
Under review as submission to TMLR

On Space Folds of ReLU Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

Recent findings suggest that the consecutive layers of ReLU neural networks can be under-
stood geometrically as space folding transformations of the input space, revealing patterns
of self-similarity. In this paper, we present the first quantitative analysis of this space folding
phenomenon in ReLU neural networks. Our approach focuses on examining how straight
paths in the Euclidean input space are mapped to their counterparts in the Hamming acti-
vation space. In this process, the convexity of straight lines is generally lost, giving rise to
non-convex folding behavior. To quantify this effect, we introduce a novel measure based on
range metrics, similar to those used in the study of random walks, and provide the proof for
the equivalence of convexity notions between the input and activation spaces. Furthermore,
we provide empirical analysis on a geometrical analysis benchmark (CantorNet) as well as
an image classification benchmark (MNIST). Our work advances the understanding of the
activation space in ReLU neural networks by leveraging the phenomena of geometric folding,
providing valuable insights on how these models process input information.

1 Introduction

Neural networks are inspired by the biological structure of the brain (Rosenblatt, 1958). They achieve out-
standing performance across various domains, including computer vision (Krizhevsky et al., 2012) and speech
recognition (Maas et al., 2013). However, despite these impressive results, their underlying mechanisms re-
main poorly understood from a mathematical perspective, and current advances lack a solid foundation in
rigorous mathematical analysis (Zhang et al., 2017; Neyshabur et al., 2017; Marcus, 2018; Sejnowski, 2020).

As we will discuss in this work, geometric folding can provide valuable insights and serve as a useful tool
to expand our understanding of neural networks. The phenomena of geometric folding can be described
as the process by which a structure undergoes a transformation from a linear or planar form into a more
compact, layered configuration, where space is efficiently organized through recursive bending or folding
patterns. For example, in biological systems, DNA molecules fold into complex yet highly organized shapes
to fit within the confines of a cell nucleus (Dekker et al., 2013). Further, also proteins fold into precise,
three-dimensional shapes, transforming from linear amino acid chains into complex structures essential for
their specific functions (Crescenzi et al., 1998; Dill et al., 2008; Jumper et al., 2021). Folding has been argued
to appear in neural networks, as the layering of data representations across the network depth allows for
increasingly abstract, compact, and hierarchical information encoding, capturing patterns at multiple scales.
It was proposed more than a decade ago, that successive layers of ReLU neural networks can be interpreted
as folding operators (Montúfar et al., 2014; Raghu et al., 2017). These folds result in the replication of
shapes formed by the network and contribute to understanding how the space is folded, which can help
reveal symmetries in the decision boundaries that the network learns. Keup and Helias (2022) likened this
process to the physical process of paper folding, where the input space is “folded” during learning. However,
folding occurred in neural networks is elusive in the continuous input space. In case of protein folding, this
process has been quantified using discrete mathematics on sequences of amino acids (Crescenzi et al., 1998).
For neural ReLU networks, the activation space offers a possibility for further analyses of this phenomenon.
In this paper, we focus on the activation space to investigate symmetries and self-similarity in the learned
regions (Balestriero et al., 2024). The activation space and its related linear regions have also been used
also as a measure of the network’s expressivity (e.g., Montúfar et al. (2014); Raghu et al. (2017); Hanin and
Rolnick (2019a)).
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Insofar, the concept of space folding by neural networks remains largely qualitative, with no prior work
attempting to quantify these effects. In this paper, we introduce the first method for measuring these
transformations using range measures (Weyl, 1916; Moser, 2012) and discrete mathematics. Our analysis
is based on a topological investigation of the activation patterns along a straight path in the activation
space. In the Euclidean space the shortest path between two points is a straight line. Walking along such
a path without turns monotonically increases the distance to the starting point. However, this observation
no longer applies in the activation space. During the folding operation, the convexity of the created linear
regions (defined in Sec. 3), may not be preserved and the Hamming distance on a straight path between two
(non-adjacent) patterns can decrease. This lack of preservation inspires the introduction of our space folding
measure, which measures the deviations from convexity on a straight path in both the input (Euclidean)
and the activation (Hamming) spaces. In summary, our contributions in this work are as follows:

• We prove the equivalence of convexity notions between the input and activation spaces.

