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Abstract

We propose Network Automatic Relevance De-
termination (NARD), an extension of ARD for
linearly probabilistic models, to simultaneously
model sparse relationships between inputs X ∈
Rd×N and outputs Y ∈ Rm×N , while capturing
the correlation structure among the Y . NARD
employs a matrix normal prior which contains a
sparsity-inducing parameter to identify and dis-
card irrelevant features, thereby promoting spar-
sity in the model. Algorithmically, it iteratively
updates both the precision matrix and the rela-
tionship between Y and the refined inputs. To
mitigate the computational inefficiencies of the
O(m3 + d3) cost per iteration, we introduce Se-
quential NARD, which evaluates features sequen-
tially, and a Surrogate Function Method, lever-
aging an efficient approximation of the marginal
likelihood and simplifying the calculation of de-
terminant and inverse of an intermediate matrix.
Combining the Sequential update with the Surro-
gate Function method further reduces computa-
tional costs. The computational complexity per
iteration for these three methods is reduced to
O(m3 + p3), O(m3 + d2), O(m3 + p2), respec-
tively, where p≪ d is the final number of features
in the model. Our methods demonstrate signif-
icant improvements in computational efficiency
with comparable performance on both synthetic
and real-world datasets.
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1. INTRODUCTION
Multiple-input Multiple-output Regression is a powerful
modeling framework widely applied in quantitative disci-
plines such as finance and genomics (Zellner, 1962; Breiman
& Friedman, 1997; Hastie et al., 2009; Wang, 2010; He
et al., 2016). In biological research, this approach is of-
ten used to explore how molecular-level features (micro-
phenotypes) influence broader phenotypic traits (macro-
phenotypes) (Stephens, 2013; Akbani et al., 2014). A typical
example involves examining how gene expression levels or
protein concentrations, influence disease states or develop-
mental outcomes. However, biological data often involve
ultra-high-dimensional features, with thousands of genes or
proteins contributing to a limited number of observable sam-
ples (Moon et al., 2019). Such high-dimensional settings
present significant computational challenges.

Empirical studies suggest that only a subset of specific
molecular features significantly impacts the observed phe-
notypes. This highlights the need for sparse regression
models that focus on the most relevant features, reducing
over-fitting and enhancing interpretability. Furthermore,
macro-phenotypes often exhibit sparse network structures,
where only a few phenotypes are connected via interaction
relationship. This sparse structure highlights the need for
approaches that capture not only the individual effects of in-
puts but also the inter-dependencies among multiple outputs.
Emerging methodologies for multi-omics integration and
cross-modal network information processing capitalize on
this principle, reflecting the fact that biological mechanisms
arise from the complex interplay of numerous molecular
events and their interactions (Cohen et al., 2022; Kristensen
et al., 2014).

Another related example is the study of expression quan-
titative trait loci (eQTL). Some genetic variants can affect
the expression of multiple genes, acting as potential con-
founders in gene networks. Gene expression data alone are
unable to fully capture the gene activities. Ignoring these
effects can result in spurious associations, leading to false
positives or false negatives. Incorporating covariates such as
genetic variants from eQTL studies improves the estimation
of relationships among genes at the transcriptional level.

In this paper, we focus on linearly probabilistic models
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(Minka, 2000). Drawing inspiration from Automatic Rele-
vance Determination (ARD) framework (MacKay, 1992;
MacKay et al., 1994), we introduce an extension named Net-
work ARD (NARD) for multiple output regression. Specifi-
cally, we place an ARD prior on the regression coefficient
matrix, enabling us to determine which input features are
relevant for predicting the outputs. Simultaneously, we
apply an L1 penalty on the precision matrix to encourage
sparsity, thereby modeling the dependencies among the out-
put. Although ARD prior is effective for feature selection,
it faces computational challenges in high-dimensional set-
tings. Standard ARD methods optimized via Expectation-
Maximization (EM) or type-II maximum likelihood incur
anO(d3) computational cost due to matrix inversion, where
d is the number of features.

To address this issue, we design several novel algorithms
within the NARD framework. Specifically, inspired by Tip-
ping’s greedy approach (Tipping & Faul, 2003), we develop
the sequential update method, which sequentially adds and
removes features. This approach allows the model to start
with a few features, enabling decisions about each new fea-
ture based on its contribution to the overall evidence. Addi-
tionally, we introduce a surrogate function that approximates
the lower bound of the log marginal likelihood, avoiding
the need for matrix inversion. By integrating these two ap-
proaches, we provide a more efficient implementation of
NARD, making it scalable for high-dimensional datasets.

In summary, we present the NARD framework, which
jointly estimates the sparse regression coefficients and the
precision matrix. To improve computational efficiency, we
propose three novel extensions: Sequential NARD, Surro-
gate NARD and Hybrid NARD, which reduce complexity
to O(m3 + p3), O(m3 + d2) and O(m3 + p2), respec-
tively. These approaches achieve significant improvements
in computational efficiency while maintaining comparable
predictive performance in synthetic and real-world datasets.

1.1. Problem formulation

Under the framework of linearly probabilistic models, given
an input x ∈ Rd and an output y ∈ Rm, we consider

y =Wx+ ϵ, (1)

where W ∈ Rm×d is the regression coefficient matrix and
ϵ ∼ N (0, V ) represents the error term, assumed to follow a
normal distribution with mean zero and covariance matrix
V . Given N sample pairs, the model extends to:

Ym×N =Wm×dXd×N + Em×N , (2)

where the i-th column of E is ϵ.

Our goal is to jointly estimate the regression coefficient W
and the precision matrix Ω = V −1. A typical approach

is the maximum likelihood estimator (MLE). The negative
log-likelihood function of Y , up to a constant, is given by

l(W,Ω) = Tr[(Y −WX)⊤(Y −WX)Ω]−N log |Ω|. (3)

It is noticed that l(W,Ω) is not jointly convex in W and
Ω , but is bi-convex, i.e., it is convex in W for fixed Ω
and in Ω for fixed W . A common approach to address
this bi-convexity is to employ an alternating minimization
strategy, also known as the block coordinate descent (BCD)
method (Tseng, 2001). This technique iteratively updates
the parameters by fixing one set while optimizing the other
until convergence is reached.

1.2. Related work

Joint mean–covariance estimation. The problem of joint
multivariate variable and covariance selection has garnered
significant attention in recent years. Rothman et al. (2010)
proposed MRCE, which incorporates an l1 penalty to pro-
mote sparsity in both W and Ω. This formulation leads to
a BCD algorithm for solving the problem. Formally, the
penalized log-likelihood is

(
Ŵ , Ω̂

)
= argmin

(W,Ω)

l(W,Ω) + λ1
∑
k ̸=ℓ

|ωkℓ|+ λ2

md∑
j=1

|wj |

 ,

(4)
where ωkℓ are the elements of Ω , wj are the elements of
vectorized W , λ1, λ2 > 0 are tuning parameters. This for-
mulation yields an alternative lasso (Tibshirani, 1996) and
a graphical lasso problem. Similar approaches have been
explored in previous studies, such as (Cai et al., 2013; Chen
et al., 2016; Lin et al., 2016; Zhang & Schneider, 2010; Zhao
et al., 2020). Another approach is to adopt the Bayesian
framework, where a hierarchical model is constructed us-
ing appropriate priors, followed by MCMC sampling for
parameter updates and probabilistic uncertainty quantifica-
tion, as seen in (Bhadra & Mallick, 2013; Deshpande et al.,
2019; Li et al., 2021; Ha et al., 2021; Samanta et al., 2022).
The Bayesian methods provide a principled way to handle
model uncertainty while promoting sparsity. Compared to
penalized methods, MCMC-based techniques tend to be
computationally expensive, making them less efficient for
large-scale problems.

