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ABSTRACT

Noisy labels are inevitable in real-world scenarios. Due to the strong capac-
ity of deep neural networks to memorize corrupted labels, these noisy labels
can cause significant performance degradation. Existing research on mitigat-
ing the negative effects of noisy labels has mainly focused on robust loss func-
tions and sample selection, with comparatively limited exploration of regular-
ization in model architecture. In this paper, we propose a Dynamic Connec-
tion Masking (DCM) mechanism for the widely-used Fully Connected Layer
(FC) to enhance the robustness of classifiers against noisy labels. The mech-
anism can adaptively mask less important edges during training by evaluating
their information-carrying capacity. Through this selective masking process of
preserving only a few critical edges for information propagation, our DCM ef-
fectively reduces the gradient error caused by noisy labels. It can be seam-
lessly integrated into various noise-robust training methods to build more ro-
bust deep networks, including robust loss functions and sample selection strate-
gies. Additionally, we validate the applicability of our DCM by extending it to
the newly-emerged Kolmogorov-Arnold Network (KAN) architecture. The ex-
perimental results reveal that the KAN exhibits superior noise robustness over
FC-based classifiers in real-world noisy scenarios. Extensive experiments on
both synthetic and real-world benchmarks demonstrate that our method con-
sistently outperforms state-of-the-art (SOTA) approaches. Code is available at
https://anonymous.4open.science/r/DCM—-0COA.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable performance in various supervised clas-
sification (Rawat & Wang| [2017; |Abdou, 2022} [Evans et al., [2022; |Guo et al., 2023)). The success
largely depends on large-scale, accurately labeled data. However, acquiring high-quality labeled
data remains prohibitively expensive in practice, inevitably introducing noisy labels into training
datasets. Extensive studies have shown that training with these corrupted labels can cause signifi-
cant performance degradation, as DNNs are prone to overfitting on corrupted labels (Zhang et al.,
2021} Johnson & Khoshgoftaar, 2022} |Q1an et al.,|2023). Consequently, robust learning with noisy
labels has become a critical research focus in deep learning.

Existing noise-robust training methods primarily focus on robust loss functions and sample selec-
tion strategies (Ghosh et al., 2017} [Song et al.,|2019a; [Sun et al.l 2020; (Gao et al., 2021} |Liu et al.,
2024a). The former achieves risk minimization by optimizing the loss function, which particularly
requires multiple parameters to balance between noise tolerance for mislabeled samples and suffi-
cient learning for clean samples (Wang et al., 2021} |Chen et al.,|2025). The latter seeks to identify
true labeled examples for training, which relies on various heuristic criteria (e.g., small loss (Jiang
et al.| 2018} Shen & Sanghavi, 2019)), predicted probability (Yi & Wul [2019; Sheng et al., 2024)).
Additionally, some popular regularization techniques can also mitigate overfitting to noisy data, such
as Dropout (Srivastava et al., 2014) and DropConnect (Wan et al.| 2013)). By randomly discarding
neurons or connections of the Fully Connected Layer (FC), they implicitly average over an ensemble
of subnetworks and reduce overfitting. Nonetheless, their inherent randomness means that they are
not specifically tailored for suppressing noisy information, making it difficult to balance the prop-
agation of noisy and clean signals. Motivated by this limitation, as illustrated in Figure (1| we aim
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Figure 1: Comparison of various methods for learning with noisy labels. Robust loss functions
achieve noise-tolerant loss for optimization. Sample selection strategies aim to identify clean data ¥
from noisy samples y. Popular regularization methods, such as Dropout or DropConnect, randomly
remove neurons or connections to mitigate overfitting. Our DCM selectively adjusts the classifier
connections, allowing only important pathways for gradient backpropagation.

to combat noisy labels through simple architectural regularization, which effectively mitigates the
propagation of noisy gradient without degrading the clean information.

To this end, we propose a novel Dynamic Connection Masking (DCM) mechanism for the widely-
used FC to enhance the robustness of the classifier against noisy labels. Intuitively, the negative
impacts of noisy labels arise from gradient backpropagation during training. Reducing these noise-
contaminated gradients would straightforwardly mitigate the adverse effects. Therefore, our DCM
dynamically masks less important edges by evaluating their information-carrying capacity. If an
edge carries less information, it would contribute less to learning but have the risk of backpropagat-
ing noisy gradients. Consequently, temporarily discarding them in each training step can suppress
gradient errors without damaging the information propagation in the network. By operating intrinsi-
cally within the network architecture, our DCM is orthogonal to existing methods that act externally,
such as robust loss functions (loss-level) and sample selection strategies (data-level). Consequently,
it can be seamlessly integrated with these methods as a plug-and-play module to achieve further
performance enhancement. Additionally, to further validate the effectiveness of our DCM, we ap-
ply it to the newly proposed Kolmogorov—Arnold Network (KAN) (Liu et al., [2024b)) architecture.
Interestingly, we find that KAN exhibits superior noise robustness on real-world datasets compared
with FC-based classifiers. The main contributions of this paper are summarized as:

* We propose a novel dynamic connection masking mechanism for both widely-used FC-
based and newly-emerged KAN-based classifiers for learning with noisy labels. Through
adaptive edge masking during training, the approach effectively reduces the gradient error
caused by noisy labels while simultaneously maintaining its capacity to fit clean data.

e We integrate our approach into existing noise-robust training methods, including robust
loss functions and sample selection strategies. Evaluations on both synthetic and real-world
datasets demonstrate the superiority of our approach, achieving SOTA performance.

