

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COMBATING NOISY LABELS VIA DYNAMIC CONNECTION MASKING

Anonymous authors

Paper under double-blind review

ABSTRACT

Noisy labels are inevitable in real-world scenarios. Due to the strong capacity of deep neural networks to memorize corrupted labels, these noisy labels can cause significant performance degradation. Existing research on mitigating the negative effects of noisy labels has mainly focused on robust loss functions and sample selection, with comparatively limited exploration of regularization in model architecture. In this paper, we propose a **Dynamic Connection Masking (DCM)** mechanism for the widely-used Fully Connected Layer (FC) to enhance the robustness of classifiers against noisy labels. The mechanism can adaptively mask less important edges during training by evaluating their information-carrying capacity. Through this selective masking process of preserving only a few critical edges for information propagation, our DCM effectively reduces the gradient error caused by noisy labels. It can be seamlessly integrated into various noise-robust training methods to build more robust deep networks, including robust loss functions and sample selection strategies. Additionally, we validate the applicability of our DCM by extending it to the newly-emerged Kolmogorov-Arnold Network (KAN) architecture. The experimental results reveal that the KAN exhibits superior noise robustness over FC-based classifiers in real-world noisy scenarios. Extensive experiments on both synthetic and real-world benchmarks demonstrate that our method consistently outperforms state-of-the-art (SOTA) approaches. Code is available at <https://anonymous.4open.science/r/DCM-0C0A>.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable performance in various supervised classification (Rawat & Wang, 2017; Abdou, 2022; Evans et al., 2022; Guo et al., 2023). The success largely depends on large-scale, accurately labeled data. However, acquiring high-quality labeled data remains prohibitively expensive in practice, inevitably introducing noisy labels into training datasets. Extensive studies have shown that training with these corrupted labels can cause significant performance degradation, as DNNs are prone to overfitting on corrupted labels (Zhang et al., 2021; Johnson & Khoshgoftaar, 2022; Qian et al., 2023). Consequently, robust learning with noisy labels has become a critical research focus in deep learning.

Existing noise-robust training methods primarily focus on robust loss functions and sample selection strategies (Ghosh et al., 2017; Song et al., 2019a; Sun et al., 2020; Gao et al., 2021; Liu et al., 2024a). The former achieves risk minimization by optimizing the loss function, which particularly requires multiple parameters to balance between noise tolerance for mislabeled samples and sufficient learning for clean samples (Wang et al., 2021; Chen et al., 2025). The latter seeks to identify true labeled examples for training, which relies on various heuristic criteria (*e.g.*, small loss (Jiang et al., 2018; Shen & Sanghavi, 2019), predicted probability (Yi & Wu, 2019; Sheng et al., 2024)). Additionally, some popular regularization techniques can also mitigate overfitting to noisy data, such as Dropout (Srivastava et al., 2014) and DropConnect (Wan et al., 2013). By randomly discarding neurons or connections of the Fully Connected Layer (FC), they implicitly average over an ensemble of subnetworks and reduce overfitting. Nonetheless, their inherent randomness means that they are not specifically tailored for suppressing noisy information, making it difficult to balance the propagation of noisy and clean signals. Motivated by this limitation, as illustrated in Figure 1, we aim

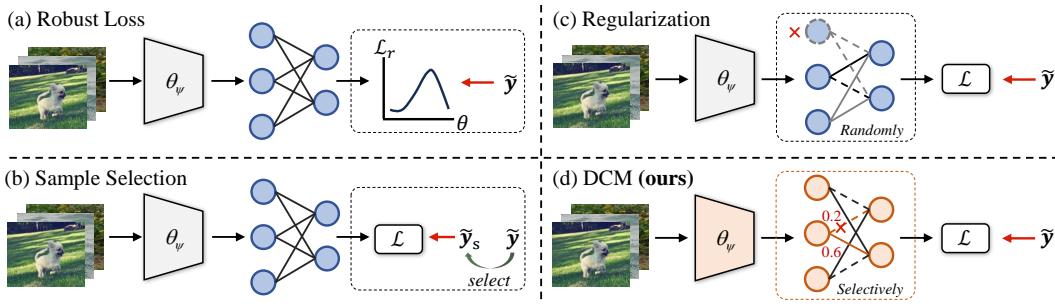


Figure 1: Comparison of various methods for learning with noisy labels. Robust loss functions achieve noise-tolerant loss for optimization. Sample selection strategies aim to identify clean data \tilde{y}_s from noisy samples \tilde{y} . Popular regularization methods, such as Dropout or DropConnect, randomly remove neurons or connections to mitigate overfitting. Our DCM selectively adjusts the classifier connections, allowing only important pathways for gradient backpropagation.

to combat noisy labels through simple architectural regularization, which effectively mitigates the propagation of noisy gradient without degrading the clean information.

To this end, we propose a novel **Dynamic Connection Masking** (DCM) mechanism for the widely-used FC to enhance the robustness of the classifier against noisy labels. Intuitively, the negative impacts of noisy labels arise from gradient backpropagation during training. Reducing these noise-contaminated gradients would straightforwardly mitigate the adverse effects. Therefore, our DCM dynamically masks less important edges by evaluating their information-carrying capacity. If an edge carries less information, it would contribute less to learning but have the risk of backpropagating noisy gradients. Consequently, temporarily discarding them in each training step can suppress gradient errors without damaging the information propagation in the network. By operating intrinsically within the network architecture, our DCM is orthogonal to existing methods that act externally, such as robust loss functions (loss-level) and sample selection strategies (data-level). Consequently, it can be seamlessly integrated with these methods as a plug-and-play module to achieve further performance enhancement. Additionally, to further validate the effectiveness of our DCM, we apply it to the newly proposed Kolmogorov–Arnold Network (KAN) (Liu et al., 2024b) architecture. Interestingly, we find that KAN exhibits superior noise robustness on real-world datasets compared with FC-based classifiers. The main contributions of this paper are summarized as:

- We propose a novel dynamic connection masking mechanism for both widely-used FC-based and newly-emerged KAN-based classifiers for learning with noisy labels. Through adaptive edge masking during training, the approach effectively reduces the gradient error caused by noisy labels while simultaneously maintaining its capacity to fit clean data.
- We integrate our approach into existing noise-robust training methods, including robust loss functions and sample selection strategies. Evaluations on both synthetic and real-world datasets demonstrate the superiority of our approach, achieving SOTA performance.
- To the best of our knowledge, this is also the first work to extend the applicability of KAN to learning from noisy labels in classification tasks. Experimental results demonstrate that KAN exhibits enhanced robustness to label noise over FC in real-world scenarios.