ARD and SBL. Automatic Relevance Determination
(ARD), closely related to Sparse Bayesian Learning (SBL)
(Tipping, 2001; Faul & Tipping, 2001; Wipf & Rao, 2004),
is a framework designed to identify and discard irrelevant
features from high-dimensional data. ARD leverages a pa-
rameterized, data-driven prior to promote sparsity, mitigat-
ing the ill-posed nature of problems.

Subsequent studies have theoretically extended ARD or
SBL by establishing connections with iterative reweighted l1
minimization (Wipf & Nagarajan, 2007; 2010), compressive
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sensing (Babacan et al., 2009), stepwise regression (Ament
& Gomes, 2021), or by developing new efficient iterative
algorithms (Al-Shoukairi et al., 2017; Zhou et al., 2021;
Wang et al., 2024).

Graphical Lasso. The Graphical Lasso (GLasso) aims to
estimate a sparse precision matrix Θ for a given dataset
(Friedman et al., 2008). The general form of GLasso is
defined as:

Ω̂ = argmin
Ω

(
− log |Ω|+ Tr(Ṽ Ω) + ψλ(Ω)

)
, (5)

where Ω̂ is the estimated precision matrix, Ṽ is the empiri-
cal covariance matrix and ψλ(Ω) is the regularization term
controlling the sparsity of the solution with strength param-
eter λ. When ψλ(Ω) = λ

∑
i̸=j |ωij | , Eq. (5) represents

the original GLasso (Friedman et al., 2008). Other repre-
sentative choices for ψλ(Ω) include the adaptive LASSO or
SCAD penalty (Fan et al., 2009) and graphical horseshoe
(Li et al., 2019) in the Bayesian framework.

2. NETWORK AUTOMATIC RELEVANCE
DETERMINATION

2.1. Framework of NARD

In this paper, we impose ARD prior on the regression co-
efficient matrix and L1 penalty on the precision matrix to
encourage sparsity. Actually, there are other potential penal-
ties that can be applied to the precision matrix, offering
flexibility in model specification. These alternatives can be
considered as plug-in options.

Specifically, we impose the matrix normal distribution as
the prior of W . The probability density function is given by

W ∼MN (0, Vm×m,K
−1
d×d)

=
|K|m/2

(2π)md/2|V |d/2
× exp

[
−1

2
Tr(V −1WKW⊤)

]
.

(6)

where V and K−1 are two positive definite matrices rep-
resenting the covariance matrices for rows and columns
of W respectively. In this paper, we restrict K =
diag(α1, · · · , αd) to be a diagonal matrix.

The basic idea of ARD is to give the Wij independent pa-
rameterized data-dependent priors. The hyperparameters V
andK are trained from the data by maximizing the evidence
P (Y |X,V,K), which can be done via type-II maximum
likelihood or Expectation–Maximization (EM) algorithm.

p(Y, V,K|X) =

∫
p(Y |W,X) p(W |V,K) p(V )p(K)dw.

(7)
Here p(V ) and p(K) are hyperpriors imposed on V and
K, which will be specified later. To estimate V,K,W , an

essential procedure is to maximize the marginal likelihood
function (MLF) in Eq. (7). This is equivalent to minimize
the negative logarithm of the MLF.

Recall l(W,Ω) is not jointly convex in W and Ω, we em-
ploy the BCD method to iteratively update the parameters.
This involves alternatively solving the sparse covariance es-
timation problem and performing Bayesian linear regression
with the ARD prior, cycling through the parameters until
convergence is reached.

2.2. Evidence approximation

Referring to the notation in (Minka, 2000), we define

Sxx = XX⊤ +K,

Syy = Y Y ⊤,

Syx = Y X⊤,

Sy|x = Syy − SyxS
−1
xx S

⊤
yx.

(8)

By multiplying the likelihood function p(Y |W,X) with the
conjugate prior Eq. (6) of W , i.e., p(W |V,K), we have:

ln p(Y,W |X,V,K)

∝Tr
[
V −1

(
WSxxW

⊤ − 2SyxW
⊤ + Syy

)]
=Tr

[
V −1

(
W − SyxS

−1
xx

)
Sxx

(
W − SyxS

−1
xx

)⊤
+ V −1Sy|x

]
.

(9)

As a result, the posterior distribution for the coefficient
matrix W remains a matrix normal distribution and the
MLF for Y can then be given by integrating out W from the
joint distribution given in Eq. (9). Formally, we have:

p(W |X,Y, V,K) =MN (µ, V,Σ) ,

p(Y |X,V,K) =MN (0, V, C),
(10)

where µ = SyxS
−1
xx and Σ = Sxx are the posterior

mean and column covariance of W , respectively. C =
I +X⊤K−1X is the columns covariance of Y .

The negative logarithm of the MLF takes the form:

L = − ln p(Y |X,V,K)

∝ m ln |C|+N ln |V |+ Tr(Y ⊤V −1Y C−1).
(11)

In practice we use Woodbury identity to calculate C−1:

C−1 = (I +X⊤K−1X)−1 = I −X⊤S−1
xxX. (12)

Note that the term Y C−1Y ⊤ in Eq. (11) can be re-expressed
by introducing the latent variable W as follows:

Y C−1Y ⊤ = (Y − µX)(Y − µX)⊤ + µKµ⊤

= min
W

(Y −WX)(Y −WX)⊤ +WKW⊤,

(13)
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i.e., ln p(Y |X,V,K) = ln p(Y |X,V,K,W ).

Then we use graphical lasso to update V , i.e.,

V̂ , V̂ −1 ← glasso(V, λ), (14)

where glasso refers to GLasso procedure, which takes the
empirical covariance as input and returns updated covari-
ance V̂ and precision matrix V̂ −1. The parameter λ controls
the sparsity of the V̂ −1 via the L1 penalty.

2.3. Algorithm summary

We can incorporate hyperpriors for the parameters V and K
in our model. The hierarchical Bayesian approach allows
for greater flexibility and robustness by capturing uncer-
tainties in the prior distributions. We have p(W ;V ) =∫
p(W |K;V )p(K)dα. If each αi follows a common

Gamma distribution, then the prior of Wi is a multidimen-
sional Student distribution.

When a specific prior is adopted, α and V reach their min-
ima at the points where the gradient of the logarithm of the
MLF is zero. It can be shown that

V new =
(Y − µX)(Y − µX)⊤ + µKµ⊤

N
. (15)

Here we consider two different priors for α.

Flat prior. If α follows the flat prior, i.e., p(α) = 1 then

αnew
i =

m

m(S−1
xx )ii + (µ⊤V −1µ)ii

. (16)

Gamma prior. If α follows a Gamma prior Gamma(a, b):

p(α) =

d∏
i=1

ba

Γ(a)
αa−1
i e−bαi . (17)

where a and b are the shape and rate parameters of the
Gamma distribution, respectively. Then

αnew
i =

m+ 2a− 2

m(S−1
xx )ii + (µ⊤V −1µ)ii + 2b

. (18)

Note that if any αi = 0, then W·i = 0 and the corre-
sponding feature is effectively pruned from the model. In
each iteration, we calculate Σ = S−1

xx = (K +XX⊤)−1,
µ = Y X⊤Σ and update α, V as the above formula. We re-
peat the process above until the number of iterations reaches
the maximum or max |∆( 1

α , t)| := max | 1
α(t) − 1

α(t−1) | is
significantly small, where t is the iteration number. Algo-
rithm 1 summarizes the proposed NARD.