* To the best of our knowledge, this is also the first work to extend the applicability of KAN
to learning from noisy labels in classification tasks. Experimental results demonstrate that
KAN exhibits enhanced robustness to label noise over FC in real-world scenarios.

2 RELATED WORK

Robust Loss Function. Robust loss design has been extensively studied (Qin et al., 2019; [Feng
et al., 2021; Sztukiewicz et al., 2024; [Wilton & Yel 2024). Theoretical studies have shown that
certain losses like Mean Absolute Error (MAE) possess inherent noise robustness (Ghosh et al.,
2017). However, empirical results indicate that MAE converges slowly (Zhang & Sabuncu, [2018).
Beyond this observation, the generalized cross-entropy (GCE) loss (Zhang & Sabuncul, 2018) com-
bines MAE’s robustness with CCE’s efficiency via Box-Cox transformation, allowing fast training
and noise tolerance. Further studies include Active Passive Loss (APL) (Ma et al.,[2020), which nor-
malizes arbitrary losses into robust forms via active-passive combining. Furthermore, Sparse Regu-
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larization (SR) (Zhou et al., 2021b) imposes the £,-norm constraint into the loss function for robust
training. Recently, the Active Negative Loss (ANL) (Ye et al.,2024) enhances APL by incorporating
Normalized Negative Loss Functions, proposing a novel framework for improved performance.

Sample Selection. Unlike loss optimization, sample selection strategies aim to identify correctly
labeled examples from noisy data through multi-network or multi-round learning (Yu et al., 2019
Shen & Sanghavi,[2019; |Patel & Sastry,[2023)). For instance, Co-teaching (Han et al.| | 2018)) employs
two parallel networks that cross-update using small-loss samples selected from each other, thereby
reducing error accumulation. Jo-SRC (Yao et al [2021) employs Jensen-Shannon divergence to
assess prediction consistency across augmentations. DISC (Li et al.l 2023) dynamically adjusts
instance-specific thresholds based on its memorization momentum across training epochs, enabling
adaptive noise correction. Recently, SED (Sheng et al.l 2024) introduces class-balanced selection
via adaptive probability thresholds, improving robustness under class-imbalanced noise.

Regularization. Regularization techniques enhance model generalization by imposing constraints
on the model. Widely adopted methods include Dropout (Srivastava et al., 2014) and DropCon-
nect (Wan et al 2013)), which randomly disable hidden units or mask individual connections via
Bernoulli sampling. However, these popular regularization methods are not tailored for noisy la-
bel scenarios and often exhibit suboptimal performance under high noise levels (Song et al.l 2022]).
Consequently, advanced regularization methods have been proposed, such as early stopping (Rol-
nick et al., | 2017;[Song et al.,[2019b; |Li et al., 2020). Among these, CDR (Xia et al.,|2020)) identifies
critical parameters via gradient-weight products and penalizes only the noncritical ones to suppress
their influence. However, gradient-based paramter screening in CDR incurs additional computa-
tional overhead. Therefore, we aim to implement simple and efficient parameter selection to enable
stable and robust learning during training.

Kolmogorov-Arnold Networks. Inspired by the Kolmogorov-Arnold representation theorem,
KAN (Liu et al., [2024b) serves as a promising alternative to the traditional Multi-Layer Percep-
tron Network (MLP). Unlike MLP with fixed activation functions at nodes, KAN utilizes learnable
activation functions on edges. Specifically, each weight parameter is modeled as a univariate func-
tion, typically parameterized by spline functions. This architecture enhances model flexibility to
better adapt to diverse data patterns (Somvanshi et al., |2024; [Mohan et al.,|2024). While KAN has
demonstrated effectiveness in various machine learning tasks (Cheonl [2024; Vaca-Rubio et al.,[2024;
Ji et al., [2024), its robustness to noisy labels remains underexplored.

3 METHOD

3.1 PRELIMINARIES

Consider a single-label classification problem with a total number of C classes. In an ideal scenario,
let D = {(x,, yt)}fil denote a clean training set, where x; represents the i-th training image, and

y; = {0,1}¢ indicates its one-hot encoded true label. However, acquiring a perfectly clean dataset
with accurate labels y; is often impractical. Instead, we typically have access to a noisy dataset

D, = {(z, gji)}fil, where §; represents the observed label that may differ from the true label.

A general classification model f consists of two components, which can be expressed as f = g o 1),
where a visual backbone 1 extracts feature maps for the input image x;, and a classifier g projects
the input feature space to a probability distribution over the label space. The training objective is
to encourage that the global minimizer f* obtained in the presence of label noise also serves as the
global minimizer under clean label supervision (Zhang & Sabuncu, [2018]).

3.2 DyYNAMIC CONNECTION MASKING

As illustrated in Figure 2] our approach encompasses two key processes: (i) edge importance scor-
ing and (ii) edge masking. Specifically, we first compute the importance score for each connec-
tion, quantifying its ability to transmit information. Then, we dynamically mask edges with lower
importance scores during training. Our approach enables the network to automatically adjust its
connectivity pattern, maintaining only the most informative pathways while suppressing potentially
misleading signals from noisy labels.
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Figure 2: Overview of our dynamic connection masking mechanism. (i) We first compute the edge
activation value A € RZ*¢*4 yia multiplication between the input feature v;), and its corresponding
edge weight w;,, where B, C' and d denote batch size, total class number, and the dimension of the
input feature. Then, the edge importance score S is obtained by measuring the standard deviation of
A along the batch dimension (Eq.[2). (ii) We adaptively mask edges with lower importance scores
during training, dynamically adjusting the masking of connections at each timestep interval £.

