschitz constant, ensuring ∥W∥σ ≤ 1 where W is the weight matrix of each layer and ∥.∥σ denotes
the spectral norm. Inspired by SNGP (Liu et al., 2020), we propose a Gaussian neural embedding to
generate probabilistic embeddings at the pixel level to capture the uncertainty and variability in the
data and expand SNGP for unsupervised setting.

3 METHOD

Our method integrates several key components to achieve robust segmentation result. First, it utilizes
vision transformers for representation learning and feature extraction which result in patch embedding
(3.1). The patch embedding are then passed through a pseudo-labeling process (using existing
approaches such as EAGLE (Kim et al., 2024), STEGO (Hamilton et al., 2023), CAUSE (Kim et al.,
2023), or KNNs) to assign labels to each pixel. To further refine these predictions, we introduce
a probabilistic clustering refinement network (3.2). We leverage a modified SNGP method that
generates Gaussian neural embeddings for each pixel and enables capturing the inherent uncertainty
in the unsupervised setting. The pixel embeddings are then meticulously segmented through clustering,
allowing for precise delineation and isolation of distinct elements within the image. Finally, metric
learning facilitates the recognition and categorization of different object classes (3.4).
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3.1 LEARNING REPRESENTATION

Given an unannotated dataset of training images, randomly sampled and defined as X =

[x1, . . . ,xn]
N ∈ RN×D and a transformation function τ that operates on this data. The trans-

formation function plays a crucial role in improving the training process by generating augmented
samples x̃ ≜ τ(x) for each sample in X. The augmentation process involves sampling τ from a
distribution of suitable data transformations. Examples of such transformations include partially
masking image patches Caron et al. (2021) or applying various image augmentation techniques Chen
et al. (2020). The augmented views and original samples are then fed to an encoder network fθ with
trainable parameters θ. The encoder (e.g., ResNet-50 He et al. (2016), ViT Dosovitskiy et al. (2021))
maps distorted samples to a set of corresponding features. We call the output of the encoder the
embedding.

As depicted in Fig. 1, the extracted features are passed to the unsupervised pretrained segmentation
model. Similar to Hamilton et al. (2023); Kim et al. (2024), We construct a lookup table for each
image’s K-Nearest Neighbors (K-NNs) (xknn) based on cosine similarity within the feature space of
the ViT backbone. This process produces pseudo-labeled images with semantic segmentation. The
original images and pseudo-labeled images are then fed to a probabilistic framework.

3.2 PROBABILISTIC SEMANTIC SEGMENTATION

In the absence of ground-truth labels y, our probabilistic framework gΨ, parameterized by Ψ,
operates on image pairs (xi) and their corresponding pseudo-labels yi∗. To incorporate distance-
aware uncertainty, we design the segmentation head using a Gaussian Process (GP) with a Laplace
approximation. This approximation estimates the NGP posterior, providing the segmentation head
with both the mean µ and variance σ. Similar to SNGP, we employ a fixed weight matrix WL,DL×C

and a fixed bias vector bL,DL×1. For each logit, the GP prior is approximated via a neural network
layer, using fixed hidden weights W and learnable output weights βk (see Eq. 9).

3.3 FINE-GRAINED SEGMENTATION

As shown in Fig. 1, fine-grained segmentation is conducted through both deterministic and prob-
abilistic pathways. By performing fine-grained clustering on either probabilistic or deterministic
embeddings, we apply a K-Nearest Neighbors (KNN) approach enhanced with image randomization.
This technique involves applying random augmentations to the input images during the KNN search,
effectively increasing the diversity of the dataset and capturing a broader range of visual contexts.
As a result, our method is capable of distinguishing even subtle object boundaries, leading to more
precise and accurate segmentation, particularly in capturing fine-grained details.

3.4 METRIC LEARNING

To achieve end-to-end training, we formulate and train our algorithm by:

Lfinal = λselfLtotal

(
x, x, bself , λmc, λce, λnorm

)
+ λknnLtotal

(
x, xknn, bknn, λmc, λce, λnorm

)
+ λrandLtotal

(
x, xrand, brand, λmc, λce, λnorm

)
(1)

where the Ltotal computed as:

Ltotal = λceL∗
ce(x

m, xn) + λmcL∗
mc(x

m, xn, b) + λnorm ∥β∥2 (2)

in which Lce and Lmc are pseudo-cross-entropy loss and maximum correlation loss respectively
weighted by hyperparameters λce and λmc to control their relative importance. We explain and
provide more details in Section 4.2 and 4.2. The training and inference algorithms are presented
in pseudo-code form in Figures 1 and 2, respectively. Importantly, we provide a computational
complexity analysis in C.

4 THEORETICAL JUSTIFICATION

In this section, we present the mathematical foundation for our algorithm.

