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Abstract

Video Temporal Grounding (TG) aims to temporally locate video segments match-
ing a natural language description (a query) in a long video. While Vision-Language
Models (VLMs) are effective at holistic semantic matching, they often struggle
with fine-grained temporal localisation. Recently, Group Relative Policy Opti-
misation (GRPO) reformulates the inference process as a reinforcement learning
task, enabling fine-grained grounding and achieving strong in-domain performance.
However, GRPO relies on labelled data, making it unsuitable in unlabelled domains.
Moreover, because videos are large and expensive to store and process, performing
full-scale adaptation introduces prohibitive latency and computational overhead,
making it impractical for real-time deployment. To overcome both problems, we
introduce a Data-Efficient Unlabelled Cross-domain Temporal Grounding method,
from which a model is first trained on a labelled source domain, then adapted to
a target domain using only a small number of unlabelled videos from the target
domain. This approach eliminates the need for target annotation and keeps both
computational and storage overhead low enough to run in real time. Specifically,
we introduce Uncertainty-quantified Rollout Policy Adaptation (URPA) for cross-
domain knowledge transfer in learning video temporal grounding without target
labels. URPA generates multiple candidate predictions using GRPO rollouts, av-
erages them to form a pseudo label, and estimates confidence from the variance
across these rollouts. This confidence then weights the training rewards, guiding
the model to focus on reliable supervision. Experiments on three datasets across six
cross-domain settings show that URPA generalises well using only a few unlabelled
target videos.

1 Introduction

Temporal Grounding (TG) localises the exact temporal segment in an untrimmed video that semanti-
cally corresponds to a given natural-language query [1, 12]. Accurate TG is fundamental to high-level
applications such as activity detection [6] and embodied human–computer interaction [7].

While VLMs are effective at capturing holistic video semantics [22, 41, 18], they often struggle with
fine-grained localisation, leading to suboptimal performance in temporal grounding. Some recent
works apply Supervised Fine-Tuning (SFT) to better align video-query pairs [4, 39, 58]. However,
since relevant segments typically cover only a small portion of the video, the model often overfits
to redundant context, limiting its ability to perform precise grounding [60]. To improve temporal
reasoning, Chain-of-Thought (CoT) post-training introduces explicit intermediate reasoning steps
before prediction [37, 50]. While effective, this approach depends on manually annotated prompts,
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(a) Motivation of data-efficient CTG setting. (b) Comparison between MC Dropout and GRPO rollout.

Figure 1: (a) A comparison between full-data and data-efficient adaptation in Cross-domain Temporal
Grounding (CTG). Existing methods adapt on thousands of unlabelled target videos (grey), which is
slow and resource-heavy. We propose a data-efficient CTG setting using only 100 or 200 randomly
selected target videos. Despite the limited data, our method matches or exceeds performance on the
TaCoS → ActivityNet task. (b) Conceptual comparison between MC Dropout and GRPO rollout.
MC Dropout samples subnetworks via stochastic neuron dropout and estimates uncertainty from
output diversity. GRPO rollouts similarly sample diverse structural sequences from the policy. URPA
leverages this property to generate averaged pseudo labels and estimate uncertainty via rollout
standard deviation, enabling uncertainty-quantified adaptation without ground-truth labels.

which are expensive to collect and hard to scale across domains and tasks. More recently, GRPO [14]
formulates temporal grounding as a policy learning problem, where reinforcement learning is used to
directly optimise segment predictions [47, 26]. This removes the need for hand-crafted prompts used
in post-processing and achieves strong results on in-domain benchmarks. However, GRPO relies on
ground-truth temporal boundaries to compute reward signals. requiring extensively labelled training
videos. It limits its practical usefulness in real-world scenarios where annotations are unavailable.
Moreover, GRPO-based temporal grounding performance drops significantly across domains due to
distribution shift, revealing its poor generalisation to unseen data. In addition to annotation constraints,
the sheer scale of video data poses practical challenges. A target domain often contains thousands of
videos, which are expensive to store, and time-consuming to adapt. As shown in Fig. 1(a), existing
adaptation methods require full retraining on the entire target set. Such latency and resource-hungry
makes them unsuitable for time-sensitive applications like online or on-device deployment. We
consider a more practical and generalisable approach to cross-domain temporal grounding where a
model trained on a labelled source domain can be efficiently adapted to an unlabelled target domain
using only sparse unlabelled target videos, with minimal latency and resource demands.

To address these challenges, we introduce a Data-Efficient Unlabelled Cross-domain Temporal
Grounding approach. A model trained on a labelled source domain is adapted at test-time in deploy-
ment using only K unlabelled videos from the target domain (K=100 ∼ 200 in our experiments),
allowing for real-time adaptation on limited compute resources. The main challenge in this approach
lies in effectively leveraging limited unlabelled target data. Without annotated temporal boundaries,
pseudo-labels are noisy and highly uncertain, resulting in poor cross-domain performance. To miti-
gate this, we introduce explicit uncertainty quantification to assess the reliability of pseudo-labels. As
illustrated in Fig.1(b), MC Dropout [11] estimates uncertainty by sampling multiple sub-networks via
stochastic dropout and computing the variance across their outputs. Similarly, GRPO rollouts produce
diverse predictions by sampling from a stochastic policy. Inspired by this parallel, we estimate pseudo
label confidence by measuring the standard deviation across multiple rollouts per <video, query> pair,
and use it to guide adaptation with uncertainty-quantification weighted model adaptation.