3.2.1 EDGE IMPORTANCE SCORING

Intuitively, the importance of an edge corresponds to its ability to convey information. Specifically,
edges transmitting more information inherently possess greater significance. To quantify each edge’s
information-carrying capability, we adopt the standard deviation to measure the dynamic activation
variability of each edge during forward propagation across different samples. A larger variance of
an edge indicates that it carries more discriminative information and thus exhibits more importance.

Given the input features v € RZ*? extracted by the visual backbone 1, and the learnable weight

matrix W € R*? in a single-layer classifier, the activation value of each edge A € RE*¢*d jg
obtained by multiplying the input feature with the corresponding edge weight:
Aijk = Vil X Wik, (D

where B is the batch size, i € {1,...,B},j € {1,...,C}, and k € {1,...,d} represent the index
of the sample, output node, and input node, respectively. Subsequently, the edge importance score
§ € RY*? is defined as the standard deviation of the edge activation value A across samples:

B B
1 1
Sik =1\ g > " (aijr — i), ik = B > aijn, 2
i=1 i=1

where (11, denotes the mean activation value of the edge between the output node j and input node
k across all samples. Our edge scoring mechanism evaluates the importance of individual edges,
thereby establishing an optimized basis for dynamic edge masking.

3.2.2 EDGE MASKING

The dynamic masking mechanism adaptively adjusts the classifier connectivity using edge impor-
tance scores. Specifically, it involves updating the mask matrix to control which edges are retained
or temporarily discarded. We introduce a hyperparameter p € (0, 1) to control the masking ratio.
For each input node k, its connections are ranked in ascending order by importance scores s, and
the bottom ¢ = |p x C| of these connections are removed, where |- | denotes the floor operation.

Formally, the masking edges set U}, contains indices of edges to be masked for each input node k:
= {31 € ongeont (s, } )
J

where argsort(-) returns the edge indices j of s, sorted in ascending order. Then, the binary mask
matrix M € R?*® is defined as:

07 J € Uk
Mt {1, otherwise ’ @



Under review as a conference paper at ICLR 2026

Table 1: Comparison with SOTA robust loss function methods on CIFAR-10 and CIFAR-100
datasets under various noise rates. Results of existing methods are mainly drawn from APL (Ma
et al.,[2020). The results (mean=std) are reported over 3 random runs, and the top 2 best results are
highlighted using boldface and underlining. The blue-highlighted regions represent the best method.

Datasets Methods ‘Sym-ZO% Sym-40%  Sym-60%  Sym-80% ‘Asym-ZO% Asym-40%

GCE 87.27£0.21 83.33+0.39 72.00£0.37 29.08+0.80|86.07+£0.31 74.98+0.32

NLNL 83.98+0.18 76.58+0.44 72.85+0.39 51.41+0.85|84.74+0.08 76.974+0.52

SCE 88.05+0.26 82.06+0.24 66.08+£0.25 30.69+0.63 | 83.92+0.07 78.2040.03

SR 87.93+0.07 84.86+0.18 78.18+£0.36 51.13+0.51|87.70+£0.19 79.294+0.20

CIFAR-10 APL 89.22+0.27 86.02+0.09 79.78+£0.50 52.71£1.90|88.56+0.17 79.59+0.40
ANL 89.72+0.04 87.284+0.02 81.12£0.30 61.274+0.55|89.13+0.11 77.63+0.31

APL-DFC |89.34+0.23 86.26+0.06 80.32£0.15 56.99+1.52|88.84+0.15 80.14+0.21
APL-DKAN [89.60+0.24 86.49+0.16 80.25+0.21 54.39+0.48 | 88.71+£0.53 80.63£0.15
ANL-DFC |89.93+0.13 87.45+0.05 81.80+0.20 62.98+0.95 |89.56+£0.27 81.054+0.29
ANL-DKAN |90.16+0.02 87.32+0.09 81.69£0.19 63.49+0.09 | 89.37+0.18 81.47+0.30

GCE 65.24£0.56 58.941+0.50 45.18+0.93 16.18+0.46|59.99+0.83 41.49+0.79

NLNL 46.994+0.91 30.29+£1.64 16.60+0.90 11.01£2.48|50.19£0.56 35.10+£0.20

SCE 55.39£0.18 39.99+0.59 22.35+0.65 7.57£0.28 |58.22+0.47 42.19+0.19

SR 67.51£0.29 60.70+0.25 44.95+0.65 17.35+0.13|64.79+£0.01 49.514+0.59

CIFAR-100 APL 65.31£0.07 59.48+0.56 47.12+0.62 25.80£1.12|62.68+0.79 46.791+0.96
ANL 67.09£0.32 61.80+0.50 51.5240.53 28.07+0.28|66.27£0.19 45.41+0.68

APL-DFC |65.99£0.31 59.794+0.26 47.40£0.24 26.40+0.43|63.23+£0.45 48.11+0.36
APL-DKAN |66.05£0.12 59.661+0.19 48.69£0.16 25.98+0.05|64.01+£0.37 48.354+0.40
ANL-DFC |67.63£0.12 62.5440.39 52.30£0.51 29.43+0.75|66.62+£0.20 46.724+0.29
ANL-DKAN | 67.89+0.23 63.02+0.35 53.02+1.13 28.7940.57 | 66.384+0.19 49.67+0.90

where my,; = 1 indicates that the given connection is retained, otherwise discarded. During training,
the mask matrix M® is dynamically updated at each timestep interval ¢. It allows the network to
continuously evolve its connectivity pattern, facilitating adaptive masking of less important edges.
After applying M®| the masked weight matrix is given by W = MT® @ W), where © denotes
element-wise multiplication. Then, the W can be used for standard training. Benefiting from this
simple masking operation, our method enables seamless integration with existing methods.