• We introduce a space folding measure to quantify local deviations from convexity in the activation
space of ReLU networks. We provide both local and global versions of our measure.

• We experimentally investigate the behaviour of our measure on (i) CantorNet, a specially constructed
synthetic example with an arbitrarily ragged decision surface, and (ii) ReLU networks with varying
depth and width with constant number of hidden neurons trained on the MNIST benchmark.

The remainder of the paper is organized as follows: Sec. 2 details the related work; Sec. 3 recalls some basic
facts and fixes notation for the rest of the paper; Sec. 4 establishes convexity results, Sec. 5 introduces the
space folding measure; Sec. 6 describes the experimental results; Sec. 7 discusses the results; Sec. 8 provides
concluding remarks and possible future directions for our work.

2 Related work

Activation Space. The pioneering study by Makhoul et al. has investigated partitioning the input space
with neural networks. Theis work has examined 2-hidden-layer networks, thresholding neurons with the
ReLU activation function (without naming it). With two hidden layers, the first layer creates hyperplanes
that divide the input space into regions, adjacent if they have a Hamming distance of 1 (Makhoul et al.,
1991). Connected regions are defined by a path through adjacent regions. The interest in the number of
these regions was revived in 2014 by Montúfar et al., with several follow-up works, e.g., (Raghu et al., 2017;
Serra et al., 2018; Xiong et al., 2020; Hanin and Rolnick, 2019a;b). The authors provided ever tighter bounds
on the number of activation regions, and used them as a proxy for its expressiveness, among others.

Space Folds. The idea of folding the space has been investigated in the computational geometry (Demaine
et al., 2000). Demaine and Demaine surveyed the phenomenon, focusing on the type of object being folded,
e.g., paper, or polyhedra. Bern and Hayes explored whether a given crease pattern can be folded into a
flat origami (non-crossing polygons in 2D with layers). Later, Bern and Hayes showed that any compact,
orientable, piecewise-linear 2-manifold with a Euclidean metric can achieve this structure. In Montúfar et al.
(2014) in Section 2.4, the authors briefly mentioned the folding phenomena, although through the lens of
linear regions. They argue that each hidden layer in a neural network acts as a folding operator, recur-
sively collapsing input-space regions. This folding depends on the network’s weights, biases, and activation
functions, resulting in input regions that vary in size and orientation, highlighting the network’s flexible par-
titioning. In Phuong and Lampert (2020), in the Appendix A.2 the authors explored the folding operation
by ReLU neural networks, but leave the exploration quite early on. In Keup and Helias (2022), the authors
argued that it is through the folding operation that the neural networks arrive at their approximation power.

Self-Similarity and Symmetry. Self-similarity and symmetry are related but distinct concepts, often
found in nature, mathematics, and physics. Self-similarity means that a structure or pattern looks similar
to itself at different scales, and is also present in numerical data, e.g., images (Wang et al., 2020), audio
tracks (Foote, 1999) or videos (Alemán-Flores and Álvarez León, 2004). Symmetry implies that an object
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or pattern is invariant under certain transformations, e.g., reflection, rotation, or translation. In the context
of neural networks, in Grigsby et al. (2023), the authors describe a number of mechanisms through which
hidden symmetries can arise. Their experiments indicate that the probability that a network has no hidden
symmetries decreases towards 0 as depth increases, while increasing towards 1 as width and input dimension
increase. Many fractal shapes, such as the Mandelbrot set (Mandelbrot, 1983) or CantorNet (Lewandowski
et al., 2024), exhibit both self-similarity and certain symmetries. Moreover, both concepts relate to the
folding operation: invariance under reflection (symmetry) can be equivalently understood as a space fold,
and self-similarity can be interpreted as recursive folding or scaling operations that replicate the pattern
across different levels. In neural network architectures, these principles can manifest through hierarchical
structures, where each layer effectively “folds” information from previous layers, producing patterns that
may repeat or reflect across layers or nodes (Raghu et al., 2017).