4
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4.1 CONSTRUCTION OF NGP

Our NGP (Neural Gaussian Process) network serves as the semantic segmentation head, inspired by
the Laplace approximation for neural Gaussian processes from Liu et al. (2020). Unlike standard
dense output layers in self-supervised networks, our model incorporates a Gaussian Process (GP)
with a Radial Basis Function (RBF) kernel. The posterior variance at a point x is determined by the
L2 distance from the training data, using pseudo-labels generated by the backbone architecture. This
allows the model to better capture uncertainty and produce more robust segmentation results. It also
makes our model distance-aware uncertainty. We provide more detail in A. To efficiently estimate the
GP, we employ the Random Fourier Feature (RFF) expansion, a computationally efficient method for
approximating shift-invariant kernels Rahimi & Recht (2007).

The kernel is defined as:

k(x,y) =

∫
Rd

ϕ(x)⊤ϕ(y), dw, (3)

where x and y are data points, and ϕ(x) is a feature map projecting the input into a higher-dimensional
space. RFF provides an efficient approximation by mapping the inputs to random features, rather
than using the full kernel function.

For the Gaussian RBF kernel, the feature map is:

ϕ(x) =

√
2

m
cos(Wx+ b), (4)

where W is sampled from the Fourier transform of the kernel’s distribution, and b is drawn uniformly
from [0, 2π].The approximation allows the inner product in the transformed space to estimate the
original kernel efficiently.

Considering a dataset of training images xi, randomly sampled with unknown yi and defined as
D∗ := {xi, yi∗}Ni=1. Let yi∗ = {yi∗,1, · · · , yi∗,DL

} with yi∗,k := 1{k=argmaxi∈{1,··· ,DL} h(f(xi))} be the
chosen class prediction of the backbone fθ combined with its original final layer h for the image xi.
The Gaussian process output layer gN×1 = [g(fθ1), · · · , g(fθi), · · · , g(fθN )]

⊤ follows a multivariate
normal distribution a priori:

gn×1 ∼ MVN(0N×1,KN×N ), (5)

where

Ki,j = exp(−
∥∥fθi − fθj

∥∥2
2
/2) (6)

The posterior distribution is given by p(g | D∗) ∝ p(D∗ | g) p(g), where p(g) is the GP prior in (5)
and p(D∗ | g) is the data likelihood for classification (i.e., exponentiated pseudo-cross-entropy loss).

We follow the approximation method of (Liu et al., 2020), which applies the Laplace approximation
to the RFF expansion of the GP posterior. Specifically, the GP prior is approximated using a low-rank
factorization of the kernel matrix K = ΦΦ⊤:

gN×1 ∼ MVN
(
0N×1,ΦΦ

⊤
N×N

)
,Φi,DL×1 =√

2/DL cos (−WLfi + bL) ,
(7)

where Φ is the feature map, W is a randomly initialized matrix, and b is a bias vector drawn uniformly
from [0, 2π]. We apply spectral normalization to W for stabilization, as detailed in A.2.

The GP posterior is then approximated using:

βk | D∗ ∼ MVN
(
β̂k, Σ̂k

)
, Σ̂−1

k = I+

N∑
i=1

p̂i,k (1− p̂i,k) ΦiΦ
⊤
i , (8)

where p̂i, k = softmax(gk(fi)) represents the model prediction. During training, the posterior mean
β̂ is updated via stochastic gradient descent (SGD) over the log posterior, using the pseudo-cross-
entropy loss. The precision matrix Σ̂k is updated at the final epoch, and its inverse gives the posterior
covariance.

5
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4.2 OBJECTIVE FUNCTION

Pseudo Cross-Entropy For the kth logit, our approximation to the GP prior in (5) can be represented
as a neural network layer with fixed hidden weights W and learnable output weights βk. For each
pixel xm

h,w of image xm, this gives

gk
(
f(xm

h,w)
)
=

√
2/DL cos

(
−WLf(x

m
h,w) + bL

)⊤
βk := Φ⊤

mhwβk, (9)

where βk ∼ N(0, I). The pseudo-cross-entropy loss is then defined as:

Lce(D∗ | β) := − log p(β | D∗)

= − log p(D∗ | β) + 1

2
∥β∥2

= −
DL∑
k=1

log p(D∗ | βk) +
1

2
∥β∥2 ,

(10)

where we can use the estimates of the Gaussian Process posterior mean (logit(x) = Φ⊤β) and the
backbone’s prediction for each class k ∈ {1, · · · ,K}:

L∗
ce(D∗ | βk) := − log p(D∗ | βk) = −

N∑
m=1

∑
hw

1{k=argmaxi∈{1,··· ,DL} h(f(xm
h,w))} log

(
Φ⊤

mhwβk

)
(11)

By incorporating this loss function and using the Gaussian Process output layer, our model is
guaranteed the same properties as the supervised version of SNGP regarding the pseudo-labels
instead of the true labels. This means that the predictions of the backbone combined with the GP
output layer will converge towards the distribution of the backbone with its original final layer.