Prior for W . A conjugate prior for V is the inverse Wishart
distribution. This will lead to a matrix-T distribution (Gupta
& Nagar, 2018) for the MLF of Y . Although this will not

Algorithm 1 NARD
Input: Input data X , Y , ϵ
Output: Estimated α, V , V −1, W

1: Initialize α elements, V ← V̂MLE.
2: for t← 1 to T do
3: Compute Σ← (K +XX⊤)−1.
4: Compute µ← Y X⊤Σ.
5: Update V according to (15).
6: V, V −1 ← glasso(V, λ).
7: Update α according to (16), (18) depending on

whether the Gamma prior is included.
8: if max |∆( 1

α )| ≤ ϵ then
9: Break.

10: end if
11: Update W ← µ.
12: end for

affect the main conclusions and derivations of the paper, it
may complicate the expressions for some variables. Due
to space limitations, we focus solely on the prior for K.
However, the technical conclusions of this paper remain
applicable to the prior for V . A detailed discussion of the
choice of hyperprior is provided in Appendix D.

2.4. Extension to the nonlinear setting

NARD can be naturally extended to address nonlinearity
through kernel method. Specifically, we consider

Y =WΦ(X) + E , Φ(·) ∈ Polynomial, RBF, ...

where Φ(X) represents a nonlinear feature mapping that
transforms the input space into a higher-dimensional space,
enabling more flexible modeling of complex relationships.

3. SEQUENTIAL NARD
3.1. Sequential update

Rather than pruning redundant or irrelevant features as in
NARD, we employ a greedy approach that sequentially adds
and removes features. The key difference is that the original
NARD requires O(d3) computations at the beginning of
training, whereas the sequential update method begins with
an almost empty model, consisting of only a few features,
which significantly reduces the initial computational burden.
We adopt a fast sequential optimization method to efficiently
update the hyperparameters inspired by (Faul & Tipping,
2001; Tipping & Faul, 2003; Ament & Gomes, 2021).

3.2. Fast optimization of evidence

To perform a sequential update on V and K, we separate
out the contribution of a single prior parameter αi from the
MLF P (Y |X,V,K).
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Thus, by rewriting C as C = C\i + α−1
i φiφ

⊤
i , and using

determinant and inverse lemma of matrix, the logarithm of
MLF can be explicitly decomposed into two parts, one part
denoted by L(α\i), that does not depend on αi and another
that does, i.e.,

L(α) = m [lnαi − ln(αi + si)] +
Tr(qiq⊤i V −1)

αi + si
+ L(α\i),

(19)

where φi ∈ RN denotes the i-th row of X , qi = Y C−1
\i φi

and si = φ⊤
i C

−1
\i φi.

Theorem 3.1. Denote ηi := Tr(qiq⊤i V −1)−msi, then the
global maximum of L(α) with respect to αi is

αi =

{
ms2i
ηi

, ηi > 0;

∞ , ηi ≤ 0.
(20)

The detailed proof of Theorem 3.1 can be found in Appendix
C.1. Furthermore, to simplify the maintenance and update
of si and qi, we can exploit the following relations

qi =
αiQi

αi − Si
, si =

αiSi

αi − Si
, (21)

where we define

Qi := Y C−1
A φi, Si := φ⊤

i CA
−1φi. (22)

Here A is the active subset of features, with

C−1
A := (I +X⊤

AK
−1
A XA)

−1. (23)

XA andKA are the sub-matrices ofX andK corresponding
to A. We denote SA

xx := XAX
⊤
A +KA. Using Woodbury

identity, we can write

Qi = Y φi − Y X⊤
A(SA

xx)
−1XAφi,

Si = φ⊤
i φi − φ⊤

i X
⊤
A(SA

xx)
−1XAφi.

(24)

It can be shown that the computation in Eq. (24) involves
only those features in the active set A that correspond to
finite hyperparameters αi. Let p≪ d denote the final num-
ber of features in the model, the computational complexity
per iteration is O(p3).

It is easy to verify that when αi → ∞, both the prior and
posterior of W exhibit a very high density around Wi = 0⃗.
This indicates that when αi →∞, we can remove the i-th
feature of X . See details in Appendix C.2.

3.3. Algorithm summary

Algorithm 2 summarizes the proposed Sequential NARD.
We begin with a model containing only a few features, which

Algorithm 2 Sequential NARD
Input: Input data X , Y , ϵ, T
Output: Estimated α, V , V −1

1: Initialization: model with a few features, set α elements,
V ← V̂MLE, ∆L(α)←∞, t← 0.

2: while ∆L(α) > ϵ and t < T do
3: t← t+ 1.
4: select i ∈ {1, 2, . . . , d} randomly.
5: Calculate temporary Qi, qi, Si, si, ηi, αi.
6: if αi <∞, i.e., φi is in the model then
7: if ηi > 0 then
8: αi ← ms2i

ηi
.

9: else
10: αi ←∞, Delete φi from X .
11: end if
12: else
13: if ηi > 0 then
14: αi ← ms2i

ηi
, Add φi to X .

15: else
16: Skip φi, continue.
17: end if
18: end if
19: Calculate KA, K−1

A , CA, C−1
A .

20: V̂MLE ←
Y ⊤C−1

A Y

N .
21: V, V −1 ← glasso(V̂MLE, λ).
22: Calculate L, ∆L(α)new.
23: if ∆L(α)new > 0 then
24: Update X,Q, q, S, s, η, α, L,KA, CA, V, V

−1.
25: else
26: Undo all changes in this iteration.
27: Continue
28: end if
29: end while

means that the corresponding α elements are not∞. Next,
we randomly select i ∈ {1, 2, . . . , d}, calculate ηi and αi,
and update V using graphical lasso. Based on the values of
ηi and αi, and whether the i-th feature is currently included
in the model, we decide whether to add it (αi ← ms2i

ηi
), re-

estimate it (αi ← ms2i
ηi

), or delete it (αi ←∞). Afterward,
we compute the new MLF, L(α)new. If it increases, we
retain the change; otherwise, we undo it. This process is
repeated until L(α) converges.

4. SURROGATE NARD
4.1. Overview of surrogate function method

An alternative approach to reducing computational complex-
ity is to introduce a surrogate function. More specifically,
we approximate p(Y |X,V,K,W ) with a surrogate function
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p̂(Y |X,V,K,W,W ′), satisfying

p(Y |X,V,K,W ) = max
W ′

p̂(Y |X,V,K,W,W ′), (25)

which establishes a tight lower bound on the original like-
lihood function. In other words, our objective becomes
to maximize the lower bound of the MLF. In fact, this is a
common technique in optimization and variational inference
(Hunter & Lange, 2004; Kingma & Welling, 2014; Sun et al.,
2016). In particular, the most computationally expensive
step of the original NARD is matrix inversion. To mitigate
this, a lower bound is strategically chosen to approximate
the matrices involved in the inversion as diagonal matrices.
This approximation eliminates the bottleneck caused by ma-
trix inversion, resulting in a substantial reduction in overall
computational complexity.

4.2. Lower bound of the MLF

Lemma 4.1. (Boyd & Vandenberghe, 2004) Suppose f(X)
is a function f : Rn×n → R, the first-order Taylor approxi-
mation with trace as inner product is

f(X + V ) ≈ f(X) + Tr(∇f(X)⊤V ). (26)

Lemma 4.2. Let f : Rn×n → R be a continuously differ-
entiable function with Lipschitz continuous gradient and
Lipschitz constant L. Then, for any U, V ∈ Rn×n,

|f(U)− f(V )− Tr(∇f(V )⊤(U − V ))| ≤ L

2
∥U − V ∥2.

(27)

Denote

R(W,W ′) = (Y −W ′X)(Y −W ′X)⊤

+ 2(W −W ′)X(W ′X − Y )⊤

+ ρ(W −W ′)(W −W ′)⊤,

(28)

where ρ ∈ R denotes the largest eigenvalue of XX⊤, we
have the following lemma:
Lemma 4.3. Let g(W ) = (Y −WX)(Y −WX)⊤, then
Tr(g(W )) ≤ Tr(R(W,W ′)).