Distance Alteration. Lipschitz constant, a well established concept in mathematical analysis, bounds how
much function’s output can change in proportion to a change in its input. In context of neural networks,
it has been linked to adversarial robustness, e.g., (Tsuzuku et al., 2018; Virmaux and Scaman, 2018), or
generalization properties, e.g., (Bonicelli et al., 2022). Cisse et al. showed that the Lipschitz constant of
a neural network can grow exponentially with its depth. Anil et al. observe that enforcing the Lipschitz
property leads to some limitations, and show that norm-constrained ReLU networks are less expressive than
unconstrained ones. The exact computation of the Lipschitz constant, even for shallow neural networks (two
layers), is NP-hard (Virmaux and Scaman, 2018). Finally, Hanin et al. prove that the expected length
distortion slightly shrinks for ReLU networks with standard random initialization, building on the results
of Price and Tanner. While important, none of the aforementioned work touch on the activation space of
neural networks, nor do they investigate monotonicity of a mapped straight line. Our analysis goes beyond
the concept of the Lipschitz constant by investigating the input space convolution under a neural network.

3 Preliminaries

We define a ReLU neural network N : X → Y with the total number of N neurons as an alternating
composition of the ReLU function σ(x) := max(x, 0) applied element-wise on the input x, and affine functions
with weights Wk and biases bk at layer k. An input x ∈ X propagated through N generates non-negative
activation values on each neuron. A binarization is a mapping π : RN → {0, 1}N applied to a vector
v = (v1, . . . , vN ) ∈ RN , resulting in a binary vector by clipping strictly positive entries of v to 1, and
non-positive entries to 0, that is π(vi) = 1 if vi > 0, and π(vi) = 0 otherwise. In our case, the vector v
is the concatenation of all neurons of all hidden layers, called an activation pattern, and it represents an
element in a binary hypercube HN := {0, 1}N where the dimensionality is equal to the number N of hidden
neurons in network N . A linear region is an element of a partition covering the input domain where the
network behaves as an affine function (Montúfar et al., 2014) (see Fig. 1, left). The Hamming distance,
dH(u, v) := |{ui ̸= vi for i = 1, . . . , N}|, measures the difference between u, v ∈ HN .

4 Convexity

Convexity is a key concept in computational geometry and plays a critical role in various computer engineer-
ing applications, such as robotics, computer graphics, and optimization (Boissonnat and Yvinec, 1998). In
Euclidean space, convexity can be defined as a property of sets that are closed under convex combinations,
where the set contains all line segments between any two points within it (Roy and Stell, 2003). We extend
this notion of convexity to the Hamming space as follows.
Definition 1 (Adapted from Moser et al. (2022)). A subset S of the Hamming cube Hn is convex if, for
every pair of points x, y ∈ S, all points on every shortest path between x, y are also in S.
Example 1. Consider points π1 = (000) and π4 = (111) (Fig. 1, right). Then the Hamming distance
dH(π1, π4) = 3. Every shortest path consists of three edges, flipping one “bit” at a time, and thus a convex
set is the whole Hamming cube H3.
Example 2. Consider activation patterns π4 = (0111), π5 = (0001), π6 = (1011) as shown in Fig. 2 (see Ap-
pendix A for more details). For a walk through any two of the activation patterns, (1) π4 → π5, (2) π5 → π6,
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Figure 1: Illustration of a walk on a straight path in the Euclidean input space and the Hamming activation
space. Left: the dotted line represent the shortest path in the Euclidean space. The arrows represent a
shortest path in the Hamming distance between activation patterns π1 and π4 (note that in the Hamming
space the notion of the shortest path becomes ambiguous). Right: The illustration of a shortest path
connecting π1 and π4 in the Hamming activation space.

(3) π4 → π6, there are intermediate, non-observable activation patterns that we traverse. They are, respec-
tively: (1) πnon−obs = {(0011), (0101)}, (2) πnon−obs = {(0011), (1111)}, (3) πnon−obs = {(0011), (1001)}.
Observe that none of them is contained in {π4, π5, π6}C (the complement is taken on [0, 1] × [0, 1] with ob-
servable activation patterns {π1, . . . , π6}). Hence, the activation patterns {π4, π5, π6} form a convex set in
the Hamming cube sense.

Figure 2: Activation patterns πi of recursion-based representation of CantorNet (see Appendix A). We skip
neurons with unchanged values. (Adapted from Lewandowski et al. (2024) with the authors’ approval.)

Before introducing the space folding measure, which relies on the notion of convexity, we prove the equivalance
of convexity notions between the input and activation spaces for hyperplanes that intersect the entire input
space. This further justifies the need of deeper layers to observe any space folding effects.

