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Summary
In this paper we study how transforming regular reinforcement learning environments

into goal-conditioned environments can let agents learn to solve tasks autonomously and
reward-free. We show that an agent can learn to solve tasks by selecting its own goals in
an environment-agnostic way, at training times comparable to externally guided reinforcement
learning. Our method is independent of the underlying off-policy learning algorithm. Since our
method is environment-agnostic, the agent does not value any goals higher than others, leading
to instability in performance for individual goals. However, in our experiments, we show that
the average goal success rate improves and stabilizes. An agent trained with this method can
be instructed to seek any observations made in the environment, enabling generic training of
agents prior to specific use cases.

Contribution(s)
1. We apply goal-conditioning on non-goal environments, and show that ignoring external re-

wards and training guided by goal selection can yield comparable results to an externally
guided baseline.
Context: Prior work introduced goal-conditioning and agents that self-select goals
(Andrychowicz et al., 2017; Colas et al., 2022).

2. We present a study on the success rates of multiple goals, during training with autonomous
goal conditioning, in three different environments. We show that, while the success rate for
individual goals varies significantly during training, the average goal success rate gradually
improves and stabilizes.
Context: In previous work, Florensa et al. (2018) study goal coverage, as an overall
measure of average goal success rate, without explicitly measuring the performance of in-
dividual goals over time.

3. We provide an extension to Stable-Baselines3 (Raffin et al., 2021), which enables applying
goal conditioning to non-goal environments via a wrapper, with modular goal evaluation
and selection. a

Context: Our code contribution relies on and merely extends the preexisting repository
Stable-Baselines3 (Raffin et al., 2021).

ahttps://github.com/HampusAstrom/goal-exploration

https://github.com/HampusAstrom/goal-exploration
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Abstract

In this paper we study how transforming regular reinforcement learning environments
into goal-conditioned environments can let agents learn to solve tasks autonomously
and reward-free. We show that an agent can learn to solve tasks by selecting its own
goals in an environment-agnostic way, at training times comparable to externally guided
reinforcement learning. Our method is independent of the underlying off-policy learn-
ing algorithm. Since our method is environment-agnostic, the agent does not value
any goals higher than others, leading to instability in performance for individual goals.
However, in our experiments, we show that the average goal success rate improves and
stabilizes. An agent trained with this method can be instructed to seek any observations
made in the environment, enabling generic training of agents prior to specific use cases.

Introduction

Reinforcement learning (RL) is a good step towards the idea of machines that learn autonomously.
RL only needs to provide the agent with an environment with which to interact, not an expensive
trove of data. However, defining a reward function is problematic, as it often needs to be hand-
made by an engineer to guide the agent to optimal behavior. Ideally, an autonomous agent would
learn meaningful behavior without the external guidance of a problem-specific reward function. We
propose that by wrapping environments in a goal-conditioning framework, and training without any
external rewards to reach points in the environment, we can create agents that learn broad capabilities
that can be accessed for specific tasks.

Contributions

• We apply goal-conditioning on non-goal environments, and show that ignoring external rewards
and training guided by goal selection can yield results comparable to an externally guided baseline.
This expands on prior work that introduced goal-conditioning (Andrychowicz et al., 2017) and
agents that self-select goals (Colas et al., 2022).

• We present a study on the success rates of multiple goals, during training with autonomous goal
conditioning, in three different environments. We show that, while the success rate for individual
goals varies significantly during training, the average goal success rate gradually improves and
stabilizes. In previous work, Florensa et al. (2018) study goal coverage, as a measure of average
goal success rate, but without explicitly measuring the performance of individual goals over time.

• We provide an extension to Stable-Baselines3 (Raffin et al., 2021), which enables applying goal
conditioning to non-goal environments via a wrapper, with modular goal evaluation and selection.
1

1A link to a Github repository will be here when the submission is no longer anonymous.
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Related Works

In regular reinforcement learning, a predefined reward function describes what behavior is desirable.
This most often means that there is a single optimal policy. Even when well-defined external rewards
exist, they can be sparse and deceptive. During learning, an agent often cannot rely solely on these
signals to guide its actions. Pathak et al. (2017) suggest solving this with Intrinsic Curiosity, a
method that treats errors in a transition model as intrinsic rewards to guide exploration towards
interesting states. Although efficient, this relies on distorting the agent’s perception and can suffer
from problems with detachment and derailment (Ecoffet et al., 2021). Exploration can also be done
with the help of goals (Florensa et al., 2018; Ecoffet et al., 2021; Colas et al., 2022).