4 EXPERIMENTS

We implement our DCM for both FC and KAN classifiers, denoted as DFC and DKAN, respectively.

4.1 EXPERIMENT SETUP

Synthetically Corrupted Datasets. CIFAR-10 and CIFAR-100 contain 50, 000 training images and
10, 000 test images. The open-set dataset CIFAR80-NO is derived from CIFAR-100 (Krizhevsky
et al.,[2009), with the last 20 categories treated as out-of-distribution samples. The corrupted datasets
are generated with both symmetric and asymmetric noise with noise rate 7 € (0, 1).

Real-World Datasets. The WebVision-Mini comprises the first 50 classes from WebVision1.0 (Li
et al.,2017) for training while using the validation set as the test set. ClothingIM (Xiao et al.,[2015))
is a large-scale, real-world noisy dataset across 14 categories of online-crawled clothing images,
with 1 million training images and 10, 000 test images.

Compared Methods. We evaluate our DCM by integrating it into two noise-robust training ap-
proaches: robust loss functions (APL (Ma et al.,[2020), and ANL (Ye et al.|[2024)), sample selection
strategies (DISC (Li et al., 2023)) and SED (Sheng et al., 2024)), and a hybrid method (SURE (Li
et al.| 2024))). Furthermore, we compare our method with several regularization methods, including
Dropout (Srivastava et al.,|2014), DropConnect (Wan et al., 2013) and CDR (Xia et al., 2020).

Implementation Details. When combining with robust loss functions, following (Ma et al., 2020;
Zhou et al [2021a)), we use an 8-layer CNN for CIFAR-10 and ResNet-34 for CIFAR-100. For
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Table 2: Comparison with SOTA sample selection strategies on CIFAR100 and CIFAR80N-O
datasets under various noise rates. Results of existing methods are mainly drawn from SED (Sheng
et al., |2024). The average test accuracy (%) is reported over the last 10 epochs, and the top 2 best
results are highlighted using boldface and underlining, respectively.

Methods Publication ‘ CIFAR100 ‘ CIFAR80N-O
\ Sym-20% Sym-80% Asym-40% \ Sym-20% Sym-80% Asym-40%

Co-teaching  NeurIPS 2018 43.73 15.15 28.35 60.38 16.59 42.42
Co-teaching+ ICML 2019 49.27 13.44 33.62 53.97 12.29 43.01
JoCoR CVPR 2020 53.01 15.49 32.70 59.99 12.85 39.37
Jo-SRC CVPR 2021 58.15 23.80 38.52 65.83 29.76 53.03
Co-LDL TMM 2022 59.73 25.12 52.28 58.81 24.22 50.69
UNICON CVPR 2022 55.10 31.49 49.90 54.50 36.75 51.50
SPRL PR 2023 57.04 28.61 49.38 47.90 22.25 40.86
DISC CVPR 2023 60.28 33.90 50.56 50.33 38.23 47.63
SED ECCV 2024 66.50 38.15 58.29 69.10 42.57 60.87
DISC-DFC 64.18 35.81 56.25 60.65 39.79 51.58
DISC-DKAN Ours 66.12 38.02 56.66 61.06 41.28 54.01
SED-DFC 66.83 39.18 59.39 69.37 44.97 61.70
SED-DKAN 67.16 39.49 58.75 69.22 43.08 62.29

sample selection strategies, following (Yao et al., 2021} Sheng et al.|[2024), we adopt a 7-layer CNN
for CIFAR-100 and CIFAR80-NO, InceptionResNetV2 (Szegedy et al.,2017) for WebVision-Mini,
and ResNet-50 (He et al., 2016)) for Clothing] M. When compared with regularization methods, we
adhered to the optimal parameter setting from their original papers. Specifically, for both Dropout
and DropConnect, we employ a random dropping rate of 0.5. To strike a balance between noise
robustness and effective learning, we select p = 0.6 for our DCM across all datasets and noise
conditions. A detailed parameter analysis supporting this choice is provided in the Supplementary
Material. All the experiments are implemented on one NVIDIA RTX-3090 GPU. More training
details are also given in the Supplementary Material.

4.2 EVALUATION ON SYNTHETIC DATASETS

Integration with Robust Loss Function Methods. We integrate DCM with SOTA loss functions
(APL and ANL). Experimental results on CIFAR-10 and CIFAR-100 under both symmetric and
asymmetric noise are presented in Table |I} As can be observed, our method consistently achieves
significant improvements, particularly as noise levels increase. For instance, under 40% asymmetric
noise on CIFAR-10, our ANL-DFC and ANL-DKAN outperform the SOTA method (77.63% of
ANL) by 3.42% and 3.84 %, respectively. Overall, our DCM effectively enhances noise-robustness
across different noise types and rates when integrating with existing robust loss functions.