Maximum Correlation Loss To improve semantic segmentation, we introduce a Maximum Corre-
lation (MC) loss, which leverages self-feature correspondence tensors. For two feature tensors f and
g in RCHW , we define the self-feature correspondence tensor as:

Fhwij :=
∑
c

fchw
|fhw|

gcij
|gij |

(12)

The tensor measures the correlation between spatial positions (h,w) and (i, j), capturing relationships
between the channels that aid in segmentation. To incorporate the GP predictions, we use the softmax
of the logits and compute the index of the maximum predicted class for each pixel:

kmij
max = argmax

k
σk(Φ

⊤
mijβ) (13)

The MC loss function rewards similar pixel pairs and penalizes dissimilar pairs, and is defined as:

Lmc(x
m, xn) = − 1

HW

∑
hwij

FhwijSmax(x
m
i,j , x

n
h,w) (14)

where Smax represents the maximum predicted class similarity between pixels. For practical opti-
mization, we shift this loss to a non-negative range by adding a constant. Spatial centering is applied
for balanced training Hamilton et al. (2023).

Total Loss The final loss function, Ltotal (Eq. 2), combines the pseudo-cross-entropy and MC
losses, with tunable weights λce, λmc, and λnorm to optimize performance.

5 EXPERIMENTS AND RESULTS

In this section, we first outline the implementation details, including dataset configurations, eval-
uation protocols, and specific experimental settings. Next, we assess our proposed method both
qualitatively and quantitatively, ensuring a fair comparison with existing state-of-the-art approaches.

6
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Additionally, we validate the effectiveness of our method through an ablation study. For further
information, please refer to the supplementary material.

Implementation Details We utilize the DINO (Caron et al., 2021) pretrained vision transformer,
which remains frozen throughout the training process for feature extraction. The training datasets are
resized and five-cropped to a dimension of 244 × 244 pixels. For the probabilistic segmentation head,
we employ two layers of Neural Gaussian Process (NGP) with ReLU activation. Our method can
be easily integrated into other frameworks; in this study, we generate pseudo-labels using STEGO,
EAGLE, and CAUSE. All backbones have an embedding dimension of 512. The source code is
available at https://anonymous.4open.science/r/PUIS2024-0010/README.md

Datasets We evaluate our model on three datasets for unsupervised semantic segmentation: (1)
COCO-Stuff(Caesar et al., 2018), which features detailed pixel-level annotations that enable a
comprehensive understanding of various objects; (2) Cityscapes(Cordts et al., 2016), which captures
diverse urban street scenes; and (3) Potsdam-3 (Ji et al., 2019), consisting of satellite imagery.
Following the class selection protocols established in earlier studies (Hamilton et al., 2023; Cho et al.,
2021; Ji et al., 2019; Kim et al., 2024; 2023), we utilize 27 classes from both the COCO-Stuff and
Cityscapes datasets, while for the Potsdam-3 dataset, we include all three classes.

Evaluation Metrics for Quantitative Results We report the performance of our method using
the following metrics: Top-1 Accuracy ↑: This metric refers to the proportion of pixels in the test
set that the model correctly predicts as belonging to the correct class. In the context of semantic
segmentation, it measures how many pixels are assigned the correct label, providing an overall
indication of segmentation quality. Mean Intersection over Union (mIoU) ↑: This metric quantifies
the overlap between the predicted segmentation and the ground truth. It is calculated as the average
of the intersection over union for all classes, defined as the ratio of the intersection area to the union
area. This provides a robust measure of the model’s accuracy in delineating different object regions.

Compared Methods In our evaluation, we benchmark our method against three distinct baseline
pseudo-labeling approaches: STEGO (Hamilton et al., 2023), EAGLE (Kim et al., 2024), and
CAUSE (Kim et al., 2023). We integrated our method by replacing the projection head of each baseline
with our probabilistic framework, allowing us to assess uncertainty in prediction. Additionally, we
compared our approach to existing benchmark models across the various datasets. The performance
results presented were averaged over five independent runs to ensure robustness and reliability.