Proof. We begin by analyzing the Lipschitz constant L for
the function g(W ). First, we compute the gradient of g(W )
with respect to W :

∂g(W )

∂W
= −2(Y −WX)X⊤. (29)

According to the definition of Lipschitz continuous gradient,
the following inequality holds:

∥∂g(W )

∂W
− ∂g(W ′)

∂W ′ ∥ ≤ L∥W −W
′∥

⇒ ∥2(W −W ′)XX⊤∥ ≤ L∥W −W ′∥
⇒ L = 2∥XX⊤∥ = 2ρ.

(30)

Thus, we derive the desired inequality by applying
Lemma 4.2, as shown below:

Tr[g(W )] ≤ Tr[g(W ′)] + Tr[∇g(W ′)⊤(W −W ′)]

+
L

2
Tr[(W −W ′)(W −W ′)⊤].

(31)

Revisiting the MLF in Eq. (25), we obtain the approximate
posterior density of W by substituting p(Y |X,V,K,W )
with its lower bound p̂(Y |X,V,K,W,W ′) via Bayesian
rules as follows:

p(W |V,K) ≈ p̂(Y |X,V,W,W ′)p(W |V,K)∫
p̂(Y |X,V,W,W ′)p(W |V,K)dw

=MN (µ, V, Sxx).

(32)

with
µ = ρW ′ −W ′XX⊤ + Y X⊤,

Sxx = ρI +K.
(33)

By substituting Eq. (32) into the marginal likelihood expres-
sion, we arrive at the following formulation:

Proposition 4.4. The new marginal likelihood function, up
to a constant, is

L = ln p(Y |X,V,K,W,W ′)

∝ m ln |C|+N ln |V |+ Tr(V −1R(W,W ′))

+ Tr(V −1WKW⊤).

(34)

This reformulation leads to a new objective function involv-
ing 4 sets of variables W,W ′, V,K. Direct joint optimiza-
tion of these variables is intractable due to their interdepen-
dence. Accordingly, we adopt the BCD method to optimize
the negative logarithm of MLF, i.e.,

(W (k),W ′(k), V (k),K(k)) ∈ argminL(W,W ′, V,K).
(35)

Specifically, the BCD method is utilized to alternatively
solve Eq. (35) as follows:

W (k) ∈ argmin
W
L(W,W ′(k−1), V (k−1),K(k−1)),

W ′(k) ∈ argmin
W ′
L(W (k),W ′, V (k−1),K(k−1)),

V (k) ∈ argmin
V
L(W (k),W ′(k), V,K(k−1)),

K(k) ∈ argmin
K
L(W (k),W ′(k), V (k),K).

(36)

The optimal value of W (k),W ′(k), V (k),K(k) can be ob-
tained by setting its gradient to zero respectively, leading to

6
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the following update schemes:

S(k)
xx = K(k−1) + ρI, (37)

W (k) =
[
ρW ′(k−1) −W ′(k−1)XX⊤ + Y X⊤](S(k)

xx )−1,
(38)

W ′(k) =W (k), (39)

V (k) =
R(W (k),W ′(k)) +W (k)K(k−1)(W (k))⊤

N
,

(40)

V (k), (V (k))−1 ← glasso(V (k), λ), (41)

K(k) =
m

diag[(W (k))⊤(V (k))−1W (k) +m(S
(k)
xx )−1]

.

(42)

4.3. Algorithm summary

Algorithm 3 Surrogate NARD
Input: Input data X , Y , ϵ
Output: Estimated α, V , W

1: Initialize α elements, V ← V̂MLE, W (0) ← Y X⊤(K +
XX⊤)−1.

2: for k = 1 to K do
3: Perform equations (37), (38), (39), (40), (41), (42).
4: if ∥W (k) −W (k−1)∥F ≤ ϵ then
5: Break.
6: end if
7: end for

Algorithm 3 presents a comprehensive overview of Surro-
gate NARD. Since Sxx is a diagonal matrix, the update in
(37) involves only the inversion of a diagonal matrix, which
has a computational complexity of O(d).

5. Hybrid NARD
This section presents a hybrid method that integrates Se-
quential NARD and Surrogate NARD to further reduce
computational costs. Specifically, we utilize a sequential
update approach for the iterative steps of Surrogate NARD.
This approach initiates by assessing the relevance of a new
feature to determine its inclusion, akin to the Sequential
NARD framework.

Once a feature is deemed relevant and included, we employ
Surrogate NARD for subsequent calculations of the matrices
V,W . This strategy eliminates the need for the costly matrix
inversion operations typically required in full NARD imple-
mentations. By combining the feature selection process of
Sequential NARD with the efficient computations of Surro-
gate NARD, we achieve a significantly lower computational
complexity. The resulting method not only streamlines the
iterative process but also ensures that we maintain compara-
ble performance while handling high-dimensional data.

Hybrid NARD retains the core structure and principles of
Sequential NARD, with key variables such asQ, q, S, s, and
η preserved, and updates are performed only when the MLF
increases. However, the key difference is that Hybrid NARD
requires the computation of ρ and the execution of steps
(37), (38), (39), (40), (41) and (42) at each iteration, rather
than relying on the updates specified in Sequential NARD.
Consequently, W is updated in every iteration of Hybrid
NARD, whereas in Sequential NARD, W is calculated only
after the final values of X , K and V have been determined.

6. EXPERIMENTS
In this section, we evaluate the performance of the proposed
methods on synthetic data using True Positive Rate (TPR),
defined as TPR = TP

TP+FN , and False Positive Rate (FPR),
defined as FPR = FP

TN+FP , where TP, FP, TN and FN repre-
sent true positives, false positives, true negatives, and false
negatives, respectively. We run each experiment 10 times
with different random seeds and report the average. For
Aging phenotype data, where true labels are unavailable,
we use the Jaccard index to measure the overlap of biologi-
cal associations identified by different algorithms. We also
highlight the efficiency of the NARD and its variants. On
the TCGA data, we focus on the effectiveness of NARD
in identifying biological associations. In addition, we con-
ducted experiments on financial and air quality datasets to
further demonstrate the versatility of our method; the de-
tailed experimental results are provided in Appendix F.2.
All experiments were performed on 32 Intel(R) Xeon(R)
Platinum CPUs.

To select the optimal λ, we employ a 5-fold cross-validation
procedure. The dataset is partitioned into 5 disjoint subsets,
and in each iteration, 1 subset is held out as the validation set
while the remaining 4 subsets are used for model estimation.
The objective function for selecting λglasso is defined as:

λglasso = argmin
λ

5∑
l=1

[
Tr(ṼlΩ−l)−log |Ω−l|+λ

∑
i ̸=j

|ωij |
]
.

(43)
Here Ṽl is the empirical covariance estimator computed
from the training data excluding the l-th fold, and Ω−l is
the estimated precision matrix based on this subset. The
log-likelihood is computed for each fold, and the λ that
maximizes the cross-validated log-likelihood is chosen. A
grid search is performed over a range of candidate values
for λ , and the value that yields the best performance across
all folds is selected for the final model and evaluation.

6.1. Synthetic datasets

The synthetic data are generated as follows. The covariance
matrix V is constructed based on a graph generated by an
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Erdős-Rényi random graph (Erdős & Rényi, 1959) with a
sparsity parameter p. The entries of the precision matrix are
sampled from a uniform distribution, after which the matrix
is symmetrized and adjusted to ensure positive definiteness
by controlling its minimum eigenvalue. The matrix W is
generated with a different sparsity level, and its non-zero
elements are drawn from a uniform distribution. Both the
data matrix X and the error term E are sampled from their
corresponding multivariate normal distributions, and the
outcome Y is computed as Y =WX + E.