Integration with Sample Selection Strategies. We integrate DCM with SOTA sample selection
strategies (DISC and SED) and evaluate on both closed-set and open-set benchmarks. As demon-
strated in Table [2] our methods exhibit superior robustness compared to their baseline counterparts.
For example, our DISC-DKAN achieves 61.06% on CIFAR80N-O with 20% symmetric noise, sur-
passing DISC by 10.73%. Notably, our SED-DFC and SED-DKAN achieve the top-2 performance
rankings, establishing new SOTA results on both closed-set and open-set datasets.

Comparison with Regularization Techniques. To further validate the robustness of our DCM,
we compare it against several current regularization techniques by integrating it with the SOTA
robust loss function (i.e., ANL) and sample selection (i.e., SED) methods. As illustrated in Table[3]
these popular methods cause performance degradation when combined with SOTA methods. In
contrast, our DCM consistently improves noise robustness across varying noise rates. From this
observation, random neuron or connection dropping strategies such as Dropout and DropConnect
fail to provide additional benefits for existing noise-robust methods. In contrast, by selectively
processing information, our DCM can be adapted to existing methods. Compared with CDR, our
method offers a more effective criterion for critical information selection. Additionally, CDR’s
identification of important parameters depends on gradient computation, which is comparatively
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Table 3: Comparison with popular regularization techniques on the CIFAR-100 dataset across vari-
ous noise rates. The average test accuracy (%) is reported over the last 10 epochs.

Methods Sym-0.2 Sym-0.4 Sym-0.6 Sym-0.8 Asym-0.2
Combining with Robust Loss Function

ANL 67.05 62.02 51.78 28.01 66.24
ANL-Dropout 66.65(-0.40) 61.64(-0.38) 50.95(-0.83) 27.53(-0.48) 65.86(-0.38)
ANL-DropConnect 66.09(-0.96) 59.66(-2.36) 45.10(-6.68) 18.48(-9.53) 64.99(-1.25)
ANL-CDR 67.06(+0.01) 60.78(-1.24) 49.13(-2.65) 15.61(-12.40) 64.51(-1.73)

ANL-DFC (ours) 67.71(+0.66) 62.88(+0.86) 52.65(+0.87) 30.52(+2.51) 66.83(+0.59)

Combining with Sample Selection

SED 66.50 64.52 59.29 38.15 66.39

SED-Dropout 63.74(-2.76) 61.61¢-2.91) 57.21(-2.08) 37.20(-0.95) 63.97(-2.42)
SED-DropConnect 63.26(-3.24) 61.62(-2.90) 56.66(-2.63) 36.77(-1.38) 63.18(-3.21)
SED-CDR 66.62(+0.12) 63.36(-1.16) 58.57(-0.72) 38.49(+0.34) 65.63(-0.76)
SED-DFC (ours) 66.83(+0.33) 64.77(+0.25) 60.01(+0.72) 39.18(+1.03) 66.78(+0.39)

Table 4: Comparison with the SOTA methods  Table 5: Comparison with the SOTA methods
on Webvision-Mini. The Top-1 validation accu-  on Clothing1M. The results with * are reimple-
racy(%) is reported, and the top 2 best results  mented using open-source code, and others are
are highlighted using boldface and underlining. directly from the original paper.

Method Publication Accuracy (%) Method Publication Accuracy (%)
Decoupling NeurIPS 2017 62.54 Co-teaching NeurIPS 2018 69.21
D2L ICML 2019 62.68 JoCoR CVPR 2020 70.30
MentorNet ICML 2018 63.00 DMI NeurIPS 2019 72.46
Co-teaching NeurIPS 2018 63.58 ELR+ NeurIPS 2020 74.39
INCV ICML 2019 65.24 GJS NeurIPS 2021 71.64
ELR+ NeurIPS 2020 77.78 CAL CVPR 2021 74.17
GJS NeurIPS 2021 77.99 DISC CVPR 2023 73.72
CcC ECCV 2022 79.36 SURE* CVPR 2024 72.57
DISC CVPR 2023 80.28 SURE-DFC 73 39
DISC-DFC Ours 80.80 DISC-DFC Ours 74.15
DISC-DKAN 81.00 DISC-DKAN 74.49

less efficient. Consequently, our DCM possesses greater generalizability, allowing for direct plug-
and-play integration with existing methods.

4.3 EVALUATION ON REAL-WORLD DATASETS

The experimental results on WebVision-Mini and ClothingIM are shown in Table ] and [3] re-
spectively. Specifically, our DISC-KAN achieves SOTA performance with accuracy of 81.00% and
74.49%, respectively. Furthermore, our method maintains an accuracy advantage of 0.82% over
the SURE on ClothingIM. Due to incompatibility between SURE’s cosine classifier and KAN’s
continuous spline representations, we implement only SURE-DFC. The results highlight that KAN
exhibits superior noise robustness over FC in real-world scenarios. Comprehensive evaluations on
both synthetic and real-world datasets verify that our DCM offers plug-and-play compatibility with
existing methods while consistently achieving SOTA performance.