Results and Discussion Based on the results obtained in Table 3, our method achieves superior
performance to the state-of-the-art STEGO Hamilton et al. (2023) on the 3 classes of the Potsdam
dataset, outperforming the next best baseline by 5% unsupervised accuracy. Our method achieved
state-of-the-art performance on the Potsdam dataset. Based on the qualitative results shown in Fig. 2a,
our algorithm distinguishes between different classes such as buildings and vegetation. By comparing
our results to the backbone, our model appears to offer an improved delineation of the various classes,
with a reduction in misclassified areas. The boundaries between buildings and vegetation are more
accurately rendered, and there is a visible decrease in the fragmentation of predicted areas, suggesting
a more consistent understanding of the spatial context. Based on the qualitative results obtained in
Fig. 2b, our method produces segmentations that capture small objects and fine details.

On the Cityscapes dataset, our method successfully identifies people, streets, sidewalks, cars, and
street signs with high detail and fidelity.Specifically, our method achieved an accuracy of 91.0% and
a mean Intersection over Union (mIoU) of 28.1%, surpassing recent state-of-the-art methods such
as STEGO model, which had an accuracy of 73.2% and a mIoU of 21.0%, and CAUSE algorithm
which scored 89.8% in accuracy and 29.9% in mIoU.

The results obtained in Tables 3, demonstrate the advantages of using Vision Transformers (ViT)
for unsupervised segmentation. Traditional unsupervised segmentation techniques, such as Random
CNNs and SIFT, show relatively low performance, with accuracies around 38.2%. While more
recent CNN-based models, like IIC (65.1%) and (Doersch et al., 2016) (49.6%), improve accuracy
but still fall behind the ViT-based approaches. When DINO is combined with models like STEGO
(77.0%), EAGLE (83.3%), and HP (82.4%), the results see a significant boost. More importantly,
our probabilistic approach achieves the highest accuracy of 83.9%, highlighting its ability to refine
segmentation results by leveraging probabilistic embeddings, even outperforming other state-of-the-
art methods.

7
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(a) (b)

Figure 2: (a) Comparison of ground truth labels and our predictions, and backbone for images from
the Potsdam dataset, (b) Qualitative assessment of segmentation model performance on COCO-Stuff
dataset. Top to bottom: original images, ground truth, our predictions, and variance for predicted
pixel class and class expression, illustrating the model’s uncertainty in its predictions

Table 1: Comparison of Accuracy and mIoU on the COCO-Stuff Validation data set.

Model Backbone Unsupervised Linear Probe
Accuracy mIoU Accuracy mIoU

ResNet50 He et al. (2016) ResNet50 24.6 8.9 41.3 10.2
MoCoV2 Chen et al. (2020) ResNet50 25.2 10.4 44.4 13.2
Deep Cluster Caron et al. (2018) ResNet50 19.9 - - -
Doersch et al. Doersch et al. (2016) ResNet18 23.1 - - -
IIC Ji et al. (2019) ResNet18 21.8 6.7 44.5 8.4
MDC Cho et al. (2021) ResNet18 32.2 9.8 48.6 13.3
PiCIE Cho et al. (2021) ResNet18 48.1 13.8 54.2 13.9
DINO Caron et al. (2021) ViT-S/8 30.5 9.6 66.8 29.4
+ STEGO Hamilton et al. (2023) ViT-S/8 56.9 28.2 73.6 33.3
+ HP Seong et al. (2023) ViT-S/8 57.2 24.6 75.6 42.7
+ CAUSE Kim et al. (2023) ViT-B/8 69.6 32.4 78.8 47.2
+ EAGLE Kim et al. (2024) ViT-B/8 64.2 27.2 76.8 43.9
+ Ours ViT-B/8 71.1 33.0 80.5 52.3

The variance maps are especially insightful, as they provide a visual representation of the model’s
confidence in its predictions. High variance areas, especially at the edges of objects, could guide
further model refinement, suggesting that additional features or training on edge-detection could
improve performance.

The results from Table 1,3,2, strongly demonstrate the effectiveness of our probabilistic embedding
framework in achieving state-of-the-art performance. Across multiple segmentation tasks, our method
consistently outperforms existing approaches.
Ablation Study To explore the effectiveness of our proposed method, we conducted a series of
ablation studies dissecting various aspects of its design. Specifically, we examined: i) how changes to
the loss function hyperparameter λ influence performance. ii) the effect of varying the embedding
space dimension DL on the model’s behavior. iii) impact of different pseudo-labeling techniques.
Furthermore, we provide an additional ablation analysis focusing on computational efficiency (see C)
and more qualitative results.

Based on Fig. 3-a, by increasing the dimensionality of the probabilistic embedding the performance
improved significantly. This suggests that higher-dimensional embeddings can capture more complex
patterns in the data.
Fig. 3-b shows our ablation analysis on the hyperparameters of the loss function λmc (maximum cor-
relation) and λce (cross-entropy) loss significantly influences the model’s performance. A combined
loss approach appears to be beneficial, with the best results seen when the cross-entropy loss is given

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Comparison of Accuracy and mIoU on Cityscapes Validation data set.