Goal-conditioned reinforcement learning (Andrychowicz et al., 2017) proposes that we describe to
the agent what we want it to achieve in each episode. This can be done by adding a goal description
to the observations and providing a goal selection method and a goal evaluation scheme. This is
particularly valuable if one wants to learn different or parameterized tasks, as well as in autonomous
learning (Colas et al., 2022; 2019; Florensa et al., 2018; Liu et al., 2022). If goal-conditioning
can be applied in an environment-agnostic way, agents can learn autonomously and reward-free, in
unknown environments.

Method

This paper explores whether and how goal conditioning with self-selection of goals can be formu-
lated in a generic way. This approach is evaluated by training agents with a goal wrapper in an
environment-agnostic, reward-free formulation and comparing them to regular RL methods that are
aware of external goals. Agents trained in such a way can be supplied with tasks via the goal for-
mulation, post-training, enabling flexible agents that can do various tasks in the environment they
trained on.

We have created a wrapper in the Stable-Baselines3 framework (Raffin et al., 2021), to enable goal-
conditioning for non-goal RL environments. It takes observations from the underlying environment,
together with goals, and uses them to evaluate when goals have been achieved.

Goal success evaluation is modular; in our experiments we have used normalized distance to de-
termine goal success in continuous environments and exact matching in discrete environments. We
terminate when the agent reaches a goal.

Goal selection is also modular, and we present three different example methods that are used to select
goals for the agent during training: uniform sampling, novelty selection, and intermediate difficulty
selection. Goals should prioritize exploration, while making sure that the agent can improve its
capacity to reach found goals and avoid forgetting previous capabilities. In this way, goal selection
selectively collects training data. In future work, our aim is to explore supplementing goal selection
with smarter filling and sampling from the replay buffer to get more efficient and stable goal learning.

We constrain our study to single observation goals, rather than goal trajectories, as goal conditioning
already expands the task considerably. With external rewards, there is often a single optimal strategy,
but with goal-conditioning, each goal might need a unique strategy. Hindsight Experience Replay
(Andrychowicz et al., 2017) reduces issues with the expanding scope, by enabling learning from
every episode, by the principle that each episode shows a way to reach the observations in that
episode. We use off-policy learning, and since we only present studies on environments with discrete
action spaces here, we use Raffin et al. (2021)’s implementation of Deep Q-Networks (DQN) (Mnih
et al., 2013) (though we have confirmed that our method works with Soft Actor-Critic (Haarnoja
et al., 2018) as well).
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Goal selection strategies

In the general case, a goal selection strategy might want to take into account the current state or
observation, especially when starting conditions change drastically or when goals are re-selected
during an episode. There are only minor variations in start conditions of the environments of our
trials here, and we terminate whenever a goal is achieved, so in this work that factor is ignored when
selecting goals.

We use three main methods to select goals: Uniformly random, novelty seeking, and intermediate
success rate selection (the latter inspired by intermediate difficulty goal selection (Florensa et al.,
2018). With all methods, we add some uniform random selection to avoid getting stuck in a local
goal subset.

Uniform random

The simplest way to select goals is to randomly sample over the observation space uniformly. In
environments where only a fraction of the observation space are viable, reachable observations, this
method risks selecting a large fraction of nonviable goals.

Novelty selection

Our novelty selection method selects goals by valuing less visited areas higher. In environments
with discrete observations, this is simply based on counting visits to each observation, while for
continuous environments, we use a grid to collect visitation statistics. The relative novelty weight
wN for selecting a cell is computed by

wN (cell) =
1

(pv(cell) + ϵ)
n (1)

where pv(cell) is the number of steps in the cell in relation to total steps taken, ϵ is a small positive
number (0.01), and n is a decay factor guiding how heavily it should prioritize cells with low visita-
tions counts. Grid methods scale poorly with observation size, but the environments in this study are
simple enough. Once a grid cell is selected, a goal point is selected by sampling uniformly within it.