We choose two representative categories of baseline meth-
ods: MRCE1 (Rothman et al., 2010) and CAPME2 (Cai
et al., 2013) as frequency-based approaches, and HS-GHS3

(Li et al., 2021) and JRNS 4 (Samanta et al., 2022) as
Bayesian sampling-based algorithms.

Table 1. Performance comparison of various methods. (p = 0.1)

METHOD d m N TPR FPR TIME (TOTAL)

MRCE 5000 1500 1500 0.9083 0.0072 53
CAPME 5000 1500 1500 0.8972 0.0124 52
HS-GHS 5000 1500 1500 0.9463 0.0033 >3000
JRNS 5000 1500 1500 0.9485 0.0037 >3000
NARD 5000 1500 1500 0.9483 0.0062 49
SEQUENTIAL NARD 5000 1500 1500 0.9459 0.0067 35
SURROGATE NARD 5000 1500 1500 0.9462 0.0072 31
HYBRID NARD 5000 1500 1500 0.9471 0.0068 23

Table 1 presents the results with N = 1500, m = 1500,
and d = 5000, highlighting estimation performance and
CPU times for all methods. NARD and its variants perform
similarly to HS-GHS, slightly outperforming MRCE in esti-
mation, while demonstrating better computational efficiency.
Among the methods, HS-GHS is the most time-consuming,
while NARD-based approaches maintain relatively high effi-
ciency, with performance gains becoming more pronounced
as the dataset size increases. Table 2 compares performance
under different combinations of d, m, and N , with a focus
on time performance relative to MRCE.

Figure 1 illustrates the running times of NARD
and Surrogate NARD for varying d values (d ∈
{1500, 5000, 10000, 15000, 20000} with N = 1500 and
m = 1500). The results show that while the computational
time of NARD increases significantly as d grows, Surrogate
NARD exhibits a lower time overhead. These trends are
consistent with the theoretical complexity of the methods.

1https://cran.r-project.org/web/packages/
MRCE/index.html

2http://www-stat.wharton.upenn.edu/˜tcai/
paper/Softwares/capme_1.3.tar.gz

3https://github.com/liyf1988/HS_GHS
4https://github.com/srijata06/JRNS_

Stepwise

Table 2. Impact of data size on performance. (p = 0.02)

METHOD d m N TPR FPR TIME (1 STEP)

MRCE 1000 1000 5000 0.9802 0.0313 3.4
NARD 1000 1000 5000 0.9825 0.0274 3.5
SURROGATE NARD 1000 1000 5000 0.9818 0.0281 2.8

MRCE 2000 2000 10000 0.9797 0.0293 8.7
NARD 2000 2000 10000 0.9864 0.0205 8.7
SURROGATE NARD 2000 2000 10000 0.9838 0.0223 6.0

MRCE 5000 2000 20000 0.9698 0.0411 19.2
NARD 5000 2000 20000 0.9732 0.0323 17.4
SURROGATE NARD 5000 2000 20000 0.9732 0.0379 13.0

2500 5000 7500 10000 12500 15000 17500 20000
Dimensions of X

0

20

40

Ti
m

e 
(m

in
)

NARD
Surrogate NARD

Figure 1. Time comparison for different methods.

6.2. Baselines

We further evaluate the scalability of NARD on larger
datasets. As shown in 3, the experimental results align with
the theoretical complexity, demonstrating that as the data
size increases, the time per iteration for NARD grows in a
manner consistent with its expected computational behavior.
The Surrogate NARD approach consistently outperforms
NARD, showing substantial improvements in computational
efficiency, especially at larger scales.

Table 3. Average time per iteration. (N = 20000,m = 2000)

d MRCE NARD SURROGATE NARD

500 2.4 2.1 1.56
1000 2.5 2.4 1.96
2000 3.6 3.4 2.2
5000 12.2 10.7 3.7
10000 33.4 30.8 8.9
15000 77.5 70.9 20.8
20000 201.9 168.6 33.7
30000 421.3 376.7 64.7

6.3. Aging phenotype data

We use data from a cohort of 1022 healthy individuals to
construct a phenotypic network closely related to aging. In
total, we identify 5641 phenotypes that exhibited a signif-
icant Pearson correlation with age, including 1522 macro
phenotypes and 4119 molecular phenotypes.
Figure 2 illustrates the phenotypic network. Notably, fea-
tures within the range of 280-370 exhibited a pronounced
block structure, which corresponds to phenotypic data de-
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Table 4. Associations under different algorithms.

METHOD MRCE HS-GHS NARD NARD VARIANTS

SEQUENTIAL SURROGATE HYBRID

# OF ASSOCIATION 15330 14983 15101 15014 15062 15039
JACCARD INDEX 0.979 - 0.988 0.988 0.989 0.989

Figure 2. Phenotype network in aging.

rived from the same tissue type. This structural coherence
underscores the biological relevance of the identified pheno-
types and suggests that similar traits may arise from shared
underlying biological mechanisms. Furthermore, various al-
gorithms demonstrate consistent performance on the dataset,
with the Jaccard index for phenotype associations surpass-
ing 98.5%. In terms of computational efficiency, the NARD
method is the slowest, taking approximately 24 minutes to
complete, while the sequential NARD approach take ap-
proximately 14 minutes.

6.4. TCGA cancer data

To evaluate the effectiveness of NARD, we analyze data
from The Cancer Genome Atlas (TCGA) (Weinstein et al.,
2013) across seven tumor types: colon adenocarcinoma
(COAD), lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC), ovarian serous cystadenocarcinoma
(OV), rectum adenocarcinoma (READ), skin cutaneous
melanoma (SKCM), and uterine corpus endometrial car-
cinoma (UCEC). Each cancer type dataset includes mRNA
expression profiles and RPPA-based proteomic data, reflect-
ing the biological relationship where mRNA is translated
into proteins. We choose 10 key signaling pathways based
on recent studies (Akbani et al., 2014; Cherniack et al.,
2017; Li et al., 2017) of RPPA-based proteomic profiling
across various tumor types.

Figure 3 visualizes the UpSet plots (Lex et al., 2014) for
7 cancers in 10 pathways. The translational effects exhibit
heterogeneity across cancer types, reflecting the expected
biological differences. Figure 4 presents the protein associa-
tion network for COAD, highlighting interactions between
proteins within the same pathway, as well as significant
cross-talk between different pathways. The network plots
for the other cancer types are included in the Appendix F.4.
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Figure 3. UpSet plots illustrating the relationships among 10 path-
ways across 7 cancer types.
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Figure 4. Protein network of COAD. Different colors represent
different pathways.

Sparsity-inducing priors like ARD enhance interpretability
in biological applications, such as TCGA cancer data, by
identifying key features. In our analysis across 7 tumor
types, ARD highlighted important genes and proteins linked
to signaling pathways. In Figure 3, sparsity revealed consis-
tent pathways across cancer types, exposing cancer-specific
translational effects. In Figure 4, for COAD, sparsity high-
lighted critical protein interactions within pathways and
cross-talk between them, aiding biological interpretation.
In COAD, the PI3K/AKT pathway was highlighted by the
interaction between GSK3ALPHABETAPS21S9 and AK-
TPS473 (Li et al., 2024). This association indicates a key
regulatory role in tumor growth and survival. The AKT
signaling axis, activated by various upstream kinases like
GSK3, has been implicated in colon cancer progression,
making it a valuable target for further investigation and ther-
apeutic development (Zhang et al., 2021; Yao et al., 2020).