Model Backbone Unsupervised
Accuracy mIoU

Accuracy mIoU
IIC Ji et al. (2019) ResNet18 47.9 6.4
MDC Cho et al. (2021) ResNet18 40.7 7.1
PiCIE Cho et al. (2021) ResNet18 65.5 12.3
DINO (Caron et al., 2021) ViT-S/8 34.5 10.9
+ HP (Seong et al., 2023) ViT-S/8 80.1 18.4
+ EAGLE (Kim et al., 2024) ViT-S/8 81.8 19.7
+ Ours ViT-S/8 82.1 19.9
STEGO Hamilton et al. (2023) ViT-B/8 73.2 21.0
EAGLE Kim et al. (2024) ViT-B/8 79.4 22.1
+ Ours ViT-B/8 81.8 21.2
CAUSE Kim et al. (2023) ViT-B/14 89.8 29.9
+ Ours ViT/B14 91.0 28.1

Table 3: Comparison of Top-1 Accuracy on the Potsdam-3 data set.

Model Backbone Unsup. Acc.
Random CNN (Ji et al., 2019) ResNet18 38.2
K-Means (Pedregosa et al., 2018) ResNet18 45.7
SIFT Lowe (1999) ResNet18 38.2
(Doersch et al., 2016) ResNet18 49.6
(Isola et al., 2015) ResNet18 63.9
Deep Cluster (Caron et al., 2018) ResNet50 41.7
IIC (Ji et al., 2019) ResNet18 65.1
DINO (Caron et al., 2021) ViT-B/8 53.0
+ STEGO (Hamilton et al., 2023) ViT-B/8 77.0
+ EAGLE (Kim et al., 2024) ViT-B/8 83.3
+ HP (Seong et al., 2023) ViT-B/8 82.4
+ Ours ViT-B/8 83.9

(a) (b)

Figure 3: Study of hyperparameters of our proposed method (a) dimension of probabilistic embedding
(DL), (b) λ.

more weight. This information can guide the fine-tuning of loss function weights for optimal model
training outcomes.
Based on quantitative results obtained in Table 4, our probabilistic framework consistently boosts ac-
curacy across all three models, with the most significant improvement observed in STEGO. The mIoU
improvements are smaller but consistent, indicating that our method not only enhances overall pixel
classification but also slightly refines the prediction of class boundaries. These results underscore the
utility of integrating uncertainty-aware approaches in unsupervised segmentation tasks.

9
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Table 4: Comparison of achieved Accuracy and mIoU on the Cityscapes with different pseudo-
labeling techniques while all models utilized ViT-B/8 as the backbone.

Model Unsupervised
Accuracy mIoU

STEGO (Hamilton et al., 2023) 73.2 21.0
+ Ours 81.6 21.8
EAGLE (Kim et al., 2024) 79.4 22.1
+ Ours 82.0 22.2
CAUSE(Kim et al., 2023) 90.8 28.0
+ Ours 91.0 28.1

6 CONCLUSION

In this paper, we presented a novel approach to probabilistic unsupervised segmentation that uses
Gaussian embeddings and a newly designed loss function to provide a more robust representation for
the task of unsupervised semantic segmentation. We also presented a theoretical analysis to justify the
convergence properties of the proposed loss function. In addition, we demonstrated that our post-hoc
framework and loss function can be integrated with existing deterministic unsupervised segmentation
methods to improve both performance and robustness. Our experimental results confirm that our
approach achieves state-of-the-art performance, demonstrating its potential for improving accuracy
and stability in unsupervised segmentation tasks.

Limitation and Future Work A limitation of our work lies in the dimensionality of the probabilistic
embeddings. While our results indicate that increasing the dimensionality improves performance,
likely due to the model’s ability to capture more complex patterns and subtleties in the data, this comes
with potential trade-offs. Higher-dimensional embeddings increase computational costs and may
also lead to overfitting, particularly when embedding sizes become very large. Future work should
investigate these trade-offs to determine optimal embedding sizes that balance model complexity
with computational efficiency and generalization ability.
In future work, it would be interesting to develop our probabilistic framework for other tasks such
as object detection. Extending this approach could allow for more robust uncertainty quantification
in object localization and classification. Additionally, adapting the framework for tasks like video
analysis might provide deeper insights into complex temporal and spatial dependencies. This
extension could also help address challenges in real-time applications where uncertainty estimation is
crucial, such as autonomous driving or medical imaging, where the framework’s probabilistic nature
can lead to more reliable decision-making.
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A ADDITIONAL THEORY

In this part of the appendix, we focus on diving deeper into the theoretical background of our proposed
method.