4.4 ROBUSTNESS ANALYSIS

Gradient Error Analysis. We provide a gradient error analysis to validate our DCM’s capability to

suppress the gradient backpropagation from noisy labels. Let £( f(x; ), y) and £(f(2;6), ) denote
the loss function supervised by clean and noisy labels, respectively. Then, the gradient of the visual

backbone parameters 6y, under noisy labels is given by: Vj w[: = Zil %’;‘9)@)

gradient error € caused by label noise with the model f, we define it as the discrepancy between

. To quantify
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Figure 3: Comparison of gradient error ¢ across different models under various noise levels on
the CIFAR-10 dataset. Specifically, fcgprc and fani-prc denote the classifier with our dynamic
connection masking combined with CE and ANL, respectively. The fcg and fanp represent the
original CE and ANL methods with a FC classifier. Figures (a) to (e) illustrate the average cosine
similarity between clean and noisy gradients of the last layer backbone parameters over epochs.

the gradients induced by clean and noisy labels:

ef=1- cos(ngJﬂ,VewEN) =1- Vo, L Vo, £ — )
el o]

where Vi, L represents the optimal gradient, and V£ denotes the noise-corrupted optimization.
We utilize the cosine similarity to quantify the consistency between the noisy and clean gradients
(Vg, L and Vg, L). A higher cosine similarity indicates that the noise-corrupted gradient Vg, £
approximates the optimal gradient Vg, £, resulting in a smaller gradient error ¢y and demonstrating
greater robustness to label noise. To present an intuitive analysis, we compute the gradient error
e of the backbone’s final layer parameters during training. This comparative analysis is conducted
using both CE and ANL loss functions with different classifiers. Specifically, the model performs
the backpropagation using both clean and noisy labels to obtain the corresponding gradients Vg, £

and Vy,, L for recording. Only the noisy gradients VL are utilized for parameter updating. As
illustrated in Figure [3| as the noise rate increases, our fcg.prc and fanp.prc models consistently
yield lower gradient error. This empirical evidence indicates that our approach reduces the gradient
error € y under noisy supervision, thereby mitigating the adverse effects of noisy labels.

Confidence Analysis. We conduct a confidence analysis to evaluate the model’s fitting degree to
clean and noisy data throughout training, which can be measured by their respective average pre-
diction probabilities. Specifically, we define the average prediction probability on clean and noisy
labels as their corresponding confidences. As illustrated in Figure [} we visualize the noisy and
clean confidences during training for CE with different classifiers on CIAFR10. It can be observed
that our fcg prc and fcg.xan exhibit lower noisy confidence across various noise levels, demonstrat-
ing the efficacy of our DCM in mitigating overfitting to noisy data.

In contrast, our fcgprc and fcg.xan maintain comparable clean confidence to their fully connected
counterparts under various noise levels. Notably, even under high-noise conditions (Figure[d[d)), the
model with our DCM achieves a superior fitting to the clean samples. The phenomenon validates
that our DCM can adequately fit clean samples under noisy conditions, thereby ensuring the model’s
fitting capability. To conclude, our DCM effectively mitigates overfitting to noisy data without
degrading the clean information.

4.5 ABLATION STUDY

Masking method analysis. We implement weight and edge-wise masking strategies to evaluate the
efficiency of our method, where the former masks edges by sorting weights and the latter globally
discards unimportant edges. As shown in Table[6] both node-wise and edge-wise masking methods



Under review as a conference paper at ICLR 2026

fee fee-prc fee-kan fee-pran
080 om0

070
8 o0 8 8 060 3
e 2

enc

2
0s0
S o0 5 S o0 S o
2 g g
2 00

nfil

< <
S 050 S S 040
o O o040 (&)

‘Z" 0.40 ? 030

> >
Loxo| -

S P S Lz
Z 030{ 7 Z 020 .=

020 010 010
60 70 80 90 100 110 120 60 70 80 90 100 110 120 60 70 80 90 100 110 120 60 70 80 9 100 110 120 60 70 &0 % 100 110 120

poch Epoch Epoch Epoch Epoch
096 092 0.5 076 098

097
o 094 | o088 o 080 o 069 s
© 096

3 38 3 3
£ 0o S osa € o075 £ os2
3 3 T T T

8 09

2 o090 2 o080 k
i £ € oo

2 o - 2 o0ss
= =

c c ,’/, c c
S oss S 076 . S o0 S o048 = &
o o ,/ (s} o S o
= 086 = om = 060 = 041 S 0o
§ § & § &
S 084 D o0s D o055 D 03s D 0
o o 5} o 5}

082 0564 050 027 090

0.80 060 045 020 089

0 70 8 s 100 10 120 s 70 8 S0 100 110 120 s 70 8 90 100 110 120 60 70 8 s 100 10 120 60 70 8 e 100 10 120
poch Epoch Epoch Epoch Epoch
(a) Sym-20% (b) Sym-40% (c) Sym-60% (d) Sym-80% (e) Asym-40%

Figure 4: Noisy and clean confidence analysis across different classifiers on CIFAR-10. To facilitate
clear comparison, results from mid-training to final epochs are presented.

Table 6: Comparison of various masking meth-  Table 7: Comparison with different masking
ods on CIFAR-10 with 80% symmetric noise.  stages on CIFAR-10 with 80% symmetric noise.
Both the highest (Best) and average test accu-  We report the highest (Best) and the average test
racy (Avg.) over the last 10 epochs are reported.  accuracy (Avg.) over the last 10 epochs.

Method Masking Method Best  Avg.