7. Conclusion
In this paper, we introduce the NARD framework and pro-
pose three variants to alleviate its computational burden,
significantly reducing the cost while maintaining perfor-
mance. Experimental results confirm the effectiveness and
efficiency of our methods across diverse domains. While
the original model assumes linear relationships, we have
demonstrated that NARD can be readily extended to nonlin-
ear settings via kernel-based techniques, further broadening
its applicability.
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Kriete, A., Levine, M. E., Lipsitz, L. A., Olde Rikkert,
M. G., Rutenberg, A., et al. A complex systems approach
to aging biology. Nature Aging, 2(7):580–591, 2022.
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A. Matrix Computation
A.1. Trace and determinant

Tr(ABC) = Tr(CAB) = Tr(BCA),∣∣IN +AB⊤∣∣ = ∣∣IM +A⊤B
∣∣ , ∀A,B ∈ RN×M .

(44)

A.2. WoodBury identity

(A+BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1. (45)

A.3. Derivatives of matrix-variate function

∂Tr(X⊤BXC)

∂X
= BXC +B⊤XC⊤,

∂Tr(AXB)

∂X
= A⊤B⊤,

∂ ln |X|
∂X

= (X−1)⊤.

(46)

A.4. Contribution of αi

Let C = I +X⊤K−1X = C\i + α−1
i φiφ

⊤
i , then we have

|C| = |C\i||1 + α−1
i φ⊤

i C
−1
\i φi|,

C−1 = C−1
\i −

C−1
\i φiφ

⊤
i C

−1
\i

αi + φ⊤
i C

−1
\i φi

.
(47)

B. Derivations in Detail
B.1. Details of Eq. 9

ln p(Y,W |X,V,K) is the joint distribution of Y and W . By multiplying the likelihood function with the conjugate prior
and omitting the constant, we get the kernel of ln p(Y,W |X,V,K).

Recall that the distribution of Y given X under the model is

p(Y |X;W, ϵ) =

N∏
i

p (yi|xi,W, V )

=
1

|2πV |N/2
exp

(
−1

2

∑
i

(yi −Wxi)
⊤
V −1 (yi −Wxi)

)

=
1

|2πV |N/2
exp

(
−1

2
Tr
(
V −1(Y −WX)(Y −WX)⊤

))
=

1

|2πV |N/2
exp

(
−1

2
Tr
(
V −1

[
WXX⊤W⊤ − 2Y X⊤W⊤ + Y Y ⊤])) .

(48)

and the conjugate prior of W ∼MN (0, Vm×m,K
−1
d×d) is

p(W ;V,K−1) =
|K|m/2

(2π)md/2|V |d/2
exp

[
−1

2
Tr(V −1WKW⊤)

]
. (49)
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Define
Sxx = XX⊤ +K,Syy = Y Y ⊤, Syx = Y X⊤, Sy|x = Syy − SyxS

−1
xx S

⊤
yx.

By multiplying the likelihood function p(Y |W,X) with the conjugate prior of W , i.e., p(W |V,K), and note that(
W − SyxS

−1
xx

)
Sxx

(
W − SyxS

−1
xx

)⊤
=WSxxW

⊤ − 2SyxW
⊤ + SyxS

−1
xx S

⊤
yx. (50)

We have

ln p(Y,W |X,V,K) ∝ Tr
[
V −1

(
WSxxW

⊤ − 2SyxW
⊤ + Syy

)]
(51)

= Tr
[
V −1

(
WSxxW

⊤ − 2SyxW
⊤ + SyxS

−1
xx Syx + Sy|x

)]
(52)

= Tr
[
V −1

(
W − SyxS

−1
xx

)
Sxx

(
W − SyxS

−1
xx

)⊤
+ V −1Sy|x

]
. (53)

B.2. Details of Eq. 10

In Bayesian analysis with conjugate priors, the normalization constants are often omitted during intermediate steps, and
only the kernel of the distribution is considered. Afterward, if the form of the kernel matches a known distribution, the
normalization factor can be reintroduced. In our case, since the matrix normal distribution is conjugate to the Gaussian
likelihood, the posterior distribution of W also follows a matrix normal distribution. Therefore, we only need to match the
kernel of the posterior distribution with the known form of the matrix normal distribution to derive the posterior.

As a result, the first term in Eq. 9 can be decomposed into two parts: the first part corresponds to the kernel of the matrix
normal distribution for W , and the second part corresponds to the kernel for Y .

Formally, we have p(W |X,Y, V,K) ∼ MN (µ, V,Σ) , where µ = SyxS
−1
xx and Σ = Sxx are the posterior mean and

column covariance of W , respectively. C = I +X⊤K−1X is the column covariance of Y .

For Y , Sy|x = Syy −SyxS
−1
xx S

⊤
yx = Y (I −X⊤S−1

xxX)Y T = Y C−1Y ⊤, where the third equality follows from WoodBury
identity. Thus, we have p(Y |X,V,K) ∼MN (0, V, C).

B.3. Details of Eq. 11

P (Y |X,V,K) ∼MN (0, V, C) =
1

(2π)mN/2|C|m/2|V |N/2
exp

[
−1

2
Tr(C−1Y ⊤V −1Y )

]
(54)

Hence,

L = − lnP (Y |X,V,K) =
1

2
[mN ln 2π +m ln |C|+N ln |V |] + 1

2
Tr(C−1Y ⊤V −1Y ) (55)

∝ m ln |C|+N ln |V |+ Tr(Y ⊤V −1Y C−1) (56)

B.4. Details of Eq. 13

The term Y C−1Y ⊤ can be re-expressed by introducing the latent variable W as follows:

Y C−1Y ⊤ = Y (I −X⊤S−1
xxX)Y ⊤ (57)

= Y Y ⊤ − Y X⊤S−1
xxXY

⊤ (58)

= Y Y ⊤ − µXY ⊤ (59)

= (Y − µX)(Y − µX)⊤ + Y X⊤µ⊤ − µXX⊤µ⊤ (60)

= (Y − µX)(Y − µX)⊤ + µSxxµ
⊤ − µXX⊤µ⊤ (61)

= (Y − µX)(Y − µX)⊤ + µ(Sxx −XX⊤)µ⊤ (62)

= (Y − µX)(Y − µX)⊤ + µKµ⊤ (63)

= min
W

(Y −WX)(Y −WX)⊤ +WKW⊤, (64)
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where µ = Y X⊤S−1
xx . The last equality represents the variational form. The value of W that minimizes the expression is

W = µ, which can be derived by taking the derivative of the objective function (Y −WX)(Y −WX)⊤ +WKW⊤ with
respect to W and setting it equal to zero.

B.5. Details of Eq. 15

Under flat prior, it can be shown that

∂L
∂V −1

= −NV + Y C−1Y ⊤ = −NV + (Y − µX)(Y − µX)⊤ + µKµ⊤. (65)

Hence,

V new =
(Y − µX)(Y − µX)⊤ + µKµ⊤

N
. (66)

B.6. Details of Eq. 23

Eq. 21, Eq. 22 and Eq. 23 is the standard quantity in sparse learning. To some extent, si is called the sparsity and qi is
known as the quality of ϕ, The sparsity measures the extent to which basis function overlaps with the other basis vectors in
the model, and the quality represents a measure of the alignment of the basis vector with the error between the training set
values and the vector of predictions that would result from the model with the vector excluded.

Since features are sequentially added to the model in Sequential NARD, we only need to consider the features already
presented in the model at each step. So in this case, we define A as the corresponding active subset of features. Therefore,
we add a subscript A to the quantities in the analysis of this algorithm. In Eq. 22, we have defined

Qi = Y C−1
A φi, Si = φ⊤

i CA
−1φi.