Lemma 1. Consider a tessellation of activation regions formed by N hyperplanes h1, . . . , hN with activation
regions Rπ1 , . . . , Rπr ⊂ Rn and corresponding activation patterns A = {π1, . . . , πr}. A union R =

⋃
π∈A Rπ

of activation regions is convex in Rn if and only if the set A of corresponding activation patterns is convex
in the Hamming space Hm.

Proof. Convexity in Rn ⇒ Convexity in Hamming space:
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Figure 3: The shaded gray area illustrates a convex set in the Euclidean space. The hyperplanes h1, h2, h3
intersect the entire input space (it holds for the hyperplanes described by neurons from the first hidden layer
of a ReLU neural network). A straight line [P, Q] connecting points P and Q crosses hyperplanes h1 and h3,
resulting in a “bit” flip at a time.

Assume that the set R =
⋃

π∈A Rπ is convex in Rn. We want to show that the set A is convex in the
Hamming space. We start with showing the connectivity of A. Let πi, πj ∈ A be any two activation regions,
and choose any points P ∈ Rπi

and Q ∈ Rπj
in respective activation regions. Since R is convex, the line

segment [P, Q] lies entirely within R. As we move along [P, Q], we may cross hyperplanes hk where the
activation state changes. Each such crossing corresponds to flipping exactly one bit in the activation pattern
(see Fig. 3). This sequence of bit flips forms a path in the Hamming space from πi to πj , showing that
A is connected. Let us now show the convexity of A. Assume, for contradiction, that A is not convex
in the Hamming space. Then, there exists a shortest path γ in the Hamming space connecting πi and πj

that leaves A; that is, some activation patterns along γ are not in A. However, from connectivity, the path
corresponding to the line segment [P, Q] stays entirely within A, as it corresponds to activation patterns
of points within R. Since [P, Q] is a straight line, it corresponds to a minimal sequence of bit flips (i.e., a
shortest path in the Hamming space). Therefore, there exists a shortest path within A, contradicting the
assumption. Hence, A is convex in the Hamming space.

Convexity in Hamming space ⇒ Convexity in Rn:

Now assume that the set A of activation patterns is convex in the Hamming space. We want to show that
the union R =

⋃
π∈A Rπ is convex in Rn. Let P, Q ∈ R be any two points, and denote by Rπ1 , Rπ3 ∈ A

their activation patterns. Consider the line segment [P, Q] in Rn. As we move from P to Q, we may cross
hyperplanes hk, changing activation patterns. Each crossing of a hyperplane hk corresponds to flipping a
bit in the activation pattern, forming a path in the Hamming space from πP to πQ, as previously (again,
see Fig. 3). Since A is convex in the Hamming space, all shortest paths between πP and πQ remain within
A, and in particular, the sequence of activation patterns along [P, Q] is such a shortest path. Therefore, all
activation patterns along [P, Q] are in A. Since every point along [P, Q] has an activation pattern in A, it
lies within R. Thus, [P, Q] ⊂ R, showing that R is convex in Rn.

Lemma 1 is important for two reasons. First, its direct consequence is that the space folding effects are
observable only in networks with at least two hidden layers. Moreover, it proposes another angle to see
the classic XOR problem (Minsky and Papert, 1969), and why one layer is insufficient for class separation.
Second, observe limitations of Lemma 1: We assume that along a walk on a shortest path (in the Hamming
sense) between any activation patterns corresponding to linear regions in a convex arrangement A in the
Euclidean input space, the Hamming distance of adjacent linear regions differs by one, which only holds in
case of hyperplanes that intersect the entire input space, and such hyperplanes are described by the 1st hidden
layer of a ReLU neural network (e.g., Raghu et al. (2017)). For deeper layers, there may appear activation
regions, which, although neighboring, may have the Hamming distance exceeding one (see Example 2).
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5 Analysis in the Activation Space

Range Measures. We proceed to introduce a space folding measure, which is inspired by the con-
struction of range measures of random walks. Consider a walk along a line given by the sequence
s = (sk)N

k=0 of N steps of length si at ith step. At each step i the walk can go either up or down.
The maximum absolute route amplitude of the walk is given by rA(s) := maxn≤N |