Masking Stage Accuracy (%)

Method
ANL - 61.45 61.33 Training Testing Best  Avg.
By Weight  63.57 62.96
: 3901 18.62
ANL-DFC Ngewise Oy ereg  CEDFC v 4182 19.65
: : v v 4056 18.80
ANL-KAN - 60.56 60.22 4148 17.62
Edge-wise 62.64 61.54 CE-DKAN v 4274 18.08
ANL-DRAN Node-wise  64.04  63.63 v v 4180 17.87

outperform directly masking edges with the lowest weights. This improvement stems from our
method’s simultaneous consideration of feature information and edge weights, thereby effectively
maintaining critical connections. Furthermore, node-wise masking demonstrates greater robustness
than edge-wise masking, as edge-wise masking may cause more significant architectural changes,
while node-wise masking preserves training capability for all nodes. Consequently, we adopt node-
wise masking, which better maintains critical network topology and improves noise robustness.

Masking stage analysis. We investigate the effect of applying DCM during different stages under
80% symmetric noise on CIFAR-10. As demonstrated in Table[7] the results indicate that employing
DCM solely during the training phase yields better performance than applying it in both training and
testing phases. This result demonstrates that DCM primarily serves as an effective regularization
technique, hindering the model’s overfitting to noisy data. Consequently, in this study, we adopt the
strategy of applying DCM exclusively during the training phase to enhance noise robustness.

5 CONCLUSION

In this study, we propose a novel dynamic connection masking (DCM) mechanism for the widely-
used FC-based classifiers to combat noisy labels. Our DCM approach can adaptively mask unim-
portant edges during training while preserving the most informative pathways. Through robustness
analysis, we demonstrate that our DCM effectively mitigates gradient errors propagated from noisy
labels while simultaneously maintaining its capacity to fit clean samples. Additionally, our DCM
is also compatible with the newly-emerged Kolmogorov-Arnold Network (KAN) architecture, ef-
fectively boosting its robustness against noisy labels. Comprehensive experiments integrating DCM
with various noise-robust training methods across synthetic and real-world datasets consistently val-
idate the effectiveness of our approach in noisy label learning scenarios.



Under review as a conference paper at ICLR 2026

REFERENCES

Mohamed A Abdou. Literature review: Efficient deep neural networks techniques for medical image
analysis. Neural Comput Appl., 34(8):5791-5812, 2022.

Bingzhi Chen, Zhanhao Ye, Yishu Liu, Xiaozhao Fang, Guangming Lu, Shengli Xie, and Xuelong
Li. Towards robust semi-supervised distribution alignment against label distribution shift with
noisy annotations. TMM, 2025.

Minjong Cheon. Demonstrating the efficacy of kolmogorov-arnold networks in vision tasks.
arXiv:2406.14916, 2024.

Benjamin D Evans, Gaurav Malhotra, and Jeffrey S Bowers. Biological convolutions improve dnn
robustness to noise and generalisation. Neural Networks, 148:96—110, 2022.

Lei Feng, Senlin Shu, Zhuoyi Lin, Fengmao Lv, Li Li, and Bo An. Can cross entropy loss be robust
to label noise? In IJCAI pp. 2206-2212, 2021.

Boyan Gao, Henry Gouk, and Timothy M Hospedales. Searching for robustness: Loss learning for
noisy classification tasks. In ICCV, pp. 6670-6679, 2021.

Aritra Ghosh, Himanshu Kumar, and P Shanti Sastry. Robust loss functions under label noise for
deep neural networks. In AAAIL volume 31, 2017.

Jun Guo, Wei Bao, Jiakai Wang, Yuqing Ma, Xinghai Gao, Gang Xiao, Aishan Liu, Jian Dong, Xi-
anglong Liu, and Wenjun Wu. A comprehensive evaluation framework for deep model robustness.
Pattern Recognition, 137:109308, 2023.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
NeurlIPS, pp. 85368546, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770-778, 2016.

Tianrui Ji, Yuntian Hou, and Di Zhang. A comprehensive survey on kolmogorov arnold networks
(kan). arXiv:2407.11075, 2024.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning data-
driven curriculum for very deep neural networks on corrupted labels. In ICML, pp. 2304-2313,
2018.

Justin M Johnson and Taghi M Khoshgoftaar. A survey on classifying big data with label noise.
ACM J. Data Inf. Qual., 14(4):1-43, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Toronto, ON, Canada, 2009.

Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. Gradient descent with early stopping is
provably robust to label noise for overparameterized neural networks. In AISTATS, pp. 4313-
4324. PMLR, 2020.

Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, Jesse Berent, Abhinav Gupta, Rahul Sukthankar,
and Luc Van Gool. Webvision challenge: Visual learning and understanding with web data.
arXiv:1705.05640, 2017.

Yifan Li, Hu Han, Shiguang Shan, and Xilin Chen. Disc: Learning from noisy labels via dynamic
instance-specific selection and correction. In CVPR, pp. 24070-24079, 2023.

Yuting Li, Yingyi Chen, Xuanlong Yu, Dexiong Chen, and Xi Shen. Sure: Survey recipes for
building reliable and robust deep networks. In CVPR, pp. 17500-17510, 2024.

Huafeng Liu, Mengmeng Sheng, Zeren Sun, Yazhou Yao, Xian-Sheng Hua, and Heng-Tao Shen.
Learning with imbalanced noisy data by preventing bias in sample selection. TMM, 26:7426—
7437, 2024a.