We have also defined qi = Y C−1
\i φi and si = φ⊤

i C
−1
\i φi. However, these two quantities involves C−1

\i which leads to the
high computational cost.

In the proof of Eq. 21 below. We omit the subscript A presented in CA for readability.

Si = φ⊤
i

(
C−1

\i −
C−1

\i φiφ
⊤
i C

−1
\i

αi + φ⊤
i C

−1
\i φi

)
φi (67)

= φ⊤
i C

−1
\i φi −

(φ⊤
i C

−1
\i φi)

2

αi + si
(68)

= si −
s2i

αi + si
(69)

=
αisi
αi + si

(70)

By rearranging it, we can easily get si = αiSi

αi−Si
.

Qi = Y C−1φi (71)

= Y

(
C−1

\i −
C−1

\i φiφ
⊤
i C

−1
\i

αi + φ⊤
i C

−1
\i φi

)
φi (72)

= Y C−1
\i φi −

(Y C−1
\i φi)(φi

⊤C−1
\i φi)

αi + si
(73)

= qi −
qisi

αi + si
. (74)
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By rearranging it, we get

qi =
(αi + si)Qi

αi
(75)

=

(
αi +

αiSi

αi−Si

)
Qi

αi
(76)

=
αiQi

αi − Si
. (77)

C. Details of Sequential NARD
C.1. Proof of Theorem 3.1

Theorem C.1. Denote ηi := Tr(qiq⊤i V −1)−msi, then the global maximum of L(α) with respect to αi is

αi =

{
ms2i
ηi

, ηi > 0

∞ , ηi ≤ 0
(78)

Proof. The stationary points of the marginal likelihood with respect to αi occur when

∂L(α)
∂αi

=
1

2

[
m

αi
− m

αi + si
− Tr(qiq⊤i V −1)

(αi + si)2

]
= 0.

Then we have α∗
i =

ms2i
ηi

. When ηi > 0, α∗
i > 0, then this is a reasonable αi value.

∂2L

∂α2
i

=
1

2

[
−m
α2
i

+
m

(αi + si)2
+

2Tr(qiq⊤i V −1)

(αi + si)3

]
=

1

2

[
2α2

i ηi − 3mαis
2
i −ms3i

α2
i (αi + si)3

]
.

(79)

Case 1. ηi > 0 :
When αi = α∗

i , the nominator is 2m2s4i
ηi
− 3

m2s4i
ηi
−ms3i = −m2s4i

ηi
−ms3i . So, it is negative.

Then, ηi >
−m2s4i
ms3i

= −msi (already satisfied since here ηi > 0). Also, denominator is positive.

Hence, ∂2L
∂α2

i
(α∗

i ) < 0. Therefore, α∗
i is the maximum point.

Case 2. ηi ≤ 0 :
Then α∗

i /∈ Dom(L) since we need αi > 0 for all i, so α∗
i can not be the optimal point here.

Note that
∂L

∂αi
=
ms2i + aαisi − αiTr(qiq⊤i V −1)

(αi + si)3
=

ms2i − αiηi
α2
i (αi + si)3

.

We can observe that the nominator and the denominator is always positive. So L is increasing with respect to αi. Hence,
αi →∞ will make L as large as possible.

Recall the Theorem 3.1, si is called the sparsity and qi is known as the quality of φi, The sparsity measures the extent
to which basis function overlaps with the other basis vectors in the model, and the quality represents a measure of the
alignment of the basis vector with the error between the training set values and the vector of predictions that would result
from the model with the vector excluded. The term ηi = Tr(qiq⊤i V

−1) −msi actually measures the trade-off between
the alignment quality of the basis vector and its sparsity in relation to the covariance structure. For L(αi), when ηi > 0,
the function exhibits an initial increase followed by a decrease, with the maximum value occurring at a stationary point.
When ηi ≤ 0, the process is monotonically increasing, and the maximum value is asymptotically approached as αi →∞,
consistent with the proof of Theorem 3.1. Furthermore, as αi →∞, the part of L(αi) that depends on αi diminishes, and
L(αi) = 0 represents the situation where the corresponding feature can be pruned from the model.
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C.2. Analysis of prior

Observation. When αi →∞, Wi → 0⃗. Tr(KW⊤V −1W ) ≥ 0.

Proof. K and V are positive definite, so K−1 and V −1 are also positive definite. For all x ∈ Rm, x⊤W⊤V −1Wx ≥ 0.
Hence, W⊤V −1W is positive semidefinite.
Note, the trace of the product of two positive semidefinite matrices is nonnegative. So Tr(KW⊤V −1W ) ≥ 0.

Prior

P (W |V,K) =
|K|m/2

(2π)md/2|V |d/2︸ ︷︷ ︸
A

exp

[
−1

2
Tr(V −1WKW⊤)

]
.

When αi →∞ and fix α\i, |K| → ∞ then A→∞.

So,

Tr(KW⊤V −1W )→

{
∞ , Wi ̸= 0⃗

const , Wi → 0⃗

Hence,

exp

[
−1

2
Tr(KW⊤V −1W )

]
→

{
0, if Wi ̸= 0⃗

const, if Wi → 0⃗

For a matrix A ∈ Ra×b following a matrix normal distributionMN (M,U,Q), the density is

|U |−d/2|Q|−m/2

(2π)md/2
exp

{
−1

2
Tr
[
Q−1(A−M)U−1(A−M)⊤

]}
, (80)

whereM ∈ Ra×b is the expectation, U ∈ Ra×a andQ ∈ Rb×b are two positive definite matrices representing the covariance
matrices for rows and columns of A respectively.

D. Hyperprior
D.1. Hyperprior for V

Flat prior. It can be shown that

∂L
∂V −1

= −NV + (Y − µX)(Y − µX)⊤ + µKµ⊤. (81)

Hence,

V new =
(Y − µX)(Y − µX)⊤ + µKµ⊤

N
. (82)

Inverse Wishart prior. If V follows a inverse Wishart distribution:

p(V ) ∼ W−1(Ψ, ν)

∝ |Ψ| ν2 |V |−
(ν+m+1)

2 exp

(
−1

2
Tr(V −1Ψ)

) (83)

The posterior for V is still inverse Wishart:

p(V |X,Y ) ∼ W−1(Sy|x +Ψ, N + ν), (84)

and Y is matrix-T distribution.
Y ∼ T (0,Ψ, C−1, N + ν). (85)

Hence,

V new =
(Y − µX)(Y − µX)⊤ + µKµ⊤ +Ψ

N + ν
. (86)
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D.2. Hyperprior for α

Here we consider different prior for α.

Flat prior. If α follows the flat prior,i.e., p(α) = 1 then

∂L
∂ ln(αi)

= m
[
αi

(
S−1
xx

)
ii
− 1
]
+ αi

(
µ⊤V −1µ

)
ii
. (87)

So for α:

αnew
i =

m

m(S−1
xx )ii + (µ⊤V −1µ)ii

. (88)

Gamma prior. If α follows a Gamma prior Gamma(a, b):

p(α) =

d∏
i=1

ba

Γ(a)
αa−1
i e−bαi . (89)

where a and b are the shape and rate parameters of the Gamma distribution, respectively. Then

∂L
∂ ln(αi)

=
m

2

[
αi

(
S−1
xx

)
ii
− 1
]
+

1

2
αi

(
µ⊤V −1µ

)
ii
+ a− 1− bαi, (90)

therefore,

αnew
i =

m− 2a+ 2

m(S−1
xx )ii + (µ⊤V −1µ)ii − 2b

. (91)

E. Relation with Other Work
We noticed that the model in the paper ”An Iterative Min-Min Optimization Method for Sparse Bayesian Learning” (Wang
et al., 2024) is designed for univariate regression, where the model is expressed as y = Xw+ ϵ, with y, ϵ ∈ Rn, X ∈ Rn×d,
and w ∈ Rd. In contrast, our approach focuses on a multivariate regression model. Therefore, direct comparison between
the two models is not entirely appropriate unless we restrict the analysis to datasets with a single outcome variable.