2 RELATED WORK

Robust Loss Function. Robust loss design has been extensively studied (Qin et al., 2019; Feng et al., 2021; Sztukiewicz et al., 2024; Wilton & Ye, 2024). Theoretical studies have shown that certain losses like Mean Absolute Error (MAE) possess inherent noise robustness (Ghosh et al., 2017). However, empirical results indicate that MAE converges slowly (Zhang & Sabuncu, 2018). Beyond this observation, the generalized cross-entropy (GCE) loss (Zhang & Sabuncu, 2018) combines MAE’s robustness with CCE’s efficiency via Box-Cox transformation, allowing fast training and noise tolerance. Further studies include Active Passive Loss (APL) (Ma et al., 2020), which normalizes arbitrary losses into robust forms via active-passive combining. Furthermore, Sparse Regu-

108 larization (SR) (Zhou et al., 2021b) imposes the ℓ_p -norm constraint into the loss function for robust
 109 training. Recently, the Active Negative Loss (ANL) (Ye et al., 2024) enhances APL by incorporating
 110 Normalized Negative Loss Functions, proposing a novel framework for improved performance.
 111

112 **Sample Selection.** Unlike loss optimization, sample selection strategies aim to identify correctly
 113 labeled examples from noisy data through multi-network or multi-round learning (Yu et al., 2019;
 114 Shen & Sanghavi, 2019; Patel & Sastry, 2023). For instance, Co-teaching (Han et al., 2018) employs
 115 two parallel networks that cross-update using small-loss samples selected from each other, thereby
 116 reducing error accumulation. Jo-SRC (Yao et al., 2021) employs Jensen-Shannon divergence to
 117 assess prediction consistency across augmentations. DISC (Li et al., 2023) dynamically adjusts
 118 instance-specific thresholds based on its memorization momentum across training epochs, enabling
 119 adaptive noise correction. Recently, SED (Sheng et al., 2024) introduces class-balanced selection
 120 via adaptive probability thresholds, improving robustness under class-imbalanced noise.
 121

122 **Regularization.** Regularization techniques enhance model generalization by imposing constraints
 123 on the model. Widely adopted methods include Dropout (Srivastava et al., 2014) and DropCon-
 124 nect (Wan et al., 2013), which randomly disable hidden units or mask individual connections via
 125 Bernoulli sampling. However, these popular regularization methods are not tailored for noisy la-
 126 bel scenarios and often exhibit suboptimal performance under high noise levels (Song et al., 2022).
 127 Consequently, advanced regularization methods have been proposed, such as early stopping (Rol-
 128 nick et al., 2017; Song et al., 2019b; Li et al., 2020). Among these, CDR (Xia et al., 2020) identifies
 129 critical parameters via gradient-weight products and penalizes only the noncritical ones to suppress
 130 their influence. However, gradient-based parameter screening in CDR incurs additional computa-
 131 tional overhead. Therefore, we aim to implement simple and efficient parameter selection to enable
 132 stable and robust learning during training.
 133

134 **Kolmogorov-Arnold Networks.** Inspired by the Kolmogorov-Arnold representation theorem,
 135 KAN (Liu et al., 2024b) serves as a promising alternative to the traditional Multi-Layer Percep-
 136 tron Network (MLP). Unlike MLP with fixed activation functions at nodes, KAN utilizes learnable
 137 activation functions on edges. Specifically, each weight parameter is modeled as a univariate func-
 138 tion, typically parameterized by spline functions. This architecture enhances model flexibility to
 139 better adapt to diverse data patterns (Somvanshi et al., 2024; Mohan et al., 2024). While KAN has
 140 demonstrated effectiveness in various machine learning tasks (Cheon, 2024; Vaca-Rubio et al., 2024;
 141 Ji et al., 2024), its robustness to noisy labels remains underexplored.
 142

143 3 METHOD

144 3.1 PRELIMINARIES

145 Consider a single-label classification problem with a total number of C classes. In an ideal scenario,
 146 let $D = \{(x_i, y_i)\}_{i=1}^N$ denote a clean training set, where x_i represents the i -th training image, and
 147 $y_i = \{0, 1\}^C$ indicates its one-hot encoded true label. However, acquiring a perfectly clean dataset
 148 with accurate labels y_i is often impractical. Instead, we typically have access to a noisy dataset
 $D_\eta = \{(x_i, \tilde{y}_i)\}_{i=1}^N$, where \tilde{y}_i represents the observed label that may differ from the true label.
 149

150 A general classification model f consists of two components, which can be expressed as $f = g \circ \psi$,
 151 where a visual backbone ψ extracts feature maps for the input image x_i , and a classifier g projects
 152 the input feature space to a probability distribution over the label space. The training objective is
 153 to encourage that the global minimizer f^* obtained in the presence of label noise also serves as the
 154 global minimizer under clean label supervision (Zhang & Sabuncu, 2018).
 155

156 3.2 DYNAMIC CONNECTION MASKING

157 As illustrated in Figure 2, our approach encompasses two key processes: (i) edge importance scor-
 158 ing and (ii) edge masking. Specifically, we first compute the importance score for each connec-
 159 tion, quantifying its ability to transmit information. Then, we dynamically mask edges with lower
 160 importance scores during training. Our approach enables the network to automatically adjust its
 161 connectivity pattern, maintaining only the most informative pathways while suppressing potentially
 162 misleading signals from noisy labels.
 163

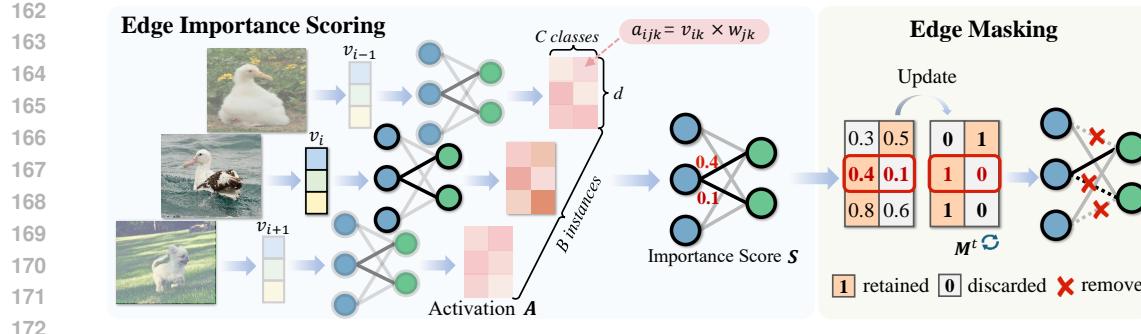


Figure 2: Overview of our dynamic connection masking mechanism. (i) We first compute the edge activation value $\mathbf{A} \in \mathbb{R}^{B \times C \times d}$ via multiplication between the input feature v_{ik} and its corresponding edge weight w_{jk} , where B , C and d denote batch size, total class number, and the dimension of the input feature. Then, the edge importance score S is obtained by measuring the standard deviation of \mathbf{A} along the batch dimension (Eq. 2). (ii) We adaptively mask edges with lower importance scores during training, dynamically adjusting the masking of connections at each timestep interval t .