10



Under review as a conference paper at ICLR 2026

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv:2404.19756,
2024b.

Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano, Sarah Erfani, and James Bailey. Nor-
malized loss functions for deep learning with noisy labels. In ICML, pp. 6543-6553, 2020.

Karthik Mohan, Hanxiao Wang, and Xiatian Zhu. Kans for computer vision: An experimental study.
arXiv:2411.18224, 2024.

Deep Patel and PS Sastry. Adaptive sample selection for robust learning under label noise. In WACYV,
pp. 3932-3942, 2023.

Siyi Qian, Haochao Ying, Renjun Hu, Jingbo Zhou, Jintai Chen, Danny Z Chen, and Jian Wu.
Robust training of graph neural networks via noise governance. In WSDM, pp. 607-615, 2023.

Zhen Qin, Zhengwen Zhang, Yan Li, and Jun Guo. Making deep neural networks robust to label
noise: Cross-training with a novel loss function. IEEE Access, 7:130893-130902, 2019.

Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for image classification: A
comprehensive review. Neural Comput., 29(9):2352-2449, 2017.

David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep learning is robust to massive
label noise. arXiv preprint arXiv:1705.10694, 2017.

Yanyao Shen and Sujay Sanghavi. Learning with bad training data via iterative trimmed loss mini-
mization. In ICML, pp. 5739-5748, 2019.

Mengmeng Sheng, Zeren Sun, Tao Chen, Shuchao Pang, Yucheng Wang, and Yazhou Yao. Foster
adaptivity and balance in learning with noisy labels. In ECCV, pp. 217-235, 2024.

Shriyank Somvanshi, Syed Aaqib Javed, Md Monzurul Islam, Diwas Pandit, and Subasish Das. A
survey on kolmogorov-arnold network. ACM Comput. Surv., 2024.

Hwanjun Song, Minseok Kim, and Jae-Gil Lee. Selfie: Refurbishing unclean samples for robust
deep learning. In ICML, pp. 5907-5915, 2019a.

Hwanjun Song, Minseok Kim, Dongmin Park, and Jae-Gil Lee. How does early stopping help
generalization against label noise? arXiv preprint arXiv:1911.08059, 2019b.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
labels with deep neural networks: A survey. [EEE Trans. Neural Netw. Learn. Syst., 34(11):
8135-8153, 2022.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929-1958, 2014.

Zeren Sun, Xian-Sheng Hua, Yazhou Yao, Xiu-Shen Wei, Guosheng Hu, and Jian Zhang. Crssc:
salvage reusable samples from noisy data for robust learning. In ACM MM, pp. 92-101, 2020.

Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In AAAI volume 31, 2017.

Lukasz Sztukiewicz, Jack Henry Good, and Artur Dubrawski. Exploring loss design techniques for
decision tree robustness to label noise. arXiv preprint arXiv:2405.17672, 2024.

Cristian J Vaca-Rubio, Luis Blanco, Roberto Pereira, and Marius Caus. Kolmogorov-arnold net-
works (kans) for time series analysis. arXiv:2405.08790, 2024.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. In ICML, pp. 1058-1066. PMLR, 2013.

Deng-Bao Wang, Yong Wen, Lujia Pan, and Min-Ling Zhang. Learning from noisy labels with
complementary loss functions. In AAAI volume 35, pp. 10111-10119, 2021.

11



Under review as a conference paper at ICLR 2026

Jonathan Wilton and Nan Ye. Robust loss functions for training decision trees with noisy labels. In
AAAI volume 38, pp. 15859-15867, 2024.

Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nannan Wang, Zongyuan Ge, and Yi Chang.
Robust early-learning: Hindering the memorization of noisy labels. In /CLR, 2020.

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive noisy
labeled data for image classification. In CVPR, pp. 2691-2699, 2015.

Yazhou Yao, Zeren Sun, Chuanyi Zhang, Fumin Shen, Qi Wu, Jian Zhang, and Zhenmin Tang.
Jo-src: A contrastive approach for combating noisy labels. In CVPR, pp. 5192-5201, 2021.

Xichen Ye, Yifan Wu, Yiwen Xu, Xiaoqiang Li, Weizhong Zhang, and Yifan Chen. Active negative
loss: A robust framework for learning with noisy labels. arXiv:2412.02373, 2024.

Kun Yi and Jianxin Wu. Probabilistic end-to-end noise correction for learning with noisy labels. In
CVPR, pp. 7017-7025, 2019.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does
disagreement help generalization against label corruption? In ICML, pp. 7164-7173, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Commun. ACM, 64(3):107-115, 2021.

Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. In NeurlIPS, pp. 8792-8802, 2018.

Xiong Zhou, Xianming Liu, Junjun Jiang, Xin Gao, and Xiangyang Ji. Asymmetric loss functions
for learning with noisy labels. In ICML, pp. 12846-12856, 2021a.

Xiong Zhou, Xianming Liu, Chenyang Wang, Deming Zhai, Junjun Jiang, and Xiangyang Ji. Learn-
ing with noisy labels via sparse regularization. In CVPR, pp. 72-81, 2021b.

12



	Introduction
	Related Work
	Method
	Preliminaries
	Dynamic Connection Masking
	Edge Importance Scoring
	Edge Masking


	Experiments
	Experiment Setup
	Evaluation on Synthetic Datasets
	Evaluation on Real-world Datasets
	Robustness Analysis
	Ablation Study

	Conclusion