To this end, we propose Uncertainty-quantified Rollout Policy Adaptation (URPA). After supervised
training of a GRPO backbone on the source domain, we perform test-time adaptation by generating
G stochastic rollouts for each of the K (K=100/200 in our experiments) randomly selected unlabelled
videos in the target domain. A pseudo label is constructed by averaging the predicted boundaries
across rollouts, and a small margin relaxation is applied to reduce the impact of outliers. To estimate
the reliability of each pseudo label, we follow the Bayesian view of MC Dropout and use the
variance across rollouts as an estimate of uncertainty. Samples with lower variance, indicating higher
confidence, are given larger weights during a lightweight gradient update. This enables fast and
effective adaptation without introducing significant latency. Sec. 4 provides a theoretical analysis of
how rollout-based variance quantifies uncertainty.

Our contributions are threefold: (i) We introduce an unlabelled cross-domain temporal grounding
approach to test-time model adaptation using only a small number of unlabelled target-domain
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videos. (ii) We propose Uncertainty-quantified Rollout Policy Adaptation (URPA), the first rein-
forcement learning-based self-learning adaptation method that combines pseudo-label generation
with uncertainty-weighted rewards. URPA enables effective GRPO-based temporal grounding across
domains without requiring ground-truth labels to compute reinforcement signals. (iii) We theoreti-
cally show that rollout variance approximates Bayesian predictive variance, quantifying epistemic
uncertainty, and empirically demonstrate that URPA consistently outperforms strong baselines across
six cross-domain video temporal grounding benchmarks.

2 Related Works
Test-time Adaptation. Test-time domain adaptation (TTDA) adapts a pre-trained model to unlabelled
test data exhibiting distribution shift, prior to prediction [42, 19, 35]. TTDA approaches can be
broadly divided into backward-free and backward-based methods. Backward-free methods adapt the
model on-the-fly during inference, typically by updating batch normalization (BN) statistics without
backpropagation. Representative works include DUA [32], which applies a running average to BN
layers, and DIGA [45], which aligns distributions for semantic segmentation. While efficient per
sample, such methods require adaptation for every test input, which may increase inference latency
and introduce instability across samples. In contrast, backward-based methods adapt the model once
using target data before inference begins, enabling faster and more stable test-time prediction. These
methods often rely on self-supervised objectives like entropy minimization [42, 20]. However, video
data is large and difficult to store, and performing test-time adaptation on all videos is time-consuming.
Hence, we leverage only a small number of videos from the target domain to perform data-efficient
test-time adaptation via backpropagation, and then apply the adapted model to evaluate the full set
test video without further updates. This design ensures both adaptability and real-time efficiency,
making it well-suited for practical scenarios with limited target domain data.

Temporal Grounding. Temporal grounding [12, 24] is a vision–language task that aims to localise
the snippet that corresponds to a given natural language query with start and end timestamps in a
video. Existing methods fall into two main categories: proposal-based approaches [12, 1, 51, 61,
48, 17], which generate candidate segments before matching them with the query; and proposal-
free approaches [51, 56, 59, 34, 25, 33, 52], which directly predict the temporal boundaries in
an end-to-end manner. Recently, VLM-based methods [39, 21, 28, 16, 58, 31, 15] have shown
competitive performance by leveraging generalised knowledge from VLMs pre-training, while also
maintaining the conversational capabilities of language models. However, both traditional and VLM-
based approaches rely heavily on large amounts of labelled data and struggle to generalise to unseen
domains [54, 27, 43, 8, 3]. Although some work has explored cross-dataset generalisation [30, 47, 26],
this setting remains challenging due to two key issues: (i) target domain videos are often large,
incurring high storage and adaptation costs; and (ii) temporal boundary annotation is labour-intensive.
Moreover, our experiments show that the recent works, e.g., TimeZero [47] and Temporal-R1 [26],
still perform poorly in cross-domain generalisation despite utilising GPRO to improve the model’s
generalisability with reinforcement learning. To address this, we propose a data-efficient cross-
domain temporal grounding setting and a method that achieves performance comparable to fully
supervised training using only a small number of unlabelled target domain videos. This significantly
reduces resource requirements while improving cross-domain generalisability.

Uncertainty Estimation. Uncertainty estimation aims to capture either data-inherent noise (aleatoric
uncertainty) or model-driven ambiguity (epistemic uncertainty) [5, 23]. In vision tasks, epistemic
uncertainty is commonly approximated via Bayesian neural networks such as MC Dropout [10, 20],
or through approximate reasoning methods [46, 36]. For VLMs, existing approaches quantify
uncertainty through logit entropy [13], verbalized confidence enhanced by CoT prompting [49],
or consistency-based diagnostics [63]. Recent work also explores semantic-level uncertainty by
clustering outputs and computing entropy in embedding space [9]. In contrast, our URPA estimates
epistemic uncertainty by computing the standard deviation across multiple rollout predictions, offering
a lightweight and task-aligned signal to guide self-learning in unlabelled target domains.