A.1 DISTANCE AWARENESS IN DEEP LEARNING

In Liu et al. (2020) the authors provide a definition for Input Distance Awareness:

Definition A.1.1 (Input Distance Awareness) Let p(y | x) be a predictive distribution trained on a
domain XIND ⊂ X , where (X , ∥ · ∥X) is the input data manifold equipped with a suitable metric
∥.∥X . p(y | x) is input distance aware if there exists u(x) a summary statistic of p(y | x) that
quantifies model uncertainty (e.g., entropy or predictive variance) that quantifies the distance between
x and the training data with respect to ∥.∥X , i.e.,

u(x) = v (d (x,XIND)) (15)

where v is a monotonic function and d (x,XIND) = Ex′∼XIND ∥x− x′∥2X is the distance between x
and the training data domain.

It is worth noting that a Gaussian process (GP) equipped with a radial basis function (RBF) kernel
satisfies this property. The predictive distribution of such a GP, denoted as p(y | x) = softmax(g(x)),
represents a softmax transformation of the GP posterior g ∼ GP under the cross-entropy likelihood.
Additionally, the predictive uncertainty of the GP can be expressed using the posterior variance
u(x∗) = var(g(x∗)) = 1− k⊤V k∗, where k∗i = exp

(
−(1/2l) |x∗ − xi|2 X

)
, and VN×N is a fixed

matrix determined by the data. In contrast, this property is not guaranteed to hold for classical deep
learning models. For a more detailed explanation, we recommend the second chapter of Liu et al.
(2020).

A.2 SPECTRAL NORMALIZATION

When the output layer g is replaced with a Gaussian process, it allows the model logit(x) =
g ◦ h(x) to become aware of the distance in the hidden space |h (x1)− h (x2)|H . To ensure the
meaningful correspondence between distances in the hidden space |h(x)− h (x′)|H and the input
space |x− x′|X , it is crucial that the hidden mapping h is distance preserving. Many modern deep
learning models, such as ResNets and Transformers, are composed of residual blocks. Specifically,
the hidden mapping can be expressed as h(x) = hL−1 ◦ · · · ◦ h2 ◦ h1(x), where hl(x) = x+ gl(x).

To ensure distance preservation, a simple method is employed by bounding the Lipschitz constants
of all nonlinear residual mappings {gl}L−1

l=1 to be less than 1. This constraint guarantees that the
distances in the hidden space remain consistent with the distances in the input space, thus preserving
meaningful relationships between the data points. This result can be formally seen below:

Proposition 1 (Lipschitz-bounded residual block is distance preserving) Let h : X → H be a hidden
mapping with residual architecture h = hL−1◦. . . h2◦h1 where hl(x) = x+gl(x). If for 0 < α ≤ 1,
all gl’s are α-Lipschitz, i.e., ∥gl(x)− gl (x

′)∥H ≤ α ∥x− x′∥X ∀ (x,x′) ∈ X . Then:

L1 ∥x− x′∥X ≤ ∥h(x)− h (x′)∥H ≤ L2 ∥x− x′∥X , (16)

where L1 = (1− α)L−1 and L2 = (1 + α)L−1, i.e., h is distance preserving.

Proof is provided in Appendix E.1 of Liu et al. (2020). To maintain the distance-preserving property
of the hidden mapping h, it is sufficient for the weight matrices of the nonlinear residual block
gl(x) = σ (Wlx+ bl) to have a spectral norm (i.e., the largest singular value) less than 1, since
∥gl∥Lip ≤ ∥Wlx+ bl∥Lip ≤ ∥Wl∥2 ≤ 1.

To satisfy this Lipschitz constraint on gl, spectral normalization (SN) is applied to the weight matrices
{Wl}L−1

l=1 , following the methodology presented in Liu et al. (2020). During each training iteration,
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first the spectral norm λ̂ ≈ ∥Wl∥2 is approximated using the power iteration method, as outlined in
Gouk et al. (2020) and Miyato et al. (2018). Subsequently, the weights are normalized according to:

Wl =

{
cWl/λ̂ if c < λ̂

Wl otherwise.
(17)

Here, c > 0 acts as a hyperparameter to fine-tune the exact spectral norm upper bound on ∥Wl∥2
such that ∥Wl∥2 ≤ c. This offers a level of adaptability, which is especially valuable when other
regularization techniques like Dropout and Batch Normalization are in play, which could alter the
Lipschitz constant of the original residual mapping as discussed in Gouk et al. (2020). Equation (17)
thus grants us greater flexibility in managing the spectral norm, allowing it to better harmonize with
the architecture in use.

B TRAINING AND PREDICTION ALGORITHMS

The pseudo-code for our proposed training and prediction methods is presented in Sections 1 and 2,
respectively.