3.2.1 EDGE IMPORTANCE SCORING

Intuitively, the importance of an edge corresponds to its ability to convey information. Specifically, edges transmitting more information inherently possess greater significance. To quantify each edge’s information-carrying capability, we adopt the standard deviation to measure the dynamic activation variability of each edge during forward propagation across different samples. A larger variance of an edge indicates that it carries more discriminative information and thus exhibits more importance.

Given the input features $\mathbf{v} \in \mathbb{R}^{B \times d}$ extracted by the visual backbone ψ , and the learnable weight matrix $\mathbf{W} \in \mathbb{R}^{C \times d}$ in a single-layer classifier, the activation value of each edge $\mathbf{A} \in \mathbb{R}^{B \times C \times d}$ is obtained by multiplying the input feature with the corresponding edge weight:

$$a_{ijk} = v_{ik} \times w_{jk}, \quad (1)$$

where B is the batch size, $i \in \{1, \dots, B\}$, $j \in \{1, \dots, C\}$, and $k \in \{1, \dots, d\}$ represent the index of the sample, output node, and input node, respectively. Subsequently, the edge importance score $S \in \mathbb{R}^{C \times d}$ is defined as the standard deviation of the edge activation value \mathbf{A} across samples:

$$s_{jk} = \sqrt{\frac{1}{B} \sum_{i=1}^B (a_{ijk} - \mu_{jk})^2}, \quad \mu_{jk} = \frac{1}{B} \sum_{i=1}^B a_{ijk}, \quad (2)$$

where μ_{jk} denotes the mean activation value of the edge between the output node j and input node k across all samples. Our edge scoring mechanism evaluates the importance of individual edges, thereby establishing an optimized basis for dynamic edge masking.

3.2.2 EDGE MASKING

The dynamic masking mechanism adaptively adjusts the classifier connectivity using edge importance scores. Specifically, it involves updating the mask matrix to control which edges are retained or temporarily discarded. We introduce a hyperparameter $p \in (0, 1)$ to control the masking ratio. For each input node k , its connections are ranked in ascending order by importance scores s_{jk} , and the bottom $q = \lfloor p \times C \rfloor$ of these connections are removed, where $\lfloor \cdot \rfloor$ denotes the floor operation.

Formally, the masking edges set U_k contains indices of edges to be masked for each input node k :

$$U_k = \left\{ j \mid j \in \operatorname{argsort}_j (s_{jk})_{1:q} \right\}, \quad (3)$$

where $\operatorname{argsort}(\cdot)$ returns the edge indices j of s_{jk} sorted in ascending order. Then, the binary mask matrix $\mathbf{M} \in \mathbb{R}^{d \times C}$ is defined as:

$$m_{kj} = \begin{cases} 0, & j \in U_k \\ 1, & \text{otherwise} \end{cases}, \quad (4)$$

216
217 Table 1: Comparison with SOTA robust loss function methods on CIFAR-10 and CIFAR-100
218 datasets under various noise rates. Results of existing methods are mainly drawn from APL (Ma
219 et al., 2020). The results (mean \pm std) are reported over 3 random runs, and the top 2 best results are
220 highlighted using boldface and underlining. The blue-highlighted regions represent the best method.

Datasets	Methods	Sym-20%	Sym-40%	Sym-60%	Sym-80%	Asym-20%	Asym-40%
CIFAR-10	GCE	87.27 \pm 0.21	83.33 \pm 0.39	72.00 \pm 0.37	29.08 \pm 0.80	86.07 \pm 0.31	74.98 \pm 0.32
	NLNL	83.98 \pm 0.18	76.58 \pm 0.44	72.85 \pm 0.39	51.41 \pm 0.85	84.74 \pm 0.08	76.97 \pm 0.52
	SCE	88.05 \pm 0.26	82.06 \pm 0.24	66.08 \pm 0.25	30.69 \pm 0.63	83.92 \pm 0.07	78.20 \pm 0.03
	SR	87.93 \pm 0.07	84.86 \pm 0.18	78.18 \pm 0.36	51.13 \pm 0.51	87.70 \pm 0.19	79.29 \pm 0.20
	APL	89.22 \pm 0.27	86.02 \pm 0.09	79.78 \pm 0.50	52.71 \pm 1.90	88.56 \pm 0.17	79.59 \pm 0.40
	ANL	89.72 \pm 0.04	87.28 \pm 0.02	81.12 \pm 0.30	61.27 \pm 0.55	89.13 \pm 0.11	77.63 \pm 0.31
	APL-DFC	89.34 \pm 0.23	86.26 \pm 0.06	80.32 \pm 0.15	56.99 \pm 1.52	88.84 \pm 0.15	80.14 \pm 0.21
	APL-DKAN	89.60 \pm 0.24	86.49 \pm 0.16	80.25 \pm 0.21	54.39 \pm 0.48	88.71 \pm 0.53	80.63 \pm 0.15
	ANL-DFC	<u>89.93\pm0.13</u>	87.45\pm0.05	81.80\pm0.20	<u>62.98\pm0.95</u>	89.56\pm0.27	<u>81.05\pm0.29</u>
	ANL-DKAN	90.16\pm0.02	<u>87.32\pm0.09</u>	<u>81.69\pm0.19</u>	63.49\pm0.09	<u>89.37\pm0.18</u>	81.47\pm0.30
CIFAR-100	GCE	65.24 \pm 0.56	58.94 \pm 0.50	45.18 \pm 0.93	16.18 \pm 0.46	59.99 \pm 0.83	41.49 \pm 0.79
	NLNL	46.99 \pm 0.91	30.29 \pm 1.64	16.60 \pm 0.90	11.01 \pm 2.48	50.19 \pm 0.56	35.10 \pm 0.20
	SCE	55.39 \pm 0.18	39.99 \pm 0.59	22.35 \pm 0.65	7.57 \pm 0.28	58.22 \pm 0.47	42.19 \pm 0.19
	SR	67.51 \pm 0.29	60.70 \pm 0.25	44.95 \pm 0.65	17.35 \pm 0.13	64.79 \pm 0.01	49.51 \pm 0.59
	APL	65.31 \pm 0.07	59.48 \pm 0.56	47.12 \pm 0.62	25.80 \pm 1.12	62.68 \pm 0.79	46.79 \pm 0.96
	ANL	67.09 \pm 0.32	61.80 \pm 0.50	51.52 \pm 0.53	28.07 \pm 0.28	66.27 \pm 0.19	45.41 \pm 0.68
	APL-DFC	65.99 \pm 0.31	59.79 \pm 0.26	47.40 \pm 0.24	26.40 \pm 0.43	63.23 \pm 0.45	48.11 \pm 0.36
	APL-DKAN	66.05 \pm 0.12	59.66 \pm 0.19	48.69 \pm 0.16	25.98 \pm 0.05	64.01 \pm 0.37	48.35 \pm 0.40
	ANL-DFC	<u>67.63\pm0.12</u>	<u>62.54\pm0.39</u>	<u>52.30\pm0.51</u>	29.43\pm0.75	66.62\pm0.20	<u>46.72\pm0.29</u>
	ANL-DKAN	67.89\pm0.23	63.02\pm0.35	53.02\pm1.13	<u>28.79\pm0.57</u>	<u>66.38\pm0.19</u>	49.67\pm0.90