3 Uncertainty-quantified Rollout Policy Adaptation
3.1 Problem Definition
In training a model for a new target domain video temporal grounding, we consider a labelled
source domain Ds = {V i

s , I
i
s}Ni=1 and an target domain with a small number of unlabelled videos
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Figure 2: Uncertainty-quantified Rollout Policy Adaptation (URPA): During source model training,
we perform supervised GRPO training using labelled videos Vs. Specifically, the format reward
Rformat encourages the model to “think first and then answer,” while accuracy reward Rtiou aligns
the predicted temporal grounding Ipred

s with the relaxed ground truth Ĩgt
s for supervised learning. In

target model knowledge adaptation, we adapt the model using K unlabelled target videos. For each
video Vt, we first compute the average output over G rollouts to obtain a pseudo label Îgt

t . Then
calculate the standard deviation across these rollouts and transform it into a confidence score c to
quantify uncertainty on pseudo labels, which is then used to weight different pseudo-labels when
constructing a weighted reward function for test-time target model adaptation.

Dt = {V i
t }Ki=1, where Iis is the annotated interval for V i

s , the number of training videos in the source
and target domains are N and K respectively, with K ≪ N . A distribution shift exists between the
source and target domains, i.e. Ps ̸= Pt. The model is first pre-trained on the labelled source domain
to learn some general knowledge of video temporal grounding. It then learns to adapt at test-time
without labelled training in the target domain through a data-efficient unlabelled target domain videos.
This real-time cross-domain unlabelled adaptation approach to video temporal grounding aims to
optimise cross-domain knowledge transfer with only a few target videos without any annotations.

3.2 Remark on Group Relative Policy Optimization
In reinforcement learning, Group Relative Policy Optimization (GRPO) is a variant of Proximal
Policy Optimization (PPO) that eliminates the need for a critic function. Instead, it directly evaluates
the quality of predictions using a group of sampled responses. Given a question q, the model generates
G candidate rollout responses o = {o1, o2, . . . , oG} through policy sampling. A reward function then
computes scores r = {r1, . . . , rG} by comparing each candidate with the ground truth. To normalize
these rewards, GRPO computes their mean and standard deviation. The quality of each response is
estimated by:

Ai =
ri − mean(r)

std(r)
, (1)

where Ai denotes the normalized advantage of the i-th response. GRPO optimizes the policy πθ to
maximize Ai, thereby encouraging beneficial deviation from the initial policy. A KL-divergence
regularization term is further incorporated to constrain excessive deviation:

max
πθ

Eo∼πθold
(p)

[(
G∑

i=1

πθ(oi)

πθold(oi)
·Ai

)
− β DKL (πθ ∥πref)

]
, (2)

where β is a regularization coefficient controlling the strength of the penalty. Although GRPO has
shown strong performance on math reasoning tasks, it struggles to generalise under domain shifts,
especially for temporal grounding on unlabelled videos. This is due to both the difficulty of label-free
optimisation and the high storage and adaptation cost associated with large-scale video data. To
overcome these limitations, we introduce a data-efficient cross-domain temporal grounding setting,
which consists of source domain model training and lightweight target domain adaptation.

3.3 Source Model Training
VLMs focus on coarse-grained understanding but lack fine-grained temporal localization capability.
Therefore, post-training is necessary to equip the model with temporal reasoning and grounding
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abilities. To this end, we pursue two main objectives. First, we aim to stimulate explicit reasoning
chains within the model, enabling it to perform structured temporal inference. Second, we design
task-specific reward functions to guide the model towards learning accurate temporal grounding,
encouraging outputs that precisely align with relevant video segments.

Format Reward. To facilitate explicit reasoning, following [47], we introduce a format reward that
encourages the model to structure its outputs according to a specified template. Specifically, we
require the model to present its thought process within <think>...</think> tags, and its final
answer within <answer>...</answer> tags. We use regular expression matching to determine
whether the model’s output adheres to the required format as follows:

Rformat =

{
1, if output matches format,
0, if output doesn’t match format.

(3)

Accuracy Reward. A core objective for source training is to design a well-crafted reward that guides
the model to perform reasoning based on reward variations, thereby improving the quality of temporal
grounding predictions. To guide the model towards this goal, we design an accuracy reward based on
the overlap between the predicted and ground-truth temporal intervals.

However, event boundaries in videos are inherently ambiguous, and ground-truth annotations across
datasets often exhibit labelling biases due to human subjectivity. Such biases can lead to performance
degradation when models trained on the source domain are applied to the target domain. To mitigate
this issue, we first relax the ground-truth interval Is = [τ start

s , τ end
s ] by extending both boundaries by a

fixed proportion α of the event duration, yielding the relaxed ground-truth Ĩgts :

Ĩgts =
[
τ̃ start
s , τ̃ end

s

]
=

[
max(0, τ start

s − α(τ end
s − τ start

s )), min(1, τ end
s + α(τ end

s − τ start
s )

]
, (4)

where τ start
s and τ end

s are normalized timestamps within [0, 1], and α is set to 0.1. Let Ipred
s =

[pstart
s , pend

s ] denote the predicted temporal interval. We then compute the relaxed temporal Intersection
over Union (tIoU) between Ipred

s and Ĩgt
s as:

RtIoU =
|Ĩgt

s ∩ Ipred
s |

|Ĩgt
s ∪ Ipred

s |
=

max(0,min(pend
s , τ̃ end

s )−max(pstart
s , τ̃ start

s ))

max(pend
s , τ̃ end

s )−min(pstart
s , τ̃ start

s )
, (5)

where τ̃ start
s and τ̃ end

s are the relaxed ground-truth boundaries defined in Eq.(4). A higher RtIoU
indicates better alignment between the predicted and relaxed ground-truth segments. Thus, the overall
supervised reward function for source domain training is defined as:

Rs = 0.5×Rformat + 0.5×RtIoU, (6)

Supervised training on the source domain equips the model with basic spatio-temporal reasoning
capability, but it still suffers from performance degradation on the target domain due to the domain
shift between source and target domains, making target unsupervised adaptation essential.