Intermediate success rate selection

With the intermediate success rate goal selection method, a grid of cells is mapped onto the obser-
vation space in the same way as for novelty selection. Instead of visitations, targeted and successful
goals are tracked in each cell. The rationale here is that we should learn some goals decently well
before moving on to others. The relative weight wS for selecting a cell is defined similarly to novelty
selection, with

wS(cell) =
1

(|ps(cell)− pst|+ ϵ)
n (2)

where ps(cell) is the success rate in each cell, pst is a target success rate hyperparameter, ϵ is a
small positive number (0.01), and n is a hyperparameter that governs the degree to which proximity
to the target success rate should be emphasized. This is complemented with randomly selecting
goals among visited but not targeted cells, in proportion to how many cells have been visited but not
targeted, as well as some uniform random selection over all observations.

Environments

We have applied our method to three environments: Cliff Walking, Frozen Lake and Pathological
Mountain Car, with trials on more environments being ongoing work. The former two are part of the
OpenAI Gym framework (Brockman et al., 2016), and the latter is an adaptation of Mountain Car
from the same framework. All environments currently examined are fully observable with discrete
actions.
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The Cliff Walker environment is the simplest, it is discrete and deterministic, but with a few un-
reachable states, providing a simple environment and testing how much of an issue unreachable
states are. Frozen Lake has stochastic transitions, with different maximum achievable success rates
for each state; this can be deceptive when success rates are used to guide goal selection. The Patho-
logical Mountain Car has continuous states and observations, exposing questions on how precise
goal evaluation should be, if there are drawbacks with goals constrained to points, and how well our
method can handle environments where actions are note easily reversible.

Cliff Walking

The Cliff Walking environment (Brockman et al., 2016) is small, with a discrete grid of observations
(represented by a single number each), and most observations (falling of the cliff moves the agent
to the starting state). Transitions are deterministic and can in most cases easily be reversed by
performing the inverse action, with termination only on the environment goal. The external rewards
are −1 for each step and −100 for falling off the cliff. We truncate episodes after 300 steps, to allow
for hindsight experience replay.

Frozen lake

The Frozen Lake environment (Brockman et al., 2016) is similar to Cliff Walking, a discrete grid
with locations to avoid. However, with default parameters, it has stochastic transitions. It has a 1/3
chance of going in the intended direction and 1/3 for each of the perpendicular ones, making its
optimal policy less trivial. In this case pitfalls end the episode, instead of resetting to the start like
in the Cliff Walker environment. It truncates after 100 steps.

Pathological Mountain Car

We provide an adaption of Brockman et al. (2016)’s Mountain Car, called Pathological Mountain
Car, inspired by an environment of the same name introduced by Chakraborty et al. (2023). It differs
from Open AI’s Mountain Car by applying a small linear shift in height, making one hill harder to
reach than the other, and placing a terminating state there, visualized in Figure 1. The rewards
are 500 for reaching the summit of the tall hill, 10 for the low hill. Unlike the regular Mountain
Car environment, there is no penalty for each step. It truncates after 300 steps. The Pathological
Mountain car has the same continuous states and observations (horizontal position and velocity),
and discrete actions, as the original. In order to reach the high-value goal, an agent would need to
get quite near the low-value goal, which can make greedy agents miss the greater payout. In all
mountain car environments, unlike the grid environments above, there is a lot of momentum in the
system, so actions are not easily reversible.

(a) (b)

Figure 1: The Pathological Mountain Car environment, visualized in 1a. An adaption of Brockman
et al. (2016)’s Mountain Car, with an additional goal, and a shift making one hill steeper (with
higher external reward) and the other slightly flatter. 1b shows the difference in inclination between
our implementation (orange) and the original Mountain Car (blue).
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Experiments and Results

In the first section, our method is contrasted with a baseline RL algorithm using external rewards,
and in the second section, we investigate the performance on different goals over time. Single
standard deviations are included in all plots, and gaussian smoothing is applied for legibility.