241
242 where $m_{kj} = 1$ indicates that the given connection is retained, otherwise discarded. During training,
243 the mask matrix $\mathbf{M}^{(t)}$ is dynamically updated at each timestep interval t . It allows the network to
244 continuously evolve its connectivity pattern, facilitating adaptive masking of less important edges.
245 After applying $\mathbf{M}^{(t)}$, the masked weight matrix is given by $\bar{\mathbf{W}}^{(t)} = \mathbf{M}^{\text{T}(t)} \odot \mathbf{W}^{(t)}$, where \odot denotes
246 element-wise multiplication. Then, the $\bar{\mathbf{W}}^{(t)}$ can be used for standard training. Benefiting from this
247 simple masking operation, our method enables seamless integration with existing methods.

4 EXPERIMENTS

251 We implement our DCM for both FC and KAN classifiers, denoted as **DFC** and **DKAN**, respectively.

4.1 EXPERIMENT SETUP

255 **Synthetically Corrupted Datasets.** CIFAR-10 and CIFAR-100 contain 50,000 training images and
256 10,000 test images. The open-set dataset CIFAR80-NO is derived from CIFAR-100 (Krizhevsky
257 et al., 2009), with the last 20 categories treated as out-of-distribution samples. The corrupted datasets
258 are generated with both symmetric and asymmetric noise with noise rate $\eta \in (0, 1)$.

259 **Real-World Datasets.** The WebVision-Mini comprises the first 50 classes from WebVision1.0 (Li
260 et al., 2017) for training while using the validation set as the test set. Clothing1M (Xiao et al., 2015)
261 is a large-scale, real-world noisy dataset across 14 categories of online-crawled clothing images,
262 with 1 million training images and 10,000 test images.

264 **Compared Methods.** We evaluate our DCM by integrating it into two noise-robust training ap-
265 proaches: robust loss functions (APL (Ma et al., 2020), and ANL (Ye et al., 2024)), sample selection
266 strategies (DISC (Li et al., 2023) and SED (Sheng et al., 2024)), and a hybrid method (SURE (Li
267 et al., 2024)). Furthermore, we compare our method with several regularization methods, including
268 Dropout (Srivastava et al., 2014), DropConnect (Wan et al., 2013) and CDR (Xia et al., 2020).

269 **Implementation Details.** When combining with robust loss functions, following (Ma et al., 2020;
270 Zhou et al., 2021a), we use an 8-layer CNN for CIFAR-10 and ResNet-34 for CIFAR-100. For

270
 271 Table 2: Comparison with SOTA sample selection strategies on CIFAR100 and CIFAR80N-O
 272 datasets under various noise rates. Results of existing methods are mainly drawn from SED (Sheng
 273 et al., 2024). The average test accuracy (%) is reported over the last 10 epochs, and the top 2 best
 274 results are highlighted using boldface and underlining, respectively.

Methods	Publication	CIFAR100			CIFAR80N-O		
		Sym-20%	Sym-80%	Asym-40%	Sym-20%	Sym-80%	Asym-40%
Co-teaching	NeurIPS 2018	43.73	15.15	28.35	60.38	16.59	42.42
Co-teaching+	ICML 2019	49.27	13.44	33.62	53.97	12.29	43.01
JoCoR	CVPR 2020	53.01	15.49	32.70	59.99	12.85	39.37
Jo-SRC	CVPR 2021	58.15	23.80	38.52	65.83	29.76	53.03
Co-LDL	TMM 2022	59.73	25.12	52.28	58.81	24.22	50.69
UNICON	CVPR 2022	55.10	31.49	49.90	54.50	36.75	51.50
SPRL	PR 2023	57.04	28.61	49.38	47.90	22.25	40.86
DISC	CVPR 2023	60.28	33.90	50.56	50.33	38.23	47.63
SED	ECCV 2024	66.50	38.15	58.29	69.10	42.57	60.87
DISC-DFC		64.18	35.81	56.25	60.65	39.79	51.58
DISC-DKAN		66.12	38.02	56.66	61.06	41.28	54.01
SED-DFC	Ours	66.83	<u>39.18</u>	59.39	69.37	44.97	<u>61.70</u>
SED-DKAN		67.16	39.49	<u>58.75</u>	69.22	<u>43.08</u>	62.29

291 sample selection strategies, following (Yao et al., 2021; Sheng et al., 2024), we adopt a 7-layer CNN
 292 for CIFAR-100 and CIFAR80-NO, InceptionResNetV2 (Szegedy et al., 2017) for WebVision-Mini,
 293 and ResNet-50 (He et al., 2016) for Clothing1M. When compared with regularization methods, we
 294 adhered to the optimal parameter setting from their original papers. Specifically, for both Dropout
 295 and DropConnect, we employ a random dropping rate of 0.5. To strike a balance between noise
 296 robustness and effective learning, we select $p = 0.6$ for our DCM across all datasets and noise
 297 conditions. A detailed parameter analysis supporting this choice is provided in the Supplementary
 298 Material. All the experiments are implemented on one NVIDIA RTX-3090 GPU. More training
 299 details are also given in the Supplementary Material.