3.4 Target Adaptation
GRPO requires ground-truth labels to compute rewards, which are unavailable in the target domain.
Meanwhile, traditional domain adaptation methods typically assume full access to target domain data
during training. Nevertheless, this assumption becomes impractical for large-scale video tasks due to
substantial storage and computational costs. Thus we consider a more realistic setting where only a
small number of K unlabelled target videos are available for adaptation, with K ≪ N .

While pretraining on the source domain provides the model with general temporal grounding ability,
performance still degrades under domain shift. To bridge this gap, we leverage the multiple candidate
responses generated during GRPO optimization. For each target sample, the policy model samples
G rollout response candidates. Although each individual response may be noisy, their aggregated
statistics offer a more stable approximation. We therefore construct pseudo temporal labels by
averaging predicted start and end timestamps:

τ̂ start
t =

1

G

G∑
j=1

(pstart
t )(j), τ̂ end

t =
1

G

G∑
j=1

(pend
t )(j), (7)

where (pstart
t )(j) and (pend

t )(j) denote the predicted timestamps from the j-th sampled response. These
pseudo labels act as soft supervision after processed with Eq.(4) for test-time adaptation. However,
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not all pseudo labels are equally reliable. To evaluate their quality, we estimate prediction uncertainty.
Inspired by Bayesian deep learning, we treat the G rollout responses as approximate samples from a
predictive distribution, analogous to the Monte Carlo Dropout approach. This allows us to use the
standard deviation of the predicted timestamps as a proxy for uncertainty:

u = σ
({

(pstart
t )(j)

}G

j=1

)
+ σ

({
(pend

t )(j)
}G

j=1

)
, (8)

The uncertainty u is then converted into a confidence score c via an exponential decay function:

c = exp(−γu), (9)

where γ is a hyperparameter that controls the influence of uncertainty on confidence. Finally, this
confidence score is used to weight the contribution of the pseudo labels during reward computation.
Specifically, we scale the temporal grounding reward (RtIoU) by the confidence, while keeping the
format reward unweighted:

Rs = 0.5×Rformat + 0.5×RtIoU × c. (10)

This confidence-aware reward formulation allows the model to better exploit informative pseudo
labels while mitigating the effects of noisy or uncertain predictions, leading to more robust test-time
adaptation in the absence of ground-truth labels.

4 Theoretical Analysis
This section proves that the empirical standard deviation obtained from multiple GRPO rollouts
converges to the Bayesian predictive standard deviation, thereby quantifying epistemic uncertainty.
Theorem 4.1. Fix an input x. Let πθ(τ | x) be the rollout policy learned by GRPO and let p⋆(τ | x)
denote the Bayesian predictive distribution of the same model class trained on the source data. Assume
(i) rollouts drawn from πθ are i.i.d.; (ii) there exists a constant M < ∞ such that Eπθ

[τ2] ≤ M
and Ep⋆ [τ2] ≤ M ; (iii) the Kullback–Leibler divergence is finite, ε = KL

(
πθ ∥ p⋆

)
< ∞. Draw G

independent rollouts {τ (i)}Gi=1 ∼ πθ(· | x) and define

τG =
1

G

G∑
i=1

τ (i), σ̂G(x) =

√√√√ 1

G

G∑
i=1

(
τ (i) − τG

)2
.

As G → ∞ and GRPO training drives ε → 0, the estimator σ̂G(x) converges to the Bayesian
predictive standard deviation Stdp⋆ [τ | x], providing a consistent measure of epistemic uncertainty.

Proof. For clarity we give the main steps; full details are in the supplementary material Sec. A.6.

Step 1: Consistency under the GRPO policy. Let µπ = Eπθ
[τ ] and σπ(x) = Stdπθ

[τ | x]. Because
the G rollouts {τ (i)} are i.i.d. and Eπθ

[τ2]≤M (Theorem assumption (ii)), the weak law of large
numbers yields

τG
p−→ µπ, σ̂G(x)

p−→ σπ(x) (G→∞). (11)

Step 2: Relating the GRPO and Bayesian standard deviations. With ε = KL(πθ∥p⋆) (assumption
(iii)), Pinsker’s inequality gives a total-variation bound

∥πθ − p⋆∥TV ≤
√

1
2 ε. (12)

Using (12), the bounded-moment assumption and Var[τ ] = E[τ2]− (E[τ ])2 one obtains the variance
gap bound: ∣∣σ2

π(x)− σ2
⋆(x)

∣∣ ≤ 4M
√
ε, σ2

⋆(x) = Varp⋆ [τ | x]. (13)

Applying the identity |a− b| ≤
√

|a2 − b2| for non-negative a, b, we get:∣∣σπ(x)− σ⋆(x)
∣∣ ≤

√
4M

√
ε. (14)

Step 3: Convergence to Bayesian predictive standard deviation. GRPO optimisation decreases ε
over training, so

√
ε→0. Combining (11) and the above yields∣∣σ̂G(x)− σ⋆(x)

∣∣ ≤
∣∣σ̂G(x)− σπ(x)

∣∣︸ ︷︷ ︸
vanishes by (11)

+
∣∣σπ(x)− σ⋆(x)

∣∣︸ ︷︷ ︸
vanishes as ε→0

, (15)
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Table 1: Performance comparisons on three cross-domain temporal grounding benchmarks. The best
is in bold.