∑n
j=0 sj |, depen-

dent on the choice of the coordinate system. However, we can remove this dependency by considering
rD(s) := maxn≤N {

∑n
k=0 sk, 0} − minn≤N {

∑n
k=0 sk, 0} = maxk≤n≤N |

∑n
j=k sj |, which represents the diam-

eter of the walk invariant under translational coordinate transformations (Moser, 2014). Both rA(s) and
rD(s) are examples of range metrics encountered in the field of random walks in terms of an asymptotic
distribution resulting from a diffusion process (Jain and Orey, 1968). It turns out that rA(s) and rD(s)
are norms, ∥s∥A and ∥s∥D, respectively (Alexiewicz, 1948). Note that ∥s∥A ≤ ∥s∥D ≤ 2∥s∥A, stating the
norm-equivalence of ∥.∥A and ∥.∥D.
Example 3. A simple example of a range measure is a variance estimator of a sample with n observations,
x = (x1, . . . , xn), defined as Var(x) = 1

n(n−1)
∑n

i=1(xi − x̄)2, where x̄ is the sample’s arithmetic average.

The Space Folding Measure. Consider a straight line connecting two samples x1, x2 in the Euclidean
input space realized as a convex combination λix1 + (1 − λi)x2, where λi are equally spaced on [0, 1] (the
equal spacing is due to practicality, but is not necessary). Then, consider the mapping of the straight line
[x1, x2] to a path Γ in the Hamming activation space, with intermediate points (π1, . . . , πn), πi ∈ HN under
a neural network N (see Fig. 4, left). We consider a change in the Hamming distance at each step i

∆i := dH(πi+1, π1) − dH(πi, π1). (1)

We then look at the maximum of the cumulative change maxk

∑k
i=1 |∆i| along the path Γn,

r1(Γn) = max
i∈{1,...,n−1}

i∑
j=1

(dH(πj+1, π1) − dH(πj , π1)) = max
i∈{1,...,n−1}

dH(πi, π1). (2)

The above expression equals to the maximum Hamming distance to the starting point reached along the
path. Next, we keep track of the total distance traveled on the hypercube when following the path,

r2(Γn) =
n−1∑
i=1

dH(πi, πi+1). (3)

For the measure of space flatness, we consider the ratio ϕ(Γn) := r1(Γn)/r2(Γn). Equivalently, the space
folding measure equals

χ(Γn) := 1 − ϕ(Γn) = 1 − max
i∈{1,...,n}

dH(πi, π1)
/ n−1∑

i=1
dH(πi, πi+1). (4)

Lemma 1 guarantees that a straight line in both the input and the activation space is convex, and χ measures
the deviation from convexity along this path, effectively measuring deviation from flatness, hence its name.
The higher χ is, the more folded the space is along the path Γn. We say that the space is flat if it is not
folded, and in that sense “folding” is opposite to “flatness”.
Lemma 2. For every path Γn the space folding measure satisfies 0 ≤ χ(Γn) ≤ 1 (provided that∑n−1

i=1 dH(πi, πi+1) > 0, i.e., the path Γn traverses more than one region).

Proof. We only show the upper bound as the lower is obtained in the similar way. From the triangle inequality
for any activation patterns π1, πi, πi+1 ∈ HN it holds that dH(πi, πi+1) ≤ dH(πi, π1)+ dH(π1, πi+1). Writing
this for every index i ∈ {1, . . . , n − 1}, n > 2, and summing by sides we obtain

n−1∑
i=1

dH(πi, πi+1) ≤
n−1∑
i=1

dH(πi, π1) +
n−1∑
i=1

dH(π1, πi+1) ≤ 2(n − 1) max
i

dH(πi, π1).
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Figure 4: Left: straight line between x1 and x2 in the Euclidean space. Observe that, when mapped to the
Hamming activation space (dotted arrows), the path may not be straight anymore, i.e., it might happen that
dH(π1, πn) < maxi dH(π1, πi), motivating the notion of the devation from convexity. Right: an extreme case
when space folding χ(Γ) = 1. Note that it is sufficient that r1(Γ) = c for some c ∈ R+, and that the path
Γ is looped between the same regions, resulting in r2(Γ) → ∞. This construction, although theoretically
possible, might not be realizable in practice.