300 4.2 EVALUATION ON SYNTHETIC DATASETS

301 **Integration with Robust Loss Function Methods.** We integrate DCM with SOTA loss functions
 302 (APL and ANL). Experimental results on CIFAR-10 and CIFAR-100 under both symmetric and
 303 asymmetric noise are presented in Table 1. As can be observed, our method consistently achieves
 304 significant improvements, particularly as noise levels increase. For instance, under 40% asymmetric
 305 noise on CIFAR-10, our ANL-DFC and ANL-DKAN outperform the SOTA method (77.63% of
 306 ANL) by **3.42%** and **3.84%**, respectively. Overall, our DCM effectively enhances noise-robustness
 307 across different noise types and rates when integrating with existing robust loss functions.

308 **Integration with Sample Selection Strategies.** We integrate DCM with SOTA sample selection
 309 strategies (DISC and SED) and evaluate on both closed-set and open-set benchmarks. As demon-
 310 strated in Table 2, our methods exhibit superior robustness compared to their baseline counter-
 311 parts. For example, our DISC-DKAN achieves 61.06% on CIFAR80N-O with 20% symmetric noise,
 312 surpassing DISC by **10.73%**. Notably, our SED-DFC and SED-DKAN achieve the top-2 performance
 313 rankings, establishing new SOTA results on both closed-set and open-set datasets.

314 **Comparison with Regularization Techniques.** To further validate the robustness of our DCM,
 315 we compare it against several current regularization techniques by integrating it with the SOTA
 316 robust loss function (*i.e.*, ANL) and sample selection (*i.e.*, SED) methods. As illustrated in Table 3,
 317 these popular methods cause performance degradation when combined with SOTA methods. In
 318 contrast, our DCM consistently improves noise robustness across varying noise rates. From this
 319 observation, random neuron or connection dropping strategies such as Dropout and DropConnect
 320 fail to provide additional benefits for existing noise-robust methods. In contrast, by selectively
 321 processing information, our DCM can be adapted to existing methods. Compared with CDR, our
 322 method offers a more effective criterion for critical information selection. Additionally, CDR’s
 323 identification of important parameters depends on gradient computation, which is comparatively

324
 325 Table 3: Comparison with popular regularization techniques on the CIFAR-100 dataset across vari-
 326 ous noise rates. The average test accuracy (%) is reported over the last 10 epochs.

Methods	Sym-0.2	Sym-0.4	Sym-0.6	Sym-0.8	Asym-0.2
<i>Combining with Robust Loss Function</i>					
ANL	67.05	62.02	51.78	28.01	66.24
ANL-Dropout	66.65(-0.40)	61.64(-0.38)	50.95(-0.83)	27.53(-0.48)	65.86(-0.38)
ANL-DropConnect	66.09(-0.96)	59.66(-2.36)	45.10(-6.68)	18.48(-9.53)	64.99(-1.25)
ANL-CDR	67.06(+0.01)	60.78(-1.24)	49.13(-2.65)	15.61(-12.40)	64.51(-1.73)
ANL-DFC (ours)	67.71(+0.66)	62.88(+0.86)	52.65(+0.87)	30.52(+2.51)	66.83(+0.59)
<i>Combining with Sample Selection</i>					
SED	66.50	64.52	59.29	38.15	66.39
SED-Dropout	63.74(-2.76)	61.61(-2.91)	57.21(-2.08)	37.20(-0.95)	63.97(-2.42)
SED-DropConnect	63.26(-3.24)	61.62(-2.90)	56.66(-2.63)	36.77(-1.38)	63.18(-3.21)
SED-CDR	66.62(+0.12)	63.36(-1.16)	58.57(-0.72)	38.49(+0.34)	65.63(-0.76)
SED-DFC (ours)	66.83(+0.33)	64.77(+0.25)	60.01(+0.72)	39.18(+1.03)	66.78(+0.39)

341 Table 4: Comparison with the SOTA methods
 342 on Webvision-Mini. The Top-1 validation accuracy(%) is reported, and the top 2 best results
 343 are highlighted using boldface and underlining.
 344

Method	Publication	Accuracy (%)
Decoupling	NeurIPS 2017	62.54
D2L	ICML 2019	62.68
MentorNet	ICML 2018	63.00
Co-teaching	NeurIPS 2018	63.58
INCV	ICML 2019	65.24
ELR+	NeurIPS 2020	77.78
GJS	NeurIPS 2021	77.99
CC	ECCV 2022	79.36
DISC	CVPR 2023	80.28
DISC-DFC	Ours	<u>80.80</u>
DISC-DKAN	Ours	81.00

349 Table 5: Comparison with the SOTA methods
 350 on Clothing1M. The results with * are reimple-
 351 mented using open-source code, and others are
 352 directly from the original paper.

Method	Publication	Accuracy (%)
Co-teaching	NeurIPS 2018	69.21
JoCoR	CVPR 2020	70.30
DMI	NeurIPS 2019	72.46
ELR+	NeurIPS 2020	74.39
GJS	NeurIPS 2021	71.64
CAL	CVPR 2021	74.17
DISC	CVPR 2023	73.72
SURE*	CVPR 2024	72.57
SURE-DFC		73.39
DISC-DFC	Ours	<u>74.15</u>
DISC-DKAN		74.49

353 less efficient. Consequently, our DCM possesses greater generalizability, allowing for direct plug-
 354 and-play integration with existing methods.

361 4.3 EVALUATION ON REAL-WORLD DATASETS

362 The experimental results on WebVision-Mini and Clothing1M are shown in Table 4 and 5, re-
 363 spectively. Specifically, our DISC-KAN achieves SOTA performance with accuracy of 81.00% and
 364 74.49%, respectively. Furthermore, our method maintains an accuracy advantage of 0.82% over
 365 the SURE on Clothing1M. Due to incompatibility between SURE’s cosine classifier and KAN’s
 366 continuous spline representations, we implement only SURE-DFC. The results highlight that KAN
 367 exhibits superior noise robustness over FC in real-world scenarios. Comprehensive evaluations on
 368 both synthetic and real-world datasets verify that our DCM offers plug-and-play compatibility with
 369 existing methods while consistently achieving SOTA performance.