Algorithm 1 Training

Require: Minibatches D = {xi}Ni=1
Ensure: Estimated parameters βk

1: Initialization: Σ̂ = I, WL
iid∼ N(0, 1) and bL

iid∼ U(0, 2π)
2: for epoch = 1 to num_epochs do
3: for i = 1 to N do
4: Get xknn and xrand for xi

5: for j = 1 to num_pixel do
6: Compute feature correspondence tensor FSC

ij and pseudo-labels y∗ij with the backbone
7: Compute the output logits for each k ∈ {1, · · · , DL} using Equation 9
8: end for
9: Compute the loss using Equation 2

10: Update the parameters β, {Wl}L−1
l=1 , {bl}L−1

l=1 using stochastic gradient descent
11: Perform Spectral Normalization (described in A.2) of {Wl}L−1

l=1
12: if final_epoch then
13: Update precision matrix {Σ̂−1

k }Kk=1
14: end if
15: end for
16: end for
17: Compute posterior covariance Σ̂k = inv

(
Σ̂−1

k

)

Algorithm 2 Prediction

Require: Testing example pixel x
1: Compute Feature: Φ = ΦDL×1

=
√

2
DL

cos (−WLf(x) + bL)

2: Compute Posterior Mean: logitk(x) = Φ⊤βk

3: Compute Posterior Variance: vark(x) = Φ⊤Σ̂kΦ
4: Compute Predictive Distribution: p(y | x) =

∫
m∼N(logit(x),var(x))

softmax(m)

C COMPUTATIONAL COMPLEXITY
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In this section, we turn our attention to assessing the computational complexity of both the training
(displayed in Algorithm 1) and the prediction (displayed in Algorithm 2) algorithms as well as the
loss function itself. Therefore, let N ∈ N be the number of samples within a minibatch and let
H,W ∈ N be the height and width of an image. Let xm

h,w be the pixel at location (h,w) ∈ N2 of
image m ∈ {1, · · · , N}.

C.1 LOSS FUNCTION

To gain a comprehensive understanding of our model’s computational requirements, we first dissect
the components of the loss function, starting with the Maximum Correlation segment of the combined
loss function, denoted by Equation ??.

For the sake of this discussion, we will assume that the complexity for obtaining predictions from
the backbone architecture is O(1). An examination of the backbone predictions’ complexity will be
presented in the subsequent section.

Let gk(f(xm
h,w)) =

√
2/DL cos

(
−WLf(x

m
h,w) + bL

)⊤
βk be the prediction from the SNGP head

for the pixel xm
h,w, as defined in Equation (9). We derive its computational complexity as follows:

O(−WLf(x
m
h,w)) = O(f∗(xm

h,w)) = O(DL × C) (18)√
2/DL cos

(
f∗(xm

h,w) + bL

)⊤
βk = O(DL) (19)

In the first computational step, we perform a matrix-vector multiplication between WL of size
DL × C and f(xm

h,w) of size C × 1. This operation has a computational complexity of O(DL × C).
The following step incorporates a set of cosine and addition operations, each having a complexity of
DL, as well as a matrix-vector multiplication with βk of dimensions DL × 1. The latter operation
has a complexity of O(DL × C). In total, we find that the overall complexity for generating class
predictions k ∈ {1, · · · , DL} is given by:

O(gk
(
f(xm

h,w)
)
) = O(DL(C + 1 + 1)) = O(DL × C) (20)

The next relevant calculation is to determine the complexity of O(Sk(x
m
i,j)) and O(kmij

max) for a single
image pixel. In subsequent computations, each pixel pair undergoes six operations: computing kmij

max
twice and retrieving their corresponding predictions for each image once. Given that these operations
only involve linear-time computations O(1), such as the argmax and the softmax functions, the
complexity for these operations is:

O(Sk(x
m
i,j)) = O(kmij

max) = O(DL) (21)

Since kmij
max and its corresponding Sk(x

m
i,j) have already been computed, the calculation of

Smax(x
m
i,j , x

n
h,w) amounts to a computational complexity of O(1). Taking an image pair into

account, the cumulative complexity for this stage can be formulated as:

O((DL × C + 6DL)×H ×W ) = O(DL × C ×H ×W ) (22)

Next, we describe the complexity analysis for Fhwij as outlined in Equation (12). This computation
entails a multiplication across all pixels of an image pair, as well as a summation over the penultimate
layer C of the backbone architecture. Therefore, the resulting complexity can be expressed as:

O(Fhwij) = O(C ×H ×W ×H ×W ) = O(C × (HW )2) (23)
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The loss function Lmax(x
m, xn) for a pair of images, as described in Equation (??), comprises solely

linear operations with a computational complexity of O(1). Given that all the necessary inputs have
already been computed, we can formulate the computational complexity for this loss function as:

O(Lmc(x
m, xn)) = O((HW )2) (24)

Consequently, we get the overall computational complexity for the Maximum Correlation segment of
the combined loss function, denoted by Equation ??:

O(DL × C ×H ×W + C × (HW )2 + (HW )2) (25)

For our second loss component, we examine the pseudo-cross-entropy loss as detailed in Equation 10.