Method Charades→ActivityNet ActivityNet→TACoS TACoS→Charades
R@0.5 R@0.7 R@0.3 R@0.5 R@0.5 R@0.7

Full-dataset Unsupervised Domain Adaptation
CBP [44] 27.46 15.37 25.33 21.79 22.38 11.95
SCDM [55] 28.02 15.84 22.68 17.45 35.95 25.18
CMIN [62] 34.25 18.63 20.51 15.04 28.06 18.22
CSMGAN [29] 36.92 20.04 29.63 18.07 36.45 22.86
2DTAN [61] 39.17 21.76 33.72 21.16 25.81 17.37
DRN [57] 41.39 24.27 32.07 19.96 36.16 24.52
MMN [48] 44.06 24.98 36.94 22.08 33.73 20.04
UDA-TSL [30] 49.48 32.15 42.40 29.83 41.39 28.63

Domain Generalisation
Qwen2.5-7B [53] 15.18 7.90 7.70 2.77 32.93 15.35
+ GRPO (Source Training only) 35.61 16.61 20.80 9.87 53.51 28.69
+ URPA (Source Training only) 36.46 18.78 21.58 10.26 54.40 29.81

Data-Efficient Unsupervised Domain Adaptation
URPA (with 100-shot Target Adaptation) 40.13 20.88 21.82 10.16 54.78 30.08
URPA (with 200-shot Target Adaptation) 42.57 21.25 21.97 10.38 55.54 32.04

Method TACoS→ActivityNet Charades→TACoS ActivityNet→Charades
R@0.5 R@0.7 R@0.3 R@0.5 R@0.5 R@0.7

Full-dataset Unsupervised Domain Adaptation
CBP [44] 18.94 11.93 22.88 19.26 32.82 14.39
SCDM [55] 19.65 11.80 18.97 16.82 52.56 34.82
CMIN [62] 22.17 13.72 19.38 15.34 45.03 31.74
CSMGAN [29] 23.88 14.67 25.43 16.12 45.60 32.28
2DTAN [61] 24.90 16.38 30.12 19.81 36.34 22.61
DRN [57] 24.93 18.52 28.60 16.73 50.47 29.02
MMN [48] 28.29 20.86 34.09 19.17 50.78 23.17
UDA-TSL [30] 33.54 26.16 36.42 25.48 60.26 41.03

Domain Generalisation
Qwen2.5-7B [53] 15.18 7.90 7.70 2.77 32.93 15.35
+ GRPO (Source Training only) 34.82 17.02 12.55 5.13 62.13 36.06
+ URPA (Source Training only) 36.23 18.13 13.91 6.27 63.36 37.47

Data-Efficient Unsupervised Domain Adaptation
URPA (with 100-shot Target Adaptation) 38.41 19.80 14.49 7.23 64.35 38.76
URPA (with 200-shot Target Adaptation) 41.83 21.84 16.62 8.25 65.12 39.57

which tends to zero in probability as G→∞ and ε→0. Hence

σ̂G(x)
p−→ σ⋆(x), (16)

showing that the rollout standard deviation is a consistent estimator of epistemic uncertainty.

5 Experiments

To evaluate the effectiveness of the proposed method, we conduct experiments on three widely used
temporal grounding datasets: TACoS [38], ActivityNet Captions [2], and Charades-STA [40].

5.1 Experimental Setup

Datasets. We evaluate our method on three benchmark datasets: TACoS, ActivityNet Captions, and
Charades-STA. ActivityNet Captions contains approximately 20000 untrimmed YouTube videos
annotated with 100000 natural language descriptions. Following the standard split, we use 37417
sentence-video pairs for training, and 17031 for testing. TACoS consists of 127 cooking-related
videos. We adopt the public split, which includes 10146 and 4083 query-segment pairs for training
and testing, respectively. Charades-STA is built on the Charades dataset, containing 12408 training
and 3720 testing moment-query pairs. Codes are given in supplemental materials.

Baselines. To evaluate both cross-domain generalisation and adaptation, we follow the standard
protocol for temporal grounding under domain shift. In each experiment, one dataset serves as the
labelled source domain, while the remaining two act as unlabelled target domains, yielding six cross-
domain configurations. We compare our method under the data-efficient unsupervised adaptation
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Table 2: Ablation study on Charades → Activitynet dataset showing the impact of uncertainty
estimation and soft labelling.