371 4.4 ROBUSTNESS ANALYSIS

372 **Gradient Error Analysis.** We provide a gradient error analysis to validate our DCM’s capability to
 373 suppress the gradient backpropagation from noisy labels. Let $\mathcal{L}(f(x; \theta), y)$ and $\tilde{\mathcal{L}}(f(x; \theta), \tilde{y})$ denote
 374 the loss function supervised by clean and noisy labels, respectively. Then, the gradient of the visual
 375 backbone parameters θ_ψ under noisy labels is given by: $\nabla_{\theta_\psi} \tilde{\mathcal{L}} = \sum_{i=1}^B \frac{\partial \tilde{\mathcal{L}}(f(x_i; \theta), \tilde{y}_i)}{\partial \theta_\psi}$. To quantify
 376 gradient error ε_f caused by label noise with the model f , we define it as the discrepancy between
 377

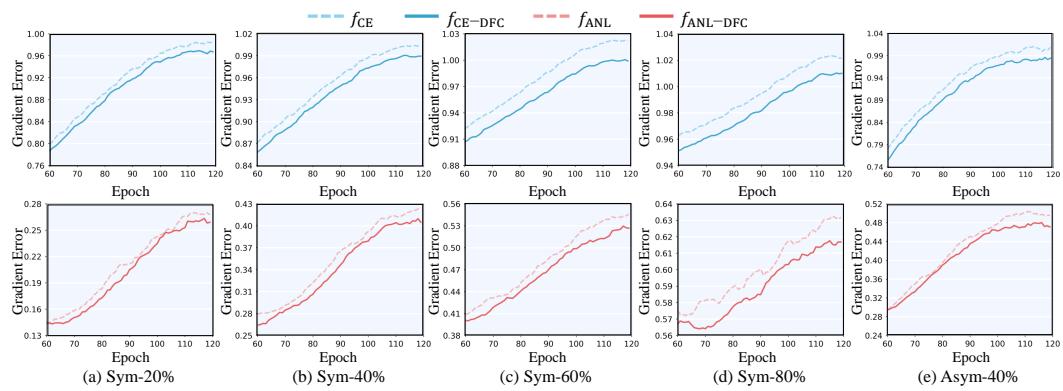


Figure 3: Comparison of gradient error ε_f across different models under various noise levels on the CIFAR-10 dataset. Specifically, $f_{\text{CE-DFC}}$ and $f_{\text{ANL-DFC}}$ denote the classifier with our dynamic connection masking combined with CE and ANL, respectively. The f_{CE} and f_{ANL} represent the original CE and ANL methods with a FC classifier. Figures (a) to (e) illustrate the average cosine similarity between clean and noisy gradients of the last layer backbone parameters over epochs.

the gradients induced by clean and noisy labels:

$$\varepsilon_f = 1 - \cos(\nabla_{\theta_\psi} \mathcal{L}, \nabla_{\theta_\psi} \tilde{\mathcal{L}}) = 1 - \frac{\nabla_{\theta_\psi} \mathcal{L} \cdot \nabla_{\theta_\psi} \tilde{\mathcal{L}}}{\|\nabla_{\theta_\psi} \mathcal{L}\|_2 \times \|\nabla_{\theta_\psi} \tilde{\mathcal{L}}\|_2}, \quad (5)$$

where $\nabla_{\theta_\psi} \mathcal{L}$ represents the optimal gradient, and $\nabla_{\theta_\psi} \tilde{\mathcal{L}}$ denotes the noise-corrupted optimization. We utilize the cosine similarity to quantify the consistency between the noisy and clean gradients ($\nabla_{\theta_\psi} \mathcal{L}$ and $\nabla_{\theta_\psi} \tilde{\mathcal{L}}$). A higher cosine similarity indicates that the noise-corrupted gradient $\nabla_{\theta_\psi} \tilde{\mathcal{L}}$ approximates the optimal gradient $\nabla_{\theta_\psi} \mathcal{L}$, resulting in a smaller gradient error ε_f and demonstrating greater robustness to label noise. To present an intuitive analysis, we compute the gradient error ε_f of the backbone’s final layer parameters during training. This comparative analysis is conducted using both CE and ANL loss functions with different classifiers. Specifically, the model performs the backpropagation using both clean and noisy labels to obtain the corresponding gradients $\nabla_{\theta_\psi} \mathcal{L}$ and $\nabla_{\theta_\psi} \tilde{\mathcal{L}}$ for recording. Only the noisy gradients $\nabla_{\theta_\psi} \tilde{\mathcal{L}}$ are utilized for parameter updating. As illustrated in Figure 3, as the noise rate increases, our $f_{\text{CE-DFC}}$ and $f_{\text{ANL-DFC}}$ models consistently yield lower gradient error. This empirical evidence indicates that our approach reduces the gradient error ε_f under noisy supervision, thereby mitigating the adverse effects of noisy labels.

Confidence Analysis. We conduct a confidence analysis to evaluate the model’s fitting degree to clean and noisy data throughout training, which can be measured by their respective average prediction probabilities. Specifically, we define the average prediction probability on clean and noisy labels as their corresponding confidences. As illustrated in Figure 4, we visualize the noisy and clean confidences during training for CE with different classifiers on CIFAR10. It can be observed that our $f_{\text{CE-DFC}}$ and $f_{\text{CE-KAN}}$ exhibit lower noisy confidence across various noise levels, demonstrating the efficacy of our DCM in mitigating overfitting to noisy data.

In contrast, our $f_{\text{CE-DFC}}$ and $f_{\text{CE-KAN}}$ maintain comparable clean confidence to their fully connected counterparts under various noise levels. Notably, even under high-noise conditions (Figure 4(d)), the model with our DCM achieves a superior fitting to the clean samples. The phenomenon validates that our DCM can adequately fit clean samples under noisy conditions, thereby ensuring the model’s fitting capability. To conclude, our DCM effectively mitigates overfitting to noisy data without degrading the clean information.

4.5 ABLATION STUDY

Masking method analysis. We implement weight and edge-wise masking strategies to evaluate the efficiency of our method, where the former masks edges by sorting weights and the latter globally discards unimportant edges. As shown in Table 6, both node-wise and edge-wise masking methods

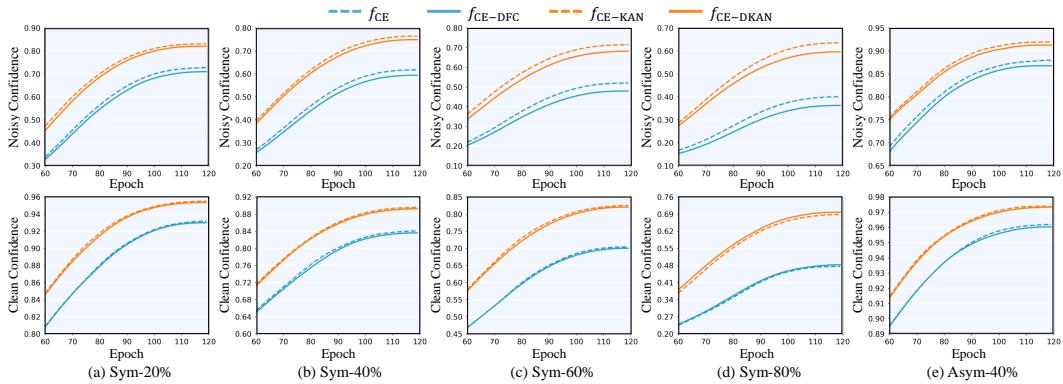


Figure 4: Noisy and clean confidence analysis across different classifiers on CIFAR-10. To facilitate clear comparison, results from mid-training to final epochs are presented.