To extend the Min-Min SBL methods from that paper to the multivariate case, several modifications are necessary. For
example, we need to adjust the prior distribution for the regression coefficient matrix. Additionally, to ensure that the
negative logarithm of the marginal likelihood function can be decomposed as shown in Eq 12 of Min-Min SBL, and to
preserve the desirable properties of the Concave-Convex Procedure (CCCP) as discussed in Lemmas 2.1 and 2.2, we may
need to introduce specific constraints into the model.

While extending the model may seem intuitively straightforward, the actual derivations are not trivial and require additional
effort. For instance, when we introduce the covariance matrix V , all iterative formulas must be re-derived within the CCP
framework. ARD, in this sense, is more of a framework, where the solution process includes the classical Mackay update,
the EM update, and methods like Min-Min SBL. In our paper, we focus on improving the algorithmic complexity of the
Mackay update step, while the extension offered by Min-Min SBL to ARD are orthogonal to the scope of our current work.

F. Additional Experiments
F.1. Extension to the nonlinear setting

Table 5. Associations under different algorithms with kernels.

METHOD MRCE CAPME HS-GHS JRNS NARD NARD(POLYNOMIAL) NARD(RBF)

# OF ASSOCIATION 15330 15094 14983 15066 15101 15094 15072
JACCARD INDEX 0.979 0.977 - 0.988 0.988 0.990 0.989
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Our method can be naturally extended to address nonlinearity through kernel method. Specifically, we consider the model

Y =WΦ(X) + E , Φ(·) ∈ Polynomial, RBF, ...

where Φ(X) represents a nonlinear feature mapping that transforms the input space into a higher-dimensional space,
allowing for more flexible modeling of complex relationships.

To explore this extension, we consider 2 different kernel functions: the polynomial kernel and the Gaussian (RBF) kernel.
We evaluate the performance on a real-world aging phenotype data.

As shown in Table 5, our approach with polynomial and RBF kernels demonstrates competitive performance, achieving high
Jaccard index values. The results are consistent with our expectation that kernel-based extensions allow the model to capture
more complex, nonlinear relationships in the data, further validating the robustness and flexibility of our method.

F.2. Dataset diversity

We also expanded our experiments to include 2 non-biological datasets: Kaggle’s air quality dataset5 and A-shares stock
dataset.

For the air quality dataset, we performed data imputation and timestamp alignment, then analyzed the relationships among 11
key indicators. The results show a strong correlation between PM2.5 and humidity, supporting the environmental principle
that higher humidity promotes the adhesion of fine particles, leading to increased PM2.5 levels. This aligns with previous
studies on atmospheric dynamics.

For the A-shares dataset, we collect nearly 7 years of daily trading data and use the previous 5 days’ information to predict
the next day’s opening price. This results in a dataset of 3032 stocks.

As shown in Table 6, our experiments show that Bayesian methods, such as HS-GHS and JRNS, were unable to complete
calculations in 4 days, while our approach demonstrates excellent scalability. Analysis of the precision matrix reveals
significant block structures, indicating that stocks from the same sector or industry tend to show similar trends in price
movement. Through these 2 experimental datasets, we have demonstrated the effectiveness of our method in both
environmental and financial domains. Since there is no ground truth, we used MRCE as a baseline algorithm for comparison.
We reported the Jaccard index as a benchmark. Additionally, we presented the computational time to highlight the
computational advantages of our method.

Table 6. Associations of A-shares stocks.(m = 3032, d = 60640, N = 1696)

METHOD MRCE CAPME HS-GHS JRNS NARD SEQUENTIAL NARD SURROGATE NARD HYBRID NARD

# OF ASSOCIATION 97939 98335 - - 99671 100309 99105 99475
JACCARD INDEX - 0.869 - - 0.881 0.891 0.893 0.890
TIME PER ITERATION (SECOND) 1200 1300 - - 1000 - 255 -
TIME ALL (H) 17 16.5 - - 14.5 8 5.5 3

F.3. Pathway of TCGA cancer data

Table 7 shows the sample size N , the number of predictors d, and the number of response variables m for the 7 datasets
corresponding to each cancer type.

Table 8 presents a list of all pathways considered in the analysis of the TCGA cancer data in this study, along with their
respective protein members.

F.4. Protein network for different cancer

Figure 5 and Figure 6 illustrate the protein networks for UCEC and LUAD, respectively. These networks highlight the
interactions between key proteins associated with each cancer type. Figure 7 and Figure 8 show the networks for LUSC
and OV, revealing distinct protein association patterns that may contribute to the unique characteristics of these cancers.
Similarly, Figure 9 and Figure 10 present the protein networks for READ and SKCM, providing further insight into the
molecular landscape of these cancer types.

5https://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+quality+data
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Table 7. Datasets on seven different cancer types.

CANCER N d m

READ 121 73 76
LUAD 356 73 76
COAD 338 73 76
LUSC 309 73 86
OV 227 73 77
SKCM 333 73 76
UCEC 393 73 77

Table 8. Pathways and protein names.

PATHWAY SHORT PROTEIN

APOPTOSIS BAK, BAX, BID, BIM, CASPASE7CLEAVEDD198, BADPS112, BCL2, BCLXL, CIAP
BREAST-REACTIVE CAVEOLIN1, MYH11, RAB11, BETACATENIN, GAPDH, RBM15
CELL-CYCLE CDK1, CYCLINB1, CYCLINE1, CYCLINE2, P27PT157, P27PT198, PCNA, FOXM1
CORE-REACTIVE CAVEOLIN1, BETACATENIN, RBM15, ECADHERIN, CLAUDIN7
DNA DAMAGE RESPONSE 53BP1, ATM, BRCA2, CHK1PS345, CHK2PT68, KU80, MRE11, P53, RAD50, RAD51, XRCC1
EMT FIBRONECTIN, NCADHERIN, COLLAGENVI, CLAUDIN7, ECADHERIN, BETACATENIN, PAI1
PI3K/AKT AKTPS473, AKTPT308, GSK3ALPHABETAPS21S9, GSK3PS9, P27PT157, P27PT198, PRAS40PT246, TUBERINPT1462, INPP4B, PTEN
RAS/MAPK ARAFPS299, CJUNPS73, CRAFPS338, JNKPT183Y185, MAPKPT202Y204, MEK1PS217S221, P38PT180Y182, P90RSKPT359S363, YB1PS102
RTK EGFRPY1068, EGFRPY1173, HER2PY1248, HER3PY1298, SHCPY317, SRCPY416, SRCPY527
TSC/MTOR 4EBP1PS65, 4EBP1PT37T46, 4EBP1PT70, P70S6KPT389, MTORPS2448, S6PS235S236, S6PS240S244, RBPS807S811

F.5. Further discussions

The Surrogate NARD sometimes demonstrate instability in its computations. This is related to numerical issues that arise
during the iterative optimization process. Specifically, when working with large, high-dimensional real-world datasets,
the precision matrix estimation can become unstable due to the ill-conditioning of the covariance matrix or the challenges
associated with ensuring that the precision matrix remains positive definite throughout the iterations. This numerical
instability is not related to gradient-based methods but rather stems from the nature of the data and the underlying
optimization procedure. A potential solutions is that we can use a more robust initialization for the precision matrix.
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Figure 5. Protein network of UCEC.
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Figure 6. Protein network of LUAD.
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Figure 8. Protein network of OV.
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Figure 10. Protein network of SKCM.
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