Variant R@0.3 R@0.5 R@0.7 mIoU
Qwen2.5-7B 25.11 15.18 7.90 18.47
Qwen2.5-7B + Our GRPA Target Adaptation (100-shot) 2.67 1.46 0.68 1.96
Qwen2.5-7B + Source Training with GRPO 53.91 35.61 16.61 35.81
Qwen2.5-7B + Source Training with our GRPA 55.23 36.46 18.78 37.64
URPA w/o uncertainty-quantification + w/o relaxed tIOU (200-shot) 58.58 31.15 20.75 39.86
URPA w/o uncertainty + w/ relaxed tIOU (200-shot) 63.72 41.48 20.47 43.10
URPA (200-shot) 64.61 42.57 21.25 43.65

Table 3: Ablation study of GRPO hyperparameters on the Charades → ActivityNet task: (a) effect of
reward scaling factor γ, and (b) effect of rollout count G during adaptation.

γ R@0.3 R@0.5 R@0.7 mIoU
2 59.01 40.04 19.98 40.09
5 59.06 40.44 20.13 40.25

10 59.12 40.13 20.88 40.46
25 58.86 39.89 19.97 40.11

(a) Varying γ with 100-shot unsupervised adaptation.

G (rollouts) R@0.3 R@0.5 R@0.7 mIoU
4 63.41 42.27 21.39 42.55
8 64.61 42.57 21.25 43.65
16 63.19 41.78 21.73 42.40
32 62.56 41.65 21.54 42.15
64 60.08 40.98 20.86 41.37

(b) Varying G with 200-shot unsupervised adaptation.

setting, where the source-pretrained model is adapted using only K = 100 or 200 unlabelled target
videos with our URPA. This setting is contrasted with the following baselines: (1) Full-set adaptation:
The model is trained on the labelled source domain and adapted using the entire unlabelled target
domain. We report results for several state-of-the-art unsupervised adaptation methods, including
CBP [44], SCDM [55], CMIN [62], CSMGAN [29], 2DTAN [61], DRN [57], MMN [48], and
UDA-TSL [30]. (2) Domain Generalisation: We evaluate the base Qwen2.5-7B model [53] (without
any fine-tuning), a GRPO-trained model on the source domain, and a model trained using only the
source training phase of our URPA framework. All three are trained exclusively on the source domain
and directly evaluated on the target domain without any access to target data.

Implementation Details. We first fine-tune Qwen2.5-7B on the labelled source domain, and then
perform data-efficient adaptation on 100 or 200 randomly selected samples from the unlabelled target
domain. In all experiments, the maximum prompt length is set to 4096, the maximum response
length to 2048, the number of rollouts to 8, batch size to 16, and we train for 1 epoch. All models are
implemented in PyTorch on 32 NVIDIA V100 GPUs. Codes are in supplemental materials.

5.2 Results and Analysis

Experimental Results. Tab. 1 shows the performance of our method on the unsupervised cross-
domain temporal grounding tasks. We report results using our data-efficient unsupervised adaptation
approach with K = 100 and K = 200 unlabelled target samples. We compare against several
baselines, including: (1) traditional UDA methods trained on full labelled source and unlabelled
target domain data; (2) zero-shot domain generalisation methods trained only on the source domain
and the base Qwen2.5-7B model. Our results demonstrate that data-efficient adaptation with just
a small number of unlabelled target samples can significantly improve the performance of the
source-pretrained model. Compared to full-set UDA methods, our method achieves competitive or
even better performance in several settings. In particular, for TACoS → ActivityNet, TACoS →
Charades, and ActivityNet → Charades tasks, our method outperforms state-of-the-art UDA methods
in R@0.5. These results highlight the effectiveness and efficiency of our approach in realistic cross-
domain scenarios with limited adaptation data. We also compare our approach with data-efficient
target-supervised learning baselines in Appendix A.5, further validating its effectiveness.

Ablation Study. In Tab. 2, we present an ablation study on the Charades→ActivityNet cross-domain
temporal grounding task to assess the impact of different components in our framework. The first
row reports the performance of the base model, Qwen2.5-7B [53], directly applied to the temporal
grounding task on ActivityNet without any adaptation. The poor performance indicates that the base
model lacks inherent temporal localization capabilities. The second row presents the performance of
Qwen2.5-7B adapted to the target domain using our method without any source domain pre-training.
The subpar results suggest that source domain training provides essential task-specific knowledge
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Query: He then pulls off the tire and begins unscrewing the back one.

Ground truth

Before Adaptation
After Adaptation

41.6s 116.7s

22.2s 41.9s 

40.1s 119.5s 

Query: The person bunches up dough and lays it out on a board.

Ground truth

Before Adaptation
After Adaptation

45.0s 129.8s

43.0s 51.0s 
45.0s 122.0s 

Figure 3: Qualitative Analysis on Charades → ActivityNet.

necessary for effective adaptation. Rows three and four show the results of models pre-trained on
the source domain using the original GRPO algorithm and our improved method, respectively, and
then directly evaluated on the target domain. Both outperform the base model significantly, with our
method achieving better results than the original GRPO. This demonstrates that supervised training
on the source domain aids the model in learning temporal grounding, and our soft accuracy reward
approach mitigates biases introduced by manual annotations during pre-training. The last three rows
analyse different modules in our target domain adaptation strategy, starting from a source-trained
model. In the fifth row, pseudo labels are used directly for adaptation without modification in
Eq.(4) and uncertainty quantification in Eq.(10), resulting in the lowest performance. In the sixth
row, we apply Eq.(4) to the pseudo labels, which significantly improves results, indicating that
soft label learning helps mitigate the effects of label noise. Finally, the last row introduces our
uncertainty-quantified reward weighting mechanism (Eq.10) with soft labelling, yielding further
improvements. This confirms the effectiveness of our GRPO-based uncertainty estimation strategy in
guiding test-time adaptation.