Table 6: Comparison of various masking methods on CIFAR-10 with 80% symmetric noise. Both the highest (Best) and average test accuracy (Avg.) over the last 10 epochs are reported.

Method	Masking Method	Best	Avg.
ANL	-	61.45	61.33
	By Weight	63.57	62.96
ANL-DFC	Edge-wise	63.91	62.92
	Node-wise	65.19	63.93
ANL-KAN	-	60.56	60.22
	Edge-wise	62.64	61.54
ANL-DKAN	Node-wise	64.04	63.63

Table 7: Comparison with different masking stages on CIFAR-10 with 80% symmetric noise. We report the highest (Best) and the average test accuracy (Avg.) over the last 10 epochs.

Method	Masking Stage		Accuracy (%)	
	Training	Testing	Best	Avg.
CE-DFC	✓		39.01	18.62
	✓	✓	41.82	19.65
CE-DKAN	✓		40.56	18.80
	✓	✓	42.74	18.08

outperform directly masking edges with the lowest weights. This improvement stems from our method’s simultaneous consideration of feature information and edge weights, thereby effectively maintaining critical connections. Furthermore, node-wise masking demonstrates greater robustness than edge-wise masking, as edge-wise masking may cause more significant architectural changes, while node-wise masking preserves training capability for all nodes. Consequently, we adopt node-wise masking, which better maintains critical network topology and improves noise robustness.

Masking stage analysis. We investigate the effect of applying DCM during different stages under 80% symmetric noise on CIFAR-10. As demonstrated in Table 7, the results indicate that employing DCM solely during the training phase yields better performance than applying it in both training and testing phases. This result demonstrates that DCM primarily serves as an effective regularization technique, hindering the model’s overfitting to noisy data. Consequently, in this study, we adopt the strategy of applying DCM exclusively during the training phase to enhance noise robustness.

5 CONCLUSION

In this study, we propose a novel dynamic connection masking (DCM) mechanism for the widely-used FC-based classifiers to combat noisy labels. Our DCM approach can adaptively mask unimportant edges during training while preserving the most informative pathways. Through robustness analysis, we demonstrate that our DCM effectively mitigates gradient errors propagated from noisy labels while simultaneously maintaining its capacity to fit clean samples. Additionally, our DCM is also compatible with the newly-emerged Kolmogorov-Arnold Network (KAN) architecture, effectively boosting its robustness against noisy labels. Comprehensive experiments integrating DCM with various noise-robust training methods across synthetic and real-world datasets consistently validate the effectiveness of our approach in noisy label learning scenarios.

486 REFERENCES
487

488 Mohamed A Abdou. Literature review: Efficient deep neural networks techniques for medical image
489 analysis. *Neural Comput Appl.*, 34(8):5791–5812, 2022.

490 Bingzhi Chen, Zhanhao Ye, Yishu Liu, Xiaozhao Fang, Guangming Lu, Shengli Xie, and Xuelong
491 Li. Towards robust semi-supervised distribution alignment against label distribution shift with
492 noisy annotations. *TMM*, 2025.

493 Minjong Cheon. Demonstrating the efficacy of kolmogorov-arnold networks in vision tasks.
494 *arXiv:2406.14916*, 2024.

495

496 Benjamin D Evans, Gaurav Malhotra, and Jeffrey S Bowers. Biological convolutions improve dnn
497 robustness to noise and generalisation. *Neural Networks*, 148:96–110, 2022.

498

499 Lei Feng, Senlin Shu, Zhuoyi Lin, Fengmao Lv, Li Li, and Bo An. Can cross entropy loss be robust
500 to label noise? In *IJCAI*, pp. 2206–2212, 2021.

501

502 Boyan Gao, Henry Gouk, and Timothy M Hospedales. Searching for robustness: Loss learning for
503 noisy classification tasks. In *ICCV*, pp. 6670–6679, 2021.

504

505 Aritra Ghosh, Himanshu Kumar, and P Shanti Sastry. Robust loss functions under label noise for
506 deep neural networks. In *AAAI*, volume 31, 2017.

507

508 Jun Guo, Wei Bao, Jiakai Wang, Yuqing Ma, Xinghai Gao, Gang Xiao, Aishan Liu, Jian Dong, Xi-
509 anglong Liu, and Wenjun Wu. A comprehensive evaluation framework for deep model robustness.
510 *Pattern Recognition*, 137:109308, 2023.

511

512 Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
513 Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
514 *NeurIPS*, pp. 8536–8546, 2018.

515

516 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
517 nition. In *CVPR*, pp. 770–778, 2016.

518

519 Tianrui Ji, Yuntian Hou, and Di Zhang. A comprehensive survey on kolmogorov arnold networks
520 (kan). *arXiv:2407.11075*, 2024.

521

522 Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning data-
523 driven curriculum for very deep neural networks on corrupted labels. In *ICML*, pp. 2304–2313,
524 2018.

525

526 Justin M Johnson and Taghi M Khoshgoftaar. A survey on classifying big data with label noise.
527 *ACM J. Data Inf. Qual.*, 14(4):1–43, 2022.

528

529 Alex Krizhevsky, Geoffrey Hinton, et al. *Learning multiple layers of features from tiny images*.
530 Toronto, ON, Canada, 2009.

531

532 Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. Gradient descent with early stopping is
533 provably robust to label noise for overparameterized neural networks. In *AISTATS*, pp. 4313–
534 4324. PMLR, 2020.

535

536 Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, Jesse Berent, Abhinav Gupta, Rahul Sukthankar,
537 and Luc Van Gool. Webvision challenge: Visual learning and understanding with web data.
538 *arXiv:1705.05640*, 2017.

539

540 Yifan Li, Hu Han, Shiguang Shan, and Xilin Chen. Disc: Learning from noisy labels via dynamic
541 instance-specific selection and correction. In *CVPR*, pp. 24070–24079, 2023.