Recall that
∑

i dH(πi, πi+1) > 0 and divide each side by this sum. It follows that

χ(Γ) ≤ 1 − 1
2(n − 1) ≤ 1.

To understand the motivation behind the construction of the measure, consider a straight path Γ in the
Euclidean input space that gets mapped to a straight path in the Hamming space. In this case, the range
measures r1, r2 increase and their ratio r1(Γ)/r2(Γ) = 1, thus there is no space folding, i.e., χ(Γ) = 0. If a
straight path in the Euclidean path gets mapped to a curved path in the Hamming activation space (Fig. 4,
left), we observe non-zero values of the space folding measure χ. The space folding can equal χ(Γ) = 1 in the
case presented in Fig. 4, right. Consider a path Γ = (π1, π2, π1, π2, . . .). Then, the range measure r1(Γ) = 1
and r2(Γ) → ∞, hence χ(Γ) → 1. Our measure can be made global by considering the supremum over all
possible paths Γ in the Hamming activation space, i.e.,

ΦN := sup
Γ∈X

χ(Γ). (5)

6 Experiments

6.1 Experimental Setup

CantorNet. We start the experimental evaluation of our measure on CantorNet, a hand-designed example
inspired by the fractal construction of the Cantor set (see Appendix A for the summary). Choose recursion
depth k = 2 and edge points x1 = (0, 3

4 ), x2 = (1, 3
4 ) of a path Γn. We present range measures r1, r2 and the

space folding measure in Fig. 6. Observe that we do not need to take all the layers into account, however
we might not detect space folding. Indeed, if we evaluate χ(Γ) for CantorNet of the recursion level k = 1,
and consider only take the activation pattern in the first layer, we obtain χ(Γ) = 0. However, if we include
all the layers into account (removing constant neurons), then χ(Γ) = 1

2 (see Fig. 5).

MNIST. Further, we study the behavior of the space folding measure on ReLU neural nets trained on
MNIST (LeCun et al., 1998). We keep the number of hidden neurons constant (equal 60), and we experiment
with the depth and the width of the network, trying the following architectures: 2 × 30, 3 × 20, 4 × 15, 5 ×
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Figure 5: Activation patterns πi of recursion-based representation of CantorNet; straight path with high-
lighted activations in the first layer, resp. all layers (left/right). We skip neurons with unchanged values.

Figure 6: Behaviour of dH(π1, ·) for respective πi (dotted line) and distance between neighboring patterns
dH(πi, πi+1) (dashed line) on path Γ constructed between points x1 = (0, 3

4 ) and x2 = (1, 3
4 ) (indicated by

arrows). Background represents CantorNet recursion-based representation at recursion level k = 2. The
cumulative maximum (equation 2) is dH(π1, π9) = 5. Note that the Hamming distance dH between the
initial activation pattern π1 can decrease (dotted line), indicating deviations from convexity, as discussed
previously. The blue line represents the space folding measure χ(Γ). (Best viewed in colors.)

12, 6 × 10, with the notation (nb layers)×(nb neurons).1 We then train those networks for 30 epochs to high
validation accuracy (≥ 0.9), and store their parameters. We present the results in Fig. 7.

6.2 Results

In Figure 6, we have shown an interesting phenomenon. We first mapped a straight-line walk from the
Euclidean input space to the Hamming activation space. During this mapping, while walking along the
mapped path, we have sometimes observed a decrease in the Hamming distance with respect to the initial
input point, while in the input space, the Euclidean distance is increasing. This indicates that there is a
replication of the activation pattern along the path in the activation space, which we call folding. This is
important, as it allows us to understand how neural networks transform and compress input data, revealing

1As underpinned by Lemma 1, we do not expect to see folding effects in a network with 1 hidden layer and 60 neurons and
hence we omit it. We remark that it might be interesting to investigate the folding effects for significantly deeper networks (in
our context and keeping the number of neurons constant, that would be architectures 10 × 6, 12 × 5, 15 × 4, 20 × 3, 30 × 2).
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Figure 7: The mean and std of space folding measures χ(Γ) for five different ReLU networks trained to a low
generalization error on MNIST. The path Γ is constructed between every pair of images of digits “6” and
“9” from the test set. The displayed results are aggregated over all paths (∼ 1M paths). Note the increasing
behaviour of the measure: for shallow architectures (two and three layers) its values are significantly lower
than for the deeper architectures (four to six layers). For the chosen classes, the network with five hidden
layers features the highest value of space folding. (Best viewed in colors.)

the intrinsic geometric properties of the network’s activation space. In the next section, we provide more
discussions and hypothesis for these results.