Parameter Analysis. We analyse the effect of key hyperparameters on Charades → ActivityNet task
performance. The reward scaling factor γ (used in Eq.(9)) controls the sensitivity to uncertainty: a
larger γ increases the influence of predicted uncertainty on reward weighting. Tab. 3(a) reports the
results on the 100-shot transfer setting with varying values of γ. We observe that γ = 10 yields the
best performance, but the results are relatively stable across different γ values, indicating that our
method is robust to this hyperparameter. Tab. 3(b) investigates the impact of the number of rollouts
G in GRPO during 200-shot adaptation. The performance peaks when G = 8, and further increasing
the number of rollouts does not lead to consistent gains, while incurring higher computational and
memory costs. They suggest that our method is both effective and efficient under practical settings.

Qualitative Analysis. Fig. 3 illustrates several qualitative examples from the Charades → ActivityNet
transfer setting. Despite not using any labelled data during target adaptation, our method produces
significantly more accurate temporal grounding than the baseline. Notably, in these cases where the
before adaptation model completely fails to localise the correct segment, our approach is able to
capture meaningful behavioural patterns in the target domain and make precise predictions. These
results highlight the effectiveness of our method in adapting to unseen domains without supervision.

6 Conclusion
In this paper, we propose URPA, a data-efficient method for cross-domain temporal grounding that
leverages the rollout mechanism of GRPO to estimate predictive uncertainty and assess the reliability
of predictions on unlabelled target-domain videos. This allows effective test-time adaptation using
only a small number of target samples. We theoretically demonstrate that the standard deviation
across rollouts approximates epistemic uncertainty. Extensive experiments across six cross-domain
benchmarks validate the effectiveness of URPA in improving temporal grounding under domain shift.
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Figure 4: URPA vs. base-
line performance with varying
adaptation shots on Charades
→ ActivityNet.

As shown in Fig. 4, we evaluate how model performance changes
on the Charades→ActivityNet setting as the number of test-time
adaptation samples increases. The red curve represents our method,
while the blue curve corresponds to a self-learning baseline that
directly uses pseudo labels for adaptation. We use R@0.5 as the
evaluation metric. The results show that our method consistently
outperforms the baseline by a significant margin. Interestingly, as the
number of adaptation shots increases, the performance of temporal
grounding first improves and then drops. This is because the pseudo
labels contain noise; while the model initially learns useful temporal
grounding signals, it gradually starts to overfit to noisy labels. As the
adaptation proceeds, the negative impact of label noise outweighs
the benefits of additional supervision, leading to a decline in performance.

A.2 More Visualisation Results

To further illustrate the effectiveness of our method, we provide qualitative results. The top two
examples in Fig. 5 show successful cases where our method significantly refines the temporal
grounding boundaries after adaptation, aligning more closely with the ground truth compared to
the pre-adaptation predictions. The third example in Fig. 6 shows a failure case where the model’s
prediction deviates from the ground truth after adaptation. Although the query describes a sequence
of swimming actions, the model mistakenly grounds a broader segment that includes irrelevant
preparatory scenes. This error may stem from domain-specific visual differences and uncertainty in
the pseudo labels, which lead to incorrect supervision during adaptation.

Query: A 3rd boy skateboards through a street.

Ground truth

Before Adaptation

After Adaptation

64.1s 160.2s

50.9s 60.9s 

60.9s 130.5s 

Query: He goes down the street, flipping the board.

Ground truth

Before Adaptation

After Adaptation

26.9s 97.6s

44.0s 52.0s 
29.2s 119.7s 

Figure 5: Successful Adaptation Cases on Charades→ActivityNet.

Query: He jumps off the diving board into the swimming pool and starts swimming laps.

Ground truth

Before Adaptation

After Adaptation

155.2s 180.8s

134.5s 159.5s 

139.5s~199.5s 

Figure 6: Failure Example on Charades→ActivityNet.
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Table 4: Comparison of GRPO and URPA under varying adaptation settings on target domain across
six cross-domain benchmarks.

Method Charades→ActivityNet ActivityNet→TACoS TACoS→Charades
R@0.5 R@0.7 R@0.3 R@0.5 R@0.5 R@0.7

Target Data-Efficient Supervised Learning
Target Supervised GRPO (200-shot) 42.75 22.42 22.20 11.17 59.38 33.36

Data-Efficient Unsupervised Domain Adaptation
URPA (with 100-shot Target Adaptation) 40.13 20.88 21.82 10.16 54.78 30.08
URPA (with 200-shot Target Adaptation) 42.57 21.25 21.97 10.38 55.54 32.04

Method TACoS→ActivityNet Charades→TACoS ActivityNet→Charades
R@0.5 R@0.7 R@0.3 R@0.5 R@0.5 R@0.7

Target Data-Efficient Supervised Learning
Target Supervised GRPO (200-shot) 44.78 24.36 18.83 9.65 66.77 41.56

Data-Efficient Unsupervised Domain Adaptation
URPA (with 100-shot Target Adaptation) 38.41 19.80 14.49 7.23 64.35 38.76
URPA (with 200-shot Target Adaptation) 41.83 21.84 16.62 8.25 65.12 39.57

A.3 Limitation

While URPA demonstrates strong generalisation in data-efficient cross-domain temporal grounding,
several limitations remain. First, our method assumes access to a small number of unlabelled videos
from the target domain during deployment. In scenarios where abundant target data is available, the
model may overfit to noisy pseudo labels during adaptation. Although our uncertainty quantification
via rollout variance helps mitigate this issue, it cannot fully eliminate the risk of overfitting to noise.