Here, we also need to calculate the predictions gk(f(xm
h,w)) derived from Equation (9). Given those

predictions for all classes k ∈ {1, · · · , DL} need to be computed, the computational complexity for
a single pixel in an image is:

O(

DL∑
k=1

gk
(
f(xm

h,w)
)
) = O(DL(C + 1 + 1)) = O(D2

L × C) (26)

Additionally, we must consider the computational cost of obtaining the predictions from the backbone
architecture to generate pseudo-labels. For a single pixel, this complexity is:

O(f(xm
h,w)) = O(DL) (27)

The regularization term in the final pseudo-cross-entropy loss has a complexity of
O(∥β∥2) = O(DL), given that β is of dimension DL×1. The loss itself consists of linear operations,
each with a computational complexity of O(1). Summing up these individual complexities, we get a
computational complexity for processing a single image using the pseudo-cross-entropy loss:

O(Lce(x
m)) = O(DL ×H ×W ) (28)

This leads us to comprehensive computational complexity for the cross-entropy portion of the loss
function, for a single image, as:

O((D2
L × C +DL +DL)×H ×W ) = O(D2

L × C ×H ×W ) (29)

When using our combined loss function as described in Equation (2), the overall computational
complexity for each minibatch, is as follows:

O(Lcombined) (30)

= O(N × (DL × C ×H ×W + C × (HW )2 + (HW )2 +D2
L × C ×H ×W )) (31)

= O(N × C × (HW )2 +N ×D2
L × C ×H ×W ) (32)

From now on, let M ∈ N be the number of parameters within the backbone architecture.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.2 TRAINING

The training algorithm is described in detail in Algorithm (1). During each minibatch iteration,
the model updates not only the hidden-layer parameters {Wl}L−1

l=1 , {bl}L−1
l=1 , but also the trainable

output weights β. As calculated in Section C.1, the overall computational complexity required for
each minibatch update using the complete loss function (2) is:

O(M ×N × C × (HW )2 +M ×N ×D2
L × C ×H ×W ) (33)

Afterwards we perform spectral normalization using power iteration, as described in Liu et al. (2020).
This introduces an additional complexity of:

O(

L−1∑
l=1

Dl) (34)

Lastly, we also update the precision matrix as indicated in Liu et al. (2020), leading to a complexity
of:

O(D2
L) (35)

Considering that the dimensions {Dl}L−1
l=1 } are fixed for a given architecture (e.g., for the STEGO

architecture on the cityscapes data set DL = 100), we get the aggregate complexity for each training
minibatch:

O(M ×N × C × (HW )2 +M ×N ×D2
L × C ×H ×W +

L−1∑
l=1

Dl) (36)

C.3 PREDICTION

The prediction algorithm is described in detail in Algorithm (2). During the prediction stage, for
every pixel xm

h,w, the model performs a forward pass computing the final hidden feature (ϕ) and the

posterior mean gk

(
f(xm

h,w)
)
= Φ⊤βk. Incorporating the computations involved in the backbone

architecture, the complexity for this operation is:

O(gk
(
f(xm

h,w)
)
) = O(DL × C ×M) (37)

Using the final hidden feature, we can compute the posterior variance matrices vark(x) = Φ⊤Σ̂kΦ,
which incurs a computational complexity of:

O(D2
L) (38)

Lastly, the predictive distribution pk is computed as pk = exp (mk) /
∑

k exp (mk), where mk ∼
N

(
m̂k(x), σ̂

2
k(x)

)
. We employ Monte Carlo Averaging to estimate the posterior mean of this

distribution, following the methodology described in Liu et al. (2020). Given that this process is
computationally friendly and only necessitates a single forward pass along with sampling a minimal
set of samples, the total complexity for calculating pk is:

O(pk) = O(DL × C ×M +D2
L) (39)

C.4 QUALTITATIVE RESULTS
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Figure 4: Comparison of ground truth labels (2nd, 6th row) and our predictions (3rd, 7th row), and
backbone (4th, last row) for images from the COCO-Stuff dataset.

18


	Introduction
	Background and related works
	Method
	Learning Representation
	Probabilistic Semantic Segmentation
	Fine-Grained Segmentation
	Metric Learning

	Theoretical Justification
	Construction of NGP
	Objective Function

	Experiments and Results
	Conclusion
	Additional Theory
	Distance Awareness in Deep Learning
	Spectral Normalization

	Training and Prediction Algorithms
	Computational Complexity
	Loss Function
	Training
	Prediction
	Qualtitative Results