Comparison to external reward aware baseline

Compared to non-goal-conditioned reinforcement learning with DQN, our method reaches optimum
faster on the Cliff Walker problem, as shown in Figure 2b. Since our method does not see the external
reward signal, it does not avoid cliffs as well in early training, seen in Figure 2a, but still stabilizes
to the optimal solution slightly faster than the baseline with all goal selection methods.

(a) (b)

Figure 2: Cliff Walker environment, evaluation reward with symlog scale 2a, as a function of training
steps, and optimal behavior rate, 2b, with 8 experiments for each method. Takeaway: Our solution
reaches the optimal policy quicker.

For the Frozen Lake environment, our method reaches a stable level of similar reward 2-3 times
slower than the baseline, see Figure 3, but neither reaches the optimal average reward (of about 0.7)
in the allotted training time. Intermediate difficulty selection performs worse on Frozen Lake. Since
the environment is stochastic, the optimal success rate for several of the goals is less than 100%, and
sometimes is similar to the target success rate. This leads to a goal selection bias, focusing training
on such goals even when the agent already has the optimal policy for them.

The Pathological Mountain Car environment is more difficult to learn than the two earlier environ-
ments. As Figure 4 shows, neither the baseline nor our method manage to reach the harder goal
consistently. Our method reaches it intermittently, while the baseline reaches it in two out of eight
experiments, and in one of those cases then learns to reach it more consistently. Experiments with a
longer training time could determine which method is most consistent in learning to reach the hard
goal.

This task exposes an issue with our method; our goals are observational points, specifying both a
target position and a target velocity. The real goal here is to get the (horizontal) position to be less
than −1.6, independent of velocity, and thus our method ignores many ways to complete the task
and could even terminate prematurely if the validation goals are not set well. A dedicated solution
could, of course, ignore or reformat the goal format to account for the particular environment, but
we want to provide an environment-agnostic method. In ongoing work, we are expanding the goal
formulation to take goal ranges. This would both allow evaluation with goals like the ones in this
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Figure 3: Evaluation reward for Frozen Lake, as a function of training steps, with 4 experiments
for each method. Takeaway: Our method gets comparable results, reward-free, with all but inter-
mediate difficulty selection, but our methods and the baseline are worse than an oracle (with ≈ 0.7
average reward).

environment, and allow the goal selector to tune the goal difficulty by describing goals of varying
scope, without leaving the environment-agnostic formulation.

(a) (b)

Figure 4: Evaluation reward, 4a, and rate of success for reaching the hard goal, 4b, with 8 ex-
periments for each method on Pathological Mountain Car, as a function of training steps. When
evaluating goal methods, the hard hill is given as target goal. Takeaway: Our method reaches the
hard goal faster than the baseline, but does not retain the ability to reach it consistently.

Goal success rates

Learning to reach any goal is a much broader task than external reward reinforcement. There is
at least one optimal policy for each goal, instead of a global optimum for the entire environment.
Agents trained with our method do not know about external rewards; instead, they are taught to
reach all goals presented to them (as targeted goals, or hindsight goals during experience replay).
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To evaluate their performance, one should therefore track performance on a wide set of goals in the
environment.

In the Cliff Walker environment, all goal selection methods converge quickly. The optimal policy
is found for all goals at nearly the same time, and the average success rate for all goals reaches
the expected 38/48 ≈ 80%. It cannot reach 100% since the ten cliff locations reset to the starting
position and cannot be reached.

The Frozen Lake environment is mainly characterized by its stochastic transitions, leading to extra
uncertainty in both learning and evaluation. Despite this, the average goal performance is fairly
stable, as shown in Figure 5a. When inspecting the training of a single agent, Figure 5b, one observes
that performance on individual goals is unstable. If this is due to forgetting, the stochastic nature of
the environment, or something else, is yet to be determined.