542

543 Yuting Li, Yingyi Chen, Xuanlong Yu, Dexiong Chen, and Xi Shen. Sure: Survey recipes for
544 building reliable and robust deep networks. In *CVPR*, pp. 17500–17510, 2024.

545

546 Huafeng Liu, Mengmeng Sheng, Zeren Sun, Yazhou Yao, Xian-Sheng Hua, and Heng-Tao Shen.
547 Learning with imbalanced noisy data by preventing bias in sample selection. *TMM*, 26:7426–
548 7437, 2024a.

540 Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
 541 Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. *arXiv:2404.19756*,
 542 2024b.

543 Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano, Sarah Erfani, and James Bailey. Nor-
 544 malized loss functions for deep learning with noisy labels. In *ICML*, pp. 6543–6553, 2020.

545 Karthik Mohan, Hanxiao Wang, and Xiatian Zhu. Kans for computer vision: An experimental study.
 546 *arXiv:2411.18224*, 2024.

547 Deep Patel and PS Sastry. Adaptive sample selection for robust learning under label noise. In *WACV*,
 548 pp. 3932–3942, 2023.

549 Siyi Qian, Haochao Ying, Renjun Hu, Jingbo Zhou, Jintai Chen, Danny Z Chen, and Jian Wu.
 550 Robust training of graph neural networks via noise governance. In *WSDM*, pp. 607–615, 2023.

551 Zhen Qin, Zhengwen Zhang, Yan Li, and Jun Guo. Making deep neural networks robust to label
 552 noise: Cross-training with a novel loss function. *IEEE Access*, 7:130893–130902, 2019.

553 Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for image classification: A
 554 comprehensive review. *Neural Comput.*, 29(9):2352–2449, 2017.

555 David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep learning is robust to massive
 556 label noise. *arXiv preprint arXiv:1705.10694*, 2017.

557 Yanyao Shen and Sujay Sanghavi. Learning with bad training data via iterative trimmed loss mini-
 558 mization. In *ICML*, pp. 5739–5748, 2019.

559 Mengmeng Sheng, Zeren Sun, Tao Chen, Shuchao Pang, Yucheng Wang, and Yazhou Yao. Foster
 560 adaptivity and balance in learning with noisy labels. In *ECCV*, pp. 217–235, 2024.

561 Shriyank Somvanshi, Syed Aaqib Javed, Md Monzurul Islam, Diwas Pandit, and Subasish Das. A
 562 survey on kolmogorov-arnold network. *ACM Comput. Surv.*, 2024.

563 Hwanjun Song, Minseok Kim, and Jae-Gil Lee. Selfie: Refurbishing unclean samples for robust
 564 deep learning. In *ICML*, pp. 5907–5915, 2019a.

565 Hwanjun Song, Minseok Kim, Dongmin Park, and Jae-Gil Lee. How does early stopping help
 566 generalization against label noise? *arXiv preprint arXiv:1911.08059*, 2019b.

567 Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
 568 labels with deep neural networks: A survey. *IEEE Trans. Neural Netw. Learn. Syst.*, 34(11):
 569 8135–8153, 2022.

570 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 571 Dropout: a simple way to prevent neural networks from overfitting. *J. Mach. Learn. Res.*, 15(1):
 572 1929–1958, 2014.

573 Zeren Sun, Xian-Sheng Hua, Yazhou Yao, Xiu-Shen Wei, Guosheng Hu, and Jian Zhang. Crssc:
 574 salvage reusable samples from noisy data for robust learning. In *ACM MM*, pp. 92–101, 2020.

575 Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4, inception-
 576 resnet and the impact of residual connections on learning. In *AAAI*, volume 31, 2017.

577 Lukasz Sztukiewicz, Jack Henry Good, and Artur Dubrawski. Exploring loss design techniques for
 578 decision tree robustness to label noise. *arXiv preprint arXiv:2405.17672*, 2024.

579 Cristian J Vaca-Rubio, Luis Blanco, Roberto Pereira, and Màrius Caus. Kolmogorov-arnold net-
 580 works (kans) for time series analysis. *arXiv:2405.08790*, 2024.

581 Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural
 582 networks using dropconnect. In *ICML*, pp. 1058–1066. PMLR, 2013.

583 Deng-Bao Wang, Yong Wen, Lujia Pan, and Min-Ling Zhang. Learning from noisy labels with
 584 complementary loss functions. In *AAAI*, volume 35, pp. 10111–10119, 2021.

594 Jonathan Wilton and Nan Ye. Robust loss functions for training decision trees with noisy labels. In
 595 *AAAI*, volume 38, pp. 15859–15867, 2024.
 596

597 Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nannan Wang, Zongyuan Ge, and Yi Chang.
 598 Robust early-learning: Hindering the memorization of noisy labels. In *ICLR*, 2020.
 599

600 Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive noisy
 601 labeled data for image classification. In *CVPR*, pp. 2691–2699, 2015.
 602

603 Yazhou Yao, Zeren Sun, Chuanyi Zhang, Fumin Shen, Qi Wu, Jian Zhang, and Zhenmin Tang.
 604 Jo-src: A contrastive approach for combating noisy labels. In *CVPR*, pp. 5192–5201, 2021.
 605

606 Xichen Ye, Yifan Wu, Yiwen Xu, Xiaoqiang Li, Weizhong Zhang, and Yifan Chen. Active negative
 607 loss: A robust framework for learning with noisy labels. *arXiv:2412.02373*, 2024.
 608

609 Kun Yi and Jianxin Wu. Probabilistic end-to-end noise correction for learning with noisy labels. In
 610 *CVPR*, pp. 7017–7025, 2019.
 611

612 Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does
 613 disagreement help generalization against label corruption? In *ICML*, pp. 7164–7173, 2019.
 614

615 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 616 deep learning (still) requires rethinking generalization. *Commun. ACM*, 64(3):107–115, 2021.
 617

618 Zhiliu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
 619 with noisy labels. In *NeurIPS*, pp. 8792–8802, 2018.
 620

621 Xiong Zhou, Xianming Liu, Junjun Jiang, Xin Gao, and Xiangyang Ji. Asymmetric loss functions
 622 for learning with noisy labels. In *ICML*, pp. 12846–12856, 2021a.
 623

624 Xiong Zhou, Xianming Liu, Chenyang Wang, Deming Zhai, Junjun Jiang, and Xiangyang Ji. Learn-
 625 ing with noisy labels via sparse regularization. In *CVPR*, pp. 72–81, 2021b.
 626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647