7 Discussion

In our experiments, we have tried various pairs of digits (intra- and inter-class) and observed qualitatively
similar behavior across tested architectures: the max value of χ increases with the depth of the network,
reaching max for the network with five hidden layers, and then decreases with a lower max value for the
network with six hidden layers. We hypothesize that the maximal value of χ is associated with the network’s
generalization capacity, as depth has been shown to be necessary (but insufficient) for generalization in neural
networks by enabling deeper layers to learn hierarchical features (Telgarsky, 2016). So far, we have proposed
a theoretical measure inspired by geometrical folding occurring in biological structures (e.g., DNA, proteins),
and we have proposed to use the Hamming activation space as a counterpart to discrete spaces used for the
quantitative analysis of folding occuring in those biological structures. We summarize our findings as follows.

The question:

Given a space folding value χ(Γ) = τ > 0 for some path Γ, what can we learn?

The answer:

We propose to see the space folding measure χ as a feature of a neural network. It tells us how twisted
the Euclidean input space becomes under a neural network. It is upper and lower bounded, thereby
it may serve as a reference point for various neural networks. As we have seen, on neural networks
with a high degree of self-similarity (CantorNet), it can reach values close to 0.8, whereas for a simple
neural network trained on MNIST to high validation accuracy its values are significantly lower.

9



Under review as submission to TMLR

The next step of our study is to empirically investigate various classes of (pre-trained) models N , and record
their global space folding measure, Φ, defined in equation 5.

We note that while computing the space folding measure for large architectures may seem infeasible due
to the potentially high number of linear regions, this should not be a limitation, as actual counts of linear
regions are often much lower than theoretical bounds suggest (Hanin and Rolnick, 2019b). Additionally,
since the measure is computed along a path, the number of intermediate steps can be adjusted to keep
computation manageable.

8 Conclusions

We have proposed a novel method to measure deviations from convexity between a walk on a straight line
in the Euclidean input space and its mapping to the Hamming activation space. Further, we have used the
introduced measure to analyze deviations from convexity under a synthetic example, CantorNet, and ReLU
neural networks trained on MNIST. Our work highlights the convexity transformation of the input space by
a ReLU neural network.
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A CantorNet

CantorNet (Lewandowski et al., 2024) is a synthetic example inspired by the triadic construction of the Cantor
set (Cantor, 1883). It features two representations opposite in terms of their Kolmogorov complexities, one
linear in the recursion depth k, and one exponential. It is defined through the function A : [0, 1] →
[0, 1] : x 7→ max{−3x + 1, 0, 3x − 2}, as the generating function which is then nested as A(k+1)(x) :=
A(A(k)(x)), A(1)(x) := A(x). Based on the generating function, the decision manifold Rk is defined as:

Rk := {(x, y) ∈ [0, 1]2 : y ≤ (A(k)(x) + 1)/2}. (6)

The decision surface of Rk ( equation 6) equals to the 0-preimage of a ReLU net N (k)
A : [0, 1]2 → R with

weights and biases defined as

W1 =

−3 0
3 0
0 1

 , b1 =

 1
−2
0

 , W2 =
(

1 1 0
0 0 1

)
(7)

and the final layer WL =
(
− 1

2 1
)

, bL =
(
− 1

2
)

. For recursion depth k, we define N (k)
A as

N (k)
A (x) := WL ◦ σ ◦ g(k)(x) + bL, (8)

where g(k+1)(x) := g(1)(g(k)(x)), σ is the ReLU function, and

g(1)(x) := σ ◦ W2 ◦ σ ◦ (W1xT + b1). (9)

We leave the equivalent representation aside as it is not of a direct interest.

B Range Measures for Networks Trained on MNIST
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Figure 8: Range measures r1, r2 for ReLU networks trained on MNIST to a low generalization error for 30
epochs. Path Γ is put between images of the digit “6” and “9”, and we consider every path, thus making the
results aggregated. The boxplots are constructed for paths for every pair of image of the digit “6” and “9”.
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