A.4 Codes Release Information

Our codes can be found in the supplemental material , and will be released upon publication.

A.5 More Comparison

In Tab. 4, we further compare the performance of our source-domain pre-trained model under different
adaptation scenarios on the target domain. Specifically, we evaluate three setups: (i) fully supervised
GRPO with 200 labelled target samples, and (ii) our unsupervised URPA approach using 100-shot
and 200-shot unlabelled target videos. Across all six cross-domain settings, URPA with 200-shot
adaptation achieves comparable performance to the 200-shot supervised GRPO baseline, highlighting
its data-efficiency. Notably, even with only 100 unlabelled target samples, URPA consistently narrows
the performance gap, demonstrating strong generalisation and adaptation capability in low-resource
settings.

A.6 Detailed Theoretical Analysis

Theorem A.1. Fix an input x. Let πθ(τ | x) be the rollout policy learned by GRPO and let p⋆(τ | x)
denote the Bayesian predictive distribution of the same model class trained on the source data. Assume
(i) rollouts drawn from πθ are i.i.d.; (ii) there exists a constant M < ∞ such that Eπθ

[τ2] ≤ M
and Ep⋆ [τ2] ≤ M ; (iii) the Kullback–Leibler divergence is finite, ε = KL

(
πθ ∥ p⋆

)
< ∞. Draw G

independent rollouts {τ (i)}Gi=1 ∼ πθ(· | x) and define

τG =
1

G

G∑
i=1

τ (i), σ̂G(x) =

√√√√ 1

G

G∑
i=1

(
τ (i) − τG

)2
.

As G→∞ and GRPO training drives ε→0, the estimator σ̂G(x) converges to the Bayesian predictive
standard deviation Stdp⋆ [τ | x] and thus provides a consistent measure of epistemic uncertainty.

Proof. Let µπ = Eπθ
[τ ] and σπ = Stdπθ

[τ | x], and define µ⋆, σ⋆ analogously for p⋆.

Consistency under the policy. Because τ (i) are i.i.d. with Eπθ
[τ2] ≤ M , the weak law of large

numbers gives
τG

p−→ µπ, σ̂G(x)
p−→ σπ. (17)
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Connecting policy and Bayesian moments. Pinsker’s inequality converts the KL bound to total
variation,

∥πθ − p⋆∥TV ≤
√

1
2 ε, (18)

and for any measurable g with |g(τ)|≤M ,∣∣Eπθ
[g(τ)]− Ep⋆ [g(τ)]

∣∣ ≤ 2M
√

1
2 ε. (19)

Choosing g(τ) = τ and g(τ) = τ2 yields

|µπ − µ⋆| ≤ 2M
√

1
2 ε,

∣∣Eπθ
[τ2]− Ep⋆ [τ2]

∣∣ ≤ 2M
√

1
2 ε. (20)

Bounding the standard deviation gap. Using Var[τ ] = E[τ2]− µ2, we get:∣∣σ2
π − σ2

⋆

∣∣ ≤ ∣∣Eπθ
[τ2]− Ep⋆ [τ2]

∣∣+ ∣∣µ2
π − µ2

⋆

∣∣. (21)

Applying (20) and |µπ|, |µ⋆| ≤ M gives:

|σ2
π − σ2

⋆| ≤ 4M
√
ε. (22)

Then by the inequality |a− b| ≤
√

|a2 − b2| for a, b ≥ 0, we obtain:

|σπ − σ⋆| ≤
√

4M
√
ε. (23)

Convergence to Bayesian standard deviation. GRPO optimisation drives ε→ 0, so σπ → σ⋆.
Combining this with (17) and (23):∣∣σ̂G(x)− σ⋆

∣∣ ≤ ∣∣σ̂G(x)− σπ

∣∣+ ∣∣σπ − σ⋆

∣∣ p−→ 0,

which proves that σ̂G(x)
p−→ Stdp⋆ [τ | x]. Hence the rollout standard deviation consistently estimates

the Bayesian predictive uncertainty.

A.7 Border Impact

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we need highlight.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claimed the Uncertainty-quantified Rollout Policy Adaptation helps cross-
domain temporal grounding, which is validated in the experimental part.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

17



Justification: We discuss the limitation in Sec.A.3.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide theoretical analysis in Sec.4.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We included all these information at the beginning of section 4, including
dataset, metrics and other implementation details.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide codes in supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We clarify the details of the optimization process in the experiment part.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have illustrated it in experiment section and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We gave clarified such things in implement details and instruction of the codes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have conducted the paper conform to make sure it follows the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed about the potential social impact in appendix Sec.A.7.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We conduct experiments on public datasets, and our model is training-free
apporaches, the model we used are all open-sourced model from the community.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the data and models we used in our paper properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new datasets in the papers, and our codes will be released
after publication.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting pURPAses and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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