(a) (b)

Figure 5: The average goal success rate for our methods on Frozen Lake, 5a, and an example of
how success rates vary for goals when training an agent, 5b. In 5b goal 15 has the external reward
(though our agent is unaware of that). Takeaway: The average stabilizes quickly, but individual
goal performance fluctuates wildly, though this could in part be due to the stochasticity of the envi-
ronment.

When studying goal performance in the Pathological Mountain Car environment, measurements
cannot capture the goal performance on all goals, as it is an infinite set. A set of spread-out goals
is selected as a sample of the overall goal success rate. Evaluations of this set during training,
Figures 6a, 6b, show that while the average goal success rate is similar for most goal selection
methods, it is very unstable for individual goals. This is similar to the results for the Frozen Lake
environment, but here the environment is deterministic, suggesting that forgetting or other training
instability might be the cause. It should be noted that the average goal success rate is slowly growing,
indicating that longer training time could be enough to achieve a consistent policy for all goals.

Conclusion

In this paper, we have shown how goal conditioning can be used to learn reward-free in an
environment-agnostic way, and we provide code to apply this method to non-goal environments.
There are many open questions, but so far we can conclude that by autonomously selecting goals,
our method can solve different tasks with accuracy and training times comparable to a non-goal
conditioned externally reward guided baseline.

In ongoing and future work, we will explore how this method performs in more varied environments.
We are interested in whether model-based methods can improve training efficiency by decoupling
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(a) (b)

Figure 6: The average goal success rate for our methods when trained on the Pathological Mountain
Car environment, 6a, and an example of how success rates vary for goals when training an agent,
6b. In 6b goal are described as (x, ẋ) where x is horizontal position, and ẋ is horizontal velocity,
with (−1.6, 0.0) and (0.5, 0.0) corresponding to reaching the hard goal and easy goals respectively
(while becoming stationary). Takeaway: The success rates for individual goals are unstable, even
though the environment is deterministic, but the average success rate for all measured goals increases
steadily.

the learning of a transition model from the goal-based evaluation of states, observations, or actions.
We also want to study the impact of more flexible goal formulation. A study on goal selection,
its interaction with hindsight experience replay, and other ways to gather and use training data is
ongoing. For complex and partially observed environments, other means of representing goals might
be needed, and we are interested in exploring if goals can be selected within an embedding space,
or if such changing representations are unsuitable.
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Supplementary Materials
The following content was not necessarily subject to peer review.

Hyperparameters

For non-listed hyperparameters, Stable-Baselines3 defaults are used, but if we missed listing some-
thing, don’t hesitate to reach out.

Goal evaluation

In the presented evaluations, goals are considered successful if a normalized distance vector between
the observation and the goal is less than 0.1.

Goal selection

For both novelty and intermediate success rate selection, ϵ = 0.01. For data shown in this paper n =
2, but n = 1 produces similar results. The grid used to collect statistics for goal selection has 10 000
cells for Pathological Mountain Car, and matches obs space exactly for discrete environments.

With intermediate success rate selection, 0.9 is the target success rate for CliffWalker, 0.75 for
FrozenLake and Pathological Mountain Car.

In all these cases, 10% of the time, a random goal is selected from the observation space.

Network

Two Q-networks are used, one simple with 3 fully connected layers of 256 nodes each, and one
resnet inspired network with 4 sequential residual nodes. Each residual node consists of 4 fully
connected layers with 256 nodes, with the output of the final one being additive with the input of
the residual node, similar to the original ResNet by He et al. (2016). The simple network is used
for the Frozen Lake environment and the ResNet inspired network for Cliff Walker and Pathological
Mountain Car. We used Stable Baseline’s implementation of Hindsight Experience Replay, adapted
to handle termination when reaching goals.

Agents are trained with 0.001 learning rate, gamma 0.95, batch size 512, and train frequency 512.
HER replay buffer uses "future" goal reselection, with 4 hindsight goals for each use of unaltered
experience. The replay buffer is 1 000 000 steps long.

Cliffwalker was trained for 2 000 000 steps, FrozenLake 1 000 000 steps and Pathological mountain
car 10 000 000 